1 TEODORO AGUSTíN LÓPEZ y LÓPEZ

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1 TEODORO AGUSTíN LÓPEZ y LÓPEZ"

Transcripción

1 CALENDARIOS Y FESTIVIDADES 1 TEODORO AGUSTíN LÓPEZ y LÓPEZ Ants d qu l concpto «timpo» fus objto d studio n la historia dl pnsaminto grigo, surgn sistmas difrnts d mdir l timpo para podr contarlo y dividirlo. Así aparcn l calndario solar, lunar, sagrado maya, luni-solars, como l isralita, musulmán, juliano, grgoriano, o l rpublicano francés. Al comnzar un nuvo milnio, siglo y año ocupa nustro intrés ahora l calndario, qu rig las fistas y sus clbracions. El calndario clsiástico ra confccionado anualmnt n cada diócsis por l Mastro d Crmonias d la Catdral, por jmplo, «Ordo Divini Officii rcitandi sacriqu pragndi in Diocsi Pacnsi pro Anno Domini 1909». La Epacta -cartilla s l llamaba n l lnguaj vulgar- dsd hac trinta años ha djado d publicars n las diócsis; ya qu asum l Scrtariado Nacional d Liturgia dicho comtido. D las dicions antiguas apnas consrvamos algunos jmplars dbido a qu al sr un librto manual ra arrojado por los clérigos usuarios a la paplra. En fcto, los archivos clsiásticos dsgraciadamnt no s han procupado d incorporarlo a sus fondos documntals. l. EL SISTEMA SOLAR Y LUNAR 1. CALENDARIO SOLAR-JULIANO. Es quizá d los primros qu ncontramos n la historia d la humanidad. S fundaba n la duración aparnt d la rotación dl Sol alrddor d la Tirra. Así surg l día d la noch, los días ntr sí, ocasionando l año trópico ( 365, 242 días. Las 6 horas d más n cada año, arrojaban 24 horas, qu quivalía a un día más, surgindo l año bisisto cada cuatro años). Est calndario fu laborado por l astrónomo grigo Socígns d Aljan-

2 128 TEODORO AGUSTíN LÓPEZ y LÓPEZ dría y lo aplicó n Roma Julio César 46 años ants d la ra cristiana (708 d la fundación d Roma). 2. CALENDARIO ISRAELITA. Es uno d los luni-solars. Los años comuns tinn doc mss; los años mbolísticos son los qu tinn un año adicional (Adar Sni). Tanto los comuns como los mbolísticos pudn sr dfctuosos (353 ó 383 días), rgulars ( 354 ó 584 días) o abundants (355 ó 385 días). La Pascua s l día 14 dl ms d Nisn. 3. CONJUNCIÓN DE DOS SISTEMAS 3.1. Concilio d Nica. El año 325 corrigió l rror no prvisto por l calndario juliano. En ralidad, había l dsfas d 14 minutos y 11 sgundos ntr l año lunar y l solar. D aquí, los padrs conciliars hiciron las cuntas siguints: 11 " * 60= 660"; = 674'. D dond, x= 674*325/1=219050; /60= 3650 sgundos; 3650/60=60 minutos; 60/24 h.=2 días; llgando a la conclusión d dos días y 12 minutos y corrign l rror adlantando l calndario n trs días, pro no prviron l futuro Rforma Grgoriana. Es l calndario actual (año d 365 días dividido n 12 mss, smana d sit días y un bisisto cada cuatro años). Fu llvado a cabo por l Papa Grgario XIII, n 1582, quin rpantin: 1. Los ciclos d 19 años. 2. Quita l númro áuro y lo sustituy por 30 pactas, qu aparc inscrito n l calndario, cada día dl ms. Así mp~zando por l 1 d nro la pacta astrisco, qu no s"pon sino l astrisco: 1 pacta XIX... hasta llgar a 31 d dicimbr, qu s ncuntra la pacta 19, dando la difrncia d 11 días, ntr l año solar (12*30= 360) y l lunar al sr a vcs d 29 días ( lunas vacías) y 30 días (lunas llnas) ( =6). Habían transcurrido 1275 años dsd Nica y l rror d nuvo aparc, dando como rsultado 9 días y 9 horas, qu vnían a sr 10 días. Entoncs Grgario XIII dcrta qu n 1582 l día siguint al4 d octubr, mmoria d S. Francisco d Asís fus l virns 15 d octubr, mmoria d Santa Trsa, corrigiéndos la dcna d los días atrasados. Admás, corrig l rror futuro a partir dl año 1600, ordnando qu n lo sucsivo, fusn bisistos todos los años múltipls d cuatro y qu d los años sculars (los acabados n dos cros), sólo fusn bisistos aqullos cuyo númro d cntnas fus múltiplo d cuatro ).Establc qu cada cuatrocintos años l primr año sa bisisto.

3 - CALENDARIOS Y FESTIVIDADES 129 Tabla l. Años sculars I 1700 I 1800 I 1900\ 2000 IU 2100 I 2200 I Los 24 años bisistos durant los cuatro siglos nos arrojan 96 días, 21 horas y 6 con 2/3, qu rdondándolo son 96 días, ya qu s un pquñísima difrncia d 53 minutos con 1/3. Esta s rcompnsará n un día al cabo d 3323 años, sgún la formula: 24/2 8/9 * 400= 3323 años. Tabla n. Años bisistos dl siglo , 11. CALENDARIO ECLESIASTICO Tin como objtivo coordinar l año solar con l lunar. Cómo s armonizan la luna y l sol? D qué modo s pon d acurdo l calndario rligioso y l civil? Entr los qu s ddicaron intnsamnt al studio d la coordinación d los moviminto dl sol con los d la luna, fu l insign astrónomo atnins Mtón, l año 430 ants d Cristo, quin dscubrió qu l sol y la luna, dspués d 19 días, s ncontraba n la misma conjunción n qu stán n l día primro d los 19 años. Por tanto, l sirv d bas para distinguir los días solars d los lunars y dscubr l adlanto d la luna n 11 días. 1. QUÉ ELEMENTOS SON NECESARIOS PARA HACER LA ADAPTACIÓN? La cuación lunar s la coordinación d las pactas con l ciclo d 19 años, para ncontrar la luna nuva n l calndario grgoriano. Implica los concptos d: Epacta: Es l númro d días qu dspués dl último plnilunio o luna nuva dl año s rquir para compltar l númro d días dl año solar, sto s, la dad d la luna al principio dl año siguint. La difrncia ntr l año lunar y solar s ntr 354 y 365 días, rspctivamnt. Concrtamnt, l último plnilunio s l 2 d dicimbr, más 30 días sría

4 ~ 130 TEODORO AGUSTíN LÓPEZ y LÓPEZ l 31 d dicimbr, pro como tinn 11 días mnos, sría l 21 dicimbr. Lugo l timpo transcurrido ntr l 21 d dicimbr y 11 d nro srá la difrncia, qu s llama pacta. Numrus aurus: Es l númro qu cada año ocupa l ciclo (rvolución) d los 19 años, ya qu dspués d 19días l sol y la luna stán n la misma conjunción. S toma para vr l adlanto d la luna sobr l sol. (Nwton). Tabla lit. Ciclos d 19 años Año Lunar: Es l qu consta d las 12lunacions o rvolucions d la luna. Sgún l cómputo d 235 lunacions, quivalnts a 19 años solars srían. Tabla IV AÑos 19 solars 19 lunars 19 julianos 19 grgorianos DÍAS S obsrva una difrncia ntr 235 días lunars y la longitud d los divrsos años. En fcto, la longitud dl año solar s más brv n dos horas qu 235 días d la lunación. Difrncia qu n años arrojan un día. Si s computan n calndario juliano s d años, ya qu n l primr año la pacta va crcindo y la luna dcrcindo. Mintras qu n l calndario grgonano, l año va hacia dlant y la pacta va rtrocdindo. Los doc mss d 30 días son los 360 dl año solar y los 12 mss d 29 o 30 días altrnativamnt arrojan los 354 dl año lunar. Por tanto, son sis días más uno dl otro. S. Grgorio para allanar sta dificultad vmos qu n cómputo d las pactas hay una rptición; optando por l 25 ntr l 26 o 24. Ltra dominical: Es la ltra alfabética qu n calndario común litúrgico nos indica l domingo d cada ms. Exist una tabla qu nos prmit conocr la ltra dominical. Por jmplo, l año 1940, n qu figura 19 siglos, 19/4, nos da l rsto 3. Vamos a la tabla y n-

5 -- CALENDARIOS Y FESTIVIDADES 131 contramos l 40 n la sgunda columna d la fila li,hacindo coincidir con la fórmula cuyo rsto s trs y nos dará las ltras G y F, qu srán las ltras dominicals dl año buscado, la primra para los domingos hasta l 29 d fbrro y la sgunda l rsto dl año. Tabla V r GB Er B o 37 AE BD G F EA DB FG AE 65B EF DA GB F93 B GD E ADrG EGA DFG H1) ~GA BDE t.: FAB EF B Afiodlsiglo x/4= D b' F AF GB A BG E F D l{ ~ (O) (1) x/4= ~ ~ (3) (2)

6 132 TEODORO AGUSTíN LÓPEZ y LÓPEZ 2. CÓMO SE CONFECCIONA EL AÑO LITÚRGICO? s ha d avriguar la Pascua, sgún la aplicación d varias fór Primramnt mulas. Para la Pascua: 30 d marzo - Epacta Conscuntmnt l domingo siguint srá l d la Rsurrcción. Pro cómo obtnr la pacta? Sgún la formula: (11*NÚInro Áuro) -12/30. Prviamnt hmos d conocr l númro áuro con la fórmula: Año+1/19. Una vz conocida la Pascua judía, trs días dspués srá l domingo d Rsurrcción; pro habrá qu calcular la Ltra Dominical: Año/4 +año /7, cuyo rsto numérico d O a 6, corrspond a unas ltras. Tabla VI B O A 1 G 2 E 4 D 5 6 s la an- Cuando l año s bisisto a partir dl 24 d fbrro la ltra dominical trior. Concrtamnt l Annus Domini 2000 s como sigu: Numrus Aurus = / 19= 105, cuyo rsto s 6. Epacta= (11 *6)-12 / 30= 1, cuyo rsto s 24. Pascua = 30 (marzo) = 20 d abril. En los casos qu l numro sa mnor qu 22, hay qu sumarl 29 y al rsultado rstarl 30 d marzo. Ltra dominical: 2000/ /7 = 3571, cuyo rsto s 3, qu corrspond a la ltra F. Dsd dl 24 d fbrro srá la G. an Al sr bisisto a partir dl 24 d fbrro s cambiará por la ltra dominical trior. 3. CICLO DE LA PASCUA DE RESURRECCIÓN A partir dl domingo d Pascua d Rsurrcción arrancan los 7 domingos d Cuarsma, qu prcdn dicha solmnidad y su Octava. Los otros 7 domingos postriors prolongan la algría dl timpo pascual para trminar con la solmnidad d Pntcostés, qu cirra l ciclo Murt-Rsurrcción. 4. CICLO DE LA PASCUA DE NAVIDAD El otro ciclo principal dl año litúrgico s l Naciminto d Jsús. Hoy vivi-

7 CALENDARIOS Y FESTIVIDADES 133 mos n lo qu llamamos la ra cristiana. Un método dl siglo VI, compusto por l abad Dionisio l «xiguo» al lr l vanglio d Lucas quin afirma qu Jsús comnzó la vida pública l año 15 dl mandato dl Emprador Tibrio (783 d la fundación d Roma). D aquí, qu rstas los 30 años d dad a dicha fcha y concluyra qu l año 753 fura l año d la ra cristiana. No prvió por un lado, qu si nació l 753 cómo murió Hrods l 750, trs años ants y no tuvo prsnt la matanza d los inocnts?; y por otro, qu Cirino ralizó l cnso n Palstina, mandado por César Augusto, tuvo qu sr dspués d mpadronaminto n Blén d José y María l 746 d la ra romana. En conscuncia, cuando Jsús cominza su ministrio público, más qu tnr trinta años xactos s hallaba «n los trinta», qu podrían sr trinta y cuatro o trinta y sis. Lugo l naciminto podría fchars ntr lo -6 o-4 d la sri actual dl calndario. El año jubilar 2000 más qu la conmmoración d una fcha ha sido un acontciminto: El Naciminto d Jsús. Al 25 d dicimbr, día d Navidad, l antcdn los cuatro domingos d Advinto. Simpr srá l primro, aqul domingo qu stuvir más crca d la fista d San Andrés Apostol, cuya fista s l 30 d novimbr. Tabla VII. Búsquda dl primr domingo dl año D L M X J V S 4 D La fista d la Natividad stá formada por su Octava, qu concluy con la Solmnidad d Santa María. S prolonga l spíritu navidño con la clbración d las fistas d la Sagrada Familia, Epifanía y Bautismo dl Sñor. Entr ambos ciclos transcurrn unas smanas «flxibls» con la distribución d dos priodos, conocido como «timpo ordinario». Por un lado, los domingos qu van ntr los dos ciclos cntrals dl Naciminto y Murt-Rsurrcción, cuyo númro no pud sr mayor a 9 domingos o smanas; por otro, dsd Pntcostés hasta l cominzo d otro año litúrgico, trminando con l domingo 34, solmnidad d Cristo Ry o fin dl año litúrgico.

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA

VARIACIÓN DE IMPEDANCIAS CON LA FRECUENCIA EN CIRCUITOS DE CORRIENTE ALTERNA AIAIÓN DE IMPEDANIAS ON A FEUENIA EN IUITOS DE OIENTE ATENA Fundamnto as impdancias d condnsadors bobinas varían con la frcuncia n los circuitos d corrint altrna. onsidrarmos por sparado circuitos simpls.

Más detalles

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES

CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o

Más detalles

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE

Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios

Más detalles

UNIVERSIDAD DEL FÚTBOL Y CIENCIAS DEL DEPORTE MODELO ACADÉMICO DEPORTIVO ALTO RENDIMIENTO TUZO

UNIVERSIDAD DEL FÚTBOL Y CIENCIAS DEL DEPORTE MODELO ACADÉMICO DEPORTIVO ALTO RENDIMIENTO TUZO PROCEDIMIENTO DE CAPTACION Y ASIGNACION NIVEL SECUNDARIA ART, Clav: Página 1 d 7 1. Objtivo Asgurar qu: la captación, otorgaminto y asignación d bcas Académicas a los Estudiants d La Univrsidad dl Fútbol

Más detalles

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO

9 TRASLACIONES, GIROS Y SIMETRÍAS EN EL PLANO 9 TRSLINES, GIRS SIMETRÍS EN EL PLN EJERIIS PRPUESTS 9. ibuja un parallogramo y razona qué pars d vctors dtrminados por los vértics son quipolnts. Son quipolnts los qu son parallos y dl mismo sntido, y

Más detalles

Anexo V "Acuerdos de Sistemas para la Facturación' del Convenio poro la Comercialización o Reventa de Servicios

Anexo V Acuerdos de Sistemas para la Facturación' del Convenio poro la Comercialización o Reventa de Servicios Anxo V "Acurdos d Sistmas para la Facturación' dl Convnio poro la Comrcialización o ANEXO V ACUERDOS DE SISTEMAS PARA LA FACTURACIÓN QUE SE ADJUNTA AL CONVENIO PARA LA COMERCIALIZACIÓN O REVENTA DE SERVICIOS

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

Ejercicios resueltos Distribuciones discretas y continuas

Ejercicios resueltos Distribuciones discretas y continuas ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s

Más detalles

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)

TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c) TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General

Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General Univrsidad Austral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 8 Mrcados Financiros y Expctativas Profsor: Carlos R. Pitta Macroconomía Gnral, Prof. Carlos R. Pitta, Univrsidad Austral

Más detalles

COMPUTACIÓN. Práctica nº 2

COMPUTACIÓN. Práctica nº 2 Matmáticas Computación COMPUTACIÓN Práctica nº NÚMEROS REALES Eistn algunos númros irracionals prdfinidos n Maima como son l númro π l númro qu s corrspondn con los símbolos %pi % rspctivamnt. Otros númros

Más detalles

Núm. 36 Martes, 22 de febrero de 2011. III. ADMINISTRACIÓN local. DIpuTACIÓN provincial De burgos. secretaría general

Núm. 36 Martes, 22 de febrero de 2011. III. ADMINISTRACIÓN local. DIpuTACIÓN provincial De burgos. secretaría general III. ADMINISTRACIÓN local DIpuTACIÓN provincial D burgos scrtaría gnral cv: BOPBUR-2011-01058 El Plno d la Excma. Diputación Provincial, n ssión ordinaria clbrada l día 16 d novimbr d 2010, adoptó ntr

Más detalles

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN

ANÁLISIS DEL AMPLIFICADOR EN EMISOR COMÚN ANÁLISIS DL AMPLIFIADO N MISO OMÚN Jsús Pizarro Pláz. INTODUIÓN... 2. ANÁLISIS N ONTINUA... 2 3. TA D AGA N ALTNA... 3 4. IUITO QUIALNT D ALTNA... 4 5. FUNIONAMINTO... 7 NOTAS... 8. INTODUIÓN l amplificador

Más detalles

RADIO CRÍTICO DE AISLACIÓN

RADIO CRÍTICO DE AISLACIÓN DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría

Más detalles

núm. 56 lunes, 23 de marzo de 2015 V. OTROS ANUNCIOS OFICIALES SODEBUR SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS

núm. 56 lunes, 23 de marzo de 2015 V. OTROS ANUNCIOS OFICIALES SODEBUR SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS núm. 56 luns, 23 d marzo d 2015 V. OTROS ANUNCIOS OFICIALES SODEBUR C.V.E.: BOPBUR-2015-01880 SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS Convocatoria pública d la Diputación Provincial d Burgos

Más detalles

CENTRO UNIVERSITARIO DEL FUTBOL Y CIENCIAS DEL DEPORTE, S. C. PROCEDIMIENTO PARA LA ENTREGA DE DOCUMENTOS A IHEMSYS Vigente a partir de:

CENTRO UNIVERSITARIO DEL FUTBOL Y CIENCIAS DEL DEPORTE, S. C. PROCEDIMIENTO PARA LA ENTREGA DE DOCUMENTOS A IHEMSYS Vigente a partir de: Vignt a partir d: Clav: 15 d Julio d 2005 Vrsión: Página 1 d 12 1. Objtivo Asgurar qu la Entrga d Documntos al Instituto Hidalguns d Educación Mdia Suprior y Suprior (IHEMSYS) por part d la Coordinación

Más detalles

núm. 234 miércoles, 11 de diciembre de 2013

núm. 234 miércoles, 11 de diciembre de 2013 NÚMERO 220 ORDENANZA FISCAL REGULADORA DE LA TASA POR LA PRESTACIÓN DE SERVICIOS DE ABASTECIMIENTO Y SANEAMIENTO DE AGUAS Artículo 1. I. PRECEPTOS GENERALES El prsnt txto s apruba n jrcicio d la potstad

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

Enfrentando Comportamientos Difíciles Usando el Sistema de Guía

Enfrentando Comportamientos Difíciles Usando el Sistema de Guía Enfrntando Comportamintos Difícils Usando l Sistma d Guía R s o u r c & R f r r a l H a n d o u t Agrsión Obsrvación - Prguntas Trata la niña d hacr contacto d una manra inapropiada? Está tratando d sr

Más detalles

núm. 38 martes, 25 de febrero de 2014 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL

núm. 38 martes, 25 de febrero de 2014 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL C.V.E.: BOPBUR-2014-01298 Código d Vrificación:1453130796 - Comprub su validz n http://www..s/comprobar-firmados Convocatoria

Más detalles

servicio@lottired.com.co, la página Web www.loteriademedellin.com.co y el buzón de sugerencias.

servicio@lottired.com.co, la página Web www.loteriademedellin.com.co y el buzón de sugerencias. Mdllín, d nro d 5 Doctor: LUBIER DE JESÚS CALLE RENDÓN Grnt BENEFICENCIA Asunto: Inform d sguiminto a Pticions, Qujas, Rclamos y Sugrncias (PQRS). Rsptado Doctor Call: El artículo 76 d la ly 474 d : FICINA

Más detalles

Aplicaciones de la distribución weibull en ingeniería

Aplicaciones de la distribución weibull en ingeniería COLMEME UAN Aplicacions d la distribución wibull n ingniría Raqul Salazar Morno 1 Abraham Rojano Aguilar 2 Esthr Figuroa Hrnándz Francisco Pérz Soto 1. INTRODUCCIÓN la salud n la vida d una prsona. La

Más detalles

PRIMERA PRÁCTICA SONIDO

PRIMERA PRÁCTICA SONIDO PRIMERA PRÁCTICA SONIDO 1. Objtivo gnral: El objtivo d sta práctica s qu l alumno s familiaric con los concptos d amplitud y frcuncia y los llgu a dominar, así como l fcto qu tin la variación d stos parámtros

Más detalles

Becas INSTITUTO, CIUDEN-ULE PARA LA REALIZACION DE PROGRAMAS DE POSGRADO 2013.

Becas INSTITUTO, CIUDEN-ULE PARA LA REALIZACION DE PROGRAMAS DE POSGRADO 2013. lón él Bcas INSTITUTO, CIUDEN-ULE PARA LA REALIZACION DE PROGRAMAS DE POSGRADO 2013. BASES El Instituto Ciun-UL Tcnologías CAC y Dsarrollo Trritorial convoca cuatro bcas para ralización, n Institucions

Más detalles

- SISTEMA DE INFORMACION DE GESTION -

- SISTEMA DE INFORMACION DE GESTION - - SISTEMA DE INFORMACION DE GESTION - INFORME Nº 4 Jf d División y Encargados d Cntros d Rsponsabilidad NIVEL 2 GOBIERNO REGIONAL DE MAGALLANES Y ANTARTICA CHILENA - DICIEMBRE 2008 - 1 Mta Mdidas Rsponsabl

Más detalles

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE.

ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. ANÁLISIS DE LOS REGISTROS DE OBSERVACIÓN. 1. MOAL. I. ESCUELA GRANDE. El mastro impart la matria d Física y al iniciar un tma rscata los sabrs prvios d los alumnos sobr l tma, como s mustra a continuación:

Más detalles

GRUPOS Y SEMIGRUPOS. Unidad 5

GRUPOS Y SEMIGRUPOS. Unidad 5 GRUPOS Y SEMIGRUPOS En sta unidad studiarmos algunas d las structuras algbraicas qu s utilizan n Toría d Codificación y también n l studio d máquinas d stado finito, como por jmplo los autómatas qu vrmos

Más detalles

Inform d Gass Efcto Invrnadro Página 1 d 9 1. INDICE 1. INDICE. 3 3. CUANTIFICACIÓN DE EMISIONES DE GEIS 3 4. LÍMITES OPERATIVOS Y EXCLUSIONES 5 5. AÑO BASE 6 6. METODOLOGÍA DE CUANTIFICACIÓN 6 7. INCERTIDUMBRE

Más detalles

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA

DISPERSIÓN - ESPECTRÓMETRO DE PRISMA DISPERSIÓN - ESPECTRÓMETRO DE PRISMA OBJETIVOS Invstigación d la rgión visibl dl spctro dl átomo d Hidrógno y dtrminación d la constant d Ridbrg. Calibración d la scala dl spctrómtro d prisma. Dtrminación

Más detalles

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: MODELOS DE SISTEMAS CÁLCULO DE RESIDUOS Y SUS APLICACIONES INSTITUTO TENOLÓGIO DE OSTA RIA ESUELA DE INGENIERÍA ELETRÓNIA URSO: MODELOS DE SISTEMAS ÁLULO DE RESIDUOS Y SUS APLIAIONES ING. FAUSTINO MONTES DE OA FEBRERO DE álculo d Rsiduos y sus Aplicacions INDIE

Más detalles

núm. 109 miércoles, 11 de junio de 2014 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS UNIDAD DE CULTURA

núm. 109 miércoles, 11 de junio de 2014 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS UNIDAD DE CULTURA III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS UNIDAD DE CULTURA C.V.E.: BOPBUR-2014-04183 Mdiant acurdo d Junta d Gobirno númro 6, d fcha 23 d mayo d 2014, s aprobó la «Convocatoria pública

Más detalles

Tema 3 (cont.). Birrefringencia.

Tema 3 (cont.). Birrefringencia. Tma 3 (cont.). Birrfringncia. 3.8 Anisotropía. Dobl rfracción. 3.9 Modlo d Lorntz para la birrfringncia 3.10 Polarizadors dicroicos. Ly d Malus 3.11 Propagación a través d una lámina rtardadora 3.1 Aplicacions

Más detalles

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES

Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES Marclo Romo Proaño Escula Politécnica dl Ejército - Ecuador Capítulo V CONDICIONES DE FRONTERA Y MODELAMIENTO NUMÉRICO EN ECUACIONES DIFERENCIALES 5. CONDICIONES DE FRONTERA: Dbido a qu muchos problmas

Más detalles

LIMITES DE FUNCIONES EN 1D

LIMITES DE FUNCIONES EN 1D LIMITES DE FUNCIONES EN D Límits d funcions n D Autor: Patrici Molinàs Mata (pmolinas@uoc.du), José Francisco Martínz Boscá (jmartinzbos@uoc.du) ESQUEMA DE CONTENIDOS Dfinición Límits latrals LÍMITE DE

Más detalles

Para reciclar hay 5 contenedores y cada uno con una función básica: -Azul: Papel,cartón -Verde: vidrios, -Amarillo:Envases(plástico..

Para reciclar hay 5 contenedores y cada uno con una función básica: -Azul: Papel,cartón -Verde: vidrios, -Amarillo:Envases(plástico.. s o m Có? r a l c i c r b d Para rciclar hay 5 contndors y cada uno con una función básica: -Azul: Papl,cartón -Vrd: vidrios, -Amarillo:Envass(plástico..) -Ngro:rstos y orgánico -Pilas. l u z A r o d n

Más detalles

núm. 222 viernes, 20 de noviembre de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE GUMIEL DE IZÁN

núm. 222 viernes, 20 de noviembre de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE GUMIEL DE IZÁN núm. 222 virns, 20 d novimbr d 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE GUMIEL DE IZÁN C.V.E.: BOPBUR-2015-07935 Por Dcrto d Alcaldía, d fcha d 16 d octubr d 2015, s aprobaron las bass y la convocatoria

Más detalles

núm. 33 miércoles, 18 de febrero de 2015 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS UNIDAD DE CULTURA

núm. 33 miércoles, 18 de febrero de 2015 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS UNIDAD DE CULTURA III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS UNIDAD DE CULTURA 9 C.V.E.: BOPBUR-2015-00876 Mdiant acurdo d la Junta d Gobirno númro 9, d fcha 29 d dicimbr d 2014, s aprobó la «Convocatoria

Más detalles

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES

PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica

Más detalles

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015 Asambla Nacional Scrtaría Gnral TRÁMITE LEGISLATIVO 2014-2015 ANTEPROYECTO DE LEY: 106 PROYECTO DE LEY: 171 LEY: GACETA OFICIAL: TÍTULO: QUE ESTABLECE EL RECICLAJE DE PAPEL, LATAS DE ALUMINIO Y BOTELLAS

Más detalles

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN

INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN INTEGRAL INDEFINIDA MÉTODOS ELEMENTALES DE INTEGRACIÓN El almán Gottfrid Libniz (66-76), quin, junto con su antagonista l inglés Isaac Nwton (6-77), fu l crador dl cálculo infinitsimal. MATEMÁTICAS II

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

MOVIMIENTO CIRCULAR UNIFORMEMENTE RETARDADO

MOVIMIENTO CIRCULAR UNIFORMEMENTE RETARDADO MOVIMIENTO CIRCULAR UNIFORMEMENTE RETARDADO Antonio J. Barbro Mariano Hrnándz Alfonso Calra Pablo Muñiz José A. d Toro Mª Mar Artigao Dpto. Física Aplicada. UCLM. 1 Mdidas dl cuadrado d la vlocidad angular

Más detalles

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo.

Valledupar como vamos: Demografía, Pobreza y Pobreza Extrema y empleo. Valldupar como vamos: Dmografía, Pobrza y Pobrza Extrma y mplo. Tradicionalmnt l programa Valldupar Cómo Vamos, lugo d prsntar la Encusta d Prcpción Ciudadana (EPC), raliza la ntrga d Indici d Calidad

Más detalles

núm. 136 martes, 22 de julio de 2014 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE ARANDA DE DUERO SECRETARÍA GENERAL

núm. 136 martes, 22 de julio de 2014 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE ARANDA DE DUERO SECRETARÍA GENERAL núm. 136 marts, 22 d julio d 2014 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE ARANDA DE DUERO SECRETARÍA GENERAL C.V.E.: BOPBUR-2014-05044 Bass dl procso slctivo para la constitución d una bolsa d trabajo

Más detalles

núm. 41 viernes, 28 de febrero de 2014 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS

núm. 41 viernes, 28 de febrero de 2014 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS boltín oficial d la provincia III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS C.V.E.: BOPBUR-2014-01222 SERVICIO DE ASESORAMIENTO JURÍDICO Y URBANÍSTICO A MUNICIPIOS Y ARQUITECTURA El Plno d

Más detalles

núm. 35 viernes, 20 de febrero de 2015 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL

núm. 35 viernes, 20 de febrero de 2015 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL núm. 35 virns, 20 d fbrro d 2015 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL C.V.E.: BOPBUR-2015-01052 Aprobación d la modificación d la rlación d pustos d trabajo d

Más detalles

LÍMITES DE FUNCIONES.

LÍMITES DE FUNCIONES. LÍMITES DE FUNCIONES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Sa y una unción ral d variabl ral. D una manra intuitiva y oco rcisa, dirmos qu l it d s L, cuando s aroima a, si ocurr qu cuanto más róimo sté

Más detalles

Es un gas, gas natural

Es un gas, gas natural lan d la lcción - ágina 1 ESTDIANTES DE RIMARIA Tma Gas natural Funt trólo y gas natural, páginas 20 a 23 Objtivo Los alumnos aprndrán qu l gas natural s una sustancia qu s forma a través d millons d años

Más detalles

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ

APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ Capítulo Nº 8: La rntabilidad n monda nacional d una invrsión n monda xtranjra Marco Antonio Plaza Vidaurr APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN

Más detalles

núm. 174 viernes, 13 de septiembre de 2013 II. ADMINISTRACIÓN AUTONÓMICA JUNTA DE CASTILLA Y LEÓN DELEGACIÓN TERRITORIAL DE BURGOS

núm. 174 viernes, 13 de septiembre de 2013 II. ADMINISTRACIÓN AUTONÓMICA JUNTA DE CASTILLA Y LEÓN DELEGACIÓN TERRITORIAL DE BURGOS II. ADMINISTRACIÓN AUTONÓMICA JUNTA DE CASTILLA Y LEÓN DELEGACIÓN TERRITORIAL DE BURGOS Oficina Trritorial d Trabajo C.V.E.: BOPBUR-2013-06881 Rsolución d fcha 28 d agosto d 2013 dl Jf d la Oficina Trritorial

Más detalles

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios propuestos Unidad 1. El conjunto de los números reales Matemáticas aplicadas a las Ciencias Sociales I Solucions a los jrcicios propustos Unidad. El conjunto d los númros rals Matmáticas aplicadas a las Cincias Socials I NÚMEROS RACIONALES Y NÚMEROS IRRACIONALES. Dtrmina si los siguints númros son o no

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

núm. 62 lunes, 31 de marzo de 2014 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL

núm. 62 lunes, 31 de marzo de 2014 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL núm. 62 luns, 31 d marzo d 2014 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL C.V.E.: BOPBUR-2014-02261 Bass d la convocatoria 2014 d ayudas y bcas al studio a favor d

Más detalles

núm. 85 miércoles, 7 de mayo de 2014 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE ROA DE DUERO

núm. 85 miércoles, 7 de mayo de 2014 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE ROA DE DUERO III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE ROA DE DUERO C.V.E.: BOPBUR-2014-03110 Por rsolución d Alcaldía d fcha 16 d abril d 2014, s aprobó la contratación d dos plazas d monitor d gimnasio municipal

Más detalles

EMPRÉSTITOS DEPARTAMENTO DE MATEMÁTICA ECONÓMICA, FINANCIERA Y ACTUARIAL. División de Ciencias Jurídicas, Económicas y Sociales

EMPRÉSTITOS DEPARTAMENTO DE MATEMÁTICA ECONÓMICA, FINANCIERA Y ACTUARIAL. División de Ciencias Jurídicas, Económicas y Sociales MPRÉSTITOS Carn Badía, Hortènsia Fontanals, Mrch Galisto, José Mª Lcina, Mª Angls Pons, Trsa Prixns, Dídac Raírz, F. Javir Sarrasí y Anna Mª Sucarrats DPARTAMNTO D MATMÁTICA CONÓMICA, FINANCIRA Y ACTUARIAL

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,

Más detalles

VI. JUSTICIA. i. - JUSTICIA CRIMINAL.

VI. JUSTICIA. i. - JUSTICIA CRIMINAL. VI. JUSTICIA. i. - JUSTICIA CRIMINAL. Utilizando la d la Administración d Justicia n l o años di 883, i 884 y i 885, publicada por l Ministrio d Graci a minto d lo prvnido n cl Ral dcrto d 18 d marzo d

Más detalles

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler.

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. 5. Convgncia d intgals impopias. Las funcions Γ y Β d Eul. La foma haitual d calcula una intgal impopia, po jmplo dl intgando, aplica

Más detalles

LA ORGANIZACIÓN DEL DEPARTAMENTO FINANCIERO

LA ORGANIZACIÓN DEL DEPARTAMENTO FINANCIERO LA ORGANIZACIÓN DEL DEPARTAMENTO FINANCIERO 1. INTRODUCCIÓN No importa l tamaño d la mprsa n la qu dsarrollmos nustra labor profsional. No importa l númro d prsonas qu compongan l dpartamnto al qu nos

Más detalles

Núm. 177 Miércoles, 19 de septiembre de 2012 II. ADMINISTRACIÓN AUTONÓMICA JUNTA DE CASTILLA Y LEÓN DELEGACIÓN TERRITORIAL DE BURGOS

Núm. 177 Miércoles, 19 de septiembre de 2012 II. ADMINISTRACIÓN AUTONÓMICA JUNTA DE CASTILLA Y LEÓN DELEGACIÓN TERRITORIAL DE BURGOS II. ADMINISTRACIÓN AUTONÓMICA JUNTA DE CASTILLA Y LEÓN DELEGACIÓN TERRITORIAL DE BURGOS Oficina Trritorial d Trabajo cv: BOPBUR-2012-05105 Rsolución d fcha 4 d sptimbr d 2012 dl Jf d la Oficina Trritorial

Más detalles

núm. 37 viernes, 22 de febrero de 2013 II. ADMINISTRACIÓN AUTONÓMICA JUNTA DE CASTILLA Y LEÓN DELEGACIÓN TERRITORIAL DE BURGOS

núm. 37 viernes, 22 de febrero de 2013 II. ADMINISTRACIÓN AUTONÓMICA JUNTA DE CASTILLA Y LEÓN DELEGACIÓN TERRITORIAL DE BURGOS núm. 37 virns, 22 d fbrro d 2013 II. ADMINISTRACIÓN AUTONÓMICA JUNTA DE CASTILLA Y LEÓN DELEGACIÓN TERRITORIAL DE BURGOS Oficina Trritorial d Trabajo C.V.E.: BOPBUR-2013-01068 Rsolución d fcha 5 d fbrro

Más detalles

El Verdadero Cálculo de la Devaluación

El Verdadero Cálculo de la Devaluación El vrdadro alulo d la Dvaluaión El Vrdadro Cálulo d la Dvaluaión Riardo Botro G. rbgstoks@hotmail.om Casi a diario nontramos n la prnsa onómia inormaión omo sta El día d ayr la tasa rprsntativa dl mrado

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles

núm. 173 viernes, 11 de septiembre de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE MELGAR DE FERNAMENTAL

núm. 173 viernes, 11 de septiembre de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE MELGAR DE FERNAMENTAL III. ADMINISTRACIÓN LOCAL C.V.E.: BOPBUR-2015-06336 AYUNTAMIENTO DE MELGAR DE FERNAMENTAL Aprobación dfinitiva d la modificación d la ordnanza rguladora d la tnncia d animals potncialmnt pligrosos En la

Más detalles

núm. 76 miércoles, 22 de abril de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BURGOS

núm. 76 miércoles, 22 de abril de 2015 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BURGOS III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE BURGOS C.V.E.: BOPBUR-2015-03235 465,00 GERENCIA MUNICIPAL DE SERVICIOS SOCIALES, JUVENTUD E IGUALDAD DE OPORTUNIDADES Concjalía d Juvntud Mdiant rsolución d la

Más detalles

núm. 35 viernes, 20 de febrero de 2015 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS BIENESTAR SOCIAL

núm. 35 viernes, 20 de febrero de 2015 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS BIENESTAR SOCIAL núm. 35 virns, 20 d fbrro d 2015 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS BIENESTAR SOCIAL C.V.E.: BOPBUR-2015-00934 Elvado a dfinitivo por no habrs producido rclamacions n l priodo d

Más detalles

Integrales indefinidas. 2Bach.

Integrales indefinidas. 2Bach. Intgrals indfinidas. Bach..- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f(), dirmos qu F() s una primitiva suya si F ()f(). Nota: La primitiva

Más detalles

Competencia en cultura humanística y artística

Competencia en cultura humanística y artística Comptncia n cultura humanística y artística d r r i r r g o g zk hz k bi ar r n o u h b t zk n h a x il g au r o h n 1 2 3 t z h n z ba t 5 1 l h 8 8 13 z u 21a 34 5 z 13 h k n tz h k k r 55 d i ri g o

Más detalles

núm. 58 miércoles, 25 de marzo de 2015 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL

núm. 58 miércoles, 25 de marzo de 2015 III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL boltín oficial d la provincia III. ADMINISTRACIÓN LOCAL DIPUTACIÓN PROVINCIAL DE BURGOS SERVICIO DE PERSONAL C.V.E.: BOPBUR-2015-01937 Bass d la convocatoria 2015 d ayudas y bcas al studio a favor d mplados

Más detalles

IMPACTO DE LAS AVERÍAS E INTERRUPCIONES EN LOS PROCESOS. UN ANÁLISIS DE LA VARIABILIDAD EN LOS PROCESOS DE PRODUCCIÓN

IMPACTO DE LAS AVERÍAS E INTERRUPCIONES EN LOS PROCESOS. UN ANÁLISIS DE LA VARIABILIDAD EN LOS PROCESOS DE PRODUCCIÓN IMPACTO DE LAS AVERÍAS E INTERRUPCIONES EN LOS PROCESOS. UN ANÁLISIS DE LA VARIABILIDAD EN LOS PROCESOS DE PRODUCCIÓN IMPACT OF THE FAILURES AND INTERRUPTION IN PROCESS. AN ANALYSIS OF VARIABILITY IN PRODUCTION

Más detalles

Digital Photo Professional Ver. 3.5 Instrucciones

Digital Photo Professional Ver. 3.5 Instrucciones ESPAÑOL Softwar d procsado, visualización y dición d RAW Digital Photo Profssional Vr.. Instruccions Contnido d stas instruccions DPP s utiliza para Digital Photo Profssional. En stas instruccions, las

Más detalles

BOLETIN DE REGRESO A LA ESCUELA

BOLETIN DE REGRESO A LA ESCUELA BOLETIN DE REGRESO A LA ESCUELA SEPTEMBER 2015 CONTENIDOS Horario Escolar Información d la Primra Jornada Noticias d la Escula Algunas políticas importants d la scula Calndario d Evntos Box Tops Información

Más detalles

ANEXO 6.7.8. PONDERADORES Y GRADOS DE RIESGO ASOCIADOS A OTRAS CONTRAPARTES Y GARANTÍAS

ANEXO 6.7.8. PONDERADORES Y GRADOS DE RIESGO ASOCIADOS A OTRAS CONTRAPARTES Y GARANTÍAS ANEXO 6.7.8. PONDERADORES Y GRADOS DE RIESGO ASOCIADOS A OTRAS CONTRAPARTES Y GARANTÍAS Las opracions a las qu s rfir la fracción II d la Disposición 6.7.4, así como las garantías rals financiras o prsonals

Más detalles

PROCEDIMIENTO NORMALIZADO DE OPERACIÓN DE DEVOLUCION DE INSUMOS PARA LA SALUD.

PROCEDIMIENTO NORMALIZADO DE OPERACIÓN DE DEVOLUCION DE INSUMOS PARA LA SALUD. Sustituy a: Ninguno Próxima rvisión: cada 30 días. Página 1 d 8 PARA LA SALUD. Contnido 1. Objtivo 2. Rsponsabilidads 3. Dsarrollo dl procso 4. Rfrncias Bibliográficas 5. Anxos Formato 1. Entrga d Faltants.

Más detalles

3. Explica en qué consisten la miopía y la hipermetropía. Qué lentes se usan para su corrección?

3. Explica en qué consisten la miopía y la hipermetropía. Qué lentes se usan para su corrección? CANARIAS / JUNIO 0. LOGS / ÍSICA / XAMN COMPLTO D las dos opcions popustas, sólo hay qu dsaolla una opción complta. Cada poblma cocto val po ts puntos. Cada custión cocta val po un punto. OPCIÓN A Poblmas.

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

El Riesgo de Interés

El Riesgo de Interés Juan Mascarñas Univrsidad Complutns d Madrid Vrsión inicial: mayo 4 - Última vrsión: nro 8 - El risgo d intrés, - La duración modificada como mdida dl risgo d intrés, 4 - El risgo d rinvrsión, . EL RIESGO

Más detalles

COPY. Digital Photo Professional Ver. 3.9 INSTRUCCIONES. Software de procesado, visualización y edición de imágenes RAW

COPY. Digital Photo Professional Ver. 3.9 INSTRUCCIONES. Software de procesado, visualización y edición de imágenes RAW Softwar d procsado, visualización y dición d RAW Digital Photo Profssional Vr..9 INSTRUCCIONES Contnido d stas instruccions DPP s utiliza para Digital Photo Profssional. En stas instruccions, las vntanas

Más detalles

Institución Educativa Los Palmitos - Actividades finales año escolar 2015

Institución Educativa Los Palmitos - Actividades finales año escolar 2015 Estimados docnts Institución Educativa Los Palmitos - Actividads finals año scolar 2015 A continuación s dan orintacions para l dsarrollo d las actividads finals d fin d año scolar 2015 1. Frnt a las irrgularidads

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015

Asamblea Nacional Secretaría General TRÁMITE LEGISLATIVO 2014-2015 Asambla Nacional Scrtaría Gnral TRÁMITE LEGISLATIVO 2014-2015 ANTEPROYECTO DE LEY: 106 PROYECTO DE LEY: LEY: GACETA OFICIAL: TÍTULO: QUE ESTABLECE EL RECICLAJE DE PAPEL, LATAS DE ALUMINIO Y BOTELLAS PLÁSTICAS

Más detalles

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO

INTERCAMBIADORES TUBO Y CARCAZA: ANÁLISIS TÉRMICO OPERCIONES UNIRIS PROF PEDRO VRGS UNEFM DPO ENERGÉIC Disponibl n: wwwopracionswordprsscom INERCMBIDORES UBO Y CRCZ: NÁLISIS ÉRMICO NÁLISIS ÉRMICO, CONSIDERCIONES GENERLES nts d scribir las cuacions qu

Más detalles

Seguridad en máquinas

Seguridad en máquinas Obsrvación d la norma UNE EN ISO 11161 rlacionada con los rquisitos qu db cumplir la structura d dispositivos d protcción Los dispositivos d protcción dbrán disñars y construirs d acurdo con la norma ISO

Más detalles

Rutas críticas para la elaboración del trabajo de titulación en las diferentes modalidades. Planes de estudio 2012

Rutas críticas para la elaboración del trabajo de titulación en las diferentes modalidades. Planes de estudio 2012 Rutas críticas trabajo d titulación n las difrnts modalidads. Ruta Crítica d la Modalidad: Inform d Prácticas Profsionals smana y mdia smana y mdia 2 Smanas Analizar con dtall los documntos normativos

Más detalles

Ofertas y Contratos Agiles

Ofertas y Contratos Agiles Ofrtas y Contratos Agils algunas idas xtraídas dl libro Obra bajo licncia Crativ Commons los pilar s d transp arncia, ins adaptación pc, junto con l nfoqu d ción y continua q mjora u forman part d lo Agils,

Más detalles

CUANTO TARDA UNA PELOTA EN DEJAR DE BOTAR? Guillermo Becerra Córdova. Área de Física, Dpto. Preparatoria Agrícola, Universidad Autónoma Chapingo,

CUANTO TARDA UNA PELOTA EN DEJAR DE BOTAR? Guillermo Becerra Córdova. Área de Física, Dpto. Preparatoria Agrícola, Universidad Autónoma Chapingo, CUANTO TARDA UNA PELOTA EN DEJAR DE BOTAR? Guillrmo Bcrra Córdova Ára d Física, Dpto. Prparatoria Agrícola, Univrsidad Autónoma Chapingo, Chapingo, Txcoco, Estado d México, México, E-mail: gllrmbcrra@yahoo.com

Más detalles

núm. 156 martes, 20 de agosto de 2013 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE CARDEÑUELA RIOPICO

núm. 156 martes, 20 de agosto de 2013 III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE CARDEÑUELA RIOPICO III. ADMINISTRACIÓN LOCAL AYUNTAMIENTO DE CARDEÑUELA RIOPICO C.V.E.: BOPBUR-2013-06352 El Excmo. Ayuntaminto Plno d Cardñula Riopico, n ssión clbrada l día 20 d junio d 2013, acordó aprobar provisionalmnt

Más detalles

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004

Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004 MÁQUNAS LÉCTRCAS, º ngniros ndustrials xamn Ordinario 14 d Fbrro d 004 Problma 1. Un motor drivación consum una corrint d 0 A cuando gira a 1000 r.p.m., sindo la tnsión d alimntación d 00 V. La rsistncia

Más detalles

Módulo 2 Herramientas para la búsqueda virtual en Internet. Internet. Internet?, qué es?, para qué sirve? y cómo funciona?

Módulo 2 Herramientas para la búsqueda virtual en Internet. Internet. Internet?, qué es?, para qué sirve? y cómo funciona? Módulo 2 Hrramintas para la búsquda virtual n Intrnt Intrnt Intrnt?, qué s?, para qué sirv? y cómo funciona? Algunas prsonas dfinn Intrnt como "La Rd d Rds", y otras como "La Autopista d la Información".

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

RESUMEN MOTORES CORRIENTE CONTINUA

RESUMEN MOTORES CORRIENTE CONTINUA RESMEN MOTORES CORRENTE CONTNA Los motors léctricos convirtn la nrgía léctrica n nrgía mcánica. Así, la corrint léctrica tomada d la rd rcorr las bobinas o dvanados dl motor, n cuyo intrior s cran campos

Más detalles

núm. 60 viernes, 27 de marzo de 2015 V. OTROS ANUNCIOS OFICIALES SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS

núm. 60 viernes, 27 de marzo de 2015 V. OTROS ANUNCIOS OFICIALES SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS boltín oficial d la provincia núm. 60 virns, 27 d marzo d 2015 V. OTROS ANUNCIOS OFICIALES S O D E B U R C.V.E.: BOPBUR-2015-02155 SOCIEDAD PARA EL DESARROLLO DE LA PROVINCIA DE BURGOS Convocatoria pública

Más detalles

Límite Idea intuitiva del significado Representación gráfica

Límite Idea intuitiva del significado Representación gráfica LÍÍMIITES DE FUNCIIONES ((rrsumn)) LÍMITE DE UNA FUNCIÓN f() k s : ímit d a función f() cuando tind a k Límit Ida intuitiva d significado Rprsntación gráfica Cuando f() A aumntar, os vaors d f() s van

Más detalles

núm. 63 martes, 1 de abril de 2014 II. ADMINISTRACIÓN AUTONÓMICA JUNTA DE CASTILLA Y LEÓN DELEGACIÓN TERRITORIAL DE BURGOS

núm. 63 martes, 1 de abril de 2014 II. ADMINISTRACIÓN AUTONÓMICA JUNTA DE CASTILLA Y LEÓN DELEGACIÓN TERRITORIAL DE BURGOS II. ADMINISTRACIÓN AUTONÓMICA JUNTA DE CASTILLA Y LEÓN DELEGACIÓN TERRITORIAL DE BURGOS Oficina Trritorial d Trabajo C.V.E.: BOPBUR-2014-02127 Rsolución d fcha 13 d marzo d 2014 dl Jf d la Oficina Trritorial

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

Límites finitos cuando x: ˆ

Límites finitos cuando x: ˆ . Límits latrals its al infinito 7 FIGURA.3 3 3 La gráfica d = >. (b) La cuación () no s aplica a la fracción original. Ncsitamos un n l dnominador, no un 5. Para obtnrlo multiplicamos por >5 l numrador

Más detalles

FÍSICA CUÁNTICA 14.1. LOS ORÍGENES DE LA FÍSICA CUÁNTICA

FÍSICA CUÁNTICA 14.1. LOS ORÍGENES DE LA FÍSICA CUÁNTICA 4 FÍSICA CUÁNTICA 4.. LOS ORÍGENES DE LA FÍSICA CUÁNTICA. Calcula la longitud d onda qu corrsond a los icos dl sctro d misión d un curo ngro a las siguints tmraturas: a) 300 K (tmratura ambint). b) 500

Más detalles