Prof. Dr. José Perea Dpto. Producción Animal ANÁLISIS DE EXPERIMENTOS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Prof. Dr. José Perea Dpto. Producción Animal ANÁLISIS DE EXPERIMENTOS"

Transcripción

1 Prof. Dr. José Perea Dpto. Producción Animal ANÁLISIS DE EXPERIMENTOS

2 ANÁLISIS DE EXPERIMENTOS 1. Introducción 2. Comparación de dos medias 3. Comparación de más de dos medias 4. Pruebas post-hoc 5. ANCOVA 6. ANOVA factorial 7. Caso práctico

3 Comparación de medias. introducción - Comprueba si los valores de una variable métrica difiere al agruparla en dos o más grupos. - P.e. Si la rentabilidad difiere según el sistema de explotación. - P.e. Si la digestibilidad difiere según la raza. - Engloba: - Datos independientes (en un momento en el tiempo) - P.e. Si los litros de leche producidos difieren entre sistemas pastoriles o estabulados - Datos apareados (a lo largo del tiempo) - P.e. Si los litros de leche producidos difieren entre el ordeño de la mañana y de la tarde.

4 introducción Tipos de análisis i que comparan medias. - Métodos paramétricos. - Potentes - Sensibles a la falta de normalidad y homocedasticidad - Métodos no paramétricos. - Robustos - No requieren normalidad ni homocedasticidad - Aplicables a tamaños muestrales menores a los paramétricos

5 introducción Cómo elegir? - Todos los métodos paramétricos tienen un análogo no paramétrico - Elegir el método paramétrico siempre que se cumplan sus supuestos previos - En caso contrario: - Transformar los datos (log, etc.) - Eliminar algunos casos - Optar por el no paramétrico

6 introducción COMPARACIÓN DE ANALISIS 2 medias más de 2 medias PARAMETRICA NO PARAMETRICA PARAMETRICA NO PARAMETRICA TRANSVERSAL T de Student Ud de Mann-Whitney ANOVA H de Kruskall Wallis LONGITUDINAL T de Rangos con signo de GLM para medias Student Wilcoxon repetidas Friedman

7 comparación de 2 medias T de Student t (paramétrico para 2 medias trasversales) - Contrasta la hipótesis nula (las medias son iguales, luego su diferencia es 0) - A través de un estadístico en función de las diferencias entre los valores de la variable en cada grupo. - Utiliza las medias y las desviaciones estándar - Requiere normalidad y se recomienda homocedasticidad

8 comparación de 2 medias Contrastes t de normalidad: d - Todos tienen como hipótesis nula la normalidad de la distribución ib ió - Cada uno tiene su utilidad - Shapiro Wilk funciona bien con muestras pequeñas - El más habitual es Kolmogorov-Smirnov - En muestras pequeñas es mejor ser conservador con el nivel de significación

9 comparación de 2 medias Contrastes t de homocedasticidad: id d - Test de Levene y otros (intervalos de confianza) - Hipótesis nula: ambas muestras son normales y con igual varianza - Contrasta que la razón de varianzas siga una distribución F de Snedecor (n-l) y (m-i)

10 comparación de 2 medias U de Mann-Whitney (no paramétrico para 2 medias trasversales) - Contrasta la hipótesis nula (las medias son iguales, luego su diferencia es 0) - Comparando cada una de las observaciones de un grupo con todas las del otro grupo - Asignándole valores de 1 si es mayor; 0,5 siesigual y 0 si es menor - Se suman los valores obtenidos y se calcula un Se suman los valores obtenidos y se calcula un estadístico (normal, media 0 desviación 1)

11 comparación de 2 medias Ejemplo: Comprobar si el volumen de producción es diferente entre las explotaciones intensivas y extensivas

12 comparación de 2 medias T de Student t (paramétrico para 2 medias longitudinales) l - Para pruebas pre-post tratamiento - P.e. Determinar si el destete cambia el nivel de cortisol en sangre del ternero - Seleccionamos n terneros de una misma explotación y analizamos cortisol antes y después del destete - Los valores de cortisol están identificados individualmente - El contraste es determinar si el nivel de cortisol es o no diferente en ambos momentos - Teniendo en cuenta que hay variación intra-individuo

13 comparación de 2 medias - Lo que interesa es saber lo que se incrementa o disminuye el nivel de cortisol, independientemente de los valores iniciales o finales. - Por tanto, se analiza si su diferencia es cero (hipótesis nula).

14 comparación de 2 medias Rangos con signo de Wilcoxon (no paramétrico para 2 medias longitudinales) - Hipótesis nula: las medias son iguales - Se ordenan las diferencias pareadas de menor a mayor y se obtienen los rangos negativos y positivos, con los que - Se construye un estadístico que se evalúa a partir de las - Se construye un estadístico que se evalúa a partir de las tablas de Wilcoxon, si pertenece a la región crítica

15 comparación de 2 medias - P.e. Determinar si cambia el nivel de cortisol en sangre antes y después del destete P D t i i 2 té i d di ió ti l - P.e. Determinar si 2 técnicas de medición tienen la misma exactitud

16 comparación más de 2 medias ANOVA (paramétrico para más de 2 medias trasversales) - Hipótesis nula: las medias son iguales - Igual que T de Student pero con varios grupos - Requiere: - Distribución normal de la variable - Homocedasticidad - Independencia

17 comparación más de 2 medias - Se basa en que la variable analizada depende de un solo factor - Las causas de su variabilidad es una componente aleatoria que se denomina error experimental - Por tanto, la varianza dentro de los grupos debe ser igual a la varianza entre los grupos - Ejemplo: comparar las medias de k grupos en una - Ejemplo: comparar las medias de k grupos en una muestra n

18 comparación más de 2 medias - Ejemplo: comparar las medias de k grupos en una muestra n - Variación intra-grupos: - Suma de cuadrados intragrupos (SCI): Sumatorio del cuadrado de la resta a cada observación de la media global en el grupo - Grados de libertad (Gl): (n-1) * k - Media de cuadrados intra-grupos (MCI): SCI/Gl - Variación entre-grupos: - SCE: Sumatorio del cuadrado de la resta a la media observada en cada uno de los grupos de la media global - Gl: k-1 - MCE: SCE/Gl

19 comparación más de 2 medias Fuente de variación Grados de libertad Suma de cuadrados Media de cuadrados F Entre grupos k - 1 SCE SCE/(K-1) MCE/MCI Intra grupos (n - 1) x k SCI SCI/(k x (n-1)) Total k x n - 1 SCT - El estadístico de contraste (F) se distribuye según la distribución de Fischer-Schnedecor con a(k-1, (n-1)*k) grados de libertad - Si F =1: la variabilidad entre grupos es igual a la variabilidad intra grupos: EL FACTOR NO INFLUYE EN LA VARIABILIDAD DE LA MUESTRA - Si F >1 (y p<0,05): la variabilidad entre grupos es mayor a la que aportan los individuos individualmente (EL FACTOR EXPLICA PARTE DE LA VARIABILIDAD)

20 comparación más de 2 medias H de Kruskall Wallis (no paramétrico para más de 2 medias trasversales) - Hipótesis nula: las medias son iguales - Se ordenan las observaciones de la muestra de mayor a menos (independiente del grupo) y se asigna un rango consecutivo a cada observación - Se suman los rangos de las observaciones en cada grupo y se comparan mediante un estadístico (distribución chi cuadrado con k-1 gl)

21 comparación más de 2 medias - Ejemplo: Comprobar el efecto de la suplementación y del tipo de control sobre el número de vacas y la producción de los tambos en la cuenca norte pampeana

22 comparación más de 2 medias GLM para medias repetidas (paramétrico para más de 2 medias longitudinales) - Funcionamiento similar a ANOVA Prueba de Friedman (no paramétrico para más de 2 medias longitudinales) l - Se asignan rangos a las observaciones de un mismo individuo id - P.e. 4 observaciones de cortisol en sangre, se ordenarán y se asigna un valor de 1 a 4 - La suma de los rangos de todos los individuos no debe diferir (hipótesis nula)

23 comparación más de 2 medias - Ejemplo: Comprobar cómo varía el nivel de glucemia en sangre a lo largo del día (mañana, medio día, tarde, noche)

24 pruebas post-hoc Pruebas post hoc (sólo ANOVA y GLM) - Sirven para identificar qué grupos son diferentes o similares en contrastes paramétricos de más de 2 grupos - Incrementan el error tipo I (considerar diferente algo que no lo es), por lo que hay que ser conservador (p<0,01) 01)

25 pruebas post-hoc LSD (diferencia mínima significativa) - Se basa en la distribución t de Student. - Noejerce control sobre la tasa de error. - Alto error tipo I Bonferroni - Se basa en la distribución t de Student. - Controla la tasa de error dividiendo el nivel de significación entre el número de comparaciones.

26 pruebas post-hoc Sheffé - Se basa en la distribución F. - Controla el error mediante parejas. - Muy conservador: considera menos diferencias de las que hay SNK (Student Neuman Keuls) - Se basa en la distribución ib ió del rango estudentizado. ti d - Controla la tasa de error por pasos. - La diferencia mínima cambia entre los pasos. Más potente que el de Duncan y útil con grupos de - Más potente que el de Duncan y útil con grupos de diferentes tamaños

27 Tukey pruebas post-hoc - Idem SNK, pero siempre utiliza la misma diferencia mínima. - Método más aceptado Duncan - Se basa en la distribución del rango estudentizado. - Idem SNK pero menos potente. t - La diferencia mínima cambia entre los pasos.

28 comparación más de 2 medias - Ejemplo: Desarrollar los test de recorridos múltiples en el efecto de la suplementación y del tipo de control sobre el número de vacas y la producción de los tambos en la cuenca norte pampeana

29 ANCOVA (paramétrico más de 2 grupos) ANCOVA - Elimina de la variable dependiente del ANOVA el efecto de variables no incluida en el diseño como factores (sin control experimental). - La forma de controlar este efecto eshacer el ANOVA, en vez de con los valores originales de la variable, con los errores de los pronósticos resultantes de una regresión lineal con las covariables como independientes y la variable como dependiente.

30 - P.e. Determinar la digestibilidad de 3 alimentos en vacas en lactación. ANCOVA - La digestibilidad puede estar influenciada por el estado fisiológico del animal, que puede modificar el consumo voluntario - Factor: alimento con 3 niveles - Variable dependiente: digestibilidad - Covariables: producción diaria

31 ANOVA factorial (paramétrico más de 2 grupos) ANOVA factorial - Cuando se analiza de modo conjunto 2 o más factores. - Tendremos el efecto de cada factor y de sus interacciones. - Para su interpretación, desarrollar test post-hoc - P.e. Umbral de rentabilidad según sistema de producción y escenario de mercado

32 BIBLIOGRAFÍA 1. Técnicas estadísticas con SPSS César Pérez. Editorial Prentice Hall. ISBN: Análisis multivariante aplicado Ezequiel Uriel y Joaquín Aldás. Editorial Thomson. ISBN:

33 caso práctico Caso práctico. 1. Construir la base de datos: peso actual, peso en el momento de recibirse, altura, edad, género, estado civil 2. Descripción estadística de las variables 3. Matriz de correlaciones y covarianzas 4. Tabla de contingencia 5. Contrastes para datos cualitativos 6. Contrastes para datos cuantitativos

Comparación de medias

Comparación de medias 12 Comparación de medias Irene Moral Peláez 12.1. Introducción Cuando se desea comprobar si los valores de una característica que es posible cuantificar (como podría ser la edad o la cifra de tensión arterial,

Más detalles

SPSS: ANOVA de un Factor

SPSS: ANOVA de un Factor SPSS: ANOVA de un Factor El análisis de varianza (ANOVA) de un factor nos sirve para comparar varios grupos en una variable cuantitativa. Esta prueba es una generalización del contraste de igualdad de

Más detalles

PRUEBAS NO PARAMÉTRICAS

PRUEBAS NO PARAMÉTRICAS PRUEBAS NO PARAMÉTRICAS 1. PRUEBAS DE NORMALIDAD Para evaluar la normalidad de un conjunto de datos tenemos el Test de Kolmogorov- Smirnov y el test de Shapiro-Wilks La opción NNPLOT del SPSS permite la

Más detalles

Capítulo 14. Análisis de varianza de un factor: El procedimiento ANOVA de un factor

Capítulo 14. Análisis de varianza de un factor: El procedimiento ANOVA de un factor Capítulo 14 Análisis de varianza de un factor: El procedimiento ANOVA de un factor El análisis de varianza (ANOVA) de un factor sirve para comparar varios grupos en una variable cuantitativa. Se trata,

Más detalles

Tema 3: Diseño de experimentos

Tema 3: Diseño de experimentos Grado en Fisioterapia, 2010/11 Cátedra de Bioestadística Universidad de Extremadura 15 de noviembre de 2010 Índice Diseños con un factor 1 Diseños con un factor Comparación de dos medias Comparación de

Más detalles

ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral

ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral Enero 2005 1.- INTRODUCCIÓN En múltiples ocasiones el analista o investigador se enfrenta al problema de determinar

Más detalles

PRODUCCIÓN ANIMAL. Prof. Dr. José Perea Dpto. Producción Animal

PRODUCCIÓN ANIMAL. Prof. Dr. José Perea Dpto. Producción Animal PRINCIPIOS EXPERIMENTALES EN PRODUCCIÓN ANIMAL Prof. Dr. José Perea Dpto. Producción Animal Universidad id d de Córdoba Etapas de la ciencia 1. Observación de los hechos 2. Construcción de hipótesis (razón

Más detalles

Pero qué hacemos cuando no se cumple la normalidad o tenemos muy pocos datos?

Pero qué hacemos cuando no se cumple la normalidad o tenemos muy pocos datos? Capítulo. Métodos no paramétricos Los métodos presentados en los capítulos anteriores, se basaban en el conocimiento de las distribuciones muestrales de las diferencias de porcentajes o promedios, cuando

Más detalles

SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas

SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA PROF. Esther González Sánchez Departamento de Informática y Sistemas Facultad de Informática Universidad de Las Palmas de Gran Canaria

Más detalles

EJERCICIOS ANALISIS DE DISEÑOS EXPERIMENTALES Y CUASIEXPERIMENTALES CON SPSS

EJERCICIOS ANALISIS DE DISEÑOS EXPERIMENTALES Y CUASIEXPERIMENTALES CON SPSS EJERCICIOS ANALISIS DE DISEÑOS EXPERIMENTALES Y CUASIEXPERIMENTALES CON SPSS Las soluciones a estos ejercicios y los outputs del SPSS se encuentran al final. EJERCICIO 1. Comparamos dos muestras de 10

Más detalles

ANÁLISIS DISCRIMINANTE

ANÁLISIS DISCRIMINANTE ANÁLISIS DISCRIMINANTE ANÁLISIS DISCRIMINANTE 1. Introducción 2. Etapas 3. Caso práctico Análisis de dependencias introducción varias relaciones una relación 1 variable dependiente > 1 variable dependiente

Más detalles

aplicado al Experiencia La gestión de un servicio y, por ende, la

aplicado al Experiencia La gestión de un servicio y, por ende, la EN PORTADA 6 Sigma aplicado al Experiencia En este artículo vamos a dar una visión más particular sobre la aplicabilidad de 6 Sigma al sector Servicios. Existe abundante literatura al respecto, pero sobre

Más detalles

Los modelos que permite construir el ANOVA pueden ser reducidos a la siguiente forma:

Los modelos que permite construir el ANOVA pueden ser reducidos a la siguiente forma: Ignacio Martín Tamayo 25 Tema: ANÁLISIS DE VARIANZA CON SPSS 8.0 ÍNDICE --------------------------------------------------------- 1. Modelos de ANOVA 2. ANOVA unifactorial entregrupos 3. ANOVA multifactorial

Más detalles

Métodos y Diseños utilizados en Psicología

Métodos y Diseños utilizados en Psicología Métodos y Diseños utilizados en Psicología El presente documento pretende realizar una introducción al método científico utilizado en Psicología para recoger información acerca de situaciones o aspectos

Más detalles

Hay diferencias en la media del HOMA entre los diabéticos y los no diabéticos? Resumen del procesamiento de los casos

Hay diferencias en la media del HOMA entre los diabéticos y los no diabéticos? Resumen del procesamiento de los casos Test de hipótesis t de Student Hay diferencias en la media del HOMA entre los diabéticos y los no diabéticos? Resumen del procesamiento de los casos HOMA Casos Válidos Perdidos Total N Porcentaje N Porcentaje

Más detalles

PRUEBA DE KOLMOGOROV SMIRNOV (Contraste sobre la forma de la distribución) F(X) es la función de distribución que hipotetizamos.

PRUEBA DE KOLMOGOROV SMIRNOV (Contraste sobre la forma de la distribución) F(X) es la función de distribución que hipotetizamos. PRUEBA DE KOLMOGOROV SMIRNOV (Contraste sobre la forma de la distribución) PRUEBAS NO PARAMÉTRICAS F(X) es la función de distribución que hipotetizamos. Fs(X) es la probabilidad o proporción teórica de

Más detalles

TEMA 5 VALIDEZ DE LA INVESTIGACIÓN (II): Validez de conclusión estadística

TEMA 5 VALIDEZ DE LA INVESTIGACIÓN (II): Validez de conclusión estadística TEMA 5 VALIDEZ DE LA INVESTIGACIÓN (II): Validez de conclusión estadística 1 TAMAÑO DEL EFECTO 2 TAMAÑO DEL EFECTO vel tamaño del efecto es el nombre dado a una familia de índices que miden la magnitud

Más detalles

Análisis de la Varianza de un Factor

Análisis de la Varianza de un Factor Práctica de Estadística con Statgraphics Análisis de la Varianza de un Factor Fundamentos teóricos El Análisis de la Varianza con un Factor es una técnica estadística de contraste de hipótesis, cuyo propósito

Más detalles

Métodos no paramétricos para la comparación de dos muestras

Métodos no paramétricos para la comparación de dos muestras Investigación Métodos no paramétricos para la comparación de dos muestras Métodos no paramétricos para la comparación de dos muestras Pértega Díaz, S. Unidad de Epidemiología Clínica y Bioestadística.

Más detalles

Capítulo 15. Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante

Capítulo 15. Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante Capítulo 15 Análisis de varianza factorial El procedimiento Modelo lineal general: Univariante Los modelos factoriales de análisis de varianza (factorial = más de un factor) sirven para evaluar el efecto

Más detalles

REGRESION simple. Correlación Lineal:

REGRESION simple. Correlación Lineal: REGRESION simple Correlación Lineal: Dadas dos variable numéricas continuas X e Y, decimos que están correlacionadas si entre ambas variables hay cierta relación, de modo que puede predecirse (aproximadamente)

Más detalles

Comparaciones múltiples

Comparaciones múltiples Capítulo 3 Comparaciones múltiples 3.. ntroducción En este capítulo explicaremos algunas técnicas para analizar con mayor detalle los datos de un experimento, con posterioridad a la realización del Análisis

Más detalles

ANÁLISIS DE ENCUESTAS

ANÁLISIS DE ENCUESTAS ANÁLISIS DE ENCUESTAS TÉCNICAS MULTIVARIANTES 1. Introducción 2. Clasificación de las técnicas 3. Etapas de análisis 4. Supuestos básicos 5. Valores perdidos y anómalos introducción Definición. i ió -

Más detalles

Técnicas de regresión: Regresión Lineal Múltiple

Técnicas de regresión: Regresión Lineal Múltiple Investigación: Técnicas de regresión: regresión lineal múltiple 1/1 Técnicas de regresión: Regresión Lineal Múltiple Pértega Díaz S., Pita Fernández S. Unidad de Epidemiología Clínica y Bioestadística.

Más detalles

Curso de Estadística no-paramétrica

Curso de Estadística no-paramétrica Curso de Estadística no-paramétrica Sesión 1: Introducción Inferencia no Paramétrica David Conesa Grup d Estadística espacial i Temporal Departament d Estadística en Epidemiologia i Medi Ambient i Investigació

Más detalles

Diseño Estadístico de Experimentos

Diseño Estadístico de Experimentos Capítulo 3 Diseño Estadístico de Experimentos Una prueba o serie de pruebas en las cuales se introducen cambios deliberados en las variables de entrada que forman el proceso, de manera que sea posible

Más detalles

DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA

DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA 2011 UNED DISEÑOS DE INVESTIGACIÓN Y ANÁLISIS DE DATOS [TEMA 7] Diseños con más de dos grupos independientes. Análisis de varianza con dos factores completamente aleatorizados 1 Índice 7.1 Introducción...

Más detalles

1 Introducción al SPSS

1 Introducción al SPSS Breve guión para las prácticas con SPSS 1 Introducción al SPSS El programa SPSS está organizado en dos bloques: el editor de datos y el visor de resultados. En la barra de menú (arriba de la pantalla)

Más detalles

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009 Índice general 6. Regresión Múltiple 3 6.1. Descomposición de la variabilidad y contrastes de hipótesis................. 4 6.2. Coeficiente de determinación.................................. 5 6.3. Hipótesis

Más detalles

Factores no controlables

Factores no controlables Acepto la Ho y ιj μ α ι β j ε ιj Dr. Alfredo Matos Ch. Universidad Peruana Unión amatosch@upeu.edu.pe Factores Controles Entradas PROCESO FUNCION ACTIVIDAD Salidas Factores no controlables 2 1 Se entiende

Más detalles

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11 Tema 5 Análisis de regresión (segunda parte) Estadística II, 2010/11 Contenidos 5.1: Diagnóstico: Análisis de los residuos 5.2: La descomposición ANOVA (ANalysis Of VAriance) 5.3: Relaciones no lineales

Más detalles

RESUMEN DE PROCEDIMIENTOS EN SPSS. Definición de variables Pestaña Vista de variables Definir cada variable con su nombre, tipo, valores y medida

RESUMEN DE PROCEDIMIENTOS EN SPSS. Definición de variables Pestaña Vista de variables Definir cada variable con su nombre, tipo, valores y medida RESUMEN DE PROCEDIMIENTOS EN SPSS Operaciones con variables y/o datos Definición de variables Pestaña Vista de variables Definir cada variable con su nombre, tipo, valores y medida Recodificación de variables

Más detalles

LA MEDIDA Y SUS ERRORES

LA MEDIDA Y SUS ERRORES LA MEDIDA Y SUS ERRORES Magnitud, unidad y medida. Magnitud es todo aquello que se puede medir y que se puede representar por un número. Para obtener el número que representa a la magnitud debemos escoger

Más detalles

Tema 7: Modelos de diseños de experimentos

Tema 7: Modelos de diseños de experimentos Tema 7: Modelos de diseños de experimentos Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 7: Modelos de diseños de experimentos Curso

Más detalles

Cómo aplicar las pruebas paramétricas bivariadas t de Student y ANOVA en SPSS. Caso práctico.

Cómo aplicar las pruebas paramétricas bivariadas t de Student y ANOVA en SPSS. Caso práctico. Universitat de de Barcelona. Institut de de Ciències de de l Educació Cómo aplicar las pruebas paramétricas bivariadas t de Student y ANOVA en SPSS. Caso práctico. María José Rubio

Más detalles

Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida. Por: Prof. Elena del C. Coba

Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida. Por: Prof. Elena del C. Coba Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida Por: Prof. Elena del C. Coba Encuestas y estudios aplicados al VIH/sida Definir la fuente de los datos: Datos

Más detalles

T. 5 Inferencia estadística acerca de la relación entre variables

T. 5 Inferencia estadística acerca de la relación entre variables T. 5 Inferencia estadística acerca de la relación entre variables 1. El caso de dos variables categóricas 2. El caso de una variable categórica y una variable cuantitativa 3. El caso de dos variables cuantitativas

Más detalles

Nombre de la asignatura: Diseño de Experimentos Ambientales

Nombre de la asignatura: Diseño de Experimentos Ambientales Nombre de la asignatura: Diseño de Experimentos Ambientales Créditos: 2-2-4 Aportación al perfil Toda actividad encaminada a aportar acervo a toda ciencia y saber humano, sea bajo el enfoque experimental

Más detalles

MANUAL SIMPLIFICADO DE ESTADÍSTICA APLICADA VIA SPSS

MANUAL SIMPLIFICADO DE ESTADÍSTICA APLICADA VIA SPSS 1 MANUAL SIMPLIFICADO DE ESTADÍSTICA APLICADA VIA SPSS Medidas de tendencia central Menú Analizar: Los comandos del menú Analizar (Estadística) ejecutan los procesamientos estadísticos. Sus comandos están

Más detalles

SPSS Advanced Statistics 17.0

SPSS Advanced Statistics 17.0 i SPSS Advanced Statistics 17.0 Si desea obtener más información sobre los productos de software de SPSS Inc., visite nuestro sitio Web en http://www.spss.com o póngase en contacto con SPSS Inc. 233 South

Más detalles

ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso

ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 3 - Septiembre - 2.6 Primera Parte - Test Las respuestas del TEST son las siguientes: Pregunta 2 3 4 5 6 Respuesta C A D C B A Pregunta 7 8 9 2 Respuesta

Más detalles

CUARTA GUÍA DE EJERCICIOS: PRUEBAS DE HIPÓTESIS

CUARTA GUÍA DE EJERCICIOS: PRUEBAS DE HIPÓTESIS CUARTA GUÍA DE EJERCICIOS: PRUEBAS DE HIPÓTESIS UN ESTUDIO SOBRE CARBOXIHEMOGLOBINA EN SANGRE En el estudio experimental que aquí presentamos se seleccionó al azar una muestra de 37 estudiantes de una

Más detalles

IBM SPSS Advanced Statistics 20

IBM SPSS Advanced Statistics 20 IBM SPSS Advanced Statistics 20 Nota: Antes de utilizar esta información y el producto que admite, lea la información general en Avisos el p. 174. Esta edición se aplica a IBM SPSS Statistics 20 y a todas

Más detalles

T. 8 Estadísticos de asociación entre variables

T. 8 Estadísticos de asociación entre variables T. 8 Estadísticos de asociación entre variables. Concepto de asociación entre variables. Midiendo la asociación entre variables.. El caso de dos variables categóricas.. El caso de una variable categórica

Más detalles

Trabajo de Matemáticas y Estadística Aplicadas

Trabajo de Matemáticas y Estadística Aplicadas Licenciatura en Ciencia Ambientales Matemáticas y Estadística aplicada Prof. Susana Martín Fernández POLITÉCNICA Trabajo de Matemáticas y Estadística Aplicadas GUIÓN 1: Estadística descriptiva Tipo 1 1-

Más detalles

Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal

Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal Introducción El análisis de regresión lineal es una técnica estadística utilizada para estudiar la relación entre variables. Se

Más detalles

EXPERIMENTACIÓN. Eduardo Jiménez Marqués

EXPERIMENTACIÓN. Eduardo Jiménez Marqués EXPERIMENTACIÓN Eduardo Jiménez Marqués 1 CONTENIDO: 1. Experimentación...3 1.1 Concepto...3 1. Definición...4 1.3 Dificultad...4 1.4 Ventaja...5 1.5 Planificación...5 1.6 Aplicaciones...5 1.7 Metodología...6

Más detalles

Estadística I Ejercicios Tema 3 Curso 2015/16

Estadística I Ejercicios Tema 3 Curso 2015/16 Estadística I Ejercicios Tema 3 Curso 2015/16 1. En la siguiente tabla se representa la distribución conjunta de frecuencias (relativas) de 2 variables: calificación en Estadística I, y número de horas

Más detalles

IX.- ANÁLISIS DE VARIANZA

IX.- ANÁLISIS DE VARIANZA IX- ANÁLISIS DE VARIANZA Las técnicas de Diseño Experimental basadas en la estadística son particularmente útiles en el mundo de la Ingeniería en lo que corresponde a la mejora del rendimiento de los procesos

Más detalles

Plan docente de la asignatura Bioestadística del Grado de Medicina de la Facultad de Ciencias de la Salud y de la Vida (FCSV)

Plan docente de la asignatura Bioestadística del Grado de Medicina de la Facultad de Ciencias de la Salud y de la Vida (FCSV) Plan docente de la asignatura Bioestadística del Grado de Medicina de la Facultad de Ciencias de la Salud y de la Vida (FCSV) 1. Descripción de la asignatura Materia: Estadística Carácter: Formación Básica

Más detalles

1 Ejemplo de análisis descriptivo de un conjunto de datos

1 Ejemplo de análisis descriptivo de un conjunto de datos 1 Ejemplo de análisis descriptivo de un conjunto de datos 1.1 Introducción En este ejemplo se analiza un conjunto de datos utilizando herramientas de estadística descriptiva. El objetivo es repasar algunos

Más detalles

www.medigraphic.org.mx

www.medigraphic.org.mx Investigación Vol. 80, Núm. 2 Marzo-Abril 2013 pp 81-85 Cómo seleccionar una prueba estadística (Segunda parte) (Choosing a statistical test. [Second part]) Manuel Gómez-Gómez,* Cecilia Danglot-Banck,*

Más detalles

Relación entre variables cuantitativas

Relación entre variables cuantitativas Investigación: Relación entre variables cuantitativas 1/8 Relación entre variables cuantitativas Pita Fernández S., Pértega Díaz S. Unidad de Epidemiología Clínica y Bioestadística. Complexo Hospitalario

Más detalles

I1.1 Estudios observacionales IISESIÓN DISEÑO O DE ESTUDIOS EN INVESTIGACIÓN N MÉDICA DESCRIPTIVA CURSO DE. 1.2 Estudios experimentales

I1.1 Estudios observacionales IISESIÓN DISEÑO O DE ESTUDIOS EN INVESTIGACIÓN N MÉDICA DESCRIPTIVA CURSO DE. 1.2 Estudios experimentales 1 2 3 4 5 6 ESQUEMA DEL CURSO ESTADÍSTICA BÁSICA DISEÑO DE EXPERIMENTOS CURSO DE ESTADÍSTICA STICA BÁSICAB ESTADÍSTICA DESCRIPTIVA TIPOS DE VARIABLES MEDIDAS DE POSICIÓN CENTRAL Y DE DISPERSIÓN TABLAS

Más detalles

Análisis estadístico. Tema 1 de Biología NS Diploma BI Curso 2013-2015

Análisis estadístico. Tema 1 de Biología NS Diploma BI Curso 2013-2015 Análisis estadístico Tema 1 de Biología NS Diploma BI Curso 2013-2015 Antes de comenzar Sobre qué crees que trata esta unidad? - Escríbelo es un post-it amarillo. Pregunta guía Cómo podemos saber si dos

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

Bioestadística: Inferencia Estadística. Análisis de Dos Muestras

Bioestadística: Inferencia Estadística. Análisis de Dos Muestras Bioestadística: Inferencia Estadística. Análisis de Dos Muestras M. González Departamento de Matemáticas. Universidad de Extremadura MUESTRAS INDEPENDIENTES: TEST PARAMÉTRICO: VARIANZAS POBLACIONALES IGUALES:Test

Más detalles

RAFAEL ÁLVAREZ CÁCERES ESTADÍSTICA APLICADA A LAS CIENCIAS DE LA SALUD

RAFAEL ÁLVAREZ CÁCERES ESTADÍSTICA APLICADA A LAS CIENCIAS DE LA SALUD RAFAEL ÁLVAREZ CÁCERES ESTADÍSTICA APLICADA A LAS CIENCIAS DE LA SALUD Rafael Álvarez Cáceres, 2007 Reservados todos los derechos. «No está permitida la reproducción total o parcial de este libro, ni su

Más detalles

Análisis de la Varianza (ANOVA) de un factor y test a posteriori.

Análisis de la Varianza (ANOVA) de un factor y test a posteriori. Análisis de la Varianza (ANOVA) de un factor y test a posteriori. Ejercicios Temas 8 y 9 (Resuelto) 1. Problema 5 Se quiere estudiar el efecto de distintas dosis de un medicamento para combatir a los parásitos

Más detalles

Tema IV. EL ANOVA de un factor

Tema IV. EL ANOVA de un factor 4.1. La estrategia del Análisis de varianza: - Los test t múltiples (múltiples tratamientos); corrección a posteriori - La mejora del ANOVA: necesidad de análisis a posteriori C Test t A versus B A versus

Más detalles

ANÁLISIS ESTADÍSTICO Calculadora Gráfica TI 83 Plus José Carlos Vega Vilca, Ph.D.

ANÁLISIS ESTADÍSTICO Calculadora Gráfica TI 83 Plus José Carlos Vega Vilca, Ph.D. UNIVERSIDAD DE PUERTO RICO FACULTAD DE ADMINISTRACION DE EMPRESAS INSTITUTO DE ESTADISTICA ANÁLISIS ESTADÍSTICO Calculadora Gráfica TI 83 Plus, Ph.D. Presentación Este curso ofrece al estudiante, la posibilidad

Más detalles

CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO Estadística Superior CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. REGRESIÓN LINEAL SIMPLE Y MÚLTIPLE 1.1. Regresión lineal simple 1.2. Estimación y predicción por intervalo en regresión lineal

Más detalles

Introducción a la estadística básica para enfermería nefrológica

Introducción a la estadística básica para enfermería nefrológica Introducción a la estadística básica para enfermería nefrológica Alberto Rodríguez Benot, Rodolfo Crespo Montero Servicio de Nefrología. Hospital Reina Sofía, Córdoba. RESUMEN La estadística es uno de

Más detalles

www.fundibeq.org Además, se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de gestión.

www.fundibeq.org Además, se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de gestión. DISEÑO DE EXPERIMENTOS 1.- INTRODUCCIÓN Este documento trata de dar una visión muy simplificada de la utilidad y la utilización del Diseño de Experimentos. En él se explican los conceptos clave de esta

Más detalles

Estadística (Gr. Biología-09) (2010-2011)

Estadística (Gr. Biología-09) (2010-2011) Estadística (Gr. Biología-09) (2010-2011) PRESENTACIÓN OBJETIVOS PROGRAMA METODOLOGÍA EVALUACIÓN BIBLIOGRAFÍA HORARIO ATENCIÓN http://www.unav.es/asignatura/estadisticabio/ 1 de 10 PRESENTACIÓN Descripción

Más detalles

Statgraphics Centurión

Statgraphics Centurión Facultad de Ciencias Económicas y Empresariales. Universidad de Valladolid 1 Statgraphics Centurión I.- Nociones básicas El paquete Statgraphics Centurión es un programa para el análisis estadístico que

Más detalles

Capítulo 19 Análisis no paramétrico: El procedimiento Pruebas no paramétricas

Capítulo 19 Análisis no paramétrico: El procedimiento Pruebas no paramétricas Capítulo 19 Análisis no paramétrico: El procedimiento Pruebas no paramétricas En los capítulos 13 al 18 hemos estudiado una serie de procedimientos estadísticos diseñados para analizar variables cuantitativas:

Más detalles

Apuntes de Estadística Inferencial

Apuntes de Estadística Inferencial Apuntes de Estadística Inferencial Francisco Juárez García Jorge A. Villatoro Velázquez Elsa Karina López Lugo Primera Edición, 00. 00 Francisco Juárez García Instituto Nacional de Psiquiatría Ramón de

Más detalles

Capítulo 16 Análisis de varianza con medidas repetidas: El procedimiento MLG: Medidas repetidas

Capítulo 16 Análisis de varianza con medidas repetidas: El procedimiento MLG: Medidas repetidas Capítulo 6 Análisis de varianza con medidas repetidas: El procedimiento MLG: Medidas repetidas Los modelos de análisis de varianza (ANOVA) con medidas repetidas (MR) sirven para estudiar el efecto de uno

Más detalles

Puedes descargar este examen en pdf desde esta dirección (busca el enlace Dropbox en la parte inferior de la página):

Puedes descargar este examen en pdf desde esta dirección (busca el enlace Dropbox en la parte inferior de la página): Univ. de Alcalá. Estadística 2014-15 Dpto. de Física y Matemáticas Grado en Biología. Examen final. Miércoles, 21 de Enero de 2015. Apellidos: Nombre: INSTRUCCIONES (LEER ATENTAMENTE). Puedes descargar

Más detalles

PRÁCTICA 4. Ingeniería Técnica Industrial (2º) - Mecánica.

PRÁCTICA 4. Ingeniería Técnica Industrial (2º) - Mecánica. PRÁCTICA 4. Ingeniería Técnica Industrial (2º) - Mecánica. Profesores: Javier Faulín y Francisco Ballestín 1. Introducción. El objetivo de esta parte es obtener resultados sobre contrastes de hipótesis

Más detalles

Los valores de las respuesta son las puntuaciones que, de cada individuo, o cluster, obtenemos semanalmente durante cinco semanas consecutivas:

Los valores de las respuesta son las puntuaciones que, de cada individuo, o cluster, obtenemos semanalmente durante cinco semanas consecutivas: Sobre los modelos lineales mixtos Ejemplo: Recuperación de infarto. Para estudiar las diferencias entre dos procedimientos diferentes de recuperación de pacientes de un infarto, se consideraron dos grupos

Más detalles

Práctico 1. Estadística y Dinámica de Poblaciones

Práctico 1. Estadística y Dinámica de Poblaciones Práctico 1 Estadística y Dinámica de Poblaciones Principales conceptos El mejoramiento genético está referido a poblaciones. La caracterización de poblaciones así como el entendimiento de la Mejora Genética

Más detalles

"CONTRASTES DE HIPÓTESIS" 4.4 Parte básica

CONTRASTES DE HIPÓTESIS 4.4 Parte básica 76 "CONTRASTES DE HIPÓTESIS" 4.4 Parte básica 77 4.4.1 Introducción a los contrastes de hipótesis La Inferencia Estadística consta de dos partes: Estimación y Contrastes de Hipótesis. La primera se ha

Más detalles

Capítulo 18. Análisis de regresión lineal: El procedimiento Regresión lineal. Introducción

Capítulo 18. Análisis de regresión lineal: El procedimiento Regresión lineal. Introducción Capítulo 18 Análisis de regresión lineal: El procedimiento Regresión lineal Introducción El análisis de regresión lineal es una técnica estadística utilizada para estudiar la relación entre variables.

Más detalles

Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales

Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Cuando se analizan datos, el interés del analista suele centrarse en dos grandes objetivos:

Más detalles

CORRELACIÓN Y REGRESIÓN EMPLEANDO EXCEL Y GRAPH

CORRELACIÓN Y REGRESIÓN EMPLEANDO EXCEL Y GRAPH CORRELACIÓN Y REGRESIÓN EMPLEANDO EXCEL Y GRAPH 1) ANÁLISIS DE CORRELACIÓN Dado dos variables, la correlación permite hacer estimaciones del valor de una de ellas conociendo el valor de la otra variable.

Más detalles

CORRELACIONES CON SPSS

CORRELACIONES CON SPSS ESCUEL SUPERIOR DE INFORMÁTIC Prácticas de Estadística CORRELCIONES CON SPSS 1.- INTRODUCCIÓN El concepto de relación o correlación entre dos variables se refiere al grado de parecido o variación conjunta

Más detalles

ANALISIS DE DATOS EN PSICOLOGIA I (Grupos 12, 13, 14, 16 y 17) Programa de la asignatura; curso 2006/07

ANALISIS DE DATOS EN PSICOLOGIA I (Grupos 12, 13, 14, 16 y 17) Programa de la asignatura; curso 2006/07 1 ANALISIS DE DATOS EN PSICOLOGIA I (Grupos 12, 13, 14, 16 y 17) Programa de la asignatura; curso 2006/07 A.- OBJETIVOS DE LA ASIGNATURA El objetivo principal de esta asignatura es contribuir a familiarizar

Más detalles

TRATAMIENTO DE BASES DE DATOS CON INFORMACIÓN FALTANTE SEGÚN ANÁLISIS DE LAS PÉRDIDAS CON SPSS

TRATAMIENTO DE BASES DE DATOS CON INFORMACIÓN FALTANTE SEGÚN ANÁLISIS DE LAS PÉRDIDAS CON SPSS Badler, Clara E. Alsina, Sara M. 1 Puigsubirá, Cristina B. 1 Vitelleschi, María S. 1 Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística (IITAE) TRATAMIENTO DE BASES DE DATOS

Más detalles

Curso de Estadística y Matemáticas Farmacéuticas

Curso de Estadística y Matemáticas Farmacéuticas Curso de Estadística y Matemáticas Farmacéuticas Titulación certificada por EUROINNOVA BUSINESS SCHOOL Curso de Estadística y Matemáticas Farmacéuticas Curso de Estadística y Matemáticas Farmacéuticas

Más detalles

CUADERNO DE PRÁCTICAS DE ECOLOGÍA

CUADERNO DE PRÁCTICAS DE ECOLOGÍA CUADERNO DE PRÁCTICAS DE ECOLOGÍA (º grado en Biología) DEPARTAMENTO ECOLOGÍA UNIVERSIDAD DE ALCALÁ ÍNDICE página Métodos de Investigación en Ecología... 5 1. El método científico en ecología... 7. Valoración

Más detalles

ANÁLISIS DESCRIPTIVO CON SPSS

ANÁLISIS DESCRIPTIVO CON SPSS ESCUELA SUPERIOR DE INFORMÁTICA Prácticas de Estadística ANÁLISIS DESCRIPTIVO CON SPSS 1.- INTRODUCCIÓN Existen dos procedimientos básicos que permiten describir las propiedades de las distribuciones:

Más detalles

Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local

Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local 21 Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local Victoria Jiménez González Introducción La Estadística es considerada actualmente una herramienta indispensable

Más detalles

Autores: Olga ÁVILA * Eleonora CERATI * Roberto MACÍAS * Claudia REDOLATTI * Ingrid SCHWER * María Laura TAVERNA*

Autores: Olga ÁVILA * Eleonora CERATI * Roberto MACÍAS * Claudia REDOLATTI * Ingrid SCHWER * María Laura TAVERNA* USO DE ANÁLISIS MULTIVARIADO PARA CARACTERIZAR LA FORMACIÓN MATEMÁTICA DE LOS ALUMNOS INGRESANTES Y MEDIR SU DESEMPEÑO EN LA PRIMERA ASIGNATURA DEL ÁREA EN LA UNIVERSIDAD Autores: Olga ÁVILA * Eleonora

Más detalles

ESTADÍSTICA. Tema 3 Contrastes de hipótesis

ESTADÍSTICA. Tema 3 Contrastes de hipótesis ESTADÍSTICA Grado en CC. de la Alimentación Tema 3 Contrastes de hipótesis Estadística (Alimentación). Profesora: Amparo Baíllo Tema 3: Contrastes de hipótesis 1 Estructura de este tema Qué es un contraste

Más detalles

LICENCIADO EN CIENCIAS AMBIENTALES PROGRAMA DE ESTADÍSTICA

LICENCIADO EN CIENCIAS AMBIENTALES PROGRAMA DE ESTADÍSTICA LICENCIADO EN CIENCIAS AMBIENTALES PROGRAMA DE ESTADÍSTICA CURSO 2010-2011 TITULACIÓN: CIENCIAS AMBIENTALES ASIGNATURA: ESTADISTICA ÁREA DE CONOCIMIENTO: Estadística e Investigación Operativa Número de

Más detalles

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características

Más detalles

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA ESPECIALIZACIÓN EN NUTRICIÓN ANIMAL SOSTENIBLE Nombre del Curso: DISEÑO EXPERIMENTAL AVANZADO

Más detalles

ESQUEMA GENERAL DISEÑOS DE MEDIDAS REPETIDAS

ESQUEMA GENERAL DISEÑOS DE MEDIDAS REPETIDAS TEMA IV ESQUEMA GENERAL Definición Clasificación Diseño simple de medidas repetidas Diseño factorial de medidas repetidas Diseño de medidas parcialmente repetidas DISEÑOS DE MEDIDAS REPETIDAS Definición

Más detalles

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3 Capítulo 3 1. Introducción El análisis de regresión lineal, en general, nos permite obtener una función lineal de una o más variables independientes o predictoras (X1, X2,... XK) a partir de la cual explicar

Más detalles

Programa de Statgraphics. TITULO: Aplicaciones del Análisis de la Varianza. Resolución de dos Ejercicios propuestos paso por paso.

Programa de Statgraphics. TITULO: Aplicaciones del Análisis de la Varianza. Resolución de dos Ejercicios propuestos paso por paso. Programa de Statgraphics TITULO: Aplicaciones del Análisis de la Varianza. Resolución de dos Ejercicios propuestos paso por paso. AUTOR: JUAN VICENTE GONZÁLEZ OVANDO ANALISIS Y CALCULOS A) Planteamos los

Más detalles

Medidas de tendencia central o de posición: situación de los valores alrededor

Medidas de tendencia central o de posición: situación de los valores alrededor Tema 10: Medidas de posición y dispersión Una vez agrupados los datos en distribuciones de frecuencias, se calculan unos valores que sintetizan la información. Estudiaremos dos grandes secciones: Medidas

Más detalles

Diseños en bloques aleatorizados

Diseños en bloques aleatorizados Capítulo 5 Diseños en bloques aleatorizados 5.1. ntroducción En las situaciones que hemos estudiado en el Capítulo 1 hemos supuesto que existe bastante homogéneidad entre las unidades experimentales, así,

Más detalles

Índice general. Pág. N. 1. Metodología de la investigación científica. Conocimiento y Ciencia. Investigación. Métodos y técnicas de investigación

Índice general. Pág. N. 1. Metodología de la investigación científica. Conocimiento y Ciencia. Investigación. Métodos y técnicas de investigación Pág. N. 1 Índice general Metodología de la investigación científica Conocimiento y Ciencia 1. Origen del Conocimiento 1.1 Sujeto cognoscente 1.2 Objeto del conocimiento 1.3 El conocimiento 2. Principales

Más detalles

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez VII-1 UNIVERSIDAD DE JAÉN Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez Índice MAATTEERRIIAALL VIIII REESSUULLTTAADDOOSS

Más detalles

Llobell, J. P., Pérez, J. F. G., & Navarro, M. D. F. (1996). El diseño y la investigación

Llobell, J. P., Pérez, J. F. G., & Navarro, M. D. F. (1996). El diseño y la investigación Llobell, J. P., Pérez, J. F. G., & Navarro, M. D. F. (1996). El diseño y la investigación experimental en psicología [Design of experimental research in psychology] (2nd ed.). Valencia, Spain: Cristóbal

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Simposio: El Enfoque Cuasi-Experimental en el Contexto Psicológico y Social. Problemas Relativos al Diseño y Técnicas de Análisis

Simposio: El Enfoque Cuasi-Experimental en el Contexto Psicológico y Social. Problemas Relativos al Diseño y Técnicas de Análisis Simposio: El Enfoque Cuasi-Experimental en el Contexto Psicológico y Social. Problemas Relativos al Diseño y Técnicas de Análisis Universidad de Barcelona jarnau@ub.edu Coordinador: Jaume Arnau Gras Dentro

Más detalles

Anexo 4. Herramientas Estadísticas

Anexo 4. Herramientas Estadísticas Anexo 4 Herramientas Estadísticas La estadística descriptiva es utilizada como una herramienta para describir y analizar las características de un conjunto de datos, así como las relaciones que existen

Más detalles