Polinomios y fracciones algebraicas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Polinomios y fracciones algebraicas"

Transcripción

1 Polinomios y fracciones algebraicas POLINOMIOS SUMA, RESTA Y MULTIPLICACIÓN POTENCIAS DIVISIÓN REGLA DE RUFFINI DIVISORES DE UN POLINOMIO FACTORIZACIÓN DE UN POLINOMIO VALOR NUMÉRICO DE UN POLINOMIO TEOREMA DEL RESTO RAÍCES DE UN POLINOMIO FRACCIONES ALGEBRAICAS SIMPLIFICACIÓN OPERACIONES 80

2 Un hombre de principios Días negros y noches largas, estas últimas semanas habían sido especialmente difíciles para Paolo Ruffini. Mientras caminaba en dirección a su casa, pensaba en lo duro que le había sido tomar la decisión de no jurar fidelidad a la bandera de los invasores franceses. Un golpecito en el hombro y la voz amiga de Luigi lo devolvieron a la realidad: Paolo! Qué has hecho? En la universidad no se comenta otra cosa. El responsable político ha asegurado que nunca volverás a sentarte en tu cátedra y que has marcado tu destino; se le veía terriblemente enfadado. Lo pensé durante mucho tiempo y cuando comuniqué mi decisión me he sentido aliviado argumentó Ruffini, plenamente convencido. Pero no has pensado en tu familia o en tu posición? Luigi mostró la preocupación que parecía haber abandonado a Ruffini. Luigi, cuánto darías por un puesto de funcionario? Estaban llegando al mercado y Ruffini se paró en seco. Yo no estoy dispuesto a pagar tanto por la cátedra; si hiciera el juramento, habría traicionado mis principios y mutilado mi alma, mantendría mi cátedra pero el Paolo Ruffini que conoces habría muerto. Ruffini se dedicó por entero a su oficio de médico en los años en que estuvo alejado de la docencia. En la división de polinomios P() : (, calcula el grado del cociente y del resto. El grado del cociente es un grado menor que el grado del polinomio P(), y el grado del resto es cero, pues es siempre un número (un número es un polinomio de grado cero).

3 Polinomios y fracciones algebraicas EJERCICIOS 00 Efectúa la siguiente operación. ( + + ( + ( + + ( Multiplica estos polinomios. P() + Q() P() Q() Si P() + y Q() +, calcula: P( + P( P(0) + Q( P( + P( ( + ) + ( + + ) + 6 P(0) + Q( + ( + + 8) + 00 Cuánto tiene que valer a para que P( 0 si P() +? Son las soluciones de la ecuación + 0 y Realiza las siguientes divisiones de polinomios. Comprueba, en cada una de ellas, el resultado que obtienes. ( 5 5) : ( ( + ) : ( ( + : ( + d) ( 5 + : ( ) ( 5 5) : ( ( + ) : ( ( + : ( + d) ( 5 + : ( ) Cociente + Resto Cociente Resto 6 6 Cociente Resto Cociente + 5 Resto 5 El divisor de una división de polinomios es Q() 7, el cociente es C() y el resto es R(). Calcula el dividendo. P() Q() C() + R() ( 7) ( ) + ( ) ( 5 + ) + ( )

4 SOLUCIONARIO 007 El dividendo de una división de polinomios es P() 5, el cociente es C() y el resto es R(). Cuál es el divisor? P() Q() C() + R() 5 Q() ( ) 5 + Q() ( ) Q() ( 5 + ) : ( ) 008 Determina el cociente y el resto, aplicando la regla de Ruffini. ( + ) : ( ( + 9) : ( ) ( + 0) : ( 5) d) ( 5 + 7) : ( + ) e) ( ) : ( + ) 0 0 C() + ; R() C() + + +; R() 5 d) e) C() ; R() C() ; R() C() ; R() Si dividimos entre +, cuáles serán el resto y el cociente? Podemos aplicar la regla de Ruffini? Cociente: ; Resto: 9 8

5 Polinomios y fracciones algebraicas 00 Calcula el valor de m para que la división sea eacta. ( m + ) : ( ) 0 8 m m m 0 + m 0 + m0 m 0 0 Considerando el polinomio: P() calcula, mediante el teorema del resto, su valor numérico para: e) 5 d) 7 f) Como el resto es, entonces P( Como el resto es 5, entonces P(5) Como el resto es 6, entonces P( 6. d) Como el resto es 0, entonces P(7) 0. e) Como el resto es 0, entonces P() 0. f) Como el resto es, entonces P( 5). 0 Comprueba que se verifica el teorema del resto para P() + si: P() + P( ( ( + 6 8

6 SOLUCIONARIO 0 Cuánto vale a si el valor numérico de P() + a, para, es 0? a a 6 a 6 0 a6 0 Calcula las raíces de estos polinomios. P() + R() 5 6 Q() + d) S() es raíz, + y también raíces. son 0 es raíz doble. No tiene raíces racionales, al probar con los divisores del denominador nunca da cero. d) es raíz. Son las dos raíces del polinomio. 7 es raíz. 05 Cuánto vale a para que sea una raíz del polinomio + a? a a 8 a 8 0 a8 06 Determina a y b para que el polinomio P() a + b tenga como raíces y. a 0 b a a a a b+a a 0 b a a a a b+a Como b a, cualquier par de números que lo cumpla formará un polinomio con esas raíces; por ejemplo, a, y b. 85

7 Polinomios y fracciones algebraicas 07 Obtén, utilizando el triángulo de Tartaglia, el desarrollo de estas potencias. ( + y) 5 ( ) e) ( y) g) ( y ) 5 ( + d) ( ) f) ( y) 5 h) ( + y) Los coeficientes son, 5, 0, 0, 5 y. (+y) y+0 y + 0 y + 5y + y 5 Los coeficientes son,, 6, y. ( Los coeficientes son,, y. ( ) 8 y+ 8 d) Los coeficientes son,, 6, y. ( ) e) Los coeficientes son,, 6, y. ( y) ( ) + ( ) ( y) + 6 ( ) ( y) + ( ) ( y) + + ( y) y+5 y y + y f) Los coeficientes son, 5, 0, 0, 5 y. ( y) 5 ( ) ( ) ( y) + 0 ( ) ( y) + 0 ( ) ( y) ( ) ( y) + ( y) y+0 6 y 0 y y y 5 g) Los coeficientes son, 5, 0, 0, 5 y. ( y ) 5 ( ) ( ) ( y ) + 0 ( ) ( y ) ( ) ( y ) + 5 ( ) ( y ) + ( y ) y y 0 y y 8 y 0 h) Los coeficientes son,, y. ( +y) ( ) + ( ) y+ ( ) (y) + (y) 9 y 7y + 9y 08 Completa el triángulo de Tartaglia hasta la décima fila Cuál es el volumen de este cubo? Volumen: (a+ a + a b+ab + b a + b 86

8 SOLUCIONARIO 00 Halla un divisor de estos polinomios. P() + 6 Q() + R() ( ) es divisor de P(). 0 0 (+ es divisor de Q() ( es divisor de R(). 0 Calcula a para que sea divisor de + +a. a a+ a+ 0 a 0 Son correctos los cálculos? Así, tenemos que: ( (+) Los cálculos no son correctos (+ ( + ) 0 Descompón en factores estos polinomios. P() 8 d) P() P() + + e) P() 5 P() + + f) P() 5 9 P() 8 ( + +) ( ) P() ( + +) (+) P() (+ ( ) d) P() ( + 9 +) (+ ( ) (+) e) P() (+ (+) ( 7) f) P() ( 9) (+) ( ) 87

9 Polinomios y fracciones algebraicas 0 Factoriza los siguientes polinomios y eplica cómo lo haces ( ( ( ( ( ( ( ( (+ ( + 6 ( ( + + (+ ( + 05 Razona si son ciertas estas igualdades. + 9 ( + ) ( + ) ( + [ ( + ] Es falsa, porque (+) (+) Es falsa, porque [ (+] ( Simplifica estas fracciones algebraicas. e) d) f) d) e) f) 6 ( ) ( ) + ( + ) ( ) + ( ( ) + ( ( ( ( ) ( ) ( + ( ( + ) ( + ) 5+ ( ) ( + ( ) ( + ) + (

10 SOLUCIONARIO 07 Encuentra dos fracciones equivalentes y eplica cómo lo haces. Multiplicamos o dividimos el numerador y el denominador por el mismo factor Pon dos ejemplos de fracciones que tengan polinomios, pero que no sean algebraicas. Dos fracciones con polinomios no son algebraicas cuando el denominador es cero o es de grado cero. + ( ( + ( 7 ( Realiza las siguientes operaciones d) + + : ( ) ( ) + ( + ) ( + ) ( ) ( + ( + ( + ( ( + ) ( + + d) : ( ( ) ( ) ( + ( ( ) ( ) ( + ) ( ) ( + ) ( + 89

11 Polinomios y fracciones algebraicas 00 Opera y simplifica : ( + 6 5) ( + ( + 5 : ( + ) ( + ) ( ) ( + ) ( ) 5 ( + ) ( ) : ( + ) ( 5 + ) ( + ) ( ) [( ) 5 ] ( + ) ( + ) ( ) 0 Por qué fracción algebraica hay que multiplicar + 7 para que dé? ( 7) ( + ) Hay que multiplicar por ACTIVIDADES 0 Halla el valor numérico del polinomio P() para: 0 e) d) f),5 P(0) P P() () + 5 () 7 () + 8 () 8 d) P( ) ( ) + 5 ( ) 7 ( ) + 8 ( ) 0 e) P( ) ( ) + 5 ( ) 7 ( ) + 8 ( ) 07 f) P(,5) (,5) + 5 (,5) 7 (,5) + 8 (,5),5 90

12 SOLUCIONARIO 0 Razona si las siguientes igualdades son verdaderas o falsas. ( + ) ( ) d) e) + 5 f) 5 5 g) h) ( ) 6 Falsa, ya que +. Verdadera. ( ) Verdadera, pues se verifica que 6. d) Falsa, porque ( ) +. e) Falsa, ya que en la suma de potencias no se suman los eponentes. f) Falsa, pues 6 5. g) Falsa. h) Verdadera. 0 Dados los polinomios: calcula. P() + Q() + R() P() Q() P() Q() d) [P() Q()] R() e) [P() R()] Q() P() Q() 5 + R() P() + Q() + R() P() Q() P() Q() d) [P() Q()] R() ( ) ( ) e) [P() R()] Q() ( ) ( 5 + )

13 Polinomios y fracciones algebraicas 05 Opera y agrupa los términos de igual grado d) d) ( ) + ( ) ( ) Realiza las operaciones que se indican con los siguientes polinomios. P() + Q() R() P() + 6 Q() + R() 5 + P() [Q() R()] [P() [Q() + R()]] P() + Q() R() P() [Q() R()] ( + 6) ( 5 + ) ( [P() [Q() + R()]] [( + 6) ( )] Calcula. ( 7 ) (6 + 7 ) d) 7 ( 5 ) ( + 5) ( 7) e) (5 6 : ) ( ) + (6 5 5 ) : ( ) f) (0 0 ) : (5 ) ( 7 ) (6 + 7 ) 6 ( + 5) ( 7) 9 ( 5) 5 (6 5 5 ) : ( ) 5 : 5 d) 7 ( 5 ) e) (5 6 : ) ( ) f) (0 0 ) : (5 ) 0 : 5 9

14 SOLUCIONARIO Determina el valor de a, b, c y d para que los polinomios P() y Q() sean iguales. P() (a + ) + (9 + Q( ) b d d + d P( ) ( 9 + ( a + ) + Q( ) ( 9 + d + 8 c b + ( a + ) a 5 b + b Efectúa estas operaciones. ( + 5) ( + ) + ( ) ( + 5) [( ) ( )] (8 + 7) d) + 5 e) [ + 6 ( )] (5 0) ( (8 7) d) e) ( Realiza las siguientes divisiones. Cociente: d) Cociente: + + Resto: 6 Resto: Cociente: + Resto: Cociente: Resto: e) Cociente: Resto: 9

15 Polinomios y fracciones algebraicas 0 Halla el polinomio Q() por el que hay que dividir a P() +, para que el cociente sea C() + y el resto sea R() 6 +. Q() [P() R()] : C() ( + 7 ) : ( + ) + 0 Si en una división de polinomios el grado del dividendo es 6 y el del divisor es, cuál es el grado del cociente y del resto? Razona la respuesta. El grado del cociente es la diferencia que hay entre el grado del dividendo y el grado del divisor, y el grado del resto es siempre menor que el grado del divisor. Cociente: grado Resto: grado menor que 0 Realiza, aplicando la regla de Ruffini. ( ) : ( ) ( + ) : ( + ( + + ) : ( ) d) ( 8 + 7) : ( + ) e) ( + 6 9) : ( + ) Cociente: Resto: 0 Cociente: + Resto: Cociente: Resto: d) Cociente: 6 Resto: 5 e) Cociente: Resto: 6 9

16 SOLUCIONARIO 0 Completa estas divisiones y escribe los polinomios dividendo, divisor, cociente y resto Dividendo: + + Dividendo: + Divisor: + Divisor: Cociente: + Cociente: + + Resto: Resto: 8 d) Dividendo: Dividendo: Divisor: + Divisor: + Cociente: + Cociente: + 8 Resto: Resto: 5 05 Halla el valor de m para que las divisiones sean eactas. ( + m) : ( + ) d) ( (m + + m) : ( + ( m) : ( ) e) ( + m + 0) : ( 5) ( + m : ( 6) m 6 6 m + 6 m m 6 8 m 8 6 m + m + 0 m m m m + 0 m + 68 m m d) (m + 0 m m + m m m + m m 0 m e) m m + 5 5m + 5 m + 5 5m + 7 5m + 5 5m m

17 Polinomios y fracciones algebraicas 06 Obtén el valor de m para que las divisiones tengan el resto indicado. ( m + 7) : ( + Resto (m m + 8m) : ( ) Resto m m m + 7 m + 0 m + 0 m 8 m m 0 8m m m m m m m m m m m 07 HAZLO ASÍ CÓMO SE APLICA LA REGLA DE RUFFINI CUANDO EL DIVISOR ES DEL TIPO (a? Efectúa esta división por la regla de Ruffini. ( + ) : ( 6) PRIMERO. Se divide el polinomio divisor, a b, entre a. ( ( 6) : + ) : ( 6) ( + ) : ( ) SEGUNDO. Se aplica la regla de Ruffini con el nuevo divisor. C() + 5 TERCERO. El cociente de la división inicial será el cociente de esta división dividido entre el número por el que se ha dividido el divisor inicial. Cociente: 5 El resto no varía. Resto:. : Calcula, utilizando la regla de Ruffini, las siguientes divisiones. ( 5 + : ( + ) ( 5 + ) : (5 0) ( 5 ( + ) : + : ( + ) ( 5 + : ( + ) Cociente: + : Resto: ( 5 (5 0) : 5 + ) : (5 0) ( 5 + ) : ( ) Cociente: + Resto: :

18 SOLUCIONARIO 09 Utiliza el teorema del resto para calcular estos valores numéricos. P() + 7, para P() , para P(), para d) P() +, para 7 P( P( ) P( d) P() HAZLO ASÍ CÓMO SE CALCULA EL RESTO DE LAS DIVISIONES CON DIVISOR ( a )? Calcula, sin realizar la división, el resto de: ( + : ( ) PRIMERO. Se calcula el valor numérico del dividendo cuando toma el valor del término independiente del divisor, cambiado de signo. P() + + SEGUNDO. Según el teorema del resto, este es el resto de la división. El resto que obtenemos al efectuar la división es R. 05 Calcula el resto sin hacer las divisiones. ( ) : ( ) ( ) : ( + ( + 7 9) : ( ) d) ( ) : ( + ) P() Resto: 6 P( ( ( + 6 ( + Resto: P() Resto: 57 d) P( ) 5 ( ) + 7 ( ) ( ) + Resto: 97

19 Polinomios y fracciones algebraicas 05 Halla el resto de esta división. ( 00 + : ( + P( ( 00 + Resto: 05 Responde razonadamente si es verdadero o falso. Si P( ) 0, entonces P() 0. Si el resto de P() : ( + ) es, resulta que P() 0. Falso, por ejemplo, en P() +, P( ) 0 y P(). Falso. Al ser el resto, sabemos que P( ), pero no nos aporta más información. 05 Comprueba si y son raíces del polinomio P() Como P() 60, no es raíz. Como P() 0, es raíz del polinomio. 055 Comprueba que una raíz de P() es. Como P( 0, es raíz del polinomio. 056 Calcula las raíces de estos polinomios e) f) + + g) d) h) + Raíces:,, e) Raíces:, Raíces: 0,, f) Raíces:, 0 Raíz: g) Raíces: 0, d) Raíces:,, h) Raíz doble: 057 Observando el dividendo y el divisor, señala cuáles de estas divisiones no son eactas. ( + 7 8) : ( + ) ( 9) : ( 5) ( + 5) : ( 7) d) ( : ( + ) Puedes asegurar que las otras divisiones son eactas? No son eactas las divisiones de los apartados, y d). Sin hacer más operaciones no es posible asegurar si la división del apartado es eacta o no. 98

20 SOLUCIONARIO 058 HAZLO ASÍ CÓMO SE CALCULA UN POLINOMIO, CONOCIDAS SUS RAÍCES Y EL COEFICIENTE DEL TÉRMINO DE MAYOR GRADO? Escribe el polinomio cuyas raíces son,, y, y el coeficiente del término de mayor grado es 5. PRIMERO. Los divisores del polinomio buscado serán de la forma (, donde a es cada una de las raíces. Los divisores del polinomio serán: (, ( ) y ( + ) SEGUNDO. Se efectúa el producto de los monomios, multiplicando cada uno tantas veces como aparece la raíz. ( ( ( ) ( + ) TERCERO. Se multiplica por el coeficiente del término de mayor grado. P() 5 ( ( ( ) ( + ) P() Qué polinomios tienen estas raíces y coeficientes de mayor grado?,, y coeficiente. (raíz doble) y coeficiente., y coeficiente. P() ( ( + ) ( ) P() ( ) P() ( + ) ( + ) 5 6 Efectúa. ( + ) ( ) d) ( ) d) Desarrolla las siguientes potencias. ( + + ) ( ( + ) d) d)

21 Polinomios y fracciones algebraicas 06 Efectúa y reduce términos semejantes. ( + ) + ( ) (5 6) + ( ( ) ( + ) d) ( + 5) ( ) ( ) + ( + ) ( ) ( ) d) ( ) ( ) Indica si las igualdades son verdaderas o falsas. Razona la respuesta. (6 + 5) (6 + 5) (6 + 5) (6 + 5) ( + ) ( + ) ( + ) ( + ) ( ) ( + ) (6 ( 5) d) ( ) 8 ( e) (8 + ) ( + (6 + 5) [(6 + 5) ] (6 + 5) (6 + 5) Falsa ( + ) [( + ) ] ( + ) ( + ) Verdadera Verdadera d) ( ) ( Verdadera e) () ( + ( + Falsa 06 Señala cuáles de los siguientes polinomios son el cuadrado de un binomio, e indícalo d) e) f) (5 7) d) ( ) ( ) e) No es el cuadrado de un binomio. ( + ) f) No es el cuadrado de un binomio. 065 Añade los términos necesarios a cada polinomio para que sea el cuadrado de un binomio. 5 + d) e) f) ± 0 + d) ± e) f)

22 SOLUCIONARIO 066 Descompón en factores los siguientes polinomios, sacando factor común. 8 d) e) f) ( d) ( ) (9 + 7) e) ( + 7) ( + ) f) ( 067 Factoriza estos polinomios, aplicando las igualdades notables. + + d) e) f) ( + d) ( + ) ( ) ( + 5) e) ( + ) ( ) ( ) f) ( ) 068 Factoriza los siguientes polinomios e) + + f) g) + 0 d) + h) ( + ) ( + ) e) ( ) ( ( + ) ( ) ( + ) f) ( 5) ( ( + ( + ) ( + 8) g) ( + ) ( ) ( + 5) d) ( + 6) ( ) h) No es posible 069 Descompón factorialmente. + 6 e) + f) g) d) + + h) No es posible ( + ( ( ) d) ( + ) e) ( + ) ( ( ) f) ( + ) ( 5 + g) ( + ) h) ( + 0

23 Polinomios y fracciones algebraicas 070 Escribe como producto de factores ( + ( ) d) ( ) [( + + ( )] [( + ( )] (6 ) ( + ) ( ( + ) d) [( ) + ] [( ) ] ( + ) ( 6) 07 Escribe tres polinomios de grado y otros tres de grado, que sean divisores de: P() + 0 P() 6 7 P() ( + 6)( 5) Grado : Grado : P() ( + ( 7) Grado : Grado : Indica cuáles de las siguientes epresiones son fracciones algebraicas. Son fracciones algebraicas las epresiones de:,, d), f) e i). 0

24 SOLUCIONARIO 07 Escribe tres fracciones algebraicas equivalentes a: + e) + 6 d) f) d) e) f) ( ) ( ( + ) ( ) ( ) ( + 0) ( + ) Averigua si los siguientes pares de fracciones algebraicas son equivalentes y y y d) y Solo es equivalente el par de fracciones del apartado. 075 Halla el valor de P() para que las fracciones sean equivalentes. + P( ) P( ) d) + P( ) P( ) ( + ( ) P( ) ( + ( ) ( ) ( + ) P( ) ( ) ( + + ( ) P( ) 6 + d) P( ) ( 0) ( + + 0)

25 Polinomios y fracciones algebraicas 076 Cuánto debe valer a para que las fracciones algebraicas sean equivalentes? 5 5 a a a d) + a a0 a7 Sin solución d) a Simplifica las siguientes fracciones algebraicas. 8 6 yz 8y z ( ) ( y ) d) ( ) ( y ) 6 8 yz 8y z y ( ) ( y ) d) 6 ( ) ( y ) y Simplifica estas fracciones algebraicas. + + e) f) g) d) h) e) f) g) d) h) 0 + ( )( + ) ( ) 0

26 SOLUCIONARIO 079 HAZLO ASÍ CÓMO SE REDUCEN FRACCIONES ALGEBRAICAS A COMÚN DENOMINADOR? Reduce a común denominador estas fracciones algebraicas. PRIMERO. Se factorizan los denominadores. ( + ) ( ) + + ( + ) SEGUNDO. Se calcula el mínimo común múltiplo, que estará formado por los factores comunes y no comunes elevados al mayor eponente. m.c.m. (,, + + ) ( + ) ( ) TERCERO. Se divide el denominador entre el m.c.m., y el resultado se multiplica por el numerador. 8 8 ( + ) + + ( + ) ( ) ( + ) ( ) 6 ( + ) + ( + ) ( ) ( + ) ( ) ( ) ( + ) ( ) ( + ) ( ) Las tres fracciones algebraicas tienen el mismo denominador: ( + ) ( ). 080 Calcula el mínimo común múltiplo de estos polinomios., 0 y, y 9 + 5, + 5 y d) +, y + e), y + f) + +, y ( + ) ( ) ( + 5) d) ( + ( e) ( + ( f) ( + ( ( ) ( ) 05

27 Polinomios y fracciones algebraicas 08 Opera y simplifica ( + 5 ( + ) ( ) ( + ) ( + ) + ( 5+ ) ( + ) ( ) ( + ) ( + ) + 6+ ( ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) 08 Realiza estas operaciones y simplifica d) d) ( ( + ( + ( ) ( ) ( + ( + ( ( + ( 5 ( ( ) ( + ( ) ( ) ( + ( ( + ( ( + ) 6 ( ) ( ) 6 ( + ) 6 ( + ) ( ) + ( + ) + + ( ) ( ) ( ) ( + ( ( + ( 06

28 SOLUCIONARIO Efectúa las operaciones d) ( + ) ( ) + 9 ( ( ) ( + ) ( + ) ( + ) ( ) ( ) ( ) ( ) ( ) ( + ) ( + ) ( ) ( + 5) ( + 5) ( 5) ( + 5) d) ( 5) ( + 5) + 5 Realiza los productos de fracciones algebraicas y simplifica el resultado ( ) ( ) ( 7) ( + ) ( ) ( 7) ( + ) ( + 8) ( + 5) ( ) ( + 8) ( + 5) ( ) ( + 5) ( + ( ) ( + ( + ) ( + ) ( + 5) ( 8) ( + ) ( + ) ( 8) ( + ) ( ) ( + ) ( + ) ( + ) ( + ) ( + ) ( ( ) ( Efectúa estas divisiones de fracciones algebraicas y simplifica el resultado. + + : : : + + ( ( + ( + ( ( + ) : ( ) ( + ) ( ) ( ) ( + ( + ) + + : ( ) ( ) ( ) ( + ) ( ) ( + ) : ( + ) 07

29 Polinomios y fracciones algebraicas Efectúa las siguientes operaciones : : + + d) ( + ) ( ) + ( ) : ( ) ( ) + + ( + ( ( ) ( ) ( + ( ( + ( + + : ( + + ( + ( d) ( + ( ( + ( La torre de una iglesia es un prisma de base cuadrada y de altura 5 m mayor que la arista de la base. Epresa, en lenguaje algebraico, cuánto miden su superficie lateral y su volumen. Calcula los valores numéricos de la superficie y del volumen para una arista de la base de 5, 6 y 7 m, respectivamente. Arista: Altura: +5 A lateral (+5) + 60 V (+5) ( ) 0 + ( ) ( ) ( ( ( ( ( + + ( ( + + ( + + ( + ( 5 m 6 m 7 m A lateral m 50 m 66 m V m 756 m.078 m ( + ( 08

30 SOLUCIONARIO 088 La página de un libro mide el doble de alto que de ancho, y los márgenes laterales miden cm, y los márgenes superior e inferior, cm. Epresa la superficie total de la página en lenguaje algebraico. Haz lo mismo con la superficie útil de papel (lo que queda dentro de los márgenes). Ancho: Ancho: Alto: Alto: 6 A A ( ) ( 6) Mandamos construir un depósito de agua con forma cilíndrica, siendo el área de la base la quinta parte del cubo de la altura. Epresa el volumen del depósito. Cuántos metros cúbicos de agua caben si la altura mide m? Altura: A base V ( 0, m 5 5 V El diámetro de la base de un silo cilíndrico mide de la longitud de la altura. Epresa la capacidad del silo en función del diámetro de su base. Queremos pintar el silo y empleamos kg de pintura por cada metro cuadrado. Calcula cuántos kilogramos de pintura necesitamos si el diámetro de la base mide m. Diámetro: Altura: Diámetro: Altura: Alateral π π Necesitamos 6,75 kg de pintura. V π π A lateral π 6, 75 m 09

31 Polinomios y fracciones algebraicas Si el resto de la división de un polinomio P() entre ( ) es, y entre (+) es, cuál será el resto de la división de P() entre ( )? Como el resto de P() entre ( ) es : P() ( ) A() + Como el resto de P() entre ( + ) es : P() ( + ) B() + Por el teorema del resto: P() Sustituyendo en la segunda igualdad: P() ( + ) B() + B() Como el resto de B() entre ( ) es B() ( ) C() + Y sustituyendo: P() ( + ) B() + ( + ) [( ) C() + ] + ( + ) ( ) C() + ( + ) + ( ) ( + ) C() + ( + 8) El resto de dividir P() entre ( ) es + 8. Cuál es el resto de la división de entre (+? El resto es P( Demuestra que el triángulo ABC es rectángulo para cualquier valor de C A + 6 ( + ) + (5 + 0) ( + 5 ) ( + ) ( + ) ( + 6) Se cumple el teorema de Pitágoras para cualquier valor de, y el triángulo es equilátero. B 09 Calcula el perímetro y el área de la figura, epresando los resultados mediante polinomios. + 5 m 0 m 50 m + 0 m 5 60 m 5 m 50 m 0

32 SOLUCIONARIO 5 Perímetro m D E C A B 5 5 AA ( ) m A B m A C m A D 0 ( + (0 + 0) m A E ( + 0) (50 5) (0 55) m A A A + A B + A C + A D + A E m 095 Encuentra los valores de A, B y C para que se cumpla la igualdad. (A 7) (5 + B) C 6 (A 7) (5 + B) 5A + (AB 5) 7B (A 7) (5 + B) C 6 7B B B AB 5 6 A 9 A 9 C 5A C Halla un polinomio de segundo grado que sea divisible por ( y que, al dividirlo entre ( + y entre ( ), se obtenga como resto 0 y 5, respectivamente. P() A + B + C P( A + B + C 0 B 5 P( A B + C 0 P() A + B + C 5 A + C 5 B 5 0 A y C P( A B + C 0 A + C P( ) 5 + B 5 5

33 Polinomios y fracciones algebraicas 097 EN LA VIDA COTIDIANA Dentro de los proyectos de conservación de zonas verdes de un municipio, se ha decidido instalar un parque en el solar que ocupaba una antigua fábrica. Disponemos de una superficie cuadrada de 00 metros de lado. Podríamos dividir el parque en tres zonas. El parque tendrá tres áreas delimitadas: la zona de juego, la zona de lectura, que rodeará a la zona de juego, y el resto, que se dedicará a la zona de paseo. Aún no han hecho mediciones, pero los técnicos han determinado que la zona dedicada a los juegos sea cuadrada y su lado medirá 0 metros. Qué epresión nos da el área de la zona para pasear? Y el área de la zona de lectura? Si deciden que la zona de paseo tenga un ancho de 0 metros, cuáles serán las áreas de cada zona? A juego m A lectura (00 ) A paseo 00 (00 ) 00 A juego m A lectura (00 0) m A paseo m

34 SOLUCIONARIO 098 Al recoger el correo, Ana ha recibido la factura de su consumo de luz en los dos últimos meses. Cómo han hecho las cuentas en esta factura? Ana le pide ayuda a su hermano y ambos se disponen a analizar la factura con detalle. Aparecen varias variables: la potencia, p, contratada,, kw cada mes; el consumo, c, 7 kwh. No olvides los precios de cada variable y los impuestos. FACTURACIÓN Potencia... 58,9 cent. Consumo... 8,99 cent. Alquiler cent. Impto. electricidad IVA Con esta información, escriben un polinomio:,6 [,09 (p+cy) + z] siendo el importe de la potencia al mes, y el importe de la energía consumida y z el importe mensual del alquiler. Ahora comprenden por qué la factura ha sido de 9,8. Comprueba el importe. Deciden bajar la potencia a,5 kw y el consumo aumenta a 5 kwh. Cuánto tendrán que pagar en la factura de los dos próimos meses? Importe,6 [,09 (p+cy) + z],6 [,09 (, 58,9 + 8,99 7) + 57].98,8 céntimos 9,8 El importe de la factura de los dos próimos meses es:,6 [,09 (p+cy) + z],6 [,09 (,5 58,9 + 8,99 5) + 57] 5.,9 céntimos 5,

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS PARA EMPEZAR Un cuadrado tiene 5 centímetros de lado. Escribe la epresión algebraica que da el área cuando el lado aumenta centímetros. A ( 5) Señala cuáles de las siguientes

Más detalles

2Soluciones a las actividades de cada epígrafe PÁGINA 42

2Soluciones a las actividades de cada epígrafe PÁGINA 42 PÁGINA 42 Pág. 20 cm r r l l 20 cm Amparo quiere fabricar las cuatro velas que ha diseñado sobre el lienzo, pero aún no se ha decidido sobre alguna de sus dimensiones. Para hacerlo necesita saber su volumen

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 0 Polinomios y fracciones algebraicas En esta Unidad aprenderás a: d Trabajar con epresiones polinómicas. d Factorizar polinomios. d Operar con fracciones algebraicas. d Descomponer una fracción algebraica

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Página 66 PARA EMPEZAR, REFLEXIONA Y RESUELVE Múltiplos y divisores. Haz la división: 4 + 5 0 + 5 A la vista del resultado, di dos divisores del polinomio 4 + 5 0. (

Más detalles

REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS

REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS Si en una división de polinomios el divisor es de la forma (x - a) se puede aplicar la regla de Ruffini para obtener el cociente y el resto de la división.

Más detalles

3 Polinomios y fracciones algebráicas

3 Polinomios y fracciones algebráicas Solucionario 3 Polinomios y fracciones algebráicas ACTIVIDADES INICIALES 3.I. Para cada uno de los siguientes monomios, indica las variables, el grado y el coeficiente, y calcula el valor numérico de los

Más detalles

5 Operaciones. con polinomios P I E N S A Y C A L C U L A A P L I C A L A T E O R Í A. 1. Polinomios. Suma y resta

5 Operaciones. con polinomios P I E N S A Y C A L C U L A A P L I C A L A T E O R Í A. 1. Polinomios. Suma y resta 5 Operaciones con polinomios 1. Polinomios. Suma y resta Dado el cubo de la figura, calcula en función de : a) El área. b) El volumen. a) A() = 6 2 b) V() = 3 P I E N S A Y C A L C U L A 1 Dado el prisma

Más detalles

Tema 3. Polinomios y fracciones algebraicas

Tema 3. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.

Más detalles

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN 4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN Bloque 2. POLINOMIOS. (En el libro Tema 3, página 47) 1. Definiciones. 2. Valor numérico de una expresión algebraica. 3. Operaciones con polinomios: 3.1. Suma,

Más detalles

TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS Matemáticas B 4º E.S.O. Tema : Polinomios y fracciones algebraicas. 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS 4º.1.1 COCIENTE DE MONOMIOS 4º El cociente de un monomio entre otro

Más detalles

Polinomios y Ecuaciones

Polinomios y Ecuaciones Ejercicios de Cálculo 0 Prof. María D. Ferrer G. Polinomios y Ecuaciones.. Polinomios: Un polinomio o función polinómica es una epresión de la forma: n n n P a a a a a a = n + n + n + + + + 0 () Los números

Más detalles

Ejercicios Resueltos del Tema 4

Ejercicios Resueltos del Tema 4 70 Ejercicios Resueltos del Tema 4 1. Traduce al lenguaje algebraico utilizando, para ello, una o más incógnitas: La suma de tres números consecutivos Un número más la mitad de otro c) El cuadrado de la

Más detalles

PÁGINA 77 PARA EMPEZAR

PÁGINA 77 PARA EMPEZAR Soluciones a las actividades de cada epígrafe PÁGINA 77 Pág. 1 PARA EMPEZAR El arte cósico Vamos a practicar el arte cósico : Si a 16 veces la cosa le sumamos 5, obtenemos el mismo resultado que si multiplicamos

Más detalles

Polinomios y fracciones

Polinomios y fracciones BLOQUE II Álgebra 3. Polinomios y fracciones algebraicas 4. Resolución de ecuaciones 5. Sistemas de ecuaciones 6. Inecuaciones y sistemas de inecuaciones 3 Polinomios y fracciones algebraicas. Binomio

Más detalles

UNEFA CURSO INTEGRAL DE NIVELACIÓN UNIVERSITARIA (CINU)- MATEMÁTICA Página 1

UNEFA CURSO INTEGRAL DE NIVELACIÓN UNIVERSITARIA (CINU)- MATEMÁTICA Página 1 Unidad 1: Epresiones Algebraicas UNEFA CURSO INTEGRAL DE NIVELACIÓN UNIVERSITARIA (CINU)- MATEMÁTICA Página 1 UNEFA CURSO INTEGRAL DE NIVELACIÓN UNIVERSITARIA (CINU)- MATEMÁTICA Página Matemática Unidad

Más detalles

Matemáticas 4. Santillana. opción B. Biblioteca del profesorado SOLUCIONARIO ESO

Matemáticas 4. Santillana. opción B. Biblioteca del profesorado SOLUCIONARIO ESO 89 _ 000-000.qd /7/08 0:9 Página Matemáticas ESO opción B Biblioteca del profesorado SOLUCIONARIO El Solucionario de Matemáticas para.º ESO es una obra colectiva concebida, diseñada y creada en el departamento

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas UNIDAD Polinomios y fracciones algebraicas U n polinomio es una expresión algebraica en la que las letras y los números están sometidos a las operaciones de sumar, restar y multiplicar. Los polinomios,

Más detalles

Material N 15 GUÍA TEÓRICO PRÁCTICA Nº 12

Material N 15 GUÍA TEÓRICO PRÁCTICA Nº 12 C u r s o : Matemática Material N 5 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una epresión algebraica consiste en sustituir

Más detalles

) = 5. Operaciones con polinomios 54 SOLUCIONARIO 1. POLINOMIOS. SUMA Y RESTA 2. MULTIPLICACIÓN DE POLINOMIOS

) = 5. Operaciones con polinomios 54 SOLUCIONARIO 1. POLINOMIOS. SUMA Y RESTA 2. MULTIPLICACIÓN DE POLINOMIOS 54 SOLUCIONARIO 5. Operaciones con polinomios. POLINOMIOS. SUMA RESTA PIENSA CALCULA Dado el cubo de la figura, calcula en función de : a) El área. b) El volumen. a) A ( ) = 6 b) V ( ) = CARNÉ CALCULISTA

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

IES MARIA INMACULADA MATEMÁTICAS 2º E.S.O. Curso 2010-2011 TEMA : LENGUAJE ALGEBRÁICO

IES MARIA INMACULADA MATEMÁTICAS 2º E.S.O. Curso 2010-2011 TEMA : LENGUAJE ALGEBRÁICO IES MARIA INMACULADA MATEMÁTICAS º E.S.O. Curso 010-011 GUIÓN DEL TEMA 1. Lenguaje numérico y lenguaje algebraico.. Epresión algebraica.. Valor numérico de una epresión algebraica.. Monomios. 5. Grado

Más detalles

EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos.

EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos. EJERCICIOS PROPUESTOS 4.1 Relaciona cada enunciado con su epresión algebraica. Múltiplo de 3. Número par. El cuadrado de un número más 3. Un número más 5. El triple de un número más 7. 5 3 3 3 7 4. Escribe

Más detalles

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA http:/// CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA DESARROLLA EN FORMA RESUMIDA CADA UNIDAD CON: I. GUIONES DE CONFERENCIAS II. FICHAS DE ESTUDIO III. LABORATORIOS DE EJERCICIOS Trata las unidades siguientes:

Más detalles

a) Un número par I) 2n 1 b) Un número impar II) x, x 1 c) Un número y el que le sigue III) 3a d) El triple de un número IV) 2z x 6 b) e)

a) Un número par I) 2n 1 b) Un número impar II) x, x 1 c) Un número y el que le sigue III) 3a d) El triple de un número IV) 2z x 6 b) e) Polinomios El 6 de septiembre del 00 se celebró el gran Premio de Singapur, la 5.ª prueba del mundial de Fórmula. La carrera constaba de 6 vueltas a un circuito de 5 067 m de longitud. Fernando Alonso,

Más detalles

Matemática SECRETARÍA ACADÉMICA AREA INGRESO. - Septiembre de 2010 -

Matemática SECRETARÍA ACADÉMICA AREA INGRESO. - Septiembre de 2010 - SECRETARÍA ACADÉMICA AREA INGRESO - Septiembre de 00 - SECRETARÍA ACADÉMICA ÁREA INGRESO UNIVERSIDAD TECNOLÓGICA NACIONAL Zeballos 000 Rosario - Argentina www.frro.utn.edu.ar e-mail: ingreso@frro.utn.edu.ar

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,

Más detalles

Operaciones Fundamentales del Álgebra. Operaciones con Fracciones Algebraicas.. E xponentes y Radicales 99. Ecuaciones Lineales o de Primer Grado

Operaciones Fundamentales del Álgebra. Operaciones con Fracciones Algebraicas.. E xponentes y Radicales 99. Ecuaciones Lineales o de Primer Grado ÍNDICE COMPETENCIA Operaciones Fundamentales del Álgebra 5 COMPETENCIA Operaciones con Fracciones Algebraicas.. 7 COMPETENCIA E ponentes y Radicales 99 COMPETENCIA Ecuaciones Lineales o de Primer Grado

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Un grupo de variables representadas por letras junto con un conjunto de números combinados con operaciones de suma, resta, multiplicación, división, potencia o etracción de raíces

Más detalles

POLINOMIOS. División. Regla de Ruffini.

POLINOMIOS. División. Regla de Ruffini. POLINOMIOS. División. Regla de Ruffini. Recuerda: Un monomio en x es una expresión algebraica de la forma a x tal que a es un número real y n es un número natural. El real a se llama coeficiente y n se

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES 5 Polinomios ACTIVIDADES INICIALES 5.I. Juntaos por parejas. Piensa en una figura geométrica (un cubo, una esfera, una pirámide, etc.), y escribe la epresión de su área o su volumen. Pídele a tu compañero

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental Polinomios y fracciones algebraicas Recuerda lo fundamental Curso:... Fecha:... DIVISIÓN DE POLINOMIOS El proceso para dividir dos polinomios es similar a... EJEMPLO: + 4 + La regla de Ruffini sirve para

Más detalles

Descomposición factorial de polinomios

Descomposición factorial de polinomios Descomposición factorial de polinomios Contenidos del tema Introducción Sacar factor común Productos notables Fórmula de la ecuación de segundo grado Método de Ruffini y Teorema del Resto Combinación de

Más detalles

. Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente.

. Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente. Ejercicios Resueltos del Algebra de Baldor. Consultado en la siguiente dirección electrónica http://www.quizma.cl/matematicas/recursos/algebradebaldor/index.htm. Definición: Dos o más términos son semejantes

Más detalles

Las expresiones algebraicas se clasifican en racionales e irracionales.

Las expresiones algebraicas se clasifican en racionales e irracionales. 1. 1.1 Epresiones algebraicas 1.1 Epresión algebraica. En matemáticas una epresión algebraica es un conjunto de letras y números, ligados por los signos de adición, sustracción, multiplicación, división,

Más detalles

POLINOMIOS OPERACIONES CON MONOMIOS

POLINOMIOS OPERACIONES CON MONOMIOS POLINOMIOS Una expresión algebraica es una combinación de letras y números, ligados por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las expresiones algebraicas

Más detalles

Operaciones con polinomios

Operaciones con polinomios 5 Operaciones con polinomios 5.1 Igualdades notables El cuadrado de una suma es igual al cuadrado del primero, más el doble del primero por el segundo, más el cuadrado del segundo: (a + b) a + ab + b El

Más detalles

Ecuaciones de primer y segundo grado

Ecuaciones de primer y segundo grado Ecuaciones de primer y segundo grado El fin del mundo En octubre de la cárcel de Wittenberg acogió una curiosa reunión: allí estaba Lutero visitando a su íntimo amigo Michael Stifel. Este, aplicando a

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 82652 _ 0275-0286.qxd 27/4/07 1:20 Página 275 Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender

Más detalles

REFUERZO MATEMÁTICAS 2º ESO CURSO: 2009/2010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ

REFUERZO MATEMÁTICAS 2º ESO CURSO: 2009/2010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ REFUERZO MATEMÁTICAS º ESO CURSO: 009/010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ SUMA Y RESTA DE NÚMEROS ENTEROS... POTENCIAS... 6 FRACCIONES... 8 FRACCIONES EQUIVALENTES... 8 SUMA DE FRACCIONES... 9 PRODUCTO

Más detalles

( ) 6. NÚMEROS NATURALES Y ENTEROS 1. Efectúa: = =

( ) 6. NÚMEROS NATURALES Y ENTEROS 1. Efectúa: = = NÚMEROS NATURALES Y ENTEROS. Efectúa a) ( ) ( ) 8 ( ) b) ( ) ( ) c) ( ) d) ( ) e) ( 8) ( ) f) ( ) ( ) g) [ ( ) ] h) ( ) ( ( ) ) ( ) ( ). Al enchufar la corriente a un congelador, la temperatura desciende

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman V A R I A B L ES, I N C Ó G N I T A S o

Más detalles

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS/AS CON LAS MATEMÁTICAS DE 3º ESO PENDIENTES PRIMER PARCIAL

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS/AS CON LAS MATEMÁTICAS DE 3º ESO PENDIENTES PRIMER PARCIAL de º de E.S.O. EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS/AS CON LAS MATEMÁTICAS DE º ESO PENDIENTES PRIMER PARCIAL Fecha tope para entregarlos de enero de 0 Examen de enero de 0 I.E.S. SERPIS DEPARTAMENTO

Más detalles

Biblioteca Virtual Ejercicios Resueltos

Biblioteca Virtual Ejercicios Resueltos EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar

Más detalles

Grado polinomial y diferencias finitas

Grado polinomial y diferencias finitas LECCIÓN CONDENSADA 7.1 Grado polinomial y diferencias finitas En esta lección Aprenderás la terminología asociada con los polinomios Usarás el método de diferencias finitas para determinar el grado de

Más detalles

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 829566 _ 0249-008.qxd 27/6/08 09:21 Página 27 Polinomios y fracciones algebraicas INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de

Más detalles

2. Si P(x)= x 3 -x 2-3x+1, Q(x)= 2x 2-2x+1 y R(x)= 2x 3-6x 2 +6x-1, opera: a) P+Q; b) P-Q+R; c) 2P-3R; d) P.Q-R; e) P+Q-R; f) Q.

2. Si P(x)= x 3 -x 2-3x+1, Q(x)= 2x 2-2x+1 y R(x)= 2x 3-6x 2 +6x-1, opera: a) P+Q; b) P-Q+R; c) 2P-3R; d) P.Q-R; e) P+Q-R; f) Q. ejerciciosyeamenes.com POLINOMIOS 1. Si P()= - +1 y Q()= -+, opera: a) P-Q b) P+Q c) P+Q P.Q Sol: a) P-Q= -6 +-1 b) P+Q= 1 - -6+7 c) P+Q= -+ P.Q= 1 5-1 +17 - -+. Si P()= - -+1, Q()= -+1 y R()= -6 +6-1,

Más detalles

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS Guía de Estudio para examen de Admisión de Matemáticas CONTENIDO PRESENTACIÓN... 3 I. ARITMÉTICA... 4 1. OPERACIONES CON FRACCIONES...

Más detalles

Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de

Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de las bases matemáticas para mejorar el aprendizaje de los

Más detalles

I.E.S. SALVADOR RUEDA DEPARTAMENTO DE MATEMÁTICAS

I.E.S. SALVADOR RUEDA DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA RECUPERAR LAS MATEMÁTICAS DE º ESO El profesor/a de la asignatura se encargará de ir evaluando al alumno/a con la asignatura pendiente en la forma que le indique: realización de exámenes,

Más detalles

(a+b) (a b)=a 2 b 2 OBJETIVOS CONTENIDOS PROCEDIMIENTOS

(a+b) (a b)=a 2 b 2 OBJETIVOS CONTENIDOS PROCEDIMIENTOS Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados

Más detalles

Recuerdas qué es? Expresión algebraica. Es una combinación de números y letras relacionados mediante operaciones aritméticas.

Recuerdas qué es? Expresión algebraica. Es una combinación de números y letras relacionados mediante operaciones aritméticas. Recuerdas qué es? Expresión algebraica Es una combinación de números y letras relacionados mediante operaciones aritméticas. Propiedad distributiva de la multiplicación respecto de la suma Si a, b y c

Más detalles

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado.

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado. ECUACIONES Y DESIGUALDADES UNIDAD VII VII. CONCEPTO DE ECUACIÓN Una igualdad es una relación de equivalencia entre dos epresiones, numéricas o literales, que se cumple para algún, algunos o todos los valores

Más detalles

DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO.

DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO. DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO. En ocasiones, en matemáticas, necesitamos operar con números desconocidos. Para ello, se toman letras para representar esas cantidades desconocidas o

Más detalles

6 División de polinomios. Raíces

6 División de polinomios. Raíces 6 División de polinomios. Raíces ACTIVIDADES INICIALES 6.I. 6.II. Si quieres ampliar una foto de x por y píxeles a 4y por x píxeles, cuántos píxeles nuevos tendrás que rellenar? 4y x x y = 6xy píxeles

Más detalles

Números reales NÚMEROS REALES APROXIMACIONES ERRORES EN LA APROXIMACIÓN NÚMEROS NÚMEROS RACIONALES RELACIÓN DE ORDEN IRRACIONALES

Números reales NÚMEROS REALES APROXIMACIONES ERRORES EN LA APROXIMACIÓN NÚMEROS NÚMEROS RACIONALES RELACIÓN DE ORDEN IRRACIONALES Números reales NÚMEROS REALES NÚMEROS RACIONALES RELACIÓN DE ORDEN NÚMEROS IRRACIONALES APROXIMACIONES TRUNCAMIENTO REDONDEO POR EXCESO ERRORES EN LA APROXIMACIÓN Mi desconocido amigo La misiva parecía

Más detalles

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables

Más detalles

Polinomios. Objetivos. Antes de empezar. 1.Expresiones algebraicas pág. 64 De expresiones a ecuaciones Valor numérico Expresión en coeficientes

Polinomios. Objetivos. Antes de empezar. 1.Expresiones algebraicas pág. 64 De expresiones a ecuaciones Valor numérico Expresión en coeficientes 4 Polinomios Objetivos En esta quincena aprenderás: A trabajar con expresiones literales para la obtención de valores concretos en fórmulas y ecuaciones en diferentes contextos. La regla de Ruffini. El

Más detalles

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO RECONOCER OBJETIVO EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los términos del polinomio.

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y

Más detalles

Bachillerato. Matemáticas. Ciencias y tecnología

Bachillerato. Matemáticas. Ciencias y tecnología Bachillerato º Matemáticas Ciencias y tecnología Índice Unidad 0 Números reales........................................... 7. Evolución histórica................................... 8. Números reales......................................

Más detalles

1. Lenguaje algebraico. 2. Generalización. 3. Valores numéricos. 4. Ecuaciones. 5. Resolución de problemas mediante ecuaciones

1. Lenguaje algebraico. 2. Generalización. 3. Valores numéricos. 4. Ecuaciones. 5. Resolución de problemas mediante ecuaciones 3. Ecuaciones Taller de Matemáticas 2º ESO 1. Lenguaje algebraico 2. Generalización 3. Valores numéricos 4. Ecuaciones 5. Resolución de problemas mediante ecuaciones 2 Ecuaciones 1. Lenguaje algebraico

Más detalles

Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina

Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina www.faena.edu.ar info@faena.edu.ar TERCER BLOQUE MATEMATICA Está permitida la reproducción total o parcial de parte de cualquier persona o institución

Más detalles

La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo:

La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo: Tema 4. Polinomios 1. Definición Un polinomio es una expresión hecha con constantes, variables y exponentes, que están combinados. Los exponentes sólo pueden ser 0, 1, 2, 3,... etc. No puede tener un número

Más detalles

45 EJERCICIOS de POLINOMIOS 4º ESO opc. B

45 EJERCICIOS de POLINOMIOS 4º ESO opc. B EJERCICIOS de POLINOMIOS º ESO opc. B 1. Calcular el valor numérico del polinomio P(x) para el valor de x indicado: a) P(x)x +1, para x1 b) P(x)x +1, para x-1 c) P(x)x +x+, para x d) P(x)-x -x-, para x-

Más detalles

I.E.S. Adeje II Curso 20012-2013 CONTENIDOS MÍNIMOS MATEMÁTICAS 1º E.S.O.

I.E.S. Adeje II Curso 20012-2013 CONTENIDOS MÍNIMOS MATEMÁTICAS 1º E.S.O. MATEMÁTICAS 1º E.S.O. Números naturales y enteros: -Comparar y ordenar números. -Representar en la recta. -Realización de las cuatro operaciones (suma, resta, multiplicación y división) mediante los algoritmos

Más detalles

UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS. I.S.C. Alejandro de Fuentes Martínez

UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS. I.S.C. Alejandro de Fuentes Martínez UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS I.S.C. Alejandro de Fuentes Martínez 1 ESQUEMA ESQUEMA-RESUMEN RESUMEN DE LA UNIDAD Álgebra (Concepstos básicos) Suma Resta Multiplicación División OPERACIONES

Más detalles

Polinomios. Antes de empezar

Polinomios. Antes de empezar Antes de empezar Utilidad de los polinomios Los polinomios no solo están en la base de la informática, en economía los cálculos de intereses y duración de las hipotecas se realizan con expresiones polinómicas,

Más detalles

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia

Más detalles

OPERACIONES CON POLINOMIOS

OPERACIONES CON POLINOMIOS OPERACIONES CON POLINOMIOS. SUMA ALGEBRAICA DE POLINOMIOS. En la práctica para sumar dos o más polinomios suelen colocarse unos deajo de los otros, de tal modo que los términos semejantes queden en columna,

Más detalles

resolución de problemas en cuanto a originalidad, ingenio y versatilidad de los métodos usados.

resolución de problemas en cuanto a originalidad, ingenio y versatilidad de los métodos usados. i PRESENTACIÓN Este teto tiene la intención de asistir como un importante material de apoyo en el área de matemática a los estudiantes que participan en el curso propedéutico que dicta la Facultad de Agronomía

Más detalles

1. División de polinomios por monomios

1. División de polinomios por monomios 1. División de polinomios por monomios El cociente de dos monomios (si es posible) es igual a otro monomio que tiene: como coeficiente, el cociente de los coeficientes; como parte literal, las letras que

Más detalles

43 EJERCICIOS de POLINOMIOS

43 EJERCICIOS de POLINOMIOS EJERCICIOS de POLINOMIOS 1. Calcular el valor numérico del polinomio P(x) para el valor de x indicado: a) P(x)x +1, para x1 b) P(x)x +1, para x-1 (Soluc: a) ; b) 0; c) 8; d) -) Ejercicios libro: pág. 1:

Más detalles

5 Expresiones algebraicas

5 Expresiones algebraicas 8948 _ 04-008.qxd /9/07 :0 Página 9 Expresiones algebraicas INTRODUCCIÓN RESUMEN DE LA UNIDAD El lenguaje algebraico sirve para expresar situaciones relacionadas con la vida cotidiana, utilizando letras

Más detalles

ECUACIONES DE PRIMER GRADO

ECUACIONES DE PRIMER GRADO ECUACIONES DE PRIMER GRADO 1- ECUACION DE PRIMER GRADO CON UNA INCOGNITA Una ecuación de primer grado con una incógnita es una igualdad en la que figura una letra sin eponente y que es cierta para un solo

Más detalles

Propiedades de les desigualdades.

Propiedades de les desigualdades. Desigualdades Inecuaciones Diremos que a < b a es menor que b si b a es un número positivo. Gráficamente, a queda a l esquerra de b. Diremos que a > b a mayor que b si a b es un número positivo. Gráficamente,

Más detalles

FRACCIONES. Una fracción tiene dos términos, numerador y denominador, separados por una raya horizontal.

FRACCIONES. Una fracción tiene dos términos, numerador y denominador, separados por una raya horizontal. FRACCIONES Las fracciones representan números (son números, mucho más exactos que los enteros o los decimales), Representa una o varias partes de la unidad. Una fracción tiene dos términos, numerador y

Más detalles

Polinomios. Objetivos. Antes de empezar

Polinomios. Objetivos. Antes de empezar 2 Polinomios Objetivos En esta quincena aprenderás a: Manejar las expresiones algebraicas y calcular su valor numérico. Reconocer los polinomios y su grado. Sumar, restar y multiplicar polinomios. Sacar

Más detalles

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que

Más detalles

Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática III Año PAI VIIIGrado

Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática III Año PAI VIIIGrado Actualizado en febrero del 2013 Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática III Año PAI VIIIGrado CONTENIDOS OBJETIVOS ESPECÍFICOS HABILIDADES CRITERIOS DE EVALUACIÓN

Más detalles

CURSO DE AMBIENTACIÓN A LA VIDA UNIVERSITARIA

CURSO DE AMBIENTACIÓN A LA VIDA UNIVERSITARIA COORDINADORA Profesora Mercedes Colombo PRESENTACIÓN El siguiente módulo está destinado a los ingresantes de las facultades de Ciencias de la Salud, Ciencias de la Administración, Ciencias Económicas,

Más detalles

5 SISTEMAS DE ECUACIONES

5 SISTEMAS DE ECUACIONES 5 SISTEMAS DE ECUACINES EJERCICIS PRPUESTS 5. Escribe estos enunciados en forma de una ecuación con dos incógnitas. a) Un número más el doble de otro es. La diferencia de dos números es 5. c) Un número

Más detalles

Capítulo 5: Ecuaciones de segundo grado y sistemas lineales

Capítulo 5: Ecuaciones de segundo grado y sistemas lineales º de ESO Capítulo : Ecuaciones de segundo grado sistemas lineales Autora: Raquel Hernández Revisores: Sergio Hernández María Molero Ilustraciones: Raquel Hernández Banco de Imágenes de INTEF Ecuaciones

Más detalles

EJERCICIOS PROPUESTOS. Copia y completa de modo que estas expresiones sean igualdades numéricas. a) 5 2 13 c) 2 32 b) 4 5 17 d) 4 6 18 10

EJERCICIOS PROPUESTOS. Copia y completa de modo que estas expresiones sean igualdades numéricas. a) 5 2 13 c) 2 32 b) 4 5 17 d) 4 6 18 10 5 ECUACIONES EJERCICIOS PROPUESTOS 5.1 Copia y completa de modo que estas epresiones sean igualdades numéricas. a) 5 1 c) b) 5 17 d) 6 1 10 a) 5 10 1 c) 16 b) 5 17 d) 6 1 10 5. Sustituye las letras por

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: OPERACIONES CON POLINOMIOS (Reducción de términos semejantes, suma y resta de polinomios, signos de agrupación, multiplicación y división de polinomios) Año escolar: 2do: año de bachillerato Autor:

Más detalles

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ):

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ): Pág. 1 de 7 FAC T O R I Z AC I Ó N D E P O L I N O M I O S Factorizar (o descomponer en factores) un polinomio consiste en sustituirlo por un producto indicado de otros de menor grado tales que si se multiplicasen

Más detalles

Matemática para el ingreso

Matemática para el ingreso Universidad Nacional del Litoral Secretaría Académica Dirección de Articulación, Ingreso y Permanencia Año 0 Matemática para el ingreso ISBN en trámite Unidad. Polinomios y epresiones algebraicas Elena

Más detalles

ALUMNOS DE CUARTO DE ESO CON MATEMÁTICAS DE TERCERO PENDIENTES

ALUMNOS DE CUARTO DE ESO CON MATEMÁTICAS DE TERCERO PENDIENTES ALUMNOS DE CUARTO DE ESO CON MATEMÁTICAS DE TERCERO PENDIENTES La materia se estructurará en dos partes. Los alumnos que tengan en la primera evaluación menos de un cuatro deberán hacer el martes de Febrero

Más detalles

4 Operaciones. con polinomios. 1. Operaciones con polinomios. Desarrolla mentalmente: a) (x + 1) 2 b)(x 1) 2 c) (x + 1)(x 1)

4 Operaciones. con polinomios. 1. Operaciones con polinomios. Desarrolla mentalmente: a) (x + 1) 2 b)(x 1) 2 c) (x + 1)(x 1) 4 Operaciones con polinomios 1. Operaciones con polinomios Desarrolla mentalmente: a) ( + 1) 2 b)( 1) 2 c) ( + 1)( 1) P I E N S A Y C A L C U L A a) 2 + 2 + 1 b) 2 2 + 1 c) 2 1 1 Dados los siguientes polinomios:

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 57

INSTITUTO VALLADOLID PREPARATORIA página 57 INSTITUTO VALLADOLID PREPARATORIA página 57 página 58 RESTA DE FRACCIONES RESTA La resta de fracciones está basada, por ser el inverso de la operación suma, en las mismas reglas y leyes de la suma, es

Más detalles

Ejercicios resueltos. Bloque 2. Álgebra Tema 1 Polinomios. 2.1-1 Realiza la suma de los siguientes polinomios: Solución. Ejercicios resueltos 1

Ejercicios resueltos. Bloque 2. Álgebra Tema 1 Polinomios. 2.1-1 Realiza la suma de los siguientes polinomios: Solución. Ejercicios resueltos 1 Ejercicios resueltos Bloque. Álgebra Tema 1 Polinomios.1-1 Realiza la suma de los siguientes polinomios: 5 p 6 7 6 q 5 5 p 9 1 10 5 q 5 1 15 p 5 6 8 q p 1 q 6 8 r 1 6 5 p 7 6 6 5 q 5 6 5 r 6 8 8 p 711

Más detalles

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Matemáticas para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Curso Propedéutico de Matemáticas Unidad IV Secciones 6 y 8) 0.6 Operaciones con epresiones algebraicas. 0.8 fracciones

Más detalles

Repasando lo aprendido...con una propuesta autoinstruccional

Repasando lo aprendido...con una propuesta autoinstruccional Repasando lo aprendido......con una propuesta autoinstruccional Te propongo un rápido repaso en matemática básica, que te será de suma utilidad para fijar los conocimientos dados. Sólo te brindo una guía

Más detalles

Iniciación a las Matemáticas para la ingenieria

Iniciación a las Matemáticas para la ingenieria Iniciación a las Matemáticas para la ingenieria Los números naturales 8 Qué es un número natural? 11 Cuáles son las operaciones básicas entre números naturales? 11 Qué son y para qué sirven los paréntesis?

Más detalles

SEGUNDO PARCIAL BOLETÍN DE EJERCICIOS PARA ALUMNOS CON MATEMÁTICAS DE 2º ESO PENDIENTE

SEGUNDO PARCIAL BOLETÍN DE EJERCICIOS PARA ALUMNOS CON MATEMÁTICAS DE 2º ESO PENDIENTE SEGUNDO PARCIAL BOLETÍN DE EJERCICIOS PARA ALUMNOS CON MATEMÁTICAS DE º ESO PENDIENTE TEMA 5: ÁLGEBRA: MONOMIOS Y POLINOMIOS- OPERACIONES-, PRODUCTOS NOTABLES, ECUACIONES DE PRIMER GRADO CON UNA INCOGNITA,

Más detalles

Unidad didáctica: Polinomios con WIRIS

Unidad didáctica: Polinomios con WIRIS Unidad didáctica: Polinomios con WIRIS Nivel: 3º ESO Objetivos: Utilizar correctamente las expresiones algebraicas y hallar su valor numérico usando WIRIS Realizar con soltura las operaciones con polinomios:

Más detalles

PLAN DE TRABAJO para el VERANO

PLAN DE TRABAJO para el VERANO PLAN DE TRABAJO para el VERANO MATEMÁTICAS 4 º ESO OPCIÓN A PENDIENTES IES JOVELLANOS Nombre: Esta colección de ejercicios ha sido diseñada con el objetivo de ayudar a preparar a aquellos alumnos y alumnas

Más detalles

Matemáticas I (Álgebra) Manual de bachillerato. Primera Edición, 2009 Compilación y Asesoría Pedagógica Erika Alejandra López Estrada

Matemáticas I (Álgebra) Manual de bachillerato. Primera Edición, 2009 Compilación y Asesoría Pedagógica Erika Alejandra López Estrada Matemáticas I (Álgebra) Manual de bachillerato Primera Edición, 2009 Compilación y Asesoría Pedagógica Erika Alejandra López Estrada Coordinador editorial Alan Santacruz Farfán Revisión Alejandro Vázquez

Más detalles