TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD
|
|
- Julián Martín Maldonado
- hace 3 años
- Vistas:
Transcripción
1 TEMA 8: DE FUNCIONES. CONTINUIDAD 1. EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores de se hacen enormemente grandes ( ) o enormemente pequeños (- ). 4 7 Considera la función f (). Si analizamos las imágenes por f() de valores muy grandes en una tabla de valores: 4 7 f() Diremos que el límite de f() cuando tiende a es : ,95961 Gráficamente la situación es: , ,9995 Si consideramos ahora la función f () de valores enormemente pequeños. Diremos que el límite de f() cuando tiende a es : Gráficamente la situación es: 6 5 y analizamos las imágenes f() -100, , , En ambos casos la gráfica de la función f() se aproima a una recta horizontal tanto como queramos. Dicha recta se llama asíntota horizontal. Una función tiene límite l cuando si los valores de f() se aproiman a l tanto como se quiera cuando toma valores suficientemente grandes: f ( ) l Una función tiene límite l cuando si los valores de f() se aproiman a l tanto como se quiera cuando toma valores suficientemente pequeños: f ( ) l También puede suceder que cuando ± la función no se estabilice acercándose a un nº real (AH), sino que f () ±. Estos comportamientos se pueden epresar también con límites de la siguiente forma: 1/1 IBR IES LA NÍA
2 1º) Analiza los límites en el infinito de las funciones cuyas gráficas son las siguientes y da las ecuaciones de sus asíntotas horizontales: a) b) d) e) f) g) h) i) º) Analiza, mediante tablas de valores: a) () b) 1 1 Cálculo efectivo de límites cuando ó A) El límite de las funciones polinómicas f ( ) an an 1... a1 a0 es el de su monomio de mayor grado. Este límite siempre será, sólo debemos averiguar si es ó, dependiendo de si n es par o impar y del signo de a n : n n1 /1 IBR IES LA NÍA
3 Ejemplos: ( ( ( 4 ( 4 14) ( 14) ( 14) ( 4 14) ( 4 ) ) ) ) B) El límite de funciones racionales (cociente de polinomios) n n1 an an1... a1 a0 f ( ), dependerá del grado del numerador y del denominador m m1 bm bm1... b1 b0 ya que esto determinará quién aumenta más rápidamente: si n > m n n1 an an1... a1 a0 m m1 0 si n < m bm bm1... b1 b0 an si n m bm En el primer caso, el signo ó dependerá de si ó, y del signo de los coeficientes de mayor grado. Ejemplos: º) Calcula los siguientes límites y representa gráficamente la información obtenida: a) (1 5) b) ( 7 8) º) Calcula el valor de los siguientes límites en el infinito: a) (8 5) b) d) e) (5) ( 5) ( 7 9) (5 ) f) ( 7 ) 6 g) d) ( ) e) () h) i) 7 4 j) 6 9 k) 6 9 l) /1 IBR IES LA NÍA
4 m) n) o) 5 9 p) 4 7 5º) Calcula las asíntotas horizontales de: 4 f ( ), 7 g() q) 8 r) 8 s) , 1 h() 4 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Si conocemos la imagen de una función en a, f () a, realmente no sabemos mucho sobre los valores que toma f() en los alrededores de a. El comportamiento de la función cuando toma valores muy cercanos al número a es lo que estudia el límite: Utilizaremos la notación a (que se lee tiende a a ) para epresar que toma una sucesión de valores, distintos de a, pero muy cercanos a a. Si al hacer que a resulta que los valores de f() se acercan cada vez más a un valor l, diremos que l es el límite de la función cuando a. Se escribe: f ( ) l a Ejemplo: Vamos a analizar los valores de f() en las proimidades de 1,,, 4 y 5: Para valores muy cercanos a 1, las imágenes están cada vez más próimas a y4: () f 4. 1 Para valores muy cercanos a, las imágenes están cada vez más próimas a y5: () f 5. Observa que sin embargo f () Para valores muy cercanos a, las imágenes no se aproiman a ningún nº real: () f. Ocurre lo mismo en 4 : () f 4 Para valores muy cercanos a 5, las imágenes están cada vez más próimas a y: () f. Observa que sin embargo f (5). 5 4/1 IBR IES LA NÍA
5 Cuando la variable se acerca al valor a pero tomando valores menores que a se dice que tiende hacia a por la izquierda y se escribe a. Análogamente la epresión a indica que tiende hacia a pero tomando valores mayores que a y se dice que tiende a a por la derecha. Estos conceptos se conocen como límites laterales: f ( ) l a 1 y f ( ) l a Para que una función tenga límite en un punto es necesario que los dos límites laterales coincidan: Si f ( ) f ( ) l entonces f ( ) l a a a () f 1 () f 1 / () f 1 () f () 1 1 f 6º) En el ejemplo anterior (página 4) calcula los límites laterales en 1,,, 4 y 5 y justifica por qué eiste límite en 1, y 5, y no eiste en y en 4. 7º) A partir de la gráfica dada en la figura, calcula, si eisten () f, () f, () f, () f 1 y 15 4 () f º) A partir de la gráfica dada en la figura, calcula: a) f (0) f) () f 0 b) f () g) () f f () d) f (4) h) () f e) f (,5) i) () f 4 5/1
6 9º) Representa gráficamente las siguientes funciones y determina, si es posible, el límite de cada una de ellas en el punto indicado: a. f () < 10º) Estudia si eisten 1 cuando 1 b. 1 () f, 1 () f, g() () f, () f < cuando y () f sin hacer la 1 representación gráfica, siendo f () 1 1 <. 1 > 11º) Haz la gráfica de la función del ejercicio anterior y comprueba gráficamente los resultados obtenidos en dicho ejercicio.. INFINITOS Observa el comportamiento de las siguientes funciones: En las figuras anteriores observa que las ramas de la curva se acercan cada vez más a una recta de ecuación a ( 0, 1 y -, respectivamente). Dicha recta recibe el nombre de asíntota vertical. Observa que esos valores anulan los denominadores de las tres funciones. f(), 0 y -0, , , f(), 0 y 0, , , En dichos valores, si intentamos calcular el límite de la función cuando a, observamos que los valores de f() son mayores que cualquier nº real cuando toma valores próimos a a. Se dice entonces que la función yf() tiene límite cuando a. (En este caso las ramas de la función van hacia arriba y los dos límites laterales son ). Si los valores de la función son menores que cualquier nº real cuando toma valores próimos a a, diremos que la función yf() tiene límite - cuando a. (En este caso las ramas de la función van hacia abajo y los dos límites laterales son ). Cuando los límites laterales en un punto son y, se escribe por convenio. En particular si la función viene epresada como un cociente, las asíntotas verticales (límites infinitos) se buscarán entre los valores que anulen el denominador. 6/1 h(), y -,1-0 -, , h(), y -1,9 0-1, ,
7 1º) A la vista de las gráficas de las funciones 1 1 f () y g(), calcula el límite de cada ( ) una cuando -. Construye tablas de valores adecuadas para comprobar los resultados obtenidos. 1º) Calcula el valor de los siguientes límites sobre la gráfica de estas dos funciones: () f, () f, () f () f, 14º) Epresa las situaciones marcadas con una flecha mediante un límite: 15º) A la vista de la gráfica de la figura calcula: a) f ( ) f) () f b) () f 4 () f d) f ( ) 0 e) () f g) () f 5 h) f ( ) i) f(0) j) f(-) k) f(1) l) f() 7/1
8 16º) A la vista de la gráfica de la figura calcula: a) f ( ) e) () f b) f ( ) d) () f () f 1 f) g) 1 () f 4 () f 7 17º) Estudia si las gráficas de las funciones dadas poseen asíntotas verticales y horizontales, y representa gráficamente la situación en las proimidades de las asíntotas verticales: a. f () 4 c. f () 9 b. f () d. f () 5 1 < 9 18º) Dada la función f () <, obtén el valor de los siguientes límites: 1 6 a) () f b) () f () f d) () f e) () f f) () f g) () f h) () f i) () f 0 19º) Calcula el valor de los siguientes límites: a) ( 1) b) ( 1) ( 1) d) 1 0 e) 1 f) 1 g) 1 ( ) h) 1 ( ) i) 1 ( ) j) ( 1) k) l) ( 1) ( 1) j) () f 5 m) 1 1 n) 1 o) p) 5 5 q) 4 10 r) 4 10 s) 1 1 t) 1 u) 1 v) 1 0º) Como consecuencia de los límites calculados en el ejercicio anterior, razona en qué casos se puede justificar la eistencia de alguna asíntota. 8/1
9 4. CONTINUIDAD EN UN PUNTO En cada una de las figuras siguiente puedes observar el comportamiento de distintas funciones cuando toma valores cercanos a. Calcula, a partir de la gráfica, y en los tres casos: a) f ( ), f ( ) y f() b) Es continua f() en? Durante mucho tiempo fue asumida como idea intuitiva la siguiente definición: una función continua es aquella cuya gráfica puede dibujarse sin levantar el lápiz del papel. Observa las gráficas de las siguientes funciones y di cuáles son continuas en a y cuáles no. En los casos que no lo sea di la causa. Luego, una función f() es continua en a si cumple: 1º) Eiste f(a) (tiene imagen) º) Eiste f ( ) a º) Ambos valores coinciden: f ( ) f ( a) a 9/1
10 1º) Di en qué puntos no son continuas las siguientes funciones y eplica por qué: º) Representa gráficamente las siguientes funciones y di si son continuas o discontinuas en 1: 1 1 < 1 1 a) f () b) g() h() 1 > 1 > CLASIFICACIÓN DE LAS DISCONTINUIDADES Cuando falla alguna de las condiciones de la definición de función continua en un punto, se dice que la función es discontinua en ese punto. Según cuál sea la condición que no se cumple da lugar a un tipo distinto de discontinuidad: A) Discontinuidad evitable: cuando eiste f ( ), pero o no coincide con f(a) o f(a) no eiste. a B) Discontinuidad no evitable: cuando no eiste el f ( ) a B1) De salto finito: los límites laterales eisten y son finitos pero distintos. B) De salto infinito: cuando uno o los dos límites laterales son infinitos. 10/1
11 º) Determina el dominio, recorrido, clasifica los puntos de discontinuidad y escribe las ecuaciones de las asíntotas: 6. CONTINUIDAD DE LAS FUNCIONES ELEMENTALES: Las funciones polinómicas son continuas. Las funciones racionales son continuas en todos los números reales salvo en los que anulan el denominador. Las funciones irracionales de índice par son continuas en los valores que hacen el radicando positivo o cero. Si el índice es impar, son continuas. Las funciones eponenciales son continuas en todo R. Las funciones logarítmicas no son continuas en los puntos en los que la epresión de la que queremos hallar el logaritmo es cero o negativa. De las funciones trigonométricas son continuas la función seno y la función coseno, y no es continua la función f () tg. Para estudiar la continuidad de las funciones definidas a trozos debemos analizar cada una de sus epresiones y los valores de donde cambian los intervalos de definición. 4º) Estudia la continuidad de las siguientes funciones: a) f () b) f () 1 d) f () ln(1) 1 f ( ) 4 11/1 e) f) 1 f ( ) 4 9 f ( )
12 5º) Estudia la continuidad de la función y clasifica sus discontinuidades. a) f () < 5 < 4 >, [ evitable; salto finito] b) f () > f () < 16 > 6º) Calcula el valor de a para que f() sea continua en R : f () a 1 4 > 1 7º) Halla el valor que deben tener a y b para que la siguiente función sea continua en R : a si < 0 f ( ) b si 0 < 5 si 5 [a18, b -18] 8º) Halla el valor que deben tener a y b para que la siguiente función sea continua en R : f () a b 1 < 4 a > 4 [a1, b1/] 1/1
Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í
Unidad. Límites de funciones. Continuidad y ramas infinitas Resuelve Página 7 A través de una lupa AUMENTO DISTANCIA (dm) El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A
Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES
Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos
TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1
TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 TEMA 11 LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN 11.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función en un
LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS
LÍMITES DE FUNCIONES. CONTINUIDAD RAMAS INFINITAS Página 7 REFLEIONA RESUELVE Aproimaciones sucesivas Comprueba que: f () = 6,5; f (,9) = 6,95; f (,99) = 6,995 Calcula f (,999); f (,9999); f (,99999);
FUNCIONES Y GRÁFICAS.
FUNCIONES Y GRÁFICAS. CONTENIDOS: Concepto de función. Gráfica de una función. Estudio cualitativo de funciones dadas por sus gráficas Idea intuitiva de continuidad de una función. Repaso de funciones
LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS
LÍMITES DE FUNCIONES. CONTINUIDAD RAMAS INFINITAS Página 7 REFLEIONA RESUELVE Aproimaciones sucesivas Comprueba que: f () =,5; f (,9) =,95; f (,99) =,995 Calcula f (,999); f (,9999); f (,99999); A la vista
LÍMITES Y CONTINUIDAD
UNIDAD 5 LÍMITES Y CONTINUIDAD Páginas 0 y Describe las siguientes ramas: a) f () b) f () no eiste c) f () d) f () + e) f () f) f () + g) f () h) f () no eiste; f () 0 i) f () + f () + j) f () 5 4 f ()
Tema 7. Límites y continuidad de funciones
Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está
LÍMITES DE FUNCIONES. CONTINUIDAD
LÍMITES DE FUNCIONES. CONTINUIDAD Página REFLEXIONA Y RESUELVE Algunos ites elementales Utiliza tu sentido común para dar el valor de los siguientes ites: a,, b,, @ c,, 5 + d,, @ @ + e,, @ f,, 0 @ 0 @
LÍMITES DE FUNCIONES. CONTINUIDAD
LÍMITES DE FUNCIONES. CONTINUIDAD Página 7 REFLEXIONA Y RESUELVE Visión gráfica de los ites Describe análogamente las siguientes ramas: a) f() b) f() no eiste c) f() d) f() +@ e) f() @ f) f() +@ g) f()
MATEMÁTICAS. TEMA 5 Límites y Continuidad
MATEMÁTICAS TEMA 5 Límites y Continuidad MATEMÁTICAS º BACHILLERATO CCSS. TEMA 5: LÍMITES Y CONTINUIDAD ÍNDICE. Introducción. Concepto de función. 3. Dominio e imagen de una función. 4. Gráfica de algunas
EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES
EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES Tema 4: Representación de funciones Índice:. Información obtenida de la función... Dominio de la función.. Simetrías..3. Periodicidad.4. Puntos de corte con los ejes..5. Ramas
LÍMITES Y CONTINUIDAD DE FUNCIONES
Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos
UNIDAD 1: LÍMITES DE FUNCIONES. CONTINUIDAD
UNIDAD : LÍMITES Y CONTINUIDAD UNIDAD : LÍMITES DE FUNCIONES CONTINUIDAD ÍNDICE DE LA UNIDAD - INTRODUCCIÓN - LÍMITE DE UNA FUNCIÓN EN UN PUNTO LÍMITES LATERALES - LÍMITES EN EL INFINITO 5 4- ÁLGEBRA DE
ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN
ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN Problema Datos Procedimiento Ejemplo Dominio de una La ecuación de Casos en los que en dominio no es IR: función la función Irracionales (ecluir valores
1-Comportamiento de una función alrededor de un punto:
Matemática II 7 Modulo Límites continuidad En esta sección desarrollaremos el concepto de límite, una de las nociones fundamentales del cálculo. A partir de este concepto se desarrollan también los conceptos
Límites. 1. Calcula los límites de las siguientes funciones en los puntos que se indican: 2 2 2 a) lim b) lim c) lim d) lim
Límites CIT_H. Calcula los límites de las siguientes funciones en los puntos que se indican: ( ) + + + a) lim b) lim c) lim d) lim + + + + + e) lim f) lim g) lim h) lim + 0 + + 9 + j) lim k) lim l) lim
MATEMÁTICAS I 1º Bachillerato Capítulo 7: Límites y continuidad
MATEMÁTICAS I º Bachillerato Capítulo 7: Límites y continuidad file:///c:/users/cuenta~/appdata/local/temp/b006%0limitesycontinuida D%0Adela. 00 Índice. CONCEPTO DE LÍMITE.. DEFINICIÓN.. LÍMITES LATERALES..
Límite de una función
Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es
Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada
FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones
Tema 2 Límites de Funciones
Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos
Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009
Estudio Gráfico de Funciones Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Índice 1. Función 2 1.1. Definición............................. 2 1.2. Clasificación............................
Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =
T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente
Tipos de funciones. Clasificación de funciones
Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,
1. Definición 2. Operaciones con funciones
1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de
Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada
FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida
Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales
Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento
, o más abreviadamente: f ( x)
TEMA 5: 1. CONCEPTO DE FUNCIÓN Observa los siguientes ejemplos: El precio de una llamada telefónica depende de su duración. El consumo de gasolina de un coche depende de la velocidad del mismo. La factura
Representación gráfica de funciones
Gráfica de una fución Representación gráfica de funciones La gráfica de una función está formada por el conjunto de puntos (x, y) para todos los valores de x pertenecientes al Dominio de la función gráfica
CALCULO CAPITULO 1 1.6 ASINTOTAS VERTICALES Y HORIZONTALES
1.6 ASINTOTAS VERTICALES Y HORIZONTALES 1.6.1.- Definición. Una asíntota es una recta que se encuentra asociada a la gráfica de algunas curvas y que se comporta como un límite gráfico hacia la cual la
EJERCICIOS DE FUNCIONES REALES
EJERCICIOS DE FUNCIONES REALES.- La ley que relaciona el valor del área de un cuadrado con la longitud de su lado es una función. Sabemos que la epresión que nos relacionas ambas variables es. Observa
Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos
MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que
FUNCIONES CUADRÁTICAS Y RACIONALES
www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro
1 Límites de funciones
Héctor Palma Valenzuela. Dpto. de Matemática UdeC. 1 1 Límites de funciones En general, en la recta real R podemos considerar la noción de distancia entre dos puntos y a dada por la fórmula d (, a) = a
LÍMITES DE FUNCIONES Y DE SUCESIONES
LÍMITES DE FUNCIONES Y DE SUCESIONES Índice: 1.Funciones reales de variable real-------------------------------------------------------------- 1 2. Límite finito de una función en un punto.---------------------------------------------------
Gráfica de una función
CAPÍTULO 9 Gráfica de una función 9. Bosquejo de la gráfica de una función Para gráficar una función es necesario:. Hallar su dominio sus raíces.. Decidir si es par o impar, o bien ninguna de las dos cosas..
Funciones reales de variable real: límites y continuidad
Capítulo 3 Funciones reales de variable real: límites y continuidad 3.. Funciones reales de variable real 3... ntroducción Una función f : A B consiste en dos conjuntos, el dominio A = Dom(f) y el rango
Funciones definidas a trozos
Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad
Unidad 5 Estudio gráfico de funciones
Unidad 5 Estudio gráfico de funciones PÁGINA 84 SOLUCIONES Representar puntos en un eje de coordenadas. 43 Evaluar un polinomio. a) P(-1) = 1 + + 1 1 = 3 b) P(0) = -1 c) P(-) = 8 + 8 + 1 = 17 d) P(1) =
b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:
1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 7 Funciones reales de una variable real Elaborado por la Profesora Doctora
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado
TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD
MATEMÁTICAS I LÍMITES-CONTINUIDAD TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD 1. LÍMITES EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores
Límites y Continuidad de funciones de varias variables
1.- Se construye un depósito de propano adosando dos hemisferios a los etremos de un cilindro circular recto. Epresar el volumen V de ese depósito en función del radio r del cilindro y de su altura h..-
8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3
CONTENIDOS Límite y asíntotas Cálculo de límites Continuidad Derivadas Estudio de funciones Problemas de optimización Varias de las características de diferentes tipos de funciones ya han sido estudiadas
Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II
Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 200 Las siguientes páginas contienen las soluciones de los ejercicios propuestos
10 Cálculo. de derivadas. 1. La derivada. Piensa y calcula. Aplica la teoría
0 Cálculo de derivadas. La derivada Piensa y calcula Calcula mentalmente sobre la primera gráfica del margen: a) la pendiente de la recta secante, r, que pasa por A y B b) la pendiente de la recta tangente,
DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim
DERIVADAS. CONTENIDOS. Recta tangente a una curva en un punto. Idea intuitiva del concepto de derivada de una función en un punto. Función derivada. sucesivas. Reglas de derivación Aplicación de la derivada
ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS
ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS INTRODUCCIÓN La noción actual de función comienza a gestarse en el siglo XIV, cuando empiezan a preocuparse de medir y representar las variaciones de ciertas
Concepto de función y funciones elementales
Concepto de unción unciones elementales Matemáticas I - º Bachillerato Las unciones describen enómenos cotidianos, económicos, psicológicos, cientíicos Tales unciones se obtienen eperimentalmente, mediante
TEMA 6 : LÍMITES DE FUNCIONES. CONTINUIDAD
TEMA 6 : DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejercicio: Observa la gráfica siguiente: a) Estudia el dominio, el recorrido y la continuidad de f(). b) Indica si eisten los límites
M a t e m á t i c a s I I 1
Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la
1. Hallar los extremos de las funciones siguientes en las regiones especificadas:
1 1. DERIVACIÓN 1. Hallar los extremos de las funciones siguientes en las regiones especificadas: b) f(x) x (x 1) en el intervalo [, ] y en su dominio. DOMINIO. D R. CORTES CON LOS EJES. Cortes con el
Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)
MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en
EL MÉTODO DE LA BISECCIÓN
EL MÉTODO DE LA BISECCIÓN Teorema de Bolzano Sea f : [a, b] IR IR una función continua en [a, b] tal que f(a) f(b) < 0, es decir, que tiene distinto signo en a y en b. Entonces, existe c (a, b) tal que
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente
Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor
Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,
1. Dominio, simetría, puntos de corte y periodicidad
Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele
9. Límites que involucran funciones exponenciales y logarítmicas
Métodos para evaluación de ites Yoel Monsalve 77 9 Límites que involucran funciones eponenciales y logarítmicas 9 El número e como un ite El ite: + n) n 9) se conoce como el número e Su valor aproimado,
Advierta que la definición 1 requiere implícitamente tres cosas si f es continua en a:
SECCIÓN.5 CONTINUIDAD 9.5 CONTINUIDAD En la sección.3 se le hizo notar que a menudo se puede hallar el ite de una función cuando tiende a a, con sólo calcular el valor de la función en a. Se dice que las
f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11
1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el
1. Funciones y sus gráficas
FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada
12. f(x) = 1 x-1 2 13. f(x) = x+2. x 15. f(x) = 2x+1. x 24. f(x) = x 2 +x+1 2 25. f(x) = x 2 -x-2. 1 21. f(x) = x 2 +x. x-1 27.
. Determina el dominio de la función:. f() = -. f() =. f() = 4. f() = -6. f() = 6. f() = + 7. f() = - 8. f() = e 9. f() = + 0. f() = -. f() = -. f() = -. f() = + 4. f() = +. f() = + 6. f() = - + 7. f()
Gráfica de una función
CAPÍTULO 9 Gráfica de una función 9. Interpretación de gráficas símbolos Con la finalidad de reafirmar la relación eistente entre el contenido de un concepto, la notación simbólica utilizada para representarlo
Tema 2 Límites de Funciones
Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos
, determinar: dominio y raíces; intervalos de continuidad y tipo de x 2 4 discontinuidades; asíntotas verticales y horizontales; su gráfica.
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E00 ) Dadas las funciones f) +4, g) 3 & h), obtener: g/h)), h f)) &g h)), así como sus respectivos dominios. ) Dada la función definida por f) 3 5 5 3,
DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo:
Titulo: DOMINIO Y RANGO I N D I C E Página DE UNA FUNCIÓN Año escolar: 4to. Año de Bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela
Gráficas. Funciones Reales. Variable Real
I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas Matemáticas de º de Bachillerato Gráficas de Funciones Reales de Variable Real Por Javier Carroquino CaZas Catedrático de matemáticas del I.E.S.
ANÁLISIS DE FUNCIONES RACIONALES
ANÁLISIS DE FUNCIONES RACIONALES ( x 9) Dada la función f( x) = x 4 DETERMINE: Dominio, asíntotas, intervalos de crecimiento, intervalos de concavidad, extremos relativos y puntos de inflexión, representar
LÍMITES DE FUNCIONES, INDETERMINACIONES, CONTINUIDAD, RELACIÓN CON LA APLICACIÓN EN LA INTERPRETACIÓN DE SITUACIONES Y SU REPRESENTACIÓN.
LÍMITES DE FUNCIONES, INDETERMINACIONES, CONTINUIDAD, RELACIÓN CON LA APLICACIÓN EN LA INTERPRETACIÓN DE SITUACIONES Y SU REPRESENTACIÓN. Abel Martín. Profesor de Matemáticas del IES Pérez de Ayala (Oviedo
Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice
Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +
Matemática I Extremos de una Función. Definiciones-Teoremas
Universidad Centroccidental Lisandro Alvarado Decanato de Agronomía Programa Ingeniería Agroindustrial Departamento de Gerencia Estudios Generales Matemática I Etremos de una Función. Definiciones-Teoremas
11 LÍMITES DE FUNCIONES. CONTINUIDAD
LÍMITES DE FUNCIONES. CONTINUIDAD EJERCICIOS PROPUESTOS. A qué valor tiende la función f ()? 5 a) Cuando se acerca a. c) Cuando se acerca a. b) Cuando se aproima a 5. d) Cuando se aproima a. a) se aproima
9 Funciones elementales
Solucionario 9 Funciones elementales ACTIVIDADES INICIALES 9.I. Halla las raíces y factoriza los siguientes polinomios. a) P() 4 b) Q() 3 6 a) Se resuelve la ecuación 4 0. Las raíces son 6 y, y P() ( 6)(
1. Limite de Funciones
1. Limite de Funciones 1.1. Introducción. Consideremos la función f() = { 1+ 2 si > 0 1 2 si < 0 Se observa que la función no está definida en 0 = 0. Sin embargo, se observa que cuando se consideran valores
(Apuntes en revisión para orientar el aprendizaje)
(Apuntes en revisión para orientar el aprendizaje) LÍMITES DE FUNCIONES TRIGONOMÉTRICAS Para resolver límites que involucran funciones circulares directas, resulta conveniente conocer los límites de las
TÉCNICAS DE INTEGRACIÓN
C TÉCNICAS DE INTEGRACIÓN C. CONCEPTOS PRELIMINARES C.. Función primitiva Sea f : I R, donde I es un intervalo real. Diremos que la función F : I R es una función primitiva de la función f en I si se cumple
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA 1. MONOTONÍA (CRECIMIENTO O DECRECIMIENTO) Si una función es derivable en un punto = a, podemos determinar su crecimiento o decrecimiento en ese punto a partir del signo de
representación gráfica de funciones
representación gráfica de funciones Esta Unidad pretende ser una aplicación práctica de todo lo aprendido hasta ahora en el bloque de Análisis. En ella nos centraremos en las funciones polinómicas y racionales.
3. Operaciones con funciones.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lección. Funciones derivada. 3. Operaciones con funciones. En esta sección veremos cómo podemos combinar funciones para construir otras nuevas. Especialmente
Iniciación a las Matemáticas para la ingenieria
Iniciación a las Matemáticas para la ingenieria Los números naturales 8 Qué es un número natural? 11 Cuáles son las operaciones básicas entre números naturales? 11 Qué son y para qué sirven los paréntesis?
Capítulo 2: Concepto y Cálculo de Límites
Capítulo : Concepto y Cálculo de Límites Geovany Sanabria Contenido Concepto de Límite Una definición intuitiva de Límite Ejercicios 6 Problemas con la utilización de sucesiones para calcular límites 7
FUNCIÓN EXPONENCIAL - FUNCIÓN LOGARÍTMICA
FUNCIÓN EXPONENCIAL - FUNCIÓN LOGARÍTMICA Problema : COMPARAR ÁREAS DE CUADRADOS A partir de un cuadrado realizaremos una nueva construcción: se trazan las diagonales y por cada vértice se dibuja una paralela
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo
Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales
SESION 4. 1. El comando Integrate 2. Aproximación de integrales definidas 3. Integración de funciones racionales
SESION. El comando Integrate. Aproimación de integrales definidas. Integración de funciones racionales . El comando Integrate El cálculo de integrales definidas e indefinidas en MATHEMATICA es sencillo
Límites infinitos y trigonométricos.
Universidad Tecnológica del Sureste de Veracruz Química Industrial CÁLCULO DIFERENCIAL E INTEGRAL Límites infinitos y trigonométricos. NOMBRE DEL ALUMNO Morales Aguilar Itzel Garrido Navarro Arantxa Itchel
DESIGUALDADES página 1
DESIGUALDADES página 1 1.1 CONCEPTOS Y DEFINICIONES Una igualdad en Álgebra es aquella relación que establece equivalencia entre dos entes matemáticos. Es una afirmación, a través del signo =, de que dos
Qué son los monomios?
Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes
Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009
Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán, de una lista de expresiones
Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y
4. Derivabilidad 1 Una función f es derivable en un punto a de su dominio si existe el límite f (a) = lím x a f(x) f(a) x a f(a + h) f(a) = lím, h 0 h y es un número real. El número f (a) se denomina derivada
CAPÍTULO III. FUNCIONES
CAPÍTULO III LÍMITES DE FUNCIONES SECCIONES A Definición de límite y propiedades básicas B Infinitésimos Infinitésimos equivalentes C Límites infinitos Asíntotas D Ejercicios propuestos 85 A DEFINICIÓN
Unidad 6 Estudio gráfico de funciones
Unidad 6 Estudio gráfico de funciones PÁGINA 96 SOLUCIONES Representar puntos en un eje de coordenadas. 178 Evaluar un polinomio. a) b) c) d) e) Escribir intervalos. a) b) c) 179 PÁGINA 98 SOLUCIONES 1.a)
Título: Límites de funciones y continuidad. Autor: c Juan José Isach Mayo
Título: Límites de funciones continuidad Autor: c Juan José Isach Mao Fecha:04 Septiembre del 007 Contents Límites 5. Conceptos previos.......................... 5. Límites de una función en un punto................
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0100
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0100 1) Cierto artículo de lujo se vende en 1 000 pesos. La cantidad de ventas es de 0 000 artículos al año. Se considera imponer un impuesto
TEMA 5. REPRESENTACIÓN DE FUNCIONES
94 TEMA 5. REPRESENTACIÓN DE FUNCIONES 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con el eje 1... Con el eje y 1.. Signo de la función 1.4. Periodicidad y simetría
APRENDIZAJE DEL CONCEPTO DE LÍMITE Y CONTINUIDAD DE UNA FUNCIÓN
APRENDIZAJE DEL CONCEPTO DE LÍMITE Y CONTINUIDAD DE UNA FUNCIÓN AUTORÍA ANTONIO JESÚS MARTÍNEZ RUEDA TEMÁTICA MATEMÁTICAS ETAPA BACHILLERATO Resumen La introducción del concepto de límite en bachillerato
5 Funciones. Límites y continuidad
Solucionario 5 Funciones. Límites y continuidad ACTIVIDADES INICIALES 5.I. Representa la función: < si f ( ) si < 4 5 si 4 f 5.II. Factoriza estos polinomios: P() 4 5 P() 4 c) P() 4 7 8 P() 4 5 ( )( 5)
FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido
Indicadores FUNCIONES Calcula el valor de incógnitas usando la definición de función. Determina valores de la variable dependiente a partir de valores dados a la variable independiente. Determina los puntos
1.6.- CLASIFICACION Y OPERACIONES DE FUNCIONES
1.6.- CLASIFICACION Y OPERACIONES DE FUNCIONES OBJETIVO.- Conocer y manejar las operaciones definidas entre funciones así como conocer la clasificación de éstas y sus características. 1.6.1.- Operaciones