Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia"

Transcripción

1 Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso I.- Introduccón Hasta el momento, hemos nsstdo varas veces en la poca habldad de las técncas de prevsón smple (nave, medas móvles, alsados...) en presenca de componentes regulares (tendenca o estaconaldad) en las seres temporales analzadas. La presenca de estaconaldad, puede ser fáclmente resuelta medante el cálculo de factores de correccón estaconal con los que "fltrar de estaconaldad" la sere orgnal. La presenca de un fuerte componente tendencal requere, así msmo, un tratamento específco, ben a través de alguna varante del alsado exponencal smple (alsados con tendenca), ben medante algún otro procedmento ad-hoc como el que aquí se ntroduce: el ajuste temporal de tendenca. II.- de Tendenca: Introduccón El procedmento generalmente denomnado " de Tendenca", consste en estmar un Modelo de Regresón que explque la evolucón temporal de la sere analzada en funcón de una varable "de tempo", es decr, una sere "t" que representa el paso del tempo T=,,3,4... Remarquemos algunos aspectos báscos de la anteror defncón en el contexto de las técncas revsadas anterormente: Desde el punto de vsta técnco, exste una dferenca fundamental entre esta técnca y el resto: esta técnca no utlza un smple cálculo artmétco sno que se basa en un ajuste paramétrco, el análss de regresón, que requere utlzar un método de estmacón estadístca de parámetros. Lo anteror mplca que la utlzacón de esta técnca exge, en prmer lugar, el conocmento de algún método de estmacón de

2 parámetros en una relacón bvarante como por ejemplo, el método de Mínmos Cuadrados Ordnaros. Pero además, la aplcacón de un método de estmacón de parámetros en un modelo de regresón no sólo requerrá conocer y entender el "algortmo" de cálculo sno tambén el "armazón" analítco -estadístco que rodea a este cálculo y que permte manejar con solvenca los resultados obtendos: hpótess báscas, propedades nferencales de los parámetros, estmacón estadístca de la precsón de estos parámetros, aplcacón de métodos no lneales... En este documento, necesaramente ntroductoro, vamos a centrarnos en la dmensón esencalmente empírca del método renuncando a penetrar en los detalles analítcos, tanto del método de estmacón paramétrco, como de las mplcacones nferencales que una correcta aplcacón mplcaría. III.- de Tendenca: Técnca Partmos de un modelo genérco de ajuste de tendenca (en adelante AT) que representamos como: y = f ( t ) + u donde "y " representa las observacones temporales "" de sere analzada "t " representa una sere de tempo t=,,3... "f(t )" representa la forma funconal en que y y t se relaconan "u " representa la perturbacón aleatora de la sere en este modelo, es decr, la parte de y que, para cada "" no puede ser "captada" por la sere de tendenca "t " La forma matemátca de f(t ) puede adqurr mayor menor complejdad en funcón de la mayor o menor complejdad del patrón de evolucón tendencal de la sere analzada. Presentamos en este documento algunos de los más comunes y técncamente accesbles.

3 Lneal: y = a + b t + u Funcón: Característcas temporales: Pendente monótona crecente constante postva o negatva Lneal Sere Lneal Potencal: b y = a t + Funcón: u Característcas temporales: Pendente absoluta crecente para valores postvos (b -postvo ) y negatvos (b-negatvo), menos acelerada que la exponencal. Potencal Potencal 0000 Sere Potencal 5000 Sere Potencal Exponencal: t y = a b + Funcón: u Característcas temporales: Pendente crecente muy acelerada. 3

4 Exponencal 8000 Sere Exponencal Logarítmco: y = a + b ln( t) + u Funcón: Característcas temporales: Pendente absoluta decrecente para valores postvos ( b - postvo) y negatvos (b - negatvo) menos acelerada que la exponencal. Logarítmco Logarítmco 4 Sere Logarítmca Sere Logarítmca 35,00 5,00 3 5,00 5,00 5,00-5, , , , , Polnómco: y = a + b t + b t + u Funcón: (Ejemplo para grado ) Característcas temporales: Pendente crecente y decrecente (presenca de máxmos y mínmos) de estructura y dsposcón varable. 4

5 Polnomco Tendenca Polnómca IV.- de Tendenca: Utlzacón A la hora de utlzar con fnes predctvos un modelo de AT deben consderarse los sguentes puntos crítcos: Sobre el componente tendencal como parte de la sere: En prncpo, debe señalarse que el modelo ajusta el componente tendencal de la sere y, por tanto, los componentes estaconales, cíclcos y otras varacones debe ser tratados de forma ndependente. En presenca de componentes estaconales éstos deben elmnarse antes del ajuste de tendenca de modo que los parámetros de ajuste no se vean nfludo por valores estaconales. S, una vez ajustada la tendenca, queremos segur perfecconando el ajuste de otros componentes de la sere (de sus componentes no tendencales), podemos consderar el resduo del ajuste como la sere fltrada de tendenca. Sobre la técnca de estmacón: A fn de obtener los parámetros que defnen las relacones funconales suele aplcarse un método de estmacón smple, por ejemplo, mínmos cuadrados ordnaros (MCO). Este método, ofrece como solucón, los parámetros (a,b,c) que mnmzan los resduos (errores) de la estmacón en térmnos cuadrátcos. No obstante, pueden e ncluso deben utlzarse métodos alternatvos en algunas stuacones expermentales en las que las propedades de los estmadores MCO no son adecuadas. (Por ejemplo, la estmacón MCO de un modelo logt puede no generar parámetros efcentes) 5

6 Junto a la estmacón del valor de los parámetros, puede calcularse tambén una medda de la precsón de los msmos que, generalmente, se explcta como la "desvacón típca de los parámetros estmados". Esta precsón, nos permtrá evaluar s los parámetros estmados son "estadístcamente sgnfcatvos", es decr, s en térmnos estadístcos la regresón especfcada en funcón del tempo tene "razón de ser". Normalmente, combnando el valor del parámetro estmado "a,b,c..." y el cálculo de su desvacón (DT(a), DT(b)...), se calcula la denomnada rato "t" como cocente entre los prmeros y los segundos: t ( aˆ) = aˆ dt( aˆ) Suponendo la normaldad de la perturbacón aleatora, la rato "t" permte elaborar ntervalos de confanza para los parámetros estmados y, por ende, contrastar la hpótess de sgnfcatvdad estadístca de cada uno de ellos: aˆ P( h h ) = p DT ( aˆ) P( DT ( aˆ) h aˆ DT ( aˆ) h ) = p Por últmo, al emplear una técnca de estmacón por regresón, suelen aplcarse junto a las meddas tradconales de medcón del error, meddas y conceptos relatvos a la sgnfcacón conjunta de la estmacón por regresón a fn de aproxmar la caldad del ajuste global. En concreto, suele utlzarse una medda muy popular, la R que recoge el porcentaje de la varabldad de la sere orgnal que es explcada por el modelo: R = V ( yˆ) V ( y) Sobre el empleo operatvo de la técnca de AT: Cuando nos enfrentemos a un ajuste de tendenca, la seleccón de la forma funconal correcta debe guarse por crteros de medcón de la caldad del ajuste global: observacón gráfca, medcón de errores, R así como, eventualmente, de la sgnfcatvdad ndvdual de los parámetros estmados. Debe consderarse la posbldad de combnar varas estmacones de tendenca para dstntos tramos observados en la sere. Y por tanto suponendo mplíctamente la normaldad de la dstrbucón del parámetro estmado que, junto a hpótess referdas a su meda y DT nos dbujan con precsón la dstrbucón. 6

7 La utlzacón de un método de este tpo permte generar prevsones de tendenca a más de un período (basta con dar valores a la varable "t" de tempo) pero s se pretende prever a medo y largo plazo debe consderarse la posble evolucón de la tendenca a medo plazo. En ese sentdo, exsten modelos de ajuste temporal de tendenca específcos para el ajuste a medo y largo plazo. V.- de Tendenca: Empleo del Excel Aunque exsten programa específcos para el análss de regresón (E-Vews, por ejemplo), el ajuste smple de tendencas puede resolverse utlzando el programa MS-Excel. Evdentemente, se trata de una solucón "de emergenca" dado que el Excel no es una herramenta específca y, en ese sentdo, resulta menos flexble y menos completa que la utlzacón de un programa como E-Vews, sempre más recomendable (por ejemplo, el excel no ofrece nformacón sobre la sgnfcatvdad de los parámetros). ALTERNATIVA : UTILIZACIÓN DEL MÓDULO GRÁFICO Paso : Para ajustar una tendenca en Excel, debe comenzarse representando una sere gráfcamente o medante un dagrama de barras. Tempo (t) Sere (y t ) Sere Paso : Una vez representada, se "pncha" la sere con el ratón y, utlzando el menú contextual se ejecuta la opcón "Agregar Línea de Tendenca": 7

8 Paso 3: En el menú, se seleccona el tpo de ajuste deseado especfcando, en el caso del ajuste polínómco o de medas móvles, el grado del polnomo o la ventana de la meda móvl deseada: Paso 4: En el menú de opcones, podemos: Cambar el nombre con que aparece, en el gráfco, la sere de tendenca Extrapolar gráfcamente la sere haca delante o haca atrás una sere de períodos. Forzar el punto de nterseccón de la funcón de tendenca con el eje vertcal. 8

9 Y, sobre todo, las dos opcones más nteresantes: Agregar en el gráfco la expresón numérca de la funcón estmada. Agregar la estmacón de la R ALTERNATIVA : UTILIZACIÓN DE LA ESTIMACIÓN LINEAL El excel ofrece entre sus funcones estadístcas, la funcón Estmacón Lneal, que efectúa una estmacón por Mínmos Cuadrados Ordnaros, dada una matrz de datos "y" y una matrz de varables explcatvas "x". Esta funcón puede utlzarse para el ajuste de tendencas lo cual tene dos ventajas: - Permte obtener los resultados de la estmacón como valores que se almacenan en casllas de Excel y, por tanto, mplementar fáclmente la utlzacón de esos coefcentes para observar la caldad del ajuste o realzar prevsones. - Permte observar característcas adconales del ajuste como, por ejemplo, la desvacón de los parámetros estmados y, por tanto, la rato "t" de sgnfcatvdad estadístca. La lmtacón de esta funcón es que sólo estma funcones lneales y, por tanto, la expresón del ajuste de tendenca deberá lnealzarse prevamente: TIPO AJUSTE VERSIÓN BÁSICA VERSIÓN LINEALIZADA Lneal Potencal Exponencal Logarítmco y = a + b t y = a + b t b y = a t log y = loga + blogt t y = a b log y = loga + t logb = a + b ln( t) u y = a + b ln(t) y = a + b t + b t y = a + b t + b t y + Polnómca Paso : Partendo de "N" datos, y una vez consderado el tpo de ajuste, deben defnrse los rangos que contendrán las matrces: Paso : - de la varable a explcar o endógena Y(Nx) - de las "k" varables explcatvas (varable "t" y sus transformacones) o matrz X (Nxk) Una vez defndos los rangos, debe marcarse con el ratón el área en el que queremos que aparezcan los resultados del ajuste de tendenca. S no se solcta más que el cálculo de los coefcentes, deben marcarse tantas columnas como coefcentes tenga la 9

10 regresón y una fla. En caso de solctarse estadístcos adconales, deberán marcarse 5 flas para cada columna. Paso 3: Una vez marcado el rango de salda, puede "llamarse" a la funcón "estmacon.lneal" utlzando el menú de acceso a las funcones: Paso 4: El Excel ofrecerá un asstente para completar los argumentos de la funcón: en donde: Conocdo_y: Es el rango que contene el conjunto de valores y Conocdo_x: Es el rango que contene el conjunto de valores x en este caso, la varable de tendenca "t" y/o sus transformacones. 0

11 Constante: Es un valor lógco que especfca s la constante de la regresón debe ser gual a 0 o no; s el argumento "constante" es (VERDADERO) o se omte, la constante se calcula normalmente, s el argumento constante es 0(FALSO) la constante se establece gual a 0. Estadístca: Es un valor lógco que especfca s se han de calcularse estadístcas de regresón adconales: s el argumento estadístca es (VERDADERO), ESTIMACION.LINEAL devuelve estadístcas de regresón adconales, s el argumento estadístca es 0(FALSO) o se omte, ESTIMACION.LINEAL devuelve úncamente los coefcentes y la constante (en su caso). Paso 5: Una vez completada la funcón, se acepta la expresón. Dado que se trata de una funcón que afecta a un rango, debe recordarse que en Excel, el "Enter" se susttuye por la secuenca "Ctrl+Shft") Paso 6: Los resultados se nterpretan tenendo en cuenta que el Excel los ofrece en el sguente orden: Coef k Coef k- Coef k T.Indep DT(coef k) DT( Coef k-) DT( Coef k-) DT(T.Indep) R Error.T.Estmacón F Grad.Lbertad SCRegres SCResdu

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Maestría en Economía Facultad de Ciencias Económicas Universidad Nacional de La Plata TESIS DE MAESTRIA. ALUMNO Laura Carella. DIRECTOR Alberto Porto

Maestría en Economía Facultad de Ciencias Económicas Universidad Nacional de La Plata TESIS DE MAESTRIA. ALUMNO Laura Carella. DIRECTOR Alberto Porto Maestría en Economía Facultad de Cencas Económcas Unversdad Naconal de La Plata TESIS DE MAESTRIA ALUMNO Laura Carella TITULO Educacón unverstara: medcón del rendmento académco a través de fronteras de

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II PRACTICA 11: Crcutos no lneales elementales con el amplfcador operaconal OBJETIVO: El alumno se famlarzará con

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó

Comparación entre distintos Criterios de decisión (VAN, TIR y PRI) Por: Pablo Lledó Comparacón entre dstntos Crteros de decsón (, TIR y PRI) Por: Pablo Lledó Master of Scence en Evaluacón de Proyectos (Unversty of York) Project Management Professonal (PMP certfed by the PMI) Profesor

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

Incertidumbre de la Medición: Teoría y Práctica

Incertidumbre de la Medición: Teoría y Práctica CAPACIDAD, GESTION Y MEJORA Incertdumbre de la Medcón: Teoría y Práctca (1 ra Edcón) Autores: Sfredo J. Sáez Ruz Lus Font Avla Maracay - Estado Aragua - Febrero 001 Copyrght 001 L&S CONSULTORES C.A. Calle

Más detalles

Tema 7: Variables Ficticias

Tema 7: Variables Ficticias Tema 7: Varables Fctcas Máxmo Camacho Máxmo Camacho Econometría I - ADE+D /2 - Tema 7 Varables fctcas Bloque I: El modelo lneal clásco r Tema : Introduccón a la econometría r Tema 2: El modelo de regresón

Más detalles

MODELOS DE ELECCIÓN BINARIA

MODELOS DE ELECCIÓN BINARIA MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

Diseño y Análisis de Experimentos en el SPSS 1

Diseño y Análisis de Experimentos en el SPSS 1 Dseño y Análss de Expermentos en el SPSS EJEMPLO. Los sguentes datos muestran las meddas de hemoglobna (gramos por 00 ml) en la sangre de 40 ejemplares de una espece de truchas marrones. Las truchas se

Más detalles

GANTT, PERT y CPM INDICE

GANTT, PERT y CPM INDICE GANTT, PERT y CPM INDICE 1 Antecedentes hstórcos...2 2 Conceptos báscos: actvdad y suceso...2 3 Prelacones entre actvdades...3 4 Cuadro de prelacones y matrz de encadenamento...3 5 Construccón del grafo...4

Más detalles

ESTUDIOS LONGITUDINALES DE MEDIDAS REPETIDAS. MODELOS DE DISEÑO Y DE ANÁLISIS

ESTUDIOS LONGITUDINALES DE MEDIDAS REPETIDAS. MODELOS DE DISEÑO Y DE ANÁLISIS Avances en Medcón, 5, 9 26 2007 ESTUDIOS LONGITUDINALES DE MEDIDAS REPETIDAS. MODELOS DE DISEÑO Y DE ANÁLISIS Resumen Jame Arnau Gras ** Unverstat de Barcelona, España Las estructuras de dseño, así como

Más detalles

GUIA DE ALCANCE FINANCIERO CAE OPERACIONES DE CRÉDITO HIPOTECARIO

GUIA DE ALCANCE FINANCIERO CAE OPERACIONES DE CRÉDITO HIPOTECARIO INTRODUCCIÓN La ley 2.555 publcada el día 5 de dcembre de 211 y que entró en vgenca el día 4 de marzo de 212, que modca la ley 19.496 Sobre Proteccón de los Derechos de los Consumdores (LPC, regula desde

Más detalles

Estadística con R. Modelo Probabilístico Lineal

Estadística con R. Modelo Probabilístico Lineal Estadístca con R Modelo Probablístco Lneal Modelo Probablístco Lneal Forma de la funcón: Y b 0 +b 1 X +e Varable dependente, endógena o a explcar dcotómca : Y, S Y 0 e -b 0 - b 1 X con probabldad p. S

Más detalles

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL

DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 4 METROLOGÍA Y CALIDAD. CALIBRACIÓN DE UN PIE DE REY Metrología y Caldad. Calbracón de n pe de rey. INDICE 1. OBJETIVOS

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

Consideraciones empíricas del consumo de los hogares: el caso del gasto en electricidad y alimentos

Consideraciones empíricas del consumo de los hogares: el caso del gasto en electricidad y alimentos Consderacones empírcas del consumo de los hogares: el caso del gasto en electrcdad y almentos Emprcal Consderatons of the Famles Consumpton: the Case uf the Expense n Electrcty and Food Maro Andrés Ramón

Más detalles

Capacidad de Procesos según ISO 9000 Ing o. Angel Francisco Arvelo

Capacidad de Procesos según ISO 9000 Ing o. Angel Francisco Arvelo EVALUACION DE LA CAPACIDAD DE CALIDAD DE UN PROCESO INDUSTRIAL METODOS ESTADISTICOS SUGERIDOS POR LA NORMA ISO 9000 ANGEL FRANCISCO ARVELO L. Ingenero Industral Master en Estadístca Matemátca CARACAS,

Más detalles

Glosario básico. de términos estadísticos

Glosario básico. de términos estadísticos Glosaro básco de térmnos estadístcos Lma, mayo de 2006 CREDITOS Dreccón y Supervsón Lupe Berrocal de Montestruque Drectora Técnca del Centro de Investgacón y Desarrollo Responsable del documento Hermna

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS

CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS En los capítulos anterores se han analzado varos modelos usados en la evaluacón de stocks, defnéndose los respectvos parámetros. En las correspondentes fchas de ejerccos

Más detalles

PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA

PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA Est. María. I. Flury Est. Crstna A. Barbero Est. Marta Rugger Insttuto de Investgacones Teórcas y Aplcadas. Escuela de Estadístca. PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL

Más detalles

Rentas financieras. Unidad 5

Rentas financieras. Unidad 5 Undad 5 Rentas fnanceras 5.. Concepto de renta 5.2. Clasfcacón de las rentas 5.3. Valor captal o fnancero de una renta 5.4. Renta constante, nmedata, pospagable y temporal 5.4.. Valor actual 5.4.2. Valor

Más detalles

Economía de la Empresa: Financiación

Economía de la Empresa: Financiación Economía de la Empresa: Fnancacón Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Dentro del contexto de Economía de la Empresa, se

Más detalles

4 Contraste de hipótesis en el modelo de regresión múltiple

4 Contraste de hipótesis en el modelo de regresión múltiple 4 Contraste de hpótess en el modelo de regresón múltple Ezequel Urel Unversdad de Valenca Versón: 9-13 4.1 El contraste de hpótess: una panorámca 1 4.1.1 Formulacón de la hpótess nula y de la hpótess alternatva

Más detalles

Diseño de una metodología sistémica de evaluación de impacto territorial de intervenciones urbanísticas

Diseño de una metodología sistémica de evaluación de impacto territorial de intervenciones urbanísticas Dseño de una metodología sstémca de evaluacón de mpacto terrtoral de ntervencones urbanístcas Report de recerca Nº 1 Jorge Cerda Troncoso Enero 2009 Problema de nvestgacón: el problema que se enfrenta

Más detalles

Unidad II: Análisis de la combustión completa e incompleta. 2. 1. Aire

Unidad II: Análisis de la combustión completa e incompleta. 2. 1. Aire 4 Undad II: Análss de la combustón completa e ncompleta. 1. Are El are que se usa en las reaccones de combustón es el are atmosférco. Ya se djo en la Undad I que, debdo a que n el N n los gases nertes

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

APENDICE A. El Robot autónomo móvil RAM-1.

APENDICE A. El Robot autónomo móvil RAM-1. Planfcacón de Trayectoras para Robots Móvles APENDICE A. El Robot autónomo móvl RAM-1. A.1. Introduccón. El robot autónomo móvl RAM-1 fue dseñado y desarrollado en el Departamento de Ingenería de Sstemas

Más detalles

Leyes de tensión y de corriente

Leyes de tensión y de corriente hay6611x_ch03.qxd 1/4/07 5:07 PM Page 35 CAPÍTULO 3 Leyes de tensón y de corrente CONCEPTOS CLAVE INTRODUCCIÓN En el capítulo 2 se presentaron la resstenca así como varos tpos de fuentes. Después de defnr

Más detalles

Modelos de elección simple y múltiple. Regresión logit y probit. Modelos multilogit y multiprobit.

Modelos de elección simple y múltiple. Regresión logit y probit. Modelos multilogit y multiprobit. Modelos de eleccón smple y múltple. Regresón logt y probt. Modelos multlogt y multprobt. Sga J.Muro(14/4/2004) 2 Modelos de eleccón dscreta. Modelos de eleccón smple. Modelos de eleccón múltple. Fnal J.Muro(14/4/2004)

Más detalles

Muestra: son datos de corte transversal correspondientes a 120 familias españolas.

Muestra: son datos de corte transversal correspondientes a 120 familias españolas. Capítulo II: El Modelo Lneal Clásco - Estmacón Aplcacones Informátcas 3. APLICACIONES INFORMÁTICAS Fchero : cp.wf (modelo de regresón smple) Seres: : consumo famlar mensual en mles de pesetas RENTA: renta

Más detalles

ANÁLISIS DE ACCESIBILIDAD E INTERACCIÓN ESPECIAL:

ANÁLISIS DE ACCESIBILIDAD E INTERACCIÓN ESPECIAL: Geografía y Sstemas de Informacón Geográfca (GEOSIG). Revsta dgtal del Grupo de Estudos sobre Geografía y Análss Espacal con Sstemas de Informacón Geográfca (GESIG). Programa de Estudos Geográfcos (PROEG).

Más detalles

Regresión y Correlación Métodos numéricos

Regresión y Correlación Métodos numéricos Regresón y Correlacón Métodos numércos Prof. Mguel Hesquo Garduño. Est. Mrla Benavdes Rojas Depto. De Ingenería Químca Petrolera ESIQIE-IPN hesquogm@yahoo.com.mx mbenavdesr5@gmal.com Regresón lneal El

Más detalles

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada.

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada. Introduccón a la Estadístca Empresaral Capítulo - Análss conjunto de dos varables Jesús ánchez Fernández CAPITULO - AÁLII COJUTO DE DO VARIABLE Presentacón de los datos Tablas de doble entrada En el capítulo

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

CÁLCULO DE LA TASA INTERNA DE RETORNO DE LA EDUCACIÓN EN COLOMBIA *

CÁLCULO DE LA TASA INTERNA DE RETORNO DE LA EDUCACIÓN EN COLOMBIA * CÁLCULO DE LA TASA INTERNA DE RETORNO DE LA EDUCACIÓN EN * INTRODUCCIÓN Helmuth Yesd Aras Gómez ** Álvaro Hernando Chaves Castro *** El efecto de la educacón sobre el desarrollo económco tradconalmente

Más detalles

Trabajo y Energía Cinética

Trabajo y Energía Cinética Trabajo y Energía Cnétca Objetvo General Estudar el teorema de la varacón de la energía. Objetvos Partculares 1. Determnar el trabajo realzado por una fuerza constante sobre un objeto en movmento rectlíneo..

Más detalles

MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Primer Semestre - Otoño 2014. Omar De la Peña-Seaman. Instituto de Física (IFUAP)

MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Primer Semestre - Otoño 2014. Omar De la Peña-Seaman. Instituto de Física (IFUAP) MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Prmer Semestre - Otoño 2014 Omar De la Peña-Seaman Insttuto de Físca (IFUAP) Benemérta Unversdad Autónoma de Puebla (BUAP) 1 / Omar De la Peña-Seaman

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado en Geomátca y Topografía Escuela Técnca Superor de Ingeneros en Topografía, Geodesa y Cartografía. Unversdad Poltécnca de Madrd

Más detalles

LA FINANCIACION DE PROVEEDORES Y LA GESTION DE STOCKS. UNA VISION CONJUNTA.

LA FINANCIACION DE PROVEEDORES Y LA GESTION DE STOCKS. UNA VISION CONJUNTA. LA FINANCIACION DE PROVEEDORES Y LA GESTION DE STOCKS. UNA VISION CONJUNTA. Lucía Isabel García Cebrán Departamento de Economía y Dreccón de Empresas Unversdad de Zaragoza Gran Vía, 2 50.005 Zaragoza (España)

Más detalles

Cifrado de imágenes usando autómatas celulares con memoria

Cifrado de imágenes usando autómatas celulares con memoria Cfrado de mágenes usando autómatas celulares con memora L. Hernández Encnas 1, A. Hernández Encnas 2, S. Hoya Whte 2, A. Martín del Rey 3, G. Rodríguez Sánchez 4 1 Insttuto de Físca Aplcada, CSIC, C/Serrano

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departamento Admnstratvo Naconal de Estadístca Dreccón de Censos Demografía METODOLOGIA ESTIMACIONES Y PROYECCIONES DE POBLACIÓN, POR ÁREA, SEXO Y EDAD PARA LOS DOMINIOS DE LA GRAN ENCUESTA INTEGRADA DE

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros.

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros. Uso de la Estmacón de la Dstrbucón de Probabldad para Muestras Pequeñas y de la Smulacón en la Inferenca de Carteras de Seguros. Trabajo presentado para el XII Premo de Investgacón sobre Seguros y Fanzas

Más detalles

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA ELECTRICA

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA ELECTRICA UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA ELECTRICA INCORPORACION DE LOS CONJUNTOS DIFUSOS PARA MODELAR INCERTIDUMBRES EN LOS SISTEMAS ELECTRICOS DE POTENCIA

Más detalles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles 2 Undad I.. Defncón de reaccón de combustón La reaccón de combustón se basa en la reaccón químca exotérmca de una sustanca (o una mezcla de ellas) denomnada combustble, con el oxígeno. Como consecuenca

Más detalles

CAPÍTULO 7 VALORACIONES INMOBILIARIAS 1

CAPÍTULO 7 VALORACIONES INMOBILIARIAS 1 CAPÍTULO 7 UNA METODOLOGÍA OBJETIVA PARA LAS VALORACIONES INMOBILIARIAS 1 RAFAEL ARTURO CANO GUERVÓS JORGE MIGUEL CHICA OLMO Departamento de Métodos Cuanttatvos para la Economía y la Empresa Unversdad

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

Análisis de error y tratamiento de datos obtenidos en el laboratorio

Análisis de error y tratamiento de datos obtenidos en el laboratorio Análss de error tratamento de datos obtendos en el laboratoro ITRODUCCIÓ Todas las meddas epermentales venen afectadas de una certa mprecsón nevtable debda a las mperfeccones del aparato de medda, o a

Más detalles

Gráficos de flujo de señal

Gráficos de flujo de señal UNIVRSIDAD AUTÓNOMA D NUVO ÓN FACUTAD D INGNIRÍA MCANICA Y ÉCTRICA Gráfcos de flujo de señal l dagrama de bloques es útl para la representacón gráfca de sstemas de control dnámco y se utlza extensamente

Más detalles

Tasas de Caducidad. - Guía de Apoyo para la Construcción y Aplicación - Por: Act. Pedro Aguilar Beltrán. paguilar@cnsf.gob.mx

Tasas de Caducidad. - Guía de Apoyo para la Construcción y Aplicación - Por: Act. Pedro Aguilar Beltrán. paguilar@cnsf.gob.mx Tasas de Caducdad - Guía de Apoyo para la Construccón y Aplcacón - Por: Act. Pedro Agular Beltrán pagular@cnsf.gob.m 1. Introduccón La construccón y aplcacón de tasas de caducdad en el cálculo de utldades

Más detalles

Organización y resumen de datos cuantitativos

Organización y resumen de datos cuantitativos Organzacón y resumen de datos cuanttatvos Contendos Organzacón de datos cuanttatvos: dagrama de tallos y hojas, tablas de frecuencas. Hstogramas. Polígonos. Ojvas ORGANIZACIÓN Y RESUMEN DE DATOS CUANTITATIVOS

Más detalles

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias Crédtos Y Sstemas de Amortzacón: Dferencas, Smltudes e Implcancas Introduccón Cuando los ngresos de un agente económco superan su gasto de consumo, surge el concepto de ahorro, esto es, la parte del ngreso

Más detalles

UNIVERSIDAD DE SONORA

UNIVERSIDAD DE SONORA UNIVERSIDAD DE SONORA Dvsón de Cencas Exactas y Naturales Departamento de Matemátcas Estadístca Aplcada a las Lcencaturas: Admnstracón, Contaduría e Inormátca Admnstratva. Fascículo II: Estadístca Descrptva

Más detalles

1.- Una empresa se plantea una inversión cuyas características financieras son:

1.- Una empresa se plantea una inversión cuyas características financieras son: ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES. Departamento de Economía Aplcada (Matemátcas). Matemátcas Fnanceras. Relacón de Problemas. Rentas. 1.- Una empresa se plantea una nversón cuyas característcas

Más detalles

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización.

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización. Smulacón y Optmzacón de Procesos Químcos Ttulacón: Ingenería Químca. 5º Curso Optmzacón. Programacón Cuadrátca Métodos de Penalzacón Programacón Cuadrátca Sucesva Gradente Reducdo Octubre de 009. Programacón

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Pronósticos. Humberto R. Álvarez A., Ph. D.

Pronósticos. Humberto R. Álvarez A., Ph. D. Pronóstcos Humberto R. Álvarez A., Ph. D. Predccón, Pronóstco y Prospectva Predccón: estmacón de un acontecmento futuro que se basa en consderacones subjetvas, en la habldad, experenca y buen juco de las

Más detalles

www.fisicaeingenieria.es

www.fisicaeingenieria.es 2.- PRIMER PRINCIPIO DE LA TERMODINÁMICA. 2.1.- Experencas de Joule. Las experencas de Joule, conssteron en colocar una determnada cantdad de agua en un calorímetro y realzar un trabajo, medante paletas

Más detalles

Efectos fijos o aleatorios: test de especificación

Efectos fijos o aleatorios: test de especificación Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto

Más detalles

METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS

METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS SIARGAF 4.0 FEBRERO 008 CONTENIDO..... Valor en Resgo aramétrco... A) Meddas de Sensbldad... B) Meddas Estadístcas... 6 C) Volatldad... 7 D) Valor

Más detalles

CÁLCULO TEÓRICO AB-INITIO DE ENERGÍAS DE IONIZACIÓN Y ELECTRONEGATIVIDADES

CÁLCULO TEÓRICO AB-INITIO DE ENERGÍAS DE IONIZACIÓN Y ELECTRONEGATIVIDADES DEPARTAMENTO DE QUÍMICA FÍSICA FACULTAD DE CIENCIAS CÁLCULO TEÓRICO AB-INITIO DE ENERGÍAS DE IONIZACIÓN Y ELECTRONEGATIVIDADES JOSÉ ALEJO PÉREZ RASCO Trabajo para optar al título de Doctor en Cencas Químcas

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una muestra de observacones formadas por pares de varables: (x 1, y 1 ), (x, y ),.., (x n, y n ) A través de esta muestra, se desea estudar la relacón

Más detalles

MÉTODOS PARA PROBAR NUMEROS

MÉTODOS PARA PROBAR NUMEROS Capítulo 3 ALEATORIOS MÉTODOS PARA PROBAR NUMEROS III.1 Introduccón Exsten algunos métodos dsponbles para verfcar varos aspectos de la caldad de los números pseudoaleatoros. S no exstera un generador partcular

Más detalles

DEFINICIÓN DE INDICADORES

DEFINICIÓN DE INDICADORES DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.

Más detalles

TEMA 6 AMPLIFICADORES OPERACIONALES

TEMA 6 AMPLIFICADORES OPERACIONALES Tema 6 Amplfcadores peraconales ev 4 TEMA 6 AMPLIFICADES PEACINALES Profesores: Germán llalba Madrd Mguel A. Zamora Izquerdo Tema 6 Amplfcadores peraconales ev 4 CNTENID Introduccón El amplfcador dferencal

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera Tema - MATEMÁTICAS FINANCIERAS Materal realzado por J. Davd Moreno y María Gutérrez Unversdad Carlos III de Madrd Asgnatura: Economía Fnancera Apuntes realzados por J. Davd Moreno y María Gutérrez Advertenca

Más detalles

Análisis cuantitativo aplicado al Comercio Internacional y el Transporte

Análisis cuantitativo aplicado al Comercio Internacional y el Transporte Máster de Comerco, Transporte y Comuncacones Internaconales Análss cuanttatvo aplcado al Comerco Internaconal y el Transporte Ramón úñez Sánchez Soraya Hdalgo Gallego Departamento de Economía Introduccón

Más detalles

UN ANÁLISIS DE LAS DECISIONES DE FORMACIÓN DE HOGAR, TENENCIA Y DEMANDA DE SERVICIOS DE VIVIENDA DE LOS JÓVENES ESPAÑOLES *

UN ANÁLISIS DE LAS DECISIONES DE FORMACIÓN DE HOGAR, TENENCIA Y DEMANDA DE SERVICIOS DE VIVIENDA DE LOS JÓVENES ESPAÑOLES * UN ANÁLISIS DE LAS DECISIONES DE FORMACIÓN DE HOGAR, TENENCIA Y DEMANDA DE SERVICIOS DE VIVIENDA DE LOS JÓVENES ESPAÑOLES * Mª Consuelo Colom, Rosaro Martínez y Mª Cruz Molés WP-EC 2000-02 Correspondenca:

Más detalles

Determinación de Puntos de Rocío y de Burbuja Parte 1

Determinación de Puntos de Rocío y de Burbuja Parte 1 Determnacón de Puntos de Rocío y de Burbuja Parte 1 Ing. Federco G. Salazar ( 1 ) RESUMEN El cálculo de las condcones de equlbro de fases líqudo vapor en mezclas multcomponentes es un tema de nterés general

Más detalles

1.Variables ficticias en el modelo de regresión: ejemplos.

1.Variables ficticias en el modelo de regresión: ejemplos. J.M.Arranz y M.M. Zamora.Varables fctcas en el modelo de regresón: ejemplos. Las varables fctcas recogen los efectos dferencales que se producen en el comportamento de los agentes económcos debdo a dferentes

Más detalles

2.5 Especialidades en la facturación eléctrica

2.5 Especialidades en la facturación eléctrica 2.5 Especaldades en la facturacón eléctrca Es necesaro destacar a contnuacón algunos aspectos peculares de la facturacón eléctrca según Tarfas, que tendrán su mportanca a la hora de establecer los crteros

Más detalles

Clase 25. Macroeconomía, Sexta Parte

Clase 25. Macroeconomía, Sexta Parte Introduccón a la Facultad de Cs. Físcas y Matemátcas - Unversdad de Chle Clase 25. Macroeconomía, Sexta Parte 12 de Juno, 2008 Garca Se recomenda complementar la clase con una lectura cudadosa de los capítulos

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Francsco Álvarez González http://www.uca.es/serv/fag/fct/ francsco.alvarez@uca.es Bajo el térmno Estadístca Descrptva

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

PORTAFOLIO DE TRES ACTIVOS FINANCIEROS

PORTAFOLIO DE TRES ACTIVOS FINANCIEROS PORTAFOLIO DE TRES ACTIVOS FINANCIEROS Contendo:. Introduccón.. Fondos Mutuos. Rendmento y Resgo.. Parámetros estadístcos de un Portafolo de Tres Actvos. a) El Retorno de un Portafolo. b) El Resgo de un

Más detalles

GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES

GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES GERENCIA DE OPERACIONES Y PRODUCCIÓN DISEÑO DE NUEVOS PRODUCTOS Y SERVICIOS ESTRATEGIAS DE OPERACIONES PRONÓSTICOS PREDICCIÓN, PRONÓSTICO Y PROSPECTIVA Predccón: estmacón de un acontecmento futuro que

Más detalles

TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE

TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE LECTURA OBLIGATORIA Regresón Lneal Múltple. En Ral, A. y Varela, J. (008). Estadístca Práctca para la Investgacón en Cencas de la Salud. Coruña: Netbblo.

Más detalles

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general. 3. En el modelo lneal general Y =X β + ε, explcar la forma que

Más detalles

LA EFICIENCIA RELATIVA DE LASCOMPAÑÍAS DE TRANSPORTE

LA EFICIENCIA RELATIVA DE LASCOMPAÑÍAS DE TRANSPORTE LA EFICIENCIA RELATIVA DE LASCOMPAÑÍAS DE TRANSPORTE AEREO. María Belén Rey Legdos. Departamento de Economía Aplcada II. Facultad de CC Económcas. Unversdad Complutense de Madrd. 1. Introduccón. El objetvo

Más detalles

Desigualdad de oportunidades y el rol del sistema educativo en los logros de los jóvenes uruguayos

Desigualdad de oportunidades y el rol del sistema educativo en los logros de los jóvenes uruguayos Desgualdad de oportundades y el rol del sstema educatvo en los logros de los jóvenes uruguayos Cecla Llambí Marcelo Perera Pablo Messna Febrero de 2009 Esta nvestgacón fue fnancada por el Fondo Carlos

Más detalles

La clasificación de métodos de registro propuesta por Maintz [1998] utiliza las siguientes categorías:

La clasificación de métodos de registro propuesta por Maintz [1998] utiliza las siguientes categorías: II.5. Regstro de mágenes médcas El regstro es la determnacón de una transformacón geométrca de los puntos en una vsta de un objeto con los puntos correspondentes en otra vsta del msmo objeto o en otro

Más detalles

UNIVERSIDAD POLITÉCNICA DE VALENCIA

UNIVERSIDAD POLITÉCNICA DE VALENCIA UNIVERSIDAD POLITÉCNICA DE VALENCIA ESCUELA POLITÉCNICA SUPERIOR DE ALCOY MODELOS MULTICRITERIO PARA LA SELECCIÓN DE PORTAFOLIOS EN LA BOLSA DE MADRID TESIS DOCTORAL Doctorando: D. Davd Plà Santamaría

Más detalles

IMPACTO DEL MICROCRÉDITO SOBRE LA POBREZA DEL INGRESO: UN ESTUDIO EN MERCADOS DE CRÉDITO URBANOS EN MÉXICO. Miguel Niño Zarazúa *

IMPACTO DEL MICROCRÉDITO SOBRE LA POBREZA DEL INGRESO: UN ESTUDIO EN MERCADOS DE CRÉDITO URBANOS EN MÉXICO. Miguel Niño Zarazúa * IMPACTO DEL MICROCRÉDITO SOBRE LA POBREZA DEL INGRESO: UN ESTUDIO EN MERCADOS DE CRÉDITO URBANOS EN MÉXICO Mguel Nño Zarazúa Resumen Este estudo presenta una estmacón del mpacto del mcrocrédto sobre la

Más detalles

ANÁLISIS EXPLORATORIO DE DATOS

ANÁLISIS EXPLORATORIO DE DATOS ANÁLISIS EXPLORATORIO DE DATOS 1. INTRODUCCIÓN HISTÓRICA 2 1.1 La Estadístca como cenca 2 1.2 Algunos problemas que resuelve la Estadístca 2 2. INTRODUCCIÓN A LA ESTADÍSTICA 3 2.1. Concepto y Objetvo de

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

METODOS VOLTAMPEROMETRICOS

METODOS VOLTAMPEROMETRICOS Métodos Voltamperométrcos 2 Tema 9 METODOS VOLTAMPEROMETRICOS Los métodos voltamperométrcos ncluyen un conjunto de métodos electroanalítcos en los que la nformacón sobre el analto se obtene a partr de

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS E.A.P. DE..ESTADÍSTICA La fecunddad y su relacón con varables socoeconómcas, demográfcas y educatvas aplcando el Modelo de Regresón

Más detalles

Estudios Económicos de Desarrollo Internacional.AEEADE. Vol. 2, núm 2 (2002)

Estudios Económicos de Desarrollo Internacional.AEEADE. Vol. 2, núm 2 (2002) Estudos Económcos de Desarrollo Internaconal.AEEADE. Vol. 2, núm 2 (2002) VINCULO ENTRE LOGRO EDUCACIONAL Y CARACTERÍSTICAS DE ESTÁNDAR DE VIDA EN LOS HOGARES DEL NORESTE DE ARGENTINA: UN ENFOQUE ECONOMETRICO

Más detalles