ESCUELA POLITÉCNICA NACIONAL INSTITUTO DE CIENCIAS BÁSICAS COMPROBACIÓN DE ACELERACIÓN ANGULAR

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESCUELA POLITÉCNICA NACIONAL INSTITUTO DE CIENCIAS BÁSICAS COMPROBACIÓN DE ACELERACIÓN ANGULAR"

Transcripción

1 ESCUELA POLITÉCNICA NACIONAL INSTITUTO DE CIENCIAS BÁSICAS COMPROBACIÓN DE ACELERACIÓN ANGULAR DAVID CUEVA ERAZO ANTHONY ENCALADA CAIZAPANTA PROFESOR: ING. JUAN CARLOS ALMACHI Junio, 016

2 OBJETIVOS General: Comprobar valores teóricos y experimentales de la aceleración angular, por medio de experimentos y fórmulas. Específico: Realizar cálculos y ejecutar pruebas para encontrar la aceleración con la que el disco de la amoladora disminuye su velocidad hasta llegar al reposo.

3 SITUACIÓN Se usará una amoladora con los siguientes datos: Disco de radio: 6 cm Velocidad angular (ω)= Se aplicará en el experimento a: rev min t1 = min M.C.U (en este lapso). Al soltar el botón será: M.C.U.V. hasta que llegue al reposo t = por determinar en el experimento α=? MARCO TEÓRICO Movimiento circular uniforme El movimiento circular uniforme (m.c.u.) es un movimiento de trayectoria circular en el que la velocidad angular es constante. Esto implica que describe ángulos iguales en tiempos iguales. En él, el vector velocidad no cambia de módulo, pero sí de dirección (es tangente en cada punto a la trayectoria). Esto quiere decir que no tiene aceleración tangencial ni aceleración angular, aunque sí aceleración normal. La Naturaleza y tu día a día están llenos de ejemplos de movimientos circulares uniformes (m.c.u.). La propia Tierra es uno de ellos: da una vuelta sobre su eje cada 4 horas. Los viejos tocadiscos o un ventilador son otros buenos ejemplos de m.c.u. Eligiendo el origen de coordenadas para estudiar el movimiento en el centro de la circunferencia, y conociendo su radio R, podemos expresar el vector de posición en la forma: r =x i +y j =R cos(φ) i +R sin(φ) j De esta manera, la posición y el resto de magnitudes cinemáticas queda definida por el valor de φ en cada instante.

4 Características del Movimiento Circular Uniforme (M.C.U.) La velocidad angular es constante (ω = cte) El vector velocidad es tangente en cada punto a la trayectoria y su sentido es el del movimiento. Esto implica que el movimiento cuenta con aceleración normal Tanto la aceleración angular (α) como la aceleración tangencial (at) son nulas, ya que la rapidez o celeridad (módulo del vector velocidad) es constante Existe un periodo (T), que es el tiempo que el cuerpo emplea en dar una vuelta completa. Esto implica que las características del movimiento son las mismas cada T segundos. La expresión para el cálculo del periodo es T=π/ω y es sólo válida en el caso de los movimientos circulares uniformes (m.c.u.) Existe una frecuencia (f), que es el número de vueltas que da el cuerpo en un segundo. Su valor es el inverso del periodo (Fisicalab) Movimiento Circular Uniformemente Variado Si ponemos en marcha un ventilador notaremos que al salir del reposo, gradualmente va aumentando su velocidad angular, hasta alcanzar su velocidad normal de trabajo. Todo lo contrario ocurre cuando apagamos el ventilador, observándose que su velocidad angular va disminuyendo regularmente hasta hacerse nula. Aceleración angular Cuando la aceleración angular es constante, su valor nos da el aumento o disminución de la velocidad angular en cada unidad de tiempo, y ello determina

5 que el movimiento sea uniformemente variado. Su línea de acción coincide con el de la velocidad angular, aunque no poseen siempre el mismo sentido. Aceleración tangencial Llamaremos aceleración tangencial a aquella que produce cambios en el módulo de la velocidad tangencial, y cuya dirección es tangente a la trayectoria. (David Guevara,009) DESARROLLO EXPERIMENTAL Objeto: Amoladora

6 Leyes físicas: En este proyecto utilizaremos la amoladora y con un tiempo de minutos, observaremos las revoluciones que se generan. Vale recalcar que la amoladora es de rpm. Y posee un radio de 6 cm A) Observar el movimiento en el t1 (M.C.U.) f 0 t 1 rev 1 vuelta rad B) Encontrar α en t (M.C.U.V.) 1 f 0 0t t f 0 t Tomo datos: Datos del experimento: Posición inicial: A) 11500rev min t min Modelo matemático: # vueltas rev min 1vuelta min 1rev # vueltas 3000 vueltas Vuelve al punto de inicio al finalizar los minutos B) Datos del experimento: rev rad 1min min 383,33 rad 1rev 60 s s t13,41 s 0 0reposo 0 0 f

7 Modelo matemático: 1. f 0 t 0383,33 rad s 13,41 s 383,33 rad s 13,41 s 8,59 rad s. 1 f 0 0t f f t 1 s rad s 13,41 rad 13, ,33 rad s 13,41 8, ,4553 rad 14,95 569, f vuelta rad 184, vueltas rad 184 0,906 vueltas 0,906 vueltas ,16 comprobado 1 vuelta s Posición final: 330

8 Experimento Nuevamente: El experimento resultó, en pruebas realizadas datos similares, con un pequeño margen de error; se muestra en el desarrollo la prueba más exacta. Comparo: Al terminar las pruebas se determinó que la última prueba fue la más precisa con respecto a: la medición del tiempo y el control de la amoladora. Se comparó los datos arrojados en las pruebas y se procuró tomar los datos más precisos y más apegados a la realidad, para poder realizar de la mejor manera el modelo matemático y así obtener resultados efectivos y con el mínimo margen de error. Resultados: Al ser realizado de la mejor manera y tomando todas las precauciones del caso, el experimento resultó un éxito por lo tanto los resultados reales se pudieron relacionar con los resultados teóricos dando como resultado: A) # vueltas rev min 1vuelta min 1rev # vueltas 3000 vueltas 8,59 rad 36,16 s f B) Teórico: Experimental: 330 f Como se puede observar, los resultados tienen un mínimo margen de error y comprueban lo que queríamos demostrar. Conclusiones: Después del experimento anteriormente expuesto, se concluye que se ha comprobado la validez de las formulas usadas para M.C.U Y M.C.U.V. Se concluye que en el primer periodo de tiempo al accionar el botón de la amoladora es M.C.U. y al soltarlo hasta que el disco regrese al reposo será M.CU.V.

9 Recomendaciones: Como recomendaciones podemos recalcar el cuidado que se debe tener con el uso y manipulación de la máquina, pues, tiene una cuchilla peligrosa, si no se la maneja con el debido cuidado puede ocasionar accidentes graves. Los cálculos serán más exactos mientras más veces se los repitan. BIBLIOGRAFÍA Fisicalab.com Geocities.com ANEXOS Videos anexados en carpeta circular

10

ESCUELA POLITÉCNICA NACIONAL

ESCUELA POLITÉCNICA NACIONAL 1 ESCUELA POLITÉCNICA NACIONAL INSTITUTO DE CIENCIAS BÁSICAS APLICACIÓN DE LAS FÓRMULAS Y CONCEPTOS DE MOVIMINETO CIRCULAR UNIFORME Y MOVIMINETO CIRCULAR UNIFORME VARIADO TALLER GRUPAL DANIELA FRANCESCA

Más detalles

MOVIMIENTO CIRCULAR UNIFORME Y UNIFORMEMENTE VARIADO

MOVIMIENTO CIRCULAR UNIFORME Y UNIFORMEMENTE VARIADO ESCUELA POLITÉCNICA NACIONAL INSTITUTO DE CIENCIAS BÁSICAS MOVIMIENTO CIRCULAR UNIFORME Y UNIFORMEMENTE VARIADO ALPHA LANDÁZURI MANTILLA alphaplm@yahoo.es MIRIAM LECHÓN CHURUCHUMBI miriamelizabeth1997@outlook.es

Más detalles

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o.

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o. Problemas de Cinemática 1 o Bachillerato Tiro parabólico y movimiento circular 1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de

Más detalles

Leyes de movimiento. Leyes del movimiento de Newton. Primera ley de Newton o ley de la inercia. Segunda ley de Newton

Leyes de movimiento. Leyes del movimiento de Newton. Primera ley de Newton o ley de la inercia. Segunda ley de Newton Leyes de movimiento Leyes del movimiento de Newton La mecánica, en el estudio del movimiento de los cuerpos, se divide en cinemática y dinámica. La cinemática estudia los diferentes tipos de movimiento

Más detalles

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración Tema 4 Dinámica Fuerza Fuerza es lo que produce cualquier cambio en la velocidad de un objeto Una fuerza es lo que causa una aceleración La fuerza neta es la suma de todas las fuerzas que actúan sobre

Más detalles

ESCUELA POLITÉCNICA NACIONAL

ESCUELA POLITÉCNICA NACIONAL ESCUELA POLITÉCNICA NACIONAL FUNDAMENTOS DE FÍSICA EXPERIMENTO: Movimiento circular uniforme y variado INTEGRANTES: KARLA VANESSA MOYÒN RIVERA BYRON ALEJANDRO CASTILLO MENDOZA PROFESOR: ING. JUAN CARLOS

Más detalles

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando

Más detalles

COLEGIO HISPANO-INGLÉS SEMINARIO DE FÍSICA Y QUÍMICA SIMULACRO.

COLEGIO HISPANO-INGLÉS SEMINARIO DE FÍSICA Y QUÍMICA SIMULACRO. COLEGIO HISPANO-INGLÉS SIMULACRO. SEMINARIO DE FÍSICA Y QUÍMICA 1.- Las ecuaciones de la trayectoria (componentes cartesianas en función de t de la posición) de una partícula son x=t 2 +2; y = 2t 2-1;

Más detalles

EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS

EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS 1 DIFICULTAD BAJA 1. Qué magnitud nos mide la rapidez con la que se producen los cambios de posición durante un movimiento? Defínela. La velocidad media.

Más detalles

ESCUELA POLITÉCNICA NACIONAL

ESCUELA POLITÉCNICA NACIONAL ESCUELA POLITÉCNICA NACIONAL INSTITUTO DE CIENCIAS BÁSICAS EJERCICIO PRÁCTICO DE M.C.U. Y M.C.U.V. PROYECTO DE FÍSICA VALERIA FERNANDA AGUIRRE MOREIRA valeria.aguirre@epn.edu.ec PROFESOR: ING. JUAN CARLOS

Más detalles

Teoría y Problemas resueltos paso a paso

Teoría y Problemas resueltos paso a paso Departamento de Física y Química 1º Bachillerato Teoría y Problemas resueltos paso a paso Daniel García Velázquez MAGNITUDES. INTRODUCCIÓN AL ANÁLISIS DIMENSIONAL Magnitud es todo aquello que puede ser

Más detalles

TRABAJO Y ENERGÍA: CHOQUES

TRABAJO Y ENERGÍA: CHOQUES . TRABAJO Y ENERGÍA: CHOQUES Una bola de acero que cae verticalmente rebota en una placa ríida que forma un ánulo con la horizontal. Calcular para que la bola sala con una velocidad horizontal después

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

TEMA 7. PROGRAMACIÓN BÁSICA DE TORNOS DE CNC

TEMA 7. PROGRAMACIÓN BÁSICA DE TORNOS DE CNC TEMA 7. PROGRAMACIÓN BÁSICA DE TORNOS DE CNC PARTE 1: FUNCIONES PREPARATORIAS GENERALES: FUNCIONES DE MOVIMIENTO LINEAL Y CIRCULAR. TRANSICIÓN ENTRE BLOQUES (ARISTA VIVA - ARISTA MATADA). SELECCIÓN DE

Más detalles

ESCUELA POLITÉCNICA NACIONAL

ESCUELA POLITÉCNICA NACIONAL ESCUELA POLITÉCNICA NACIONAL FORMACIÓN BASICA: FÍSICA Cambio de Velocidad por una Aceleración Variable LUIS FUSTILLOS luchofustillos@hotmail.com MARIA JOSE HIDALGO majo_se_1@hotmail.com CHRISTIAN MORÁN

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

Unidad: Representación gráfica del movimiento

Unidad: Representación gráfica del movimiento Unidad: Representación gráfica del movimiento Aplicando y repasando el concepto de rapidez Esta primera actividad repasa el concepto de rapidez definido anteriormente. Posición Esta actividad introduce

Más detalles

M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento

M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento RECUERDA: La cinemática, es la ciencia, parte de la física, que se encarga del estudio del movimiento de los cuerpos, tratando de definirlos, clasificarlos y dotarlos de alguna utilidad práctica. El movimiento

Más detalles

TRABAJO Y ENERGÍA Página 1 de 13

TRABAJO Y ENERGÍA Página 1 de 13 TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria

Más detalles

Inversión en el plano

Inversión en el plano Inversión en el plano Radio de la circunferencia x 2 + y 2 + Ax + By + D = 0 Circunferencia de centro (a, b) y radio r: (x a) 2 + (y b) 2 = r 2. Comparando: x 2 + y 2 2ax 2by + a 2 + b 2 r 2 = 0 con x

Más detalles

DINÁMICA TRABAJO: POTENCIA Y ENERGÍA. MILTON ALFREDO SEPÚLVEDA ROULLETT Física I

DINÁMICA TRABAJO: POTENCIA Y ENERGÍA. MILTON ALFREDO SEPÚLVEDA ROULLETT Física I DINÁMICA TRABAJO: POTENCIA Y ENERGÍA MILTON ALFREDO SEPÚLVEDA ROULLETT Física I DINÁMICA Concepto de Dinámica.- Es una parte de la mecánica que estudia la reacción existente entre las fuerzas y los movimientos

Más detalles

Te damos los elementos básicos de los vectores para que puedas entender las operaciones básicas.

Te damos los elementos básicos de los vectores para que puedas entender las operaciones básicas. 4 año secundario Vectores, refrescando conceptos adquiridos Te damos los elementos básicos de los vectores para que puedas entender las operaciones básicas. El término vector puede referirse al: concepto

Más detalles

Ecuación ordinaria de la circunferencia

Ecuación ordinaria de la circunferencia Ecuación ordinaria de la circunferencia En esta sección estudiatemos la ecuación de la circunferencia en la forma ordinaria. Cuando hablemos de la forma ordinaria de una cónica, generalmente nos referiremos

Más detalles

ELEMENTOS DEL MOVIMIENTO

ELEMENTOS DEL MOVIMIENTO ELEMENTOS DEL MOVIMIENTO Unidad 10 CONTENIDOS.- 1.- Introducción..- Magnitudes escalares vectoriales. 3.- Sistemas de referencia. Concepto de movimiento. 4.- Operaciones con vectores. 5.- Traectoria, posición

Más detalles

Cilindros Rodantes cilindros Rodantes

Cilindros Rodantes cilindros Rodantes M E C Á N I C A Cilindros Rodantes cilindros Rodantes M E C Á N I C A Relacionados con el movimiento de rotación de un sólido existen en el Centro Principia varios módulos. El orden, más conveniente, de

Más detalles

Alternativamente, los vectores también se pueden poner en función de los vectores unitarios:

Alternativamente, los vectores también se pueden poner en función de los vectores unitarios: 1. Nociones fundamentales de cálculo vectorial Un vector es un segmento orientado que está caracterizado por tres parámetros: Módulo: indica la longitud del vector Dirección: indica la recta de soporte

Más detalles

INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO

INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO GUAS DE ESTUDIO PARA LOS GRADOS: 11º AREA: FISICA PROFESOR: DALTON MORALES TEMA DE LA FISICA A TRATAR: ENERGÍA I La energía desempeña un papel muy importante

Más detalles

Órbitas producidas por fuerzas centrales

Órbitas producidas por fuerzas centrales Capítulo 10 Órbitas producidas por fuerzas centrales 10.1 Introducción En un capítulo anterior hemos visto una variedad de fuerzas, varias de las cuales, como por ejemplo la elástica, la gravitatoria y

Más detalles

Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba

Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Soluciones Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Si no se dice otra cosa, no debe considerarse el efecto del roce con el aire. 1.- Un objeto de masa m cae libremente de cierta

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

Electrostática: ejercicios resueltos

Electrostática: ejercicios resueltos Electrostática: ejercicios resueltos 1) Dos cargas de 4 y 9 microculombios se hallan situadas en los puntos (2,0) y (4,0) del eje 0X. Calcula el campo y el potencial eléctrico en el punto medio. 2) Dos

Más detalles

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica Energía Potencial eléctrica Si movemos la carga q2 respecto a la carga q1 Recordemos que la diferencia en la energía tenemos que: potencial U cuando una partícula se mueve entre dos puntos a y b bajo la

Más detalles

FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1 FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1.1. A QUÉ LLAMAMOS TRABAJO? 1. Un hombre arrastra un objeto durante un recorrido de 5 m, tirando de él con una fuerza de 450 N mediante una cuerda que forma

Más detalles

ENSAYOS MECÁNICOS II: TRACCIÓN

ENSAYOS MECÁNICOS II: TRACCIÓN 1. INTRODUCCIÓN. El ensayo a tracción es la forma básica de obtener información sobre el comportamiento mecánico de los materiales. Mediante una máquina de ensayos se deforma una muestra o probeta del

Más detalles

PRÁCTICA 2 CINEMÁTICA DEL MOVIMIENTO RECTILÍNEO

PRÁCTICA 2 CINEMÁTICA DEL MOVIMIENTO RECTILÍNEO INGENIERÍA QUÍMICA 1 er curso FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PRÁCTICA 2 CINEMÁTICA DEL MOVIMIENTO RECTILÍNEO Departamento de Física Aplicada Escuela Politécnica Superior de la Rábida. II. Movimiento

Más detalles

Tema 1. Movimiento armónico simple (m.a.s.)

Tema 1. Movimiento armónico simple (m.a.s.) Tema 1. Movimiento armónico simple (m.a.s.) Si observas los movimientos que suceden alrededor tuyo, es muy probable que encuentres algunos de ellos en los que un objeto se mueve de tal forma que su posición

Más detalles

Líneas Equipotenciales

Líneas Equipotenciales Líneas Equipotenciales A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En esta experiencia se estudia

Más detalles

CAPÍTULO VI ROTONDAS 6.1 EXPOSICÓN DEL PROBLEMA Y FILOSOFÍA.

CAPÍTULO VI ROTONDAS 6.1 EXPOSICÓN DEL PROBLEMA Y FILOSOFÍA. CAPÍTULO VI ROTONDAS 6.1 EXPOSICÓN DEL PROBLEMA Y FILOSOFÍA. Las rotondas han sido uno de los éxitos más destacados en la ingeniería de tráfico de intersecciones en los últimos años. Realmente son un elemento

Más detalles

MOMENTO ANGULAR Y TORCAS COMO VECTORES

MOMENTO ANGULAR Y TORCAS COMO VECTORES MOMENTO ANGULAR Y TORCAS COMO VECTORES OBJETIVOS: Identificar la torca y el momento angular como magnitudes vectoriales. Examinar las propiedades matemáticas del producto cruz y algunas aplicaciones. Describir

Más detalles

d s = 2 Experimento 3

d s = 2 Experimento 3 Experimento 3 ANÁLISIS DEL MOVIMIENTO EN UNA DIMENSIÓN Objetivos 1. Establecer la relación entre la posición y la velocidad de un cuerpo en movimiento 2. Calcular la velocidad como el cambio de posición

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-101-5-V-2-00-2013

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-101-5-V-2-00-2013 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-101-5-V-2-00-2013 CURSO: Matemática Básica 1 SEMESTRE: Segundo CÓDIGO DEL CURSO: 101 TIPO DE EXAMEN: Examen

Más detalles

MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler.

MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler. MECANICA CLASICA Segundo cuatrimestre de 2007. Cinemática y dinámica del cuerpo rígido, ángulos de Euler, Ecuaciones de Euler. Problema 1: Analizar los siguientes puntos. a) Mostrar que la velocidad angular

Más detalles

Problemas de Cinemática 1 o Bachillerato

Problemas de Cinemática 1 o Bachillerato Problemas de Cinemática 1 o Bachillerato 1. Sean los vectores a = i y b = i 5 j. Demostrar que a + b = a + b a b cos ϕ donde ϕ es el ángulo que forma el vector b con el eje X.. Una barca, que lleva una

Más detalles

Conservación de la Energía Mecánica NOMBRE: CURSO:

Conservación de la Energía Mecánica NOMBRE: CURSO: NOMBRE: CURSO: La ley de conservación de la energía mecánica nos dice que la energía de un sistema aislado de influencias externas se mantiene siempre constante, lo que ocurre es una simple transformación

Más detalles

PRÁCTICA - I DETERMINACION DE LOS ELEMENTOS CARDINALES DE UN SISTEMA ÓPTICO

PRÁCTICA - I DETERMINACION DE LOS ELEMENTOS CARDINALES DE UN SISTEMA ÓPTICO PRÁCTICA - I DETERMINACION DE LOS ELEMENTOS CARDINALES DE UN SISTEMA ÓPTICO 1- OBJETIVO Y FUNDAMENTO TEORICO A efectos de cálculo, el comportamiento paraxial de un sistema óptico puede resumirse en el

Más detalles

Actividad: Qué es la energía mecánica?

Actividad: Qué es la energía mecánica? Qué es la energía mecánica? Nivel: º medio Subsector: Ciencias físicas Unidad temática: Ver video Conservación de la energía Actividad: Qué es la energía mecánica? Por qué se mueve un cuerpo? Qué tiene

Más detalles

1. Magnitudes vectoriales

1. Magnitudes vectoriales FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda mbvelascob@uqvirtual.edu.co CICLO: V INICADORES DE LOGRO VECTORES 1. Adquiere

Más detalles

FÍSICA I PRÁCTICA 1 DIAGRAMAS DE CUERPO LIBRE. UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. OBJETIVOS DEL APRENDIZAJE:

FÍSICA I PRÁCTICA 1 DIAGRAMAS DE CUERPO LIBRE. UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. OBJETIVOS DEL APRENDIZAJE: UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA I PRÁCTICA 1 DIAGRAMAS DE CUERPO LIBRE. OBJETIVOS DEL APRENDIZAJE: IDENTIFICAR LAS FUERZAS QUE ACTÚAN SOBRE UN OBJETO. REPRESENTAR

Más detalles

1 Esta cuestión de un paradigma fragmentario, tiene causas históricas bien precisas, que se remontan al desarrollo de la

1 Esta cuestión de un paradigma fragmentario, tiene causas históricas bien precisas, que se remontan al desarrollo de la Comprender al ser humano como un ser histórico. Esto implica que la participación de los avances históricos describe una relación directa con el desarrollo del individuo. Esto debe asentarse primordialmente

Más detalles

LEY DE CONSERVACIÓN DE LA ENERGÍA MECÁNICA

LEY DE CONSERVACIÓN DE LA ENERGÍA MECÁNICA Laboratorio de Física General Primer Curso (Mecánica) LEY DE CONSERVACIÓN DE LA ENERGÍA MECÁNICA Fecha: 07/0/05 1. Objetivo de la práctica Comprobar la ley de conservación de la energía mecánica mediante

Más detalles

Subcomisión de materia de Física de 2º De Bachillerato Coordinación P.A.U. 2003-2004

Subcomisión de materia de Física de 2º De Bachillerato Coordinación P.A.U. 2003-2004 FÍSICA CUESTIONES Y PROBLEMAS BLOQUE II: INTERACCIÓN GRAVITATORIA PAU 2003-2004 1.- Resume la evolución de las distintas concepciones del universo hasta establecer las leyes cinemáticas de Kepler que describen

Más detalles

Capítulo 1. Mecánica

Capítulo 1. Mecánica Capítulo 1 Mecánica 1 Velocidad El vector de posición está especificado por tres componentes: r = x î + y ĵ + z k Decimos que x, y y z son las coordenadas de la partícula. La velocidad es la derivada temporal

Más detalles

Cálculo de las Acciones Motoras en Mecánica Analítica

Cálculo de las Acciones Motoras en Mecánica Analítica Cálculo de las Acciones Motoras en Mecánica Analítica 1. Planteamiento general El diseño típico de la motorización de un sistema mecánico S es el que se muestra en la figura 1. Su posición viene definida

Más detalles

Potencial eléctrico. du = - F dl

Potencial eléctrico. du = - F dl Introducción Como la fuerza gravitatoria, la fuerza eléctrica es conservativa. Existe una función energía potencial asociada con la fuerza eléctrica. Como veremos, la energía potencial asociada a una partícula

Más detalles

2.3 MOVIENTO CIRCULAR UNIFORME

2.3 MOVIENTO CIRCULAR UNIFORME 2.3 MOVIENTO CIRCULAR UNIFORME La trayectoria es una circunferencia. La elocidad es constante a N ω En un moimiento circular uniforme, tendremos dos tipos de elocidad: Velocidad Lineal (), que sería tangencial

Más detalles

Una vez conocido el manejo básico, antes de venir al Laboratorio a manejarlo, puedes practicar con un osciloscopio virtual en el enlace

Una vez conocido el manejo básico, antes de venir al Laboratorio a manejarlo, puedes practicar con un osciloscopio virtual en el enlace PRACTICA 3. EL OSCILOSCOPIO ANALOGICO 1. INTRODUCCION. El Osciloscopio es un voltímetro que nos permite representar en su pantalla valores de tensión durante un intervalo de tiempo. Es decir, nos permite

Más detalles

Ejercicios resueltos de movimiento circular uniformemente acelerado

Ejercicios resueltos de movimiento circular uniformemente acelerado Ejercicios resueltos de movimiento circular uniformemente acelerado 1) Una rueda de 50cm de diámetro tarda 10 segundos en adquirir una velocidad constante de 360rpm. a) Calcula la aceleración angular del

Más detalles

EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO

EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO Se denomina péndulo simple (o péndulo matemático) a un punto material suspendido de un hilo inextensible y sin peso, que

Más detalles

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen.

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. Física 2º de Bachillerato. Problemas de Campo Eléctrico. 1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. 2.-

Más detalles

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO 1. Trabajo mecánico y energía. El trabajo, tal y como se define físicamente, es una magnitud diferente de lo que se entiende sensorialmente por trabajo. Trabajo

Más detalles

Fundamentos del trazado electrocardiográfico

Fundamentos del trazado electrocardiográfico Clase 14 Fundamentos del trazado electrocardiográfico Los fenómenos de despolarización y repolarización que se registran en un electrocardiograma se representan a través de flechas llamadas vectores. Estos

Más detalles

1.- Todo planeta que gira alrededor del Sol describiendo una órbita elíptica, en la cual el Sol ocupa una de los focos. Sol

1.- Todo planeta que gira alrededor del Sol describiendo una órbita elíptica, en la cual el Sol ocupa una de los focos. Sol Leyes de Kepler 1.- Todo planeta que gira alrededor del Sol describiendo una órbita elíptica, en la cual el Sol ocupa una de los focos. Planeta Sol 2.- El radio focal que une a un planeta con el Sol describe

Más detalles

un coche está parado en un semáforo implica v 0 =0.

un coche está parado en un semáforo implica v 0 =0. TEMA 1 CINEMÁTICA DE LA PARTÍCULA CONSEJOS PREVIOS A LA RESOLUCIÓN DE PROBLEMAS Movimiento con aceleración constante Al abordar un problema debes fijar el origen de coordenadas y la dirección positiva.

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Introducción al Movimiento Armónico Simple En esta página se pretende que el alumno observe la representación del Movimiento Armónico Simple (en lo que sigue M.A.S.), identificando

Más detalles

Asistente Liberador de Espacio. Manual de Usuario

Asistente Liberador de Espacio. Manual de Usuario 1 Manual de Usuario 2 Introducción...3 Qué es el?...3 Propósito de la aplicación...3 Precauciones y recomendaciones al momento de usar el Asistente...3 Cuándo se abre o cierra el Asistente?...4 Conceptos

Más detalles

VECTORES. Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características:

VECTORES. Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Un vector v es un segmento orientado. VECTORES Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Punto de aplicación: es el lugar

Más detalles

TRABAJO Y ENERGÍA. Campos de fuerzas

TRABAJO Y ENERGÍA. Campos de fuerzas TRABAJO Y ENERGÍA 1. Campos de fuerzas. Fuerzas dependientes de la posición. 2. Trabajo. Potencia. 3. La energía cinética: Teorema de la energía cinética. 4. Campos conservativos de fuerzas. Energía potencial.

Más detalles

ISO 17799: La gestión de la seguridad de la información

ISO 17799: La gestión de la seguridad de la información 1 ISO 17799: La gestión de la seguridad de la información En la actualidad las empresas son conscientes de la gran importancia que tiene para el desarrollo de sus actividades proteger de forma adecuada

Más detalles

IMPORTANCIA DE LA CABECERA DE PROGRAMACIÓN EN LA ENSEÑANZA DE CONTROL NUMERICO

IMPORTANCIA DE LA CABECERA DE PROGRAMACIÓN EN LA ENSEÑANZA DE CONTROL NUMERICO IMPORTANCIA DE LA CABECERA DE PROGRAMACIÓN EN LA ENSEÑANZA DE CONTROL NUMERICO AUTORÍA JAIME MESA JIMÉNEZ TEMÁTICA PROGRAMACIÓN EN CONTROL NUMÉRICO ETAPA F. P. Resumen La programación en control numérico

Más detalles

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o. ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.

Más detalles

Programa Tracker : Cómo generar Vectores y sumarlos

Programa Tracker : Cómo generar Vectores y sumarlos Programa Tracker : Cómo generar Vectores y sumarlos Esta guía explica cómo usar vectores, la posibilidad de sumarlos, presentar los resultados directamente en pantalla y compararlos de forma gráfica y

Más detalles

+- +- 1. En las siguientes figuras: A) B) C) D)

+- +- 1. En las siguientes figuras: A) B) C) D) PROBLEMA IDUCCIÓ ELECTROMAGÉTICA 1. En las siguientes figuras: a) eñala que elemento es el inductor y cual el inducido b) Dibuja las líneas de campo magnético del inductor, e indica (dibuja) el sentido

Más detalles

Trabajo, energía y potencia

Trabajo, energía y potencia Empecemos! Si bien en semanas anteriores hemos descrito las formas en las que se puede presentar la energía y algunas transformaciones que pueden darse en el proceso de producción, distribución y uso de

Más detalles

Unidad: Energía Cinética y Potencial

Unidad: Energía Cinética y Potencial Unidad: Energía Cinética y Potencial El teorema del Trabajo y la Energía Cinética dice que: El cambio de la Energía Cinética de un objeto que se mueve es igual al Trabajo hecho por la fuerza (neta) que

Más detalles

Universidad Autónoma de San Luis Potosi. Facultad de Ingenieria. Mecánica B. Jesús Edgardo Loredo Martínez. Rolando Nájera Perez.

Universidad Autónoma de San Luis Potosi. Facultad de Ingenieria. Mecánica B. Jesús Edgardo Loredo Martínez. Rolando Nájera Perez. Universidad Autónoma de San Luis Potosi Facultad de Ingenieria Mecánica B Jesús Edgardo Loredo Martínez Rolando Nájera Perez Cristian Almanza Victor Gaytan Garcia Práctica 2) Tiro Parabólico Fecha de entrega:

Más detalles

Reglas del juego. 2 o más jugadores

Reglas del juego. 2 o más jugadores Reglas del juego 2 o más jugadores & OTROS JUEGOS DE DADOS La generala Real es una versión nueva de la Generala tradicional, enriquecida en algunas variantes que la convierten en un excelentejuego familiar.

Más detalles

ESCUELA POLITÉCNICA NACIONAL

ESCUELA POLITÉCNICA NACIONAL ESCUELA POLITÉCNICA NACIONAL NIVELACIÓN DE INGENIERIA Y CIENCIAS CALCULO DE LA VELOCIDAD Y EL TIEMPO POR MEDIO DE LA EXPERIMENTACIÓN Y A TRAVÉS DE LAS FORMULAS FUNDAMENTALES DE ACELERACIÓN TALLER DE FUNDAMENTOS

Más detalles

Funciones definidas a trozos

Funciones definidas a trozos Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad

Más detalles

RECOMENDACIÓN UIT-R S.1559

RECOMENDACIÓN UIT-R S.1559 Rec. UIT-R S.1559 1 RECOMENDACIÓN UIT-R S.1559 Metodología para el cálculo de la distribución geográfica de los niveles de la densidad de flujo de potencia equivalente de enlace descendente máximos generados

Más detalles

Las Mareas INDICE. 1. Introducción 2. Fuerza de las mareas 3. Por que tenemos dos mareas al día? 4. Predicción de marea 5. Aviso para la navegación

Las Mareas INDICE. 1. Introducción 2. Fuerza de las mareas 3. Por que tenemos dos mareas al día? 4. Predicción de marea 5. Aviso para la navegación Las Mareas INDICE 1. Introducción 2. Fuerza de las mareas 3. Por que tenemos dos mareas al día? 4. Predicción de marea 5. Aviso para la navegación Introducción La marea es la variación del nivel de la

Más detalles

MECANIZADO DE METALES.

MECANIZADO DE METALES. MECANIZADO DE METALES. Uno de los procesos de conformación es el de arranque de viruta. En contraste con otros métodos, en los procesos de conformación con arranque de viruta hay una gran pérdida de material

Más detalles

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m.

m A 11 N m 2 kg -2. Masa de la Tierra = 5,98 x 10 24 kg; R T = 6,37 x 10 6 m. Campo gravitatorio Cuestiones 1º.- En el movimiento circular de un satélite en torno a la Tierra, determine: a) La expresión de la energía cinética del satélite en función de las masas del satélite y de

Más detalles

Generación de Corriente Alterna

Generación de Corriente Alterna Electricidad Generación de Corriente Alterna Elaborado Por: Germán Fredes / Escuela de Educación Técnica Nº1 Juan XXIII de Marcos Paz Introducción En la actualidad la mayoría de los artefactos que tenemos

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS LOS MOVIMIENTOS ACELERADOS EJERCICIOS PROPUESTOS. Cuando un motorista arranca, se sabe que posee un movimiento acelerado sin necesidad de ver la gráfica s-t ni conocer su trayectoria. Por qué? Porque al

Más detalles

Relaciones entre conjuntos

Relaciones entre conjuntos Relaciones entre conjuntos Parejas ordenadas El orden de los elementos en un conjunto de dos elementos no interesa, por ejemplo: {3, 5} = {5, 3} Por otra parte, una pareja ordenada consiste en dos elementos,

Más detalles

Información importante. 1. El potencial eléctrico. Preuniversitario Solidario. 1.1. Superficies equipotenciales.

Información importante. 1. El potencial eléctrico. Preuniversitario Solidario. 1.1. Superficies equipotenciales. 1.1 Superficies equipotenciales. Preuniversitario Solidario Información importante. Aprendizajes esperados: Es guía constituye una herramienta que usted debe manejar para poder comprender los conceptos

Más detalles

164 Ecuaciones diferenciales

164 Ecuaciones diferenciales 64 Ecuaciones diferenciales Ejercicios 3.6. Mecánica. Soluciones en la página 464. Una piedra de cae desde el reposo debido a la gravedad con resistencia despreciable del aire. a. Mediante una ecuación

Más detalles

Apuntes de Mecánica Newtoniana Cinemática de la Partícula

Apuntes de Mecánica Newtoniana Cinemática de la Partícula Apuntes de Mecánica Newtoniana Cinemática de la Partícula Ariel Fernández Daniel Marta Introducción. En este capítulo se introducirán los elementos necesarios para la descripción del movimiento de una

Más detalles

"Underwood" Pedro Meyer

Underwood Pedro Meyer "Underwood" Pedro Meyer Hoy en día, al hablar de nuevas tecnologías, oigo decir que no están al alcance de todo el mundo. Me pregunto si esto alguna vez fue así. Ciertamente, aquellas viejas máquinas de

Más detalles

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA.

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Actividades Unidad 4. Nos encontramos en el interior de un tren esperando a que comience el viaje. Por la

Más detalles

Beatriz Galán Luque Natividad Adamuz-Povedano Universidad de Córdoba

Beatriz Galán Luque Natividad Adamuz-Povedano Universidad de Córdoba Épsilon - Revista de Educación Matemática 2012, Vol. 29(1), nº 80, pp. 75-81 Actividades sobre el tamaño de la Luna y su distancia a la Tierra Beatriz Galán Luque Natividad Adamuz-Povedano Universidad

Más detalles

CHOQUE.(CANTIDAD DE MOVIMIENTO )

CHOQUE.(CANTIDAD DE MOVIMIENTO ) APUNTES Materia: Tema: Curso: Física y Química Momento Lineal 4º ESO CHOQUE.(CANTIDAD DE MOVIMIENTO ) CANTIDAD DE MOVIMIENTO Si un cuerpo de masa m se está moviendo con velocidad v, la cantidad de movimiento

Más detalles

Pasos para crear un gráfico en Excel GRÁFICOS EN EXCEL

Pasos para crear un gráfico en Excel GRÁFICOS EN EXCEL GRÁFICOS EN EXCEL Un gráfico en Excel es una representación de valores numéricos que mejora la comprensión de los datos que se encuentran en nuestra hoja. Los gráficos son una excelente herramienta para

Más detalles

Circuito RL, Respuesta a la frecuencia.

Circuito RL, Respuesta a la frecuencia. Circuito RL, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se estudia

Más detalles

= 4.38 10 0.956h = 11039 h = 11544 m

= 4.38 10 0.956h = 11039 h = 11544 m PAEG UCLM / Septiembre 2014 OPCIÓN A 1. Un satélite de masa 1.08 10 20 kg describe una órbita circular alrededor de un planeta gigante de masa 5.69 10 26 kg. El periodo orbital del satélite es de 32 horas

Más detalles

PROPORCIONALIDAD - teoría

PROPORCIONALIDAD - teoría PROPORCIONALIDAD RAZÓN: razón de dos números es el cociente indicado de ambos. Es decir, la razón de los dos números a y b es a:b, o lo que es lo mismo, la fracción b a. PROPORCIÓN: es la igualdad de dos

Más detalles

Resolución de problemas. Temas: VOR e ILS

Resolución de problemas. Temas: VOR e ILS Resolución de problemas. Temas: VOR e ILS Autor: Mario E. Casado García 3er Curso ITT ST Índice 1. Problema tema 5: VOR......3 2. Problema tema 7: ILS.....7 3. Referencias..12 2 1. Problema tema 5: VOR

Más detalles

IV CONCURSO ESCOLAR DE TRABAJOS ESTADÍSTICOS. INTRODUCCIÓN

IV CONCURSO ESCOLAR DE TRABAJOS ESTADÍSTICOS. INTRODUCCIÓN INTRODUCCIÓN Una de las unidades didácticas de la asignatura de 4º E.S.O. Iniciación a la Investigación corresponde con la participación en este concurso de trabajos estadísticos, con el fin de adquirir

Más detalles

Magister Edgard Vidalon Vidalon

Magister Edgard Vidalon Vidalon UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE CIENCIAS Movimiento Lunar Magister Edgard Vidalon Vidalon LIMA PERU 2010 0.1 Introducción Se dice que el movimiento de la Luna alrededor de la Tierra es una

Más detalles

TIEMPO -DÍAS -HORAS CONCEPTO GENERAL DEL TIEMPO

TIEMPO -DÍAS -HORAS CONCEPTO GENERAL DEL TIEMPO TIEMPO -DÍAS -HORAS CONCEPTO GENERAL DEL TIEMPO Para medir el tiempo se necesita un fenómeno periódico, que se repita continuamente y con la misma fase, lo que sucede con fenómenos astronómicos basado

Más detalles