5. Microscopía de fluorescencia y epifluorescencia

Tamaño: px
Comenzar la demostración a partir de la página:

Download "5. Microscopía de fluorescencia y epifluorescencia"

Transcripción

1 y epifluorescencia

2 Fluorescencia Espectro de luz visible: La longitud de onda determina el color

3 Fluorescencia Qué es? Es un proceso de interacción entre la radiación y la materia en el cual un material absorbe radiación de una fuente específica y muy rápidamente emite luz cuya energía es menor (de mayor longitud de onda) que la de la radiación que ha absorbido.

4 Fluorescencia Espectro de luz visible: Excitación Emisión

5 Fluorescencia Cómo se produce? Los electrones son excitados a estados vibracionales y rotacionales más altos y cuando vuelven a su estado fundamental emiten la energía de excitación en forma de radiación.

6 Fluorescencia Cómo se produce? E Diagrama de Jablonski S'1 S1 S0

7 Fluorescencia Cómo se produce? E Diagrama de Jablonski S'1 S1 S0

8 Fluorescencia Cómo se produce? Diagrama de Jablonski 1) La absorción de la luz de excitación eleva la molécula del fluorocromo a un estado de excitación con un mayor contenido de energía, S 1.

9 Fluorescencia Cómo se produce? E Diagrama de Jablonski S'1 S1 S0

10 Fluorescencia Cómo se produce? Diagrama de Jablonski 2) En este estado de excitación se mantienen un tiempo determinado, de 10-9 a 10-8 segundos, en el cual la molécula sufre cambios conformacionales e interacciones con las moléculas de su entorno. Como consecuencia, parte de la energía del estado S 1 se disipa, creándose un estado S1 de menor energía.

11 Fluorescencia Cómo se produce? E Diagrama de Jablonski S'1 S1 S0

12 Fluorescencia Cómo se produce? Diagrama de Jablonski 3) Pasado este tiempo de excitación la molécula emite luz de menor energía volviendo a su estado fundamental, S0.

13 Fluorescencia Cómo se produce? E Diagrama de Jablonski S'1 S1 S0

14 Fluorescencia Debido a la disipación interna de energía la luz emitida tiene siempre una longitud de onda mayor (menor energía) que la luz de excitación. La cantidad de luz emitida es muy pequeña en comparación con la utilizada para la excitación.

15 Fluorescencia Lo que diferencia fosforescencia a (ambos la fluorescencia son de procesos la de luminiscencia) es el tiempo de vida más largo de éste último proceso que puede ir desde milisegundos a minutos y ocurre después de que el proceso de absorción haya terminado.

16 Fluorescencia Los materiales que fluorescen lo hacen porque contienen estructuras con configuraciones moleculares particulares conocidas como fluoróforos o fluorocromos.

17 Fluorescencia Un fluorocromo es una molécula capaz de absorber fotones y emitir fotones de menor energía (mayor longitud de onda). Un fluoróforo es la parte del fluorocromo responsable de la emisión de la fluorescencia.

18 Fluorescencia Tipos de fluorescencia: La fluorescencia primaria es la que se da porque existe una configuración inherente a la estructura molecular. Algunas de las fluorescencias más intensas que se observan se asocian con moléculas aromáticas, la fluorescencia de materiales inorgánicos se observa en muchos minerales y piedras preciosas, y quelatos específicos: Clorofila, aceite de inmersión, GFP

19 Fluorescencia Tipos de fluorescencia: La fluorescencia secundaria ocurre cuando una molécula específica o un grupo capaz de fluorescer, un fluorocromo, se introduce en la estructura de la muestra. Éste es el procedimiento para la mayoría de las aplicaciones biológicas de la microscopía de fluorescencia.

20 Fluorescencia Espectros de excitación y emisión: Debido a la diferente configuración electrónica de los fluorocromos cada uno presenta un espectro de excitación y de emisión característico y único. Los fabricantes dan el pico de máxima excitación y el pico de máxima emisión o bien los espectros de excitación y emisión.

21 Fluorescencia Espectro de excitación: Muestra la diferente intensidad de la luz de emisión máxima a diferentes longitudes de onda de excitación. emisión fluorescencia excitación λ

22 Fluorescencia Espectro de emisión: Muestra la intensidad relativa de emisión a diferentes longitudes de onda al excitar con la longitud de onda máxima. emisión fluorescencia λ excitación máxima λ

23 Fluorescencia Espectros de excitación y emisión: Fluoresceína ph = 9 ph = 13

24 Fluorescencia Disminución de la fluorescencia: Una molécula del fluorocromo puede tener varios ciclos de excitación-emisión. Pero bajo condiciones de iluminación de alta intensidad hay una destrucción irreversible del fluorocromo fotoblanqueado excitado que (photobleaching) detección de fluorescencia. se denomina limitando la

25 Fluorescencia

26 Fluorescencia Disminución de la fluorescencia: Fading, decoloración Puede ser por dos procesos: 1) Photobleaching: Descomposición irreversible de las moléculas de los fluorocromos. Está directamente relacionado con la intensidad de la excitación y con el tiempo durante el cual estamos excitando la muestra. Para evitar este efecto se debe trabajar en condiciones de mínima iluminación posible.

27 Fluorescencia Disminución de la fluorescencia: 2) Quenching: Disminución de la intensidad de la emisión debida a condiciones de temperatura o presión elevada, agentes oxidantes y algunas sales. También puede ser debida a interacciones entre moléculas de fluorocromo, por lo que aumentar la concentración de éste no siempre supone un aumento de fluorescencia. Se debe trabajar con agentes secuestradores de oxígeno.

28 Fluorescencia Uso de la microscopía de fluorescencia: 1) El objetivo principal es la identificación de una sustancia específica observando sus propiedades características de emisión cuando se ilumina con radiación de longitud de onda apropiada. 2) Un objetivo difícil es la determinación de parámetros específicos inherentes a la muestra, o que son resultado de la preparación de la misma, que influyen en la fluorescencia de un fluorocromo específico en un material dado.

29 Fluorescencia Uso de la microscopía de fluorescencia: 3) Un tercer objetivo incluye la medida de la intensidad de la fluorescencia y una comparación de esta intensidad con estándares de fluorescencia bien establecidos. 4) El cuarto objetivo es el barrido localizado de una muestra para determinar la distribución de los fluorocromos que contiene, que es la microscopía de barrido confocal.

30 Instrumentación: Epi-iluminación La gran mayoría de los microscopios trabajan en modo de luz incidente, epi-iluminación, aunque algunos todavía lo hacen en modo de luz transmitida.

31 Instrumentación: Epi-iluminación

32 Instrumentación: Epi-iluminación

33 Instrumentación: Epi-iluminación

34 Instrumentación: Fuentes de luz La elección de la fuente de luz es función del fluorocromo específico que se investiga, sus requisitos de excitación y su eficiencia cuántica. Para excitar la fluorescencia de un fluorocromo se necesita una fuente de luz intensa que suministre las longitudes de onda de excitación del fluorocromo en uso.

35 Instrumentación: Fuentes de luz Lámparas de mercurio a alta presión: Son las más utilizadas. Exhiben máximos discretos sobre un fondo continuo que proporcionan excitación en el rango del ultravioleta así como en las regiones azul y verde.

36 Instrumentación: Fuentes de luz Lámparas de mercurio a alta presión: Estas lámparas son caras, requieren unidades de encendido especiales y el coste de funcionamiento es elevado. La salida de la luz se va reduciendo con el tiempo debido al ennegrecimiento del envoltorio de cuarzo. Nunca deben utilizarse más tiempo del recomendado por el fabricante ya que existe riesgo de explosión que dañaría el microscopio y llenaría la habitación de vapores de mercurio. Generalmente llevan un contador de horas incorporado.

37 Instrumentación: Fuentes de luz Lámparas de xenon a alta presión: Se caracterizan por un flujo luminoso estable y regular. Muestran un continuo de elevada intensidad con algunos máximos irregulares entre longitudes de onda de 800 y nm. Esta fuerte intensidad en el infrarrojo cercano debe ser eliminada con filtros. Suministran suficiente radiación azul-verde en la región de nm donde las lámparas de mercurio no son muy útiles, sin embargo son deficientes en el ultravioleta. Su vida media es más larga que las de mercurio.

38 Instrumentación: Fuentes de luz Lámparas de xenon a alta presión:

39 Instrumentación: Fuentes de luz Lámparas halógenas de wolframio: También se conocen como lámparas de yoduro de cuarzo. Son del tipo de fuente de filamento incandescente que tienen un espectro de radiación continuo. Dan poca emisión en el rango del ultravioleta pero es aceptable en las regiones azul y verde. Permiten un apagado y encendido con frecuencia lo que acortaría la vida de las de mercurio.

40 Instrumentación: Fuentes de luz Lámparas halógenas de wolframio: Son más baratas y más seguras que las de mercurio pero sólo son apropiadas en técnicas donde se espere tener una elevada fluorescencia ya que tienen una menor energía de excitación. Si el trabajo requiere fluorescencia de dos colores o se necesitan elevados aumentos o la fluorescencia es tenue se prefieren las lámparas de vapor de mercurio.

41 Instrumentación: Fuentes de luz Lámparas halógenas de wolframio:

42 Instrumentación: Filtros Filtro de excitación Filtro barrera

43 Instrumentación: Filtros Con el filtro de excitación seleccionamos la parte del espectro que utilizaremos para excitar la muestra. La muestra emite fluorescencia en un espectro distinto al de excitación y al mismo tiempo refleja parte del espectro utilizado para la excitación. El filtro barrera se encarga de eliminar la parte del espectro reflejado y nos permite visualizar el espectro de emisión correspondiente al fluorocromo. Filtro de excitación Filtro barrera

44 Instrumentación: Filtros Filtro de excitación: Selecciona el espectro de excitación. Espejo dicroico: Refleja la parte del espectro necesaria para la excitación y transmite el resto. Filtro barrera: Deja pasar la parte de la emisión de la muestra que nos interesa. Filtro barrera Filtro de excitación Espejo dicroico Muestra

45 Instrumentación: Filtros Los fabricantes suelen proporcionar bloques de filtros que son combinaciones de filtros de excitación y de emisión con los apropiados espejos dicroicos. Los filtros se describen utilizando letras y números: BP600/30, LP490, DD488/543,...

46 Instrumentación: Filtros Filtros de excitación y barrera: BPxxx - Filtro Pasa Banda (Band Pass): Deja pasar una banda determinada del espectro y bloquea el resto. BP : BP significa filtro pasa banda y los números indican la luz que bloquea por debajo, 460 nm, y la que bloquea por encima, 580 nm

47 Instrumentación: Filtros Filtros de excitación y barrera: BPxxx - Filtro Pasa Banda (Band Pass): Deja pasar una banda determinada del espectro y bloquea el resto. BP600/30: Deja pasar una banda cuyo máximo es 600 nm con una anchura de 30 nm. 30nm 600

48 Instrumentación: Filtros Filtros de excitación y barrera: SP600: SP significa filtro pasa bajos (short pass). Deja pasar el espectro por debajo de un valor determinado, en este caso 600 nm, y bloquea lo que está por encima de ese valor. 600 nm

49 Instrumentación: Filtros Filtros de excitación y barrera: LP490: LP significa filtro pasa altos (long pass). Deja pasar el espectro por encima de un valor determinado, en este caso 490 nm, y bloquea lo que está por debajo de ese valor. 490 nm

50 Instrumentación: Filtros Filtros de excitación y barrera: La combinación de filtros SP y LP permite recortar el espectro por debajo del valor de SP y por encima del valor de LP consiguiendo bandas muy estrechas.

51 Instrumentación: Filtros Espejos dicroicos: También se describen con números y letras: RSPxxx: Espejo dicroico Reflexión Pasa Bajos, refleja por debajo del valor indicado (xxx) y transmite el resto. DDxxx/yyy: Espejo doble dicroico, tiene dos picos en los que refleja (xxx, yyy) y en el resto transmite. TDxxx/yyy/zzz: Espejo triple dicroico, refleja la luz en tres picos (xxx, yyy, zzz) y transmite en el resto

52 Instrumentación: Filtros Espejos dicroicos: RSP490: refleja por debajo de 490 nm y transmite el resto. 490

53 Instrumentación: Filtros Filtro de excitación Filtro barrera Espejo dicroico Fuente de emisión Muestra

54 Instrumentación: Filtros 1.La lámpara emite luz en todo el espectro. 2.El filtro de excitación sólo deja pasar la parte del espectro necesaria para excitar la muestra. 3.El espejo dicroico refleja hacia la muestra la excitación correspondiente. 4.La muestra se excita con la luz que le llega y emite en un espectro superior al de la excitación. 5.El espejo dicroico transmite la emisión de la muestra. 6.El filtro barrera hace una selección exacta del espectro de emisión que nos interesa.

55 Instrumentación: Filtros Filtro de excitación Filtro barrera Espejo dicroico Fuente de emisión Muestra

56 Instrumentación: Objetivos Casi las mismas consideraciones se aplican a la evaluación de los objetivos cuando se requieren para microscopía de fluorescencia o de campo claro. La capacidad del objetivo para captar la luz juega un papel esencial en la microscopía de fluorescencia. Para obtener una intensidad de la señal óptima se debe emplear una apertura numérica elevada y el menor aumento posible.

57 Instrumentación: Objetivos Por otro lado, el tipo de vidrio que se utilice requiere una buena transmisión de la longitud de onda que se use, por eso, los más utilizados son los de fluorita o los apocromáticos. También se deben utilizar objetivos autofluorescencia extremadamente baja. con

58 Instrumentación: Objetivos Puede ocurrir que aunque estén todos los factores anteriores optimizados exista un ruido de fondo. Éste se debería a la propia muestra debido a la fijación, la autofluorescencia o a un proceso de tinción inadecuado.

59 Luz transmitida vs luz incidente Luz transmitida: Los microscopios de fluorescencia antiguos eran poco eficaces en luz transmitida. Los lugares de fluorescencia débil eran difíciles de observar entre la radiación que no era específica de la fluorescencia.

60 Luz transmitida vs luz incidente Luz transmitida: El problema se solventó parcialmente utilizando condensadoras de fondo oscuro. La luz incidente sobre la muestra queda restringida a un área que no entra en el objetivo. Consecuentemente sólo la radiación que surge de la dispersión o de la fluorescencia se recoge en la lente objetivo. Los lugares de fluorescencia débil se observan sobre un fondo oscuro.

61 Luz transmitida vs luz incidente Luz transmitida: Este sistema es más útil en aumentos bajos de aproximadamente 40X y tiene la ventaja de que el contraste es alto. Una desventaja es que se requiere aceite de inmersión no fluorescente o glicerol entre la parte superior de la lente condensadora y la lente objetivo para evitar pérdidas de luz de excitación.

62 Luz transmitida vs luz incidente Luz incidente: Con el desarrollo del espejo dicroico aumentó el número de aplicaciones de la microscopía de fluorescencia ya que hay muchas muestras que no se pueden observar por transmisión. El espejo dicroico lleva la radiación a través del objetivo para la excitación y se usa de nuevo para permitir la observación de la radiación fluorescente.

63 Luz transmitida vs luz incidente Luz incidente: De esta manera el objetivo funciona también como condensadora y la intensidad de la fluorescencia es inversamente proporcional a la cuarta potencia de los aumentos. El brillo máximo se obtiene con un ocular de aumento mínimo y el objetivo de apertura numérica máxima.

64 Luz transmitida vs luz incidente Luz incidente: Las ventajas son que la luz de excitación pasa a través de menos superficies de vidrio y así se pierde menos luz en el camino debido a absorción interna. Como la lente objetivo también es condensadora el área observada es la misma que el área iluminada. Además no hace falta aceite de inmersión en la condensadora.

65 Aplicaciones Se aplica a la determinación cuantitativa de aminoácidos, proteínas, ácidos nucleicos y muchos fluorocromos celulares (para ello se utiliza un fotómetro que mide la intensidad de la fluorescencia de una región específica de la muestra).

66 Aplicaciones También es útil en el estudio de diferentes clases de celulosa, tejidos vegetales, alimentos y medicamentos, fibras animales, minerales en polvo, detección de impurezas en mezclas homogéneas y heterogéneas, polímeros, resinas, cristales líquidos, telas, fibras, petróleo, madera, papel, cemento, semiconductores, ciencia carbón vidrio, forense, restauración de arte, biología y medicina. mineral, cerámica, farmacia,

Tema 7: Técnicas de Espectroscopía atómica. Principios de espectrometría de Absorción y Emisión. Espectrometría de masas atómicas.

Tema 7: Técnicas de Espectroscopía atómica. Principios de espectrometría de Absorción y Emisión. Espectrometría de masas atómicas. Tema 7: Técnicas de Espectroscopía atómica Principios de espectrometría de Absorción y Emisión. Espectrometría de masas atómicas. Espectroscopía Las técnicas espectrométricas son un amplio grupo de técnicas

Más detalles

ESPECTROFOTOMETRÍA. Lic. José Manuel Arriaga Romero

ESPECTROFOTOMETRÍA. Lic. José Manuel Arriaga Romero ESPECTROFOTOMETRÍA Lic. José Manuel Arriaga Romero PRINCIPIOS ESPECTROFOTOMÉTRICOS Características de la luz Longitud de onda Es igual a la distancia entre dos puntos idénticos sobre ondas de luz consecutivas

Más detalles

Microscopía: pasado y presente. M. Dolores Gómez

Microscopía: pasado y presente. M. Dolores Gómez Microscopía: pasado y presente M. Dolores Gómez Ramón y Cajal El origen del microscopio óptico da lugar al origen de la biología celular Célula animal Célula vegetal SIGLO XVI-XVII A finales del siglo

Más detalles

1.- Espectroscopía UV-Vis. 1.1.- Interacción de la luz con la materia

1.- Espectroscopía UV-Vis. 1.1.- Interacción de la luz con la materia 1.- Espectroscopía UV-Vis 1.1.- nteracción de la luz con la materia Figura tomada de: -ALBELLA, J.M.; CNTAS, A.M.; MRANDA, T. y SERRATOSA, J.M.: "ntroducción a la ciencia de materiales". C.S..C., 1993.

Más detalles

LA LUZ. Textos y fotos Fernando Moltini

LA LUZ. Textos y fotos Fernando Moltini LA LUZ Textos y fotos Fernando Moltini Primeras ideas sobre la luz Sócrates y Platón La visión se debía a que el ojo emitía cintas o filamentos que conectaban con el objeto Es esto cierto? La luz es una

Más detalles

Existen dos sistemas básicos para producir el color: el sistema de color aditivo y el sistema de color sustractivo.

Existen dos sistemas básicos para producir el color: el sistema de color aditivo y el sistema de color sustractivo. Continuación de Luz y Color (I) LA REPRODUCCIÓN DEL COLOR Existen dos sistemas básicos para producir el color: el sistema de color aditivo y el sistema de color sustractivo. El sistema de color aditivo

Más detalles

INSTRUMENTACIÓN EN ESPECTROMETRÍA ÓPTICA Componentes de los equipos e instrumentos de espectroscopia óptica

INSTRUMENTACIÓN EN ESPECTROMETRÍA ÓPTICA Componentes de los equipos e instrumentos de espectroscopia óptica Los primeros instrumentos espectroscópicos se desarrollaron para utilizarse en la región visible, por eso se llaman instrumentos ópticos. Hoy también incluyen la espectroscopia UV e IR En este apartado

Más detalles

Qué es la luz y la radiación óptica?

Qué es la luz y la radiación óptica? Qué es la luz y la radiación óptica? La radiación óptica es un tipo de radiación electromagnética y una forma de energía radiante. Hay muchos tipos de energía radiante incluyendo la radiación ultravioleta,

Más detalles

ESPECTROSCOPÍA DE FLUORESCENCIA MOLECULAR

ESPECTROSCOPÍA DE FLUORESCENCIA MOLECULAR ESPECTROSCOPÍA DE FLUORESCENCIA MOLECULAR INTRODUCCIÓN La fluorescencia es un proceso de emisión en el cual las moléculas son excitadas por la absorción de radiación electromagnética. Las especies excitadas

Más detalles

Espectrofotometría UV- VIS

Espectrofotometría UV- VIS Universidad Central de Venezuela Facultad de Agronomía Departamento de Química y Tecnología Cátedra de Análisis de Productos Agrícolas I 1 09/03/2015 9:20 Prof. Fanny Molina 5 1 Rad Electromagnética o

Más detalles

Elementos Instalación Energía Solar Fotov. Iluminación. Juan D. Aguilar; F.Garrido. Departamento de Electrónica. Universidad de Jaén 1

Elementos Instalación Energía Solar Fotov. Iluminación. Juan D. Aguilar; F.Garrido. Departamento de Electrónica. Universidad de Jaén 1 Elementos Instalación Energía Solar Fotov. Iluminación Juan D. Aguilar; F.Garrido. Departamento de Electrónica. Universidad de Jaén 1 Iluminación : Balastos Electrónicos y su aplicación a Instalaciones

Más detalles

Introducción al calor y la luz

Introducción al calor y la luz Introducción al calor y la luz El espectro electromagnético es la fuente principal de energía que provee calor y luz. Todos los cuerpos, incluído el vidrio, emiten y absorben energía en forma de ondas

Más detalles

PRÁCTICA 4 COLORIMETRÍA. LEY DE LAMBERT-BEER

PRÁCTICA 4 COLORIMETRÍA. LEY DE LAMBERT-BEER PRÁCTICA 4 COLORIMETRÍA. LEY DE LAMBERT-BEER OBJETIVOS Adquirir los conocimientos básicos sobre espectrofotometría de absorción visible, incluyendo la Ley de Lambert-Beer y sus aplicaciones en Química.

Más detalles

Desventajas de los LEDS

Desventajas de los LEDS Que es un LED LED son las siglas en inglés para Diodo Emisor de Luz así que está claro por su nombre que es un dispositivo electrónico que emite luz, pero cómo funciona realmente? Los LEDs son básicamente

Más detalles

ESPECTROSCOPÍA DE FLUORESCENCIA MOLECULAR. Introducción Principios teóricos Instrumentación Aplicaciones

ESPECTROSCOPÍA DE FLUORESCENCIA MOLECULAR. Introducción Principios teóricos Instrumentación Aplicaciones ESPECTROSCOPÍA DE FLUORESCENCIA MOLECULAR Introducción Principios teóricos Instrumentación Aplicaciones Introducción: Fenómenos luminiscentes moleculares emisión de radiación por parte de determinadas

Más detalles

Innovaciones en Detectores de Llama

Innovaciones en Detectores de Llama ARTÍCULO NT-0710 Innovaciones en Detectores de Llama Sistemas DACS S.A. Especialistas en Sistemas Instrumentados de Seguridad Las industrias invollucradas en la manufactura, procesamiento, almacenamiento

Más detalles

Microscopio Electrónico de Barrido (SEM)

Microscopio Electrónico de Barrido (SEM) Microscopio Electrónico de Barrido (SEM) El microscopio electrónico de barrido - SEM- es el mejor método adaptado al estudio de la morfología de las superficies. A diferencia de un microscopio óptico que

Más detalles

EL CONCEPTO DE ANCHO DE BANDA EN ESPECTROFOTÓMETROS DE BARRIDO Y UNA PROPUESTA DE SU DETERMINACIÓN INSTRUMENTAL

EL CONCEPTO DE ANCHO DE BANDA EN ESPECTROFOTÓMETROS DE BARRIDO Y UNA PROPUESTA DE SU DETERMINACIÓN INSTRUMENTAL EL CONCEPTO DE ANCHO DE BANDA EN ESPECTROFOTÓMETROS DE BARRIDO Y UNA PROPUESTA DE SU DETERMINACIÓN INSTRUMENTAL Jorge E. Juárez Castañeda, Jazmín Carranza Gallardo Instituto Nacional de Astrofísica, Óptica

Más detalles

ESPECTROSCOPIA DE ABSORCIÓN UV - VISIBLE Q.F. ALEX SILVA ARAUJO

ESPECTROSCOPIA DE ABSORCIÓN UV - VISIBLE Q.F. ALEX SILVA ARAUJO ESPECTROSCOPIA DE ABSORCIÓN UV - VISIBLE Q.F. ALEX SILVA ARAUJO TÉRMINOS EMPLEADOS EN ESPECTROSCOPIA DE ABSORCIÓN Transmitancia (T): Es la fracción de radiación incidente transmitida por la solución. A

Más detalles

Práctica 1: Introducción experimental a la Óptica

Práctica 1: Introducción experimental a la Óptica Óptica: Introducción experimental 1 Práctica 1: Introducción experimental a la Óptica 1.- Introducción 2.- El láser 3.- Óptica geométrica 4.- Óptica ondulatoria 1.- Introducción Destaca en la historia

Más detalles

La técnica de EAA EAA. Alan Walsh 1955. Técnica. Metales en Solución. Poderosa. Multiples Aplicaciones. 67 elementos

La técnica de EAA EAA. Alan Walsh 1955. Técnica. Metales en Solución. Poderosa. Multiples Aplicaciones. 67 elementos La técnica de EAA Metales en Solución Alan Walsh 1955 Multiples Aplicaciones EAA Técnica Poderosa 67 elementos ppm sub-ppb Introducción a la EAA Luz Blanca Infrarrojo Rojo Violeta Ultravioleta Isaac Newton

Más detalles

Instrumentos de medida usados en instalaciones solares fotovoltaicas.

Instrumentos de medida usados en instalaciones solares fotovoltaicas. Unidad II Instrumentos de medida usados en instalaciones solares fotovoltaicas. 2.1-Instrumentos de medición de radiación solar. 2.2-Medición de la duración del brillo solar. 2.3-Ubicación y exposición

Más detalles

GBS CAPÍTULO 2.- EL MICROSCOPIO ÓPTICO. INTRODUCCIÓN

GBS CAPÍTULO 2.- EL MICROSCOPIO ÓPTICO. INTRODUCCIÓN CAPÍTULO 2.- EL MICROSCOPIO ÓPTICO. Por: Laura Isac () INTRODUCCIÓN En el estudio de una muestra de fango activo, el microscopio óptico es una herramienta indispensable que nos va a permitir no sólo la

Más detalles

Interacción de la radiación con los objetos

Interacción de la radiación con los objetos Tema 2 Interacción de la radiación con los objetos Todos los objetos (independientemente de la radiación que emitan) van a recibir radiación emitida por otros cuerpos, fundamentalmente del sol, que, en

Más detalles

INTRODUCCIÓN GENERAL Y OBJETIVOS

INTRODUCCIÓN GENERAL Y OBJETIVOS Capítulo 1 INTRODUCCIÓN GENERAL Y OBJETIVOS La luz tiene un papel fundamental sobre los seres vivos. La energía de la radiación ultravioleta y visible del sol da lugar a fenómenos que permiten la continuidad

Más detalles

TEMA 6. ILUMINACIÓN. 6.2. Intensidad y difuminación. Prólogo y rectificación del curso

TEMA 6. ILUMINACIÓN. 6.2. Intensidad y difuminación. Prólogo y rectificación del curso 1 TEMA 6. ILUMINACIÓN. 6.2. Intensidad y difuminación Prólogo y rectificación del curso Según nuestra concepción de esta acción formativa gratuita que estamos realizando desde www.miguelturra.es el equipo

Más detalles

www.autoexactomexico.com

www.autoexactomexico.com Análisis de los gases de escape de los motores de combustión interna El presente artículo explica los fundamentos básicos del análisis de gases de escape de un motor de combustión interna. Del resultado

Más detalles

FÍSICA LAB. 8. la polarización. Comprender la técnica de análisis por espectroscopia. Visualización de los

FÍSICA LAB. 8. la polarización. Comprender la técnica de análisis por espectroscopia. Visualización de los FÍSICA LAB. 8 ÓPTICA FÍSICA Objetivos: Comprender y visualizar los espectros de difracción e interferencia y el fenómeno de la polarización. Comprender la técnica de análisis por espectroscopia. Visualización

Más detalles

Práctica 7. Dispersión de la luz mediante un prisma

Práctica 7. Dispersión de la luz mediante un prisma Dispersión de la luz mediante un prisma 1 Práctica 7. Dispersión de la luz mediante un prisma 1. OBJETIVOS - Aprender el manejo del espectrómetro. - Determinar del índice de refracción de un prisma y de

Más detalles

2. Qué valores de intensidad y voltaje son los adecuados para un perfecto funcionamiento de los diodos LED?

2. Qué valores de intensidad y voltaje son los adecuados para un perfecto funcionamiento de los diodos LED? EL DIODO LED Un led 1 (de la sigla inglesa LED: Light-Emitting Diode: "diodo emisor de luz", también "diodo luminoso") es un diodo semiconductor que emite luz. Se usan como indicadores en muchos dispositivos,

Más detalles

INSTITUTO NACIONAL DE ELECTRÓNICA

INSTITUTO NACIONAL DE ELECTRÓNICA INSTITUTO NACIONAL DE ASTROFÍSICA ÓPTICA Y ELECTRÓNICA TRABAJO TITULADO Diodo Láser Presentan: Lic. Cs. Físico Matemáticas JOSE BENITO RUIZ CARBAJAL benitorc@hotmail.comcom Introducción a los láseres La

Más detalles

Macroscopía y microscopía

Macroscopía y microscopía Macroscopía y microscopía CONTENIDO MACROSCOPÍA. MICROSCOPÍA ÓPTICA. MICROSCOPÍA ELECTRÓNICA DE BARRIDO (SEM). MICROSCOPÍA ELECTRÓNICA DE TRANSMICIÓN (TEM). Macroscopía MACROSCOPÍA: observación de un área

Más detalles

OPTOELECTRONICA I RECEPTORES FOTOELECTRICOS:

OPTOELECTRONICA I RECEPTORES FOTOELECTRICOS: OPTOELECTRONICA I RECEPTORES FOTOELECTRICOS: Todos los receptores que estudiamos aquí funcionan en base al efecto fotoeléctrico. Este efecto consiste en el proceso de producción de portadores de carga

Más detalles

COLORIMETRÍA: ANÁLISIS ESPECTROFOTOMÉTRICO DE LA RIBOFLAVINA

COLORIMETRÍA: ANÁLISIS ESPECTROFOTOMÉTRICO DE LA RIBOFLAVINA COLORIMETRÍA: ANÁLISIS ESPECTROFOTOMÉTRICO DE LA RIBOFLAVINA INTRODUCCION La colorimetría es una de las técnicas empleadas con mayor asiduidad en los laboratorios de Bioquímica. Esta técnica suministra

Más detalles

Biología. pratica 1. Microscopía. Profesora Responsable Dra. Elcia Brito

Biología. pratica 1. Microscopía. Profesora Responsable Dra. Elcia Brito Biología pratica 1 Microscopía Profesora Responsable Dra. Elcia Brito 2015 Objetivo general Conocer la herramienta básica de la biología, el microscopio. Objetivos específicos Comprender la parte física

Más detalles

FREMM 2012 La tecnología LED en la Iluminación Interior

FREMM 2012 La tecnología LED en la Iluminación Interior FREMM 2012 La tecnología LED en la Iluminación Interior www.simonled.es Qué es un LED? Presente y futuro de la tecnología LED Ventajas del LED Claves para seleccionar luminarias LED Ejemplos reales de

Más detalles

Espectrofotometría Infrarrojo

Espectrofotometría Infrarrojo Espectrofotometría Infrarrojo Introducción: La radiación electromagnética es una forma de energía que se propaga como ondas y puede ser subdividida en regiones de longitudes de onda características. Asimismo,

Más detalles

ESPECTROFOTOMETRÍA UV-VISIBLE. Mª Luisa Fernández de Córdova Universidad de Jaén

ESPECTROFOTOMETRÍA UV-VISIBLE. Mª Luisa Fernández de Córdova Universidad de Jaén ESPECTROFOTOMETRÍA UV-VISIBLE 1. Propiedades de la luz 2. Absorción de luz 2.1. Fenómeno de la absorción 2.2. Espectros de absorción molecular 2.3. Tipos de transiciones electrónicas 3. Ley de Lambert-Beer

Más detalles

CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA.

CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA. CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA. I. OBJETIVO GENERAL Conocer y aplicar los fundamentos de la ESPECTROFOTOMETRÍA para la determinación de concentraciones en

Más detalles

TIPOS DE MICROSCOPIOS

TIPOS DE MICROSCOPIOS TIPOS DE MICROSCOPIOS ÍNDICE 1. El microscopio óptico 3 1.1. El microscopio óptico compuesto 4 1.2. El microscopio óptico de contraste de fases 6 1.3. El microscopio óptico de campo oscuro 7 1.4. El microscopio

Más detalles

Espectroscopia de absorción visible-ultravioleta

Espectroscopia de absorción visible-ultravioleta Práctica 6 Espectroscopia de absorción visible-ultravioleta Objetivo Parte A.- Comprobación de la Ley de Beer-Lambert y determinación del coeficiente de absorción molar para disoluciones acuosas de NiSO

Más detalles

PRÁCTICA 2 DETERMINACIÓN ESPECTROFOTOMÉTRICA DE

PRÁCTICA 2 DETERMINACIÓN ESPECTROFOTOMÉTRICA DE PRÁCTICA 2 DETERMINACIÓN ESPECTROFOTOMÉTRICA DE MnO 4-1.- FUNDAMENTO TEÓRICO. 1.1.- Introducción Un método espectrofotométrico está basado en la medida directa de la absorción de radiación electromagnética

Más detalles

Tópicos en Biofísica Molecular. Práctica de laboratorio nº 3: Microscopía de Fluorescencia

Tópicos en Biofísica Molecular. Práctica de laboratorio nº 3: Microscopía de Fluorescencia Tópicos en Biofísica Molecular 2do Cuatrimestre de 2011 Docentes: Lía Pietrasanta y Catalina von Bilderling Práctica de laboratorio nº 3: Microscopía de Fluorescencia OBJETIVOS Identificar las partes y

Más detalles

15/03/2010. Espectrofotometría INTRODUCCIÓN

15/03/2010. Espectrofotometría INTRODUCCIÓN Espectrofotometría Daniel Olave Tecnología Médica 2007 INTRODUCCIÓN Espectrofotometría Es la medida de la cantidad de energía radiante absorbida por las moléculas a longitudes de onda específicas. La espectrofotometría

Más detalles

Medidas de ahorro energético en el pequeño comercio

Medidas de ahorro energético en el pequeño comercio Medidas de ahorro energético en el pequeño comercio La eficiencia energética puede conseguir a través de simples medidas la reducción del consumo energético y por tanto de la factura eléctrica de los pequeños

Más detalles

Lámparas de Inducción Electromagnética Ventajas y Características del Producto

Lámparas de Inducción Electromagnética Ventajas y Características del Producto Lámparas de Inducción Electromagnética Ventajas y Características del Producto Breve Introducción La Lámpara de Inducción Electromagnética sin electrodos (IEM) es un nuevo concepto de muy alta tecnología

Más detalles

Los principales fabricantes de lámparas a nivel mundial son General Electric, Osram, Philips y Sylvania (en orden alfabético), quienes ofrecen líneas

Los principales fabricantes de lámparas a nivel mundial son General Electric, Osram, Philips y Sylvania (en orden alfabético), quienes ofrecen líneas INTRODUCCION Los principales fabricantes de lámparas a nivel mundial son General Electric, Osram, Philips y Sylvania (en orden alfabético), quienes ofrecen líneas amplias de productos. Algunas de las fotografias

Más detalles

EN TODO TIPO DE DIODO, LA CORRIENTE FLUYE FACILMENTE DEL LADO

EN TODO TIPO DE DIODO, LA CORRIENTE FLUYE FACILMENTE DEL LADO QUÉ ES UN LED? LED LIGHT EMITTING DIODE UN LED ES UN TIPO ESPECIAL DE DIODO SEMICONDUCTOR. COMO UN DIODO NORMAL, ÉSTE CONSISTE DE UN CHIP DE MATERIAL SEMICONDUCTOR, IMPREGNADO O DOPADO CON IMPUREZAS, PARA

Más detalles

Actividad de Física: Conceptos Básicos de Celdas Solares Guía del Estudiante

Actividad de Física: Conceptos Básicos de Celdas Solares Guía del Estudiante Actividad de Física: Conceptos Básicos de Celdas Solares Guía del Estudiante Objetivos: Los estudiantes serán capaces de Entender que la luz está compuesta de objetos discretos llamados fotones Calcular

Más detalles

más usuales Las lámparas

más usuales Las lámparas Algunas realidades sobre luminarias Las lámparas más usuales Lámparas incandescentes convencionales y convencionales halógenas. Lámparas y tubos fluorescentes. Lámparas de Vapor de mercurio a alta presión.

Más detalles

Última modificación: 1 de agosto de 2010. www.coimbraweb.com

Última modificación: 1 de agosto de 2010. www.coimbraweb.com TRANSMISORES Y RECEPTORES ÓPTICOS Contenido 1.- Sistema óptico básico. 2.- Diodo emisor de luz LED. 3.- Diodo láser. 4.- Modulación óptica. 5.- Detectores de luz. Objetivo.- Al finalizar, el lector será

Más detalles

Guía de iluminación. Seleccionar la iluminación correcta para la evaluación del color

Guía de iluminación. Seleccionar la iluminación correcta para la evaluación del color Guía de iluminación Seleccionar la iluminación correcta para la evaluación del color Guía de iluminación Las empresas que se ocupan de la calidad del color de sus productos pueden usar instrumentos sofisticados

Más detalles

Fotodiodo.- Diodo detector de luz

Fotodiodo.- Diodo detector de luz Fotodiodo.- Diodo detector de luz El fotodiodo se parece mucho a un diodo semiconductor común, pero tiene una característica que lo hace muy especial: es un dispositivo que conduce una cantidad de corriente

Más detalles

INTRODUCCIÓN A LOS BALASTROS ELECTRÓNICOS

INTRODUCCIÓN A LOS BALASTROS ELECTRÓNICOS 1 INTRODUCCIÓN A LOS BALASTROS ELECTRÓNICOS 1.1 INTRODUCCIÓN En la actualidad existe la necesidad de controlar la potencia eléctrica de los sistemas de iluminación, tracción y motores eléctricos debido

Más detalles

CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA. Grupo: Equipo: Fecha: Nombre(s):

CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA. Grupo: Equipo: Fecha: Nombre(s): CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA Laboratorio de equilibrio y cinética Grupo: Equipo: Fecha: Nombre(s): I. OBJETIVO GENERAL Conocer y aplicar los fundamentos

Más detalles

COMPARATIVA Tubo LED Vs. Tubo Fluorescente

COMPARATIVA Tubo LED Vs. Tubo Fluorescente ERMEC ILUMINACION COMPARATIVA Tubo LED Vs. Tubo Fluorescente Analizamos los inconvenientes de los tubos fluorescentes y las ventajas que ofrece la nueva tecnologia de Tubos LED desde los siguientes aspectos:

Más detalles

Aplicar un método espectrofotométrico para medir la concentración de una proteína.

Aplicar un método espectrofotométrico para medir la concentración de una proteína. Objetivos Aplicar un método espectrofotométrico para medir la concentración de una proteína. Conocer el manejo de micropipetas y espectrofotómetros. Construir curvas de calibración y comprender su importancia

Más detalles

El espectro electromagnético y los colores

El espectro electromagnético y los colores Se le llama espectro visible o luz visible a aquella pequeña porción del espectro electromagnético que es captada por nuestro sentido de la vista. La luz visible está formada por ondas electromagnéticas

Más detalles

Color, temperatura y espectro

Color, temperatura y espectro Color, temperatura y espectro El color de una estrella es un indicador de su temperatura. Según una relación conocida con el nombre de ley de Wien, cuanto mayor es la temperatura de una estrella, más corta

Más detalles

FUNDAMENTOS DE ESPECTROSCOPÍA

FUNDAMENTOS DE ESPECTROSCOPÍA FUNDAMENTOS DE ESPECTROSCOPÍA EMPLEANDO PHYSICSSENSORS Por: Diego Luis Aristizábal Ramírez, Roberto Restrepo Aguilar y Carlos Alberto Ramírez Martínez Profesores asociados de la Escuela de Física de la

Más detalles

ombre:... Comisión:...

ombre:... Comisión:... Trabajo Práctico o 1: Trabajo Práctico º 1: Microscopía Microscopía Óptica ombre:... Comisión:... Objetivos 1. Reconocer las partes del microscopio. 2. Aprender las normas básicas para el manejo y cuidado.

Más detalles

CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. Uno de los componentes clave en las comunicaciones ópticas es la fuente de

CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. Uno de los componentes clave en las comunicaciones ópticas es la fuente de CAPÍTULO II. FUENTES Y DETECTORES ÓPTICOS. 2.1 INTRODUCCIÓN. Uno de los componentes clave en las comunicaciones ópticas es la fuente de luz monocromática. En sistemas de comunicaciones ópticas, las fuentes

Más detalles

LEDs de POTENCIA. Caracteristicas

LEDs de POTENCIA. Caracteristicas LEDs de POTENCIA Los diodos emisores de luz (LEDs) son elementos de estado sólido (semiconductores) que emiten energía al aplicar directamente energía eléctrica, los cuales, dependiendo de la aplicación

Más detalles

PREGUNTAS PARA PRÁCTICAS ORGANIZADAS POR TEMAS.

PREGUNTAS PARA PRÁCTICAS ORGANIZADAS POR TEMAS. PREGUNTAS PARA PRÁCTICAS ORGANIZADAS POR TEMAS. 1) Conceptos generales. Magnitudes y errores. 1. Qué hace falta para escribir correctamente una magnitud física? 2. Magnitudes escalares y vectoriales. Definición.

Más detalles

PRACTICA Núm. 1 EL MICROSCOPIO. Conocer sus partes y su función, así como el cuidado, manejo y utilidad en el Laboratorio de Microbiología.

PRACTICA Núm. 1 EL MICROSCOPIO. Conocer sus partes y su función, así como el cuidado, manejo y utilidad en el Laboratorio de Microbiología. PRACTICA Núm. 1 EL MICROSCOPIO I. OBJETIVO Conocer sus partes y su función, así como el cuidado, manejo y utilidad en el Laboratorio de Microbiología. II. INTRODUCCION El microscopio es indispensable en

Más detalles

El sol y la piel 2. INTERACCIÓN DE LA RADIACIÓN SOLAR EN LA PIEL HUMANA. ASPECTOS BIOLÓGICOS

El sol y la piel 2. INTERACCIÓN DE LA RADIACIÓN SOLAR EN LA PIEL HUMANA. ASPECTOS BIOLÓGICOS El sol y la piel 2. INTERACCIÓN DE LA RADIACIÓN SOLAR EN LA PIEL HUMANA. ASPECTOS BIOLÓGICOS José Aguilera Arjona y María Victoria de Gálvez Aranda Unidad de Fotobiología Dermatológica y Oncología Cutánea

Más detalles

Emisor ópticodevídeo enbandabase

Emisor ópticodevídeo enbandabase MANUALDEINSTRUCCIONES Emisor ópticodevídeo enbandabase MODELO A103 ÍNDICE GENERAL... 1 DESCRIPCIÓN... 5 INSTALACIÓN... 7 OPERACIÓN... 9 MANTENIMIENTO... 11 CARACTERÍSTICAS TÉCNICAS... 13 i EQUITEL A103

Más detalles

EL COLOR. 1. El color de la luz: la temperatura del color

EL COLOR. 1. El color de la luz: la temperatura del color EL COLOR 1. El color de la luz: la temperatura del color La temperatura de color es una medida relativa expresada en kelvin. Esta se define mediante la comparación de su color dentro del espectro luminoso

Más detalles

1. CARACTERÍSTICAS TÉCNICAS DEL EQUIPAMIENTO

1. CARACTERÍSTICAS TÉCNICAS DEL EQUIPAMIENTO PLIEGO DE PRESCRIPCIONES TÉCNICAS QUE HABRÁ DE REGIR LA LICITACIÓN, MEDIANTE PROCEDIMIENTO ABIERTO, PARA LA CONTRATACIÓN DEL SUMINISTRO, INSTALACIÓN Y PUESTA EN MARCHA DEL EQUIPAMIENTO CIENTÍFICO DE LA

Más detalles

Nanorobots: Nueva tecnología para la terapia del cáncer 05 de Setiembre 2011

Nanorobots: Nueva tecnología para la terapia del cáncer 05 de Setiembre 2011 Nanorobots: Nueva tecnología para la terapia del cáncer 05 de Setiembre 2011 El conocimiento humano, con todo su crecimiento y desarrollo, está todavía en sus etapas iniciales de encontrar formas eficientes

Más detalles

Cuál es tu temperatura favorita? Cuán brillante es el Sol? Educación en el cambio global Cambios en la atmósfera - Sección CA3-1

Cuál es tu temperatura favorita? Cuán brillante es el Sol? Educación en el cambio global Cambios en la atmósfera - Sección CA3-1 Educación en el cambio global Cambios en la atmósfera - Sección CA3-1 CA3 Actividades Cuál es tu temperatura favorita? Si alguien te preguntase a qué temperatura te gustaría vivir, seguramente elegirías

Más detalles

Fotosíntesis. Conceptos y fases 27-09-2014

Fotosíntesis. Conceptos y fases 27-09-2014 Fotosíntesis Conceptos y fases o La mayoría de los autótrofos vegetales fabrican su propio alimento utilizando la energía luminosa. o La energía de luz se convierte en la energía química que se almacena

Más detalles

Qué es un espectrofotómetro?

Qué es un espectrofotómetro? Qué es un espectrofotómetro? Un espectrofotómetro es un instrumento usado en el análisis químico que sirve para medir, en función de la longitud de onda, la relación entre valores de una misma magnitud

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos EL42A - Circuitos Electrónicos Clase No. 6: Diodos para Propósitos Especiales Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 18 de Agosto de 2009 1 / Contenidos

Más detalles

Biología de Eucariotes. Practica 1 Microscopia

Biología de Eucariotes. Practica 1 Microscopia Biología de Eucariotes Practica 1 Microscopia Microscopios Partes del microscopio, cuidados y mantenimiento Naturaleza Microscopio Definición: son aparatos que en virtud de las leyes de formación de imágenes

Más detalles

ÍNDICE 1. SISTEMA FLAT FIELDING INTERNO... 2 2. COMPONENTES ÓPTICOS... 3 2.1. FUENTE DE ILUMINACIÓN... 3 2.2. DIFUSOR... 4 3. INTRUCCIONES...

ÍNDICE 1. SISTEMA FLAT FIELDING INTERNO... 2 2. COMPONENTES ÓPTICOS... 3 2.1. FUENTE DE ILUMINACIÓN... 3 2.2. DIFUSOR... 4 3. INTRUCCIONES... ÍNDICE 1. SISTEMA FLAT FIELDING INTERNO... 2 2. COMPONENTES ÓPTICOS... 3 2.1. FUENTE DE ILUMINACIÓN... 3 2.2. DIFUSOR... 4 3. INTRUCCIONES... 6 3.1. DIFUSOR... 6 3.2. LÁMPARA... 6 3.3. FUENTE ALIMENTACIÓN

Más detalles

TÉCNICAS METALOGRAFÍA - PREPARACIÓN DE PROBETAS TÉCNICA METALOGRÁFICA EXTRACCIÓN DE PROBETAS

TÉCNICAS METALOGRAFÍA - PREPARACIÓN DE PROBETAS TÉCNICA METALOGRÁFICA EXTRACCIÓN DE PROBETAS 1 TÉCNICAS METALOGRAFÍA - PREPARACIÓN DE PROBETAS La metalografía microscópica (o micrografía de metales) estudia los productos metalúrgicos, con el auxilio del microscopio, objetivando determinar sus

Más detalles

PRÁCTICA 1 RED ELÉCTRICA

PRÁCTICA 1 RED ELÉCTRICA PRÁCTICA 1 RED ELÉCTRICA PARTE 1.- MEDIDA DE POTENCIAS EN UN CIRCUITO MONOFÁSICO. CORRECCIÓN DEL FACTOR DE POTENCIA OBJETIVOS - Diferenciar entre los tres tipos de potencia que se ponen en juego en un

Más detalles

Control de las condiciones ambientales y de iluminación en el Museo Casa Histórica de la Independencia

Control de las condiciones ambientales y de iluminación en el Museo Casa Histórica de la Independencia Control de las condiciones ambientales y de iluminación en el Museo Casa Histórica de la Independencia Por María Silvana Zamora Departamento de Luminotecnia, Luz y Visión Facultad de Ciencias Exactas y

Más detalles

CARACTERÍSTICAS DE LAS AGUAS PARA SU USO EN EL LABORATORIO

CARACTERÍSTICAS DE LAS AGUAS PARA SU USO EN EL LABORATORIO CARACTERÍSTICAS DE LAS AGUAS PARA SU USO EN EL LABORATORIO AGUA DE ALTA PUREZA Y COMO OBTENERLA: La calidad de agua que se emplea en laboratorios de análisis es determinante en la calidad de sus resultados.

Más detalles

FICHA DE CONSULTA DE EXCURSIÓN POR LA RED ELÉCTRICA

FICHA DE CONSULTA DE EXCURSIÓN POR LA RED ELÉCTRICA FICHA DE CONSULTA Sumario 1. Glosario 1.1. Siglas 3 1.2. Términos 3 2. Paneles solares 2.1. Qué es un panel solar? 4 2.2. Cómo funciona un panel solar? 6 2 1. Glosario 1.1. Siglas 1.2. Términos W/m² Watts

Más detalles

LED: Soluciones innovadoras de iluminación

LED: Soluciones innovadoras de iluminación LED: Soluciones innovadoras de iluminación LEDs: información general SIGLAS: LED (Light Emitting Diode) Diodo Emisor de Luz SSL (Solid State Lighting) Iluminación de Estado Sólido LEDs: información general

Más detalles

RADIACIÓN ULTRAVIOLETA

RADIACIÓN ULTRAVIOLETA RADIACIÓN ULTRAVIOLETA Está presente en la radiación solar. También se obtiene en forma artifical con lámparas de gas de mercurio y otros. Se separa en tres franjas: A, B y C. Antecedente 1 LUZ Isaac Newton

Más detalles

Tema 8: Medidas de contaminación atmosférica II

Tema 8: Medidas de contaminación atmosférica II Tema 8: Medidas de contaminación atmosférica II 8.1 Métodos de referencia 8.2 Medida de dióxido de azufre 8.3 Medida de ozono y oxidantes totales 8.4 Medida de monóxido de carbono 8.5 Medida de óxidos

Más detalles

PRÁCTICA DE LABORATORIO DE QUÍMICA ANÁLISIS POR ESPECTROFOTOMETRÍA DE ABSORCIÓN

PRÁCTICA DE LABORATORIO DE QUÍMICA ANÁLISIS POR ESPECTROFOTOMETRÍA DE ABSORCIÓN PRÁCTICA DE LABORATORIO DE QUÍMICA ANÁLISIS POR ESPECTROFOTOMETRÍA DE ABSORCIÓN 1. OBJETIVOS. Conocer y aplicar la ley de Lambert - Beer Determinar la concentración de una solución por espectrofotometría.

Más detalles

ESPECTROMETRÍA VISIBLE Y ULTRAVIOLETA

ESPECTROMETRÍA VISIBLE Y ULTRAVIOLETA FACULTAD DE CIENCIAS QUÍMICAS Espectrometría Objeto de Estudio Nº 4 LECTURA N 6 ESPECTROMETRÍA VISIBLE Y ULTRAVIOLETA Bibliografía: SKOOG, D.A.; Leary J.J., Holler F. James; PRINCIPIOS DE ANÁLISIS INSTRUMENTAL,

Más detalles

Tema 2: Propiedades y medición de la radiación electromagnética

Tema 2: Propiedades y medición de la radiación electromagnética Tema 2: Propiedades y medición de la radiación electromagnética Espectro de la radiación electromagnética Conceptos básicos para la medición: Densidad de flujo Luminosidad Intensidad Brillo superficial

Más detalles

Mediciones fotométricas de la condición de la iluminación

Mediciones fotométricas de la condición de la iluminación Mediciones fotométricas de la condición de la iluminación Ing. Luis Diego Marín Naranjo M.Sc. Catedrático Escuela Ingeniería Eléctrica Universidad de Costa Rica Coordinador LAFTLA Laboratorio de Fotónica

Más detalles

Manual de instrucciones de uso Mini Termómetro de Infrarrojos PCE-777

Manual de instrucciones de uso Mini Termómetro de Infrarrojos PCE-777 C/ Mayor, 53 - Bajo 02500 Tobarra Albacete-España Tel. : +34 967 543 548 Fax: +34 967 543 542 info@pce-iberica.es Manual de instrucciones de uso Mini Termómetro de Infrarrojos PCE-777 1. Seguridad Tenga

Más detalles

Técnicas histológicas

Técnicas histológicas ATLAS de HISTOLOGÍA VEGETAL y ANIMAL Técnicas histológicas OBSERVACIÓN Manuel Megías, Pilar Molist, Manuel A. Pombal Departamento de Biología Funcional y Ciencias de la Salud. Facultad de Biología. Universidad

Más detalles

Control de iluminación integrado. ELS, MDS, EMD y control a medida

Control de iluminación integrado. ELS, MDS, EMD y control a medida Control de iluminación integrado ELS, MDS, EMD y control a medida Control de iluminación integrado Brillante simplicidad El control integrado de la iluminación implica que todos los elementos de control

Más detalles

C. Trallero-Giner CINVESTAV-DF (2010)

C. Trallero-Giner CINVESTAV-DF (2010) Dispersión Raman en Sólidos I. Introdución Notas históricas Detalles experimentales II. Dispersión de la luz Leyes de conservación Excitaciones elementales C. Trallero-Giner CINVESTAV-DF (2010) III. Aplicaciones

Más detalles

lasguíasfvs Iluminación

lasguíasfvs Iluminación Edición de septiembre 2010 El alumbrado constituye gran parte del consumo de electricidad y energía de los hogares, aproximadamente el 18%. Por esta razón, cualquier hogar que desee reducir su consumo

Más detalles

TEMA 8: Espectroscopía Fotoelectrónica de rayos X (XPS)

TEMA 8: Espectroscopía Fotoelectrónica de rayos X (XPS) TEMA 8: Espectroscopía Fotoelectrónica de rayos X (XPS) 8.1 Descripción de la técnica. 8.2 Interacción de la radiación X sobre la materia. 8.3 Energía de enlace y ajuste químico. 8.4 Características de

Más detalles

Óptica Geométrica. Espejos Planos

Óptica Geométrica. Espejos Planos Óptica Geométrica Espejos Planos Espejos planos Qué son? Un espejo plano es una superficie plana muy pulimentada que puede reflejar la luz que le llega con una capacidad reflectora de la intensidad de

Más detalles

Espectroscopia de UV-Vis y Espectroscopia de Infrarrojo

Espectroscopia de UV-Vis y Espectroscopia de Infrarrojo Espectroscopia de UV-Vis y Espectroscopia de Infrarrojo Double-click MARCIA Double-click BALAGUERA-GELVES here here to to edit edit text. text. Gisela León Colón Ph. D. UPR-Bayamón Espectroscopia y el

Más detalles

COMUNICACION PRECISA del COLOR CONTROL DEL COLOR: DE PERCEPCION A INSTRUMENTACION

COMUNICACION PRECISA del COLOR CONTROL DEL COLOR: DE PERCEPCION A INSTRUMENTACION COMUNICACION PRECISA del COLOR CONTROL DEL COLOR: DE PERCEPCION A INSTRUMENTACION file://c:\konicaminolta\cm-s100w\color\index.html Page 1 of 1 En nuestra vida diaria, estamos rodeados por un número infinito

Más detalles

TEMA 11 Optica. Bases Físicas y Químicas del Medio Ambiente. Ondas luminosas. La luz y todas las demás ondas electromagnéticas son ondas transversales

TEMA 11 Optica. Bases Físicas y Químicas del Medio Ambiente. Ondas luminosas. La luz y todas las demás ondas electromagnéticas son ondas transversales Bases Físicas y Químicas del Medio Ambiente Ondas luminosas TEMA 11 Optica La luz y todas las demás ondas electromagnéticas son ondas transversales La propiedad perturbada es el valor del campo eléctrico

Más detalles

DISPLAYS (VISUALIZADORES)

DISPLAYS (VISUALIZADORES) DISPLAYS (VISUALIZADORES) TIPOS DE TECNOLOGIA DE FABRICACION FLUORESCENTES AL VACIO.- Constan de tubos de vacío con ánodos recubiertos de fósforo. Cuando circula corriente por los filamentos, estos liberan

Más detalles

Técnicas Espectroscópicas. Dr. Jorge A. Palermo

Técnicas Espectroscópicas. Dr. Jorge A. Palermo Técnicas Espectroscópicas Dr. Jorge A. Palermo Espectro Electromagnético E = hν ν = c/λ Espctroscopía UV: cromóforos Espectroscopía IR: grupos funcionales rayos γ rayos x UV VIS IR µ-ondas radio 10-10

Más detalles