UNIDADES DE GUIADO TIPOLOGIA. La gama de unidades de guía es muy amplia. Las guías se pueden agrupar en diversas familias.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIDADES DE GUIADO TIPOLOGIA. La gama de unidades de guía es muy amplia. Las guías se pueden agrupar en diversas familias."

Transcripción

1 UNIDADES DE GUIADO TIPOLOGIA L gm de uniddes de guí es muy mpli. Ls guís se pueden grupr en diverss fmilis. Uniddes de guí pr l conexión con cilindros estándres. Ests son uniddes pr su conexión con un cilindro ISO 6432 ó ISO Cilindros neumáticos de pistón simple con soportes en el extremo de l brr de pistón. El fctor común de tods ls diferentes configurciones es tnto el tldro clibrdo pr el pistón en el cuerpo del cilindro o en el cbezl frontl como tmbién existen otrs rnurs, csquillos de lojmiento o cojinetes de guí pr brrs dicionles. Guís con ctudor neumático L prte principl de estos ctudores es l sección de guí que determin el contorno, ls plicciones, crgs, crrers máxims y el coste. L prte de l neumátic se loj en uno de los cuerpos de l unidd o se suministr como un cilindro completo lojdo dentro de l guí. Cilindro neumático doble L cmis dispone de dos tldros clibrdos pr el lojmiento de dos pistones y brrs, uno l ldo del otro. Son disponibles versiones con un brr de pistón simple, brr de pistón psnte y diferentes limentciones según se dese fijr l cmis o ls brids los extremos de l brr de pistón. Cilindros sin vástgo En estos cilindros, l brr de pistón est integrd con un crro en el exterior de l cmis, de mner que no hy brr de pistón. Se ofrecen versiones con cmis biert con un sección en form de C y un conexión mecánic de pistón y crro. 1.4/02

2 UNIDADES DE GUÍA CON CILINDROS ESTÁNDARES 1 Serie S1 GDS, GDH y GDM pr minicilindros ISO 6432 y cilindros ISO L serie GDS con un cuerpo en form de C es pr crgs más bien bjs. L Serie GDH y GDM disponen de un cuerpo en form de H. Uniddes de guí GDH, brr de pistón de guí con csquillos de recirculción de bols, decuds pr velociddes lts. Son disponibles guís pr minicilindros con diámetros de Ø mm (vése ctálogo Metl Work, págin 1.1/16) y guís pr cilindros con diámetros Ø mm (vése ctálogo Metl Work, págin 1.1/85). CILINDROS CON SISTEMA DE SOPORTE DE VÁSTAGO Serie S2 Cilindros ntirrotción de crrer cort. Diámetros disponibles Ø Vése ctálogo Metl Work, págin 1.1/28-1.1/29. Serie S3 Cilindros de vástgo doble Estos son cilindros con fijciones xiles, según norms ISO Diámetros disponibles Ø Vése ctálogo Metl Work, págin 1.1/110. Serie S4 Cilindros compctos ntirrotción En su diseño son precidos los cilindros de ntirrotción de crrer cort. Son ligermente más robustos por su myor diámetro de l brr de pistón en lgunos tmños y l plc superior qued mejor fijd. Son disponibles los Diámetros de Ø con dimensiones hst UNITOP NE y 2, Diámetros de con medids de fijción pr cilindros ISO Vése ctálogo de Metl Work, págin 1.1/39-1.1/ /03

3 Serie S6 Cilindros de guí compctos Estos cilindros disponen de un elevd cpcidd de crg por encim de l cpcidd de los cilindros ntirrotción de crrer cort y de los cilindros ntirrotción compctos. Se suministrn completos con imnes pr sensores mgnéticos. Diámetros disponibles Ø Vése ctálogo Metl Work News, págin 1.1/143. GUÍAS CON ACTUADOR NEUMÁTICO Serie S8 Est guí se desliz medinte zpts de recirculción de bols sobre guís de cero fijds directmente l cuerpo del cilindro. L guí se mueve lo lrgo del cilindro lo que convierte est unidd en especilmente compct y robust. Se suministr en tipo mgnético. Guí con diámetros cilindro de Ø Opcionl: Topes mecánicos justbles Amortigución neumátic Decelerdor hidráulico Serie S13 Guís de precisión Ls guís de precisión serie S13 incluyen un cilindro neumático doble efecto, que tiene l sol función de empujr y tirr de l crg; un guí en cero rectificdo, solidri l cuerpo; un ptín circulo de esfers, fijdo l mes móvil, que soport todos ls crgs y los momentos plicdos. Tods ls guís son dotds de mgneto pr los sensores. El cuerpo se puede fijr por muchos ldos. L crg se puede fijr l mes se superiormente o frontlmente. L limentción neumátic se puede conectr por tres ldos. El conjunto de ests posibiliddes nos fcilit un grn flexibilidd plictiv. L dimensión trsversl es muy reducid. Diámetros disponibles Ø 6-20 CILINDRO NEUMÁTICO DOBLE Serie S10 Cilindro doble L crcterístic principl de este cilindro es que es extr-plno. Dispone de rnurs de sensores y toms de ire en un ldo Diámetros de Ø Son disponibles dos modelos, con csquillos de bronce o con rodmientos de recirculción de bols pr lts velociddes. 1.4/04

4 Serie S11 Unidd de guí de doble cilindro L crcterístic principl de est unidd es que es extr-pln. Es precid l cilindro doble, pero dispone de brrs psntes y dos brids en los extremos. Diámetros Ø Opcionlmente pueden montrse dos decelerdores hidráulicos. Son disponibles dos modelos, con csquillos de bronce o con rodmientos de recirculción de bols pr lts velociddes. 1 Serie S12 Crro de dos cilindros Es precido l unidd de guí de doble cilindro pero en este cso se mueve l prte centrl mientrs ls dos brids en los extremos están fijds. Ls toms de ire se encuentrn en los extremos de ls brrs de pistón. Opcionlmente pueden montrse dos decelerdores hidráulicos. Diámetros Ø Son disponibles dos modelos, con csquillos de bronce o con rodmientos de recirculción de bols pr lts velociddes. CILINDROS SIN VÁSTAGO Serie S15 Cilindro sin vástgo estándr Est es l unidd de guí más compct disponible. En todos los modelos rrib menciondos, l longitud xil es igul l vlor bse más el doble de crrer. En este cso es igul l vlor bse más l crrer, sí que csi l mitd de los demás modelos. Ls otrs 2 dimensiones son tmbién ls mínims, comprbles solmente con ls soluciones con sistems de sostén del vástgo. No obstnte, existen limitciones respecto l crg rdil y los movimientos plicbles. Diámetros Ø Vése ctálogo Metl Work, págin 1.1/117. Serie S16 Cilindro doble sin vástgo Estos disponen del doble de l fuerz xil que el cilindro estándr. L cpcidd de crg rdil y l resistenci de pr tmbién son mucho myores. Diámetros Ø Vése ctálogo Metl Work, págin 1.1/ /05

5 Serie S17 Cilindro sin vástgo con guí dicionl de cero Pr mejorr l cpcidd de crg respecto l cilindro estándr sin vástgo, est versión dispone en un ldo de l cmis de un guí de cero y ls zpts de recirculción de bols están fijds en el crro. Diámetros Ø Vése ctálogo Metl Work, págin 1.1/127. Serie S18 Cilindro sin vástgo con guí V Dos guís en V opuests se mecnizn directmente en l cmis de luminio nodizdo. Sobre ests desliz un crro con dos ptines de resins céticos resistentes l desgste. Vése ctálogo Metl Work, págin 1.1/135. GRÁICO COMPARATIVO - UNIDADES DE GUÍA Ls línes del gráfico inferior muestrn lo siguiente pr cd serie de uniddes de guí: Crg rdil máx. Crrer S Con ello es posible l determinción de l serie más propido pr sus exigencis. Por ejemplo, si dese un guí cpz pr resistir crgs rdiles por encim de 100 N y con un crrer por encim de 1000 mm, lo encontrrá en l Serie S15, S16 Y S S S S1 S15 S S6 (N) 100 S4-S2 S13 S8 S3 50 S 10 S10-S11 S S (mm) 1.4/06

6 1 Enel ctálogo se indicn ls crgs permitids pr cd unidd de guí. Si l crg no est lined con l plc, es posible l determinción de l crg correspondiente o l crrer medinte un buen proximción. CONDICIONES DE CARGA EQUIVALENCIA DE CARGA O CARRERA L +stroke PARA COMPROBAR LA CARGA ADMITIDA L 3 3/2 c 2 2(/b+1) b (2/b+1) b 1.4/07

LUMINARIAS DE EXTERIOR CON LED DE LA SERIE OL/AOL Y FOCOS CON LED DE LA SERIE OFR/AFR

LUMINARIAS DE EXTERIOR CON LED DE LA SERIE OL/AOL Y FOCOS CON LED DE LA SERIE OFR/AFR SERIES LED ES OL/AoL Y OFR/AFR LUMINARIAS DE EXTERIOR CON LED DE LA SERIE OL/AOL Y FOCOS CON LED DE LA SERIE OFR/AFR LA POTENCIA LUMÍNICA SE ALÍA CON EL DISEÑO INTELIGENTE: LAS NUEVAS SERIES LED DE ESYLUX

Más detalles

JUNTAS DE BAJA FRICCIÓN

JUNTAS DE BAJA FRICCIÓN JUNTAS DE BAJA FRICCIÓN GENERALIDADES Junts de Bj Fricción Ls junts de bj fricción de este ctálogo, están formds por un nillo dinámico fbricdo en PTFE con diferentes ditivos, y un junt tóric que ctú como

Más detalles

Protección de forjados de hormigón con Igniplaster. Resistencia al fuego 60, 90, 120 y 180 minutos.

Protección de forjados de hormigón con Igniplaster. Resistencia al fuego 60, 90, 120 y 180 minutos. Protección de forjdos de hormigón con Igniplster. Resistenci l fuego 60, 90, 0 y 80 minutos. Ensyo: LICOF - 56/0 0.06 Dtos técnicos: Forjdo de hormigón. Armdur de cero. Igniplster plicdo por proyección

Más detalles

6. Rodamientos 6.1. DESCRIPCIÓN Y CLASIFICACIONES

6. Rodamientos 6.1. DESCRIPCIÓN Y CLASIFICACIONES TO. INGENIERÍ MECÁNIC, ENERGÉTIC Y E MTERIES 2004 V. IO 6. Rodmientos 6.1. ESCRICIÓN Y CSIICCIONES prición de los utomóviles, motores de lt velocidd y mquinri de producción utomátic fvorecieron l investigción

Más detalles

manual de normas gráficas

manual de normas gráficas mnul de norms gráfics Normtiv gráfic pr el uso del mrc de certificción de Bioequivlenci en remedios genéricos. mnul de norms gráfics BIenvenido l mnul de mrc del logo Bioequivlente L obtención de l condición

Más detalles

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 - INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender

Más detalles

La máquina de corriente continua

La máquina de corriente continua Cpítulo I L máquin de corriente continu L máquin de corriente continu.. Introducción. Ls máquins de corriente continu (cc) se crcterizn por su verstilidd. Medinte diverss combinciones de devndos en derivción

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

Puerto equilibrado Intercambiable Válvula de cartuchos. Reducido inventario. Aumento de la flexibilidad. 15 elementos. 5 cartuchos.

Puerto equilibrado Intercambiable Válvula de cartuchos. Reducido inventario. Aumento de la flexibilidad. 15 elementos. 5 cartuchos. Beneficios de l Bulbo R22 KTV O WASHING LVE TO VA N, AN M RL MADE IN U.S. of A. O O Longitud del tubo cpilr (estándr = 1,5 m) Etiquet del código de fech (fech y ño de fbricción) DATE V SP Etiquet del elemento

Más detalles

Ejemplo práctico de obtención de la resistencia a pandeo de los soportes de acero

Ejemplo práctico de obtención de la resistencia a pandeo de los soportes de acero Ejemplo práctico de obtención de l resistenci pndeo de los soportes de cero Apellidos, nombre Gurdiol Víllor, Arinn (gurdio@mes.upv.) Deprtmento Centro Mecánic del Medio Continuo Teorí de Estructurs Escuel

Más detalles

Señaléticas Diseño gráfico de señales

Señaléticas Diseño gráfico de señales Señlétics Diseño gráfico de señles El cálculo de perímetros y áres de figurs plns es de grn utilidd en l vid práctic, pues l geometrí se encuentr presente en tods prtes. En un min subterráne, ls señles

Más detalles

Falso techo independiente continuo Resistente al fuego 120 minutos EI 120

Falso techo independiente continuo Resistente al fuego 120 minutos EI 120 Flso techo independiente continuo Resistente l fuego 0 minutos EI 0 LICOF - /0 0.0 Pneles de Promtect 00 de mm de espesor. ( plcs) Vrill roscd M-, fijd l estructur o forjdo. Perfil 0 x 0 x 0, mm. Perfilerí

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica

Factorización de polinomios. Sandra Schmidt Q. sschmidt@tec.ac.cr Escuela de Matemática Instituto Tecnológico de Costa Rica Artículo de sección Revist digitl Mtemátic, Educción e Internet (www.cidse.itcr.c.cr/revistmte/). Vol. 12, N o 1. Agosto Ferero 2012. Fctorizción de polinomios. Sndr Schmidt Q. sschmidt@tec.c.cr Escuel

Más detalles

1,5xD Material de corte HSS-E HSS-E Tipo/forma

1,5xD Material de corte HSS-E HSS-E Tipo/forma UHROUÍA MACHOS Aceros generles 800 N/mm 2 (I) 2184-1 Profundidd psnte sulfnizdo TiAlN TiN TiCN Molylide mecnizdo de cp izquierd r cieg sulfnizdo TiN TiN sulfnizdo TiN TiCN TiN izquierd TiAlN Molylide v

Más detalles

Capacidades de trole de empuje de ½ a 10 toneladas Capacidades de trole engranado de ½ a 100 toneladas

Capacidades de trole de empuje de ½ a 10 toneladas Capacidades de trole engranado de ½ a 100 toneladas Combinciones de polipsto/tecle de cden y trole Cpciddes de trole de empuje de ½ 10 tonelds Cpciddes de trole engrndo de ½ 100 tonelds Los polipstos/tecles mnules de cden CB y CF pueden suspenderse de troles

Más detalles

Transformadores de mando ST, DTZ, transformadores de varios devanados UTI, bloques de alimentación universales AING

Transformadores de mando ST, DTZ, transformadores de varios devanados UTI, bloques de alimentación universales AING Índice 12/1 de mndo ST, DTZ, trnsformdores de vrios devndos UTI, bloques de limentción universles AING Fuente de limentción universl Todos los trnsformdores están construidos y probdos según ls más ctules

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 70 EJERCICIOS Áres y perímetros de figurs sencills Hll el áre y el perímetro de ls figurs coloreds de los siguientes ejercicios: 1 ) b) 3 m 3 m 1,8 m 4 m 6 m ) S3 m3 m9 m b) S 6m 1,8 m 5,4

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS TALLER # 5. VOLUMEN

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS TALLER # 5. VOLUMEN FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS TALLER # 5. VOLUMEN Grdo 11 Tller # 5 Nivel I M. C. ESCHER Un de ls obrs más conocids del rtist gráfico holndés M. Escher es l litogrfí

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

DIVERSIFICACIÓN CURRICULAR

DIVERSIFICACIÓN CURRICULAR ECUACIÓN DE PRIMER GRADO Se llmn ecuciones igulddes en ls que precen número y letrs (incógnits) relciondos medinte operciones mtemátics. Por ejemplo: - y = + Son ecuciones con un incógnit cundo prece un

Más detalles

UNIDAD 3 Números reales

UNIDAD 3 Números reales . Curiosiddes sobre lgunos Pág. 1 de 4 Hy tres números de grn importnci en mtemátics y que, prdójicmente, nombrmos con un letr: El número designdo con l letr grieg π = 3,14159 (pi) relcion l longitud de

Más detalles

Neumáticos Industriales. El confort es lo primero

Neumáticos Industriales. El confort es lo primero Neumáticos Industriles El confort es lo primero Rdiles Neumáticos Industriles de Continentl Los neumáticos Industriles de Continentl segurn un excelente confort en todo tipo de superficies y, por tnto,

Más detalles

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores

Repaso de vectores. Semana 2 2. Empecemos! Qué sabes de...? El reto es... Repaso de vectores Semn 2 2 Repso de vectores Repso de vectores Empecemos! Estimdo prticipnte, en est sesión tendrás l oportunidd de refrescr tus seres en cunto l tem de vectores, los cules tienen como principl plicción

Más detalles

8. Calcule el área de la superficie lateral y total de los sólidos construidos en los numerales 1, 2, 3, 4, 6 y 7.

8. Calcule el área de la superficie lateral y total de los sólidos construidos en los numerales 1, 2, 3, 4, 6 y 7. 8 CAPÍTULO OCHO Ejercicios propuestos 8. Cuerpos geométricos 1. Construy un tetredro regulr con rist de 10cm de longitud. 2. Construy un hexedro regulr con rist de 12cm de longitud.. Construy un octedro

Más detalles

McAfee Content Security Blade Server

McAfee Content Security Blade Server Guí de inicio rápido Revisión A McAfee Content Security Blde Server versión 7.0.0 Este Inicio rápido sirve como documento orienttivo de grn precisión pr l configurción de McAfee Content Security Blde Server.

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO TRBJO PRCTICO No 7 MEDICION de DISTORSION EN MPLIFICDORES DE UDIO INTRODUCCION TEORIC: L distorsión es un efecto por el cul un señl pur (de un únic frecuenci) se modific preciendo componentes de frecuencis

Más detalles

McAfee Email Gateway Blade Server

McAfee Email Gateway Blade Server Guí de inicio rápido Revisión B McAfee Emil Gtewy Blde Server versión 7.x Est Guí de inicio rápido sirve como documento orienttivo de grn precisión pr l instlción de McAfee Emil Gtewy Blde Server. Consulte

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Los números racionales:

Los números racionales: El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr

Más detalles

N I Plegado de planos. Septiembre de 1999 EDICION: 1ª NORMA IBERDROLA

N I Plegado de planos. Septiembre de 1999 EDICION: 1ª NORMA IBERDROLA N I 00.02.52 Septiembre de 1999 EDICION: 1ª NORMA IBERDROLA Plegdo de plnos DESCRIPTORES: Plegdo de plnos. N O R M A N I 00.02.52 Septiembre de 1999 EDICION: 1ª I B E R D R O L A Plegdo de plnos Indice

Más detalles

ÁREA DE INGENIERÍA QUÍMICA Prof. Isidoro García García. Operaciones Básicas de Transferencia de Materia. Tema 6

ÁREA DE INGENIERÍA QUÍMICA Prof. Isidoro García García. Operaciones Básicas de Transferencia de Materia. Tema 6 ÁRE DE INGENIERÍ QUÍIC Prof. Isidoro Grcí Grcí Operciones Básics de Trnsferenci de teri Tem 6 Operciones Básics de Trnsferenci de teri INTRODUCCIÓN Como se sbe, ls operciones en columns de relleno son

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

Cocinas a gas AT.1. a b h K7GCU05TT 1.451. a b h AT.2 K7GCU10TTP 2.560. a b h AT.3 K7GCU15TTP 3.331

Cocinas a gas AT.1. a b h K7GCU05TT 1.451. a b h AT.2 K7GCU10TTP 2.560. a b h AT.3 K7GCU15TTP 3.331 series Cocins gs Cooking equipment kcl/ Btu/ kw AT. K7GCU05TT.45 50 3 0, 9, 784,5 3067 - Cocins gs quemdores 0 0 AT. K7GCU0TTP.560 50 6 0,36,6 943,4 7756 - Cocin gs 4 quemdores 0 AT. K7GCU0TTP AT.3 K7GCU5TTP

Más detalles

Razones trigonométricas

Razones trigonométricas LECCIÓ CODESADA 12.1 Rzones trigonométrics En est lección Conocerás ls rzones trigonométrics seno, coseno y tngente Usrás ls rzones trigonométrics pr encontrr ls longitudes lterles desconocids en triángulos

Más detalles

CONSIDERACIONES SOBRE LAS COMPUERTAS

CONSIDERACIONES SOBRE LAS COMPUERTAS Abril de 006 CONSDERACONES SOBRE LAS COMPUERTAS Cátedr de Mecánic de los Fluidos Escuel de ngenierí Mecánic Autores: ngeniero Edgr Blbstro ngeniero Gstón Bourges e-mil: gbourges@fcei.unr.edu.r 1 Abril

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

Cuestiones y Ejercicios numéricos. Capítulo 4

Cuestiones y Ejercicios numéricos. Capítulo 4 1. Teniendo en cuent los vlores de l tbl de Z ef pr los primeros 18 elementos ) Cuánto vle l constnte de pntll del orbitl 1s en el átomo de He? σ 1s (He) = Z- Z ef = 2-1,69 =,31 b) Cuánto vle l constnte

Más detalles

(2132) Repuestos de maquinaria 80.000

(2132) Repuestos de maquinaria 80.000 3. Norms prticulres sobre el inmovilizdo mteril 80.000 25.000 800 (2131) Mquinri. Motores (75.000 + 5.000) (28132) Amortizción cumuld. Repuestos de mquinri (motores) (100.000/8) x 2 (472) Hciend Públic,

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( ) Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

Perfil de competencias. Universidades de Asia

Perfil de competencias. Universidades de Asia Máster en Estudios de Asi y Pcífico Objectivos formtivos Requisitos de dmissión Perfil de competencis Universiddes de Asi Cudro curriculr Horrio (simulción) Coordinción Dr. Jon Oliver, Director del Deprtmento

Más detalles

DINÁMICA Y LAS LEYES DE NEWTON

DINÁMICA Y LAS LEYES DE NEWTON DINÁMICA Y LAS LEYES DE NEWTON EXPERIENCIA N 7 Un propiedd de los cuerpos mteriles es su ms inercil. L fuerz es otro concepto nuevo, útil cundo se trt de describir ls intercciones entre cuerpos mteriles.

Más detalles

FÍSICA APLICADA. EXAMEN A1. ABRIL MODELO A. Nombre:

FÍSICA APLICADA. EXAMEN A1. ABRIL MODELO A. Nombre: Nomre: FÍSICA APLICADA. EXAMEN A. ABRIL 03. MODELO A TEORÍA (.5 p) A) Teorem de Guss. Enuncido y explicción reve. B) Un crg de C se encuentr en el centro de un cuo de m de ldo. Cmirá el flujo eléctrico

Más detalles

entrada DPST-NA Ninguno 2 canales Auto-reset Inversa 24 Vc.a./Vc.c. G9SB-2002-A 4 1 canal ó 2

entrada DPST-NA Ninguno 2 canales Auto-reset Inversa 24 Vc.a./Vc.c. G9SB-2002-A 4 1 canal ó 2 MÓDULO DE RELÉ DE SEGURIDAD Módulo de relé de seguridd de diseño ultrdelgdo Modeloscon2ó3polosenunnchode17.5 mm. Disponibles modelos de nchur 22.5 mm con3polos. Homologciones EN pendiente (probdo TÜV).

Más detalles

INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202

INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA Deprtmento de Ingenierí Mecánic CAV/mm. INGENIERIA DE EJECUCION EN CLIMATIZACION 15082-15202 ASIGNATURA MECANICA DE FLUIDOS NIVEL 04 EXPERIENCIA

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de triángulos GUICEN023MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de triángulos GUICEN023MT22-A16V1 GUÍ DE EJERITIÓN VNZD onceptos generles de triángulos rogrm Entrenmiento Desfío GUIEN023MT22-16V1 Mtemátic En l figur, RQ = 24 cm, RS SQ y RM SN. Si M es el punto medio de SQ y N es el punto medio de RQ,

Más detalles

ENSAYO DE ADAPTACIÓN AL MANEJO ECOLÓGICO DE SEMILLAS TRADICIONALES DE LECHUGAS DE ESCASA DISPONIBILIDAD EN CANARIAS

ENSAYO DE ADAPTACIÓN AL MANEJO ECOLÓGICO DE SEMILLAS TRADICIONALES DE LECHUGAS DE ESCASA DISPONIBILIDAD EN CANARIAS ENSAYO DE ADAPTACIÓN AL MANEJO ECOLÓGICO DE SEMILLAS TRADICIONALES DE LECHUGAS DE ESCASA DISPONIBILIDAD EN CANARIAS ENSAYO DE ADAPTACIÓN AL MANEJO ECOLÓGICO DE SEMILLAS TRADICIONALES DE LECHUGAS DE ESCASA

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

1 q 1 U 5 1 1. (dos cargas puntuales) U 5 q 0. 1 q 2. 1 q 3. r 3 0 i r i. r 1. q 0 4pP a. (q 0 en presencia de otras cargas puntuales)

1 q 1 U 5 1 1. (dos cargas puntuales) U 5 q 0. 1 q 2. 1 q 3. r 3 0 i r i. r 1. q 0 4pP a. (q 0 en presencia de otras cargas puntuales) CAPÍTULO 23 RESUMEN Energí potencil eléctric: L fuerz eléctric cusd por culquier conjunto de crgs es un fuerz conservtiv. El trbjo W relizdo por l fuerz eléctric sobre un prtícul con crg que se mueve en

Más detalles

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b.

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b. TRASLACIÓN HORIZONTAL (DESPLAZAMIENTO HORIZONTAL) Pr estudir l trslción horizontl, se debe fijr primero el vlor del prámetro y después vrir el vlor del prámetro b. Veremos que l función b es el resultdo

Más detalles

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015 Colegio Diocesno Sgrdo Corzón de Jesús EJERCICIOS MATEMÁTICAS º ESO VERANO º. Amplific ls siguientes frcciones pr que tods tengn denomindor b c d º. Cuál de ls siguientes frcciones es un frcción mplificd

Más detalles

Cubrejuntas de Dilatación

Cubrejuntas de Dilatación Curejunts de Diltción INDICE...02 INTRODUCCIÓN...03 CUBREJUNTAS... CMAL (Curejunt Muro Aluminio)...04-05 CMALEX (Curejunt Muro Aluminio Exterior)...06-07 CMACS (Curejunt Muro Acero Inoxidle Sorepuest)...08-09

Más detalles

Serie 250 Válvula de control neumática Tipo y Tipo Válvula de paso recto Tipo 3251

Serie 250 Válvula de control neumática Tipo y Tipo Válvula de paso recto Tipo 3251 Serie 50 Válvul de control neumátic Tipo 51-1 y Tipo 51-7 Válvul de pso recto Tipo 51 Ejecución ANSI Aplicción Válvul de control pr procesos industriles de lts prestciones Pso nominl NPS 1 8 Presión nominl

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

Mención Tecnología, UNGS

Mención Tecnología, UNGS Físic I Mención Tecnologí, UNGS Centro de mss 1) Encuentre l posición del centro de mss de los siguientes sistems de prtículs respecto de un sistem de referenci de su elección. m 2m m m 4m m 5m 2m 3m 4m

Más detalles

INDICE GENERAL. Tipo De Detalles De Pernos De Anclaje. Detalles De Apoyos De Columnas. Detalles Conexiones Rigidas Porticos

INDICE GENERAL. Tipo De Detalles De Pernos De Anclaje. Detalles De Apoyos De Columnas. Detalles Conexiones Rigidas Porticos INDICE GENERL Tipo De Detalles De Pernos De nclaje Detalles De poyos De Columnas Detalles De poyos De Columnas Detalles Conexiones Rigidas Porticos Detalles Conexiones Para Nudos Diversos Tipos De Portico

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero?

103.- Cuándo un contrato de arrendamiento puede considerarse de tipo financiero? 103.- Cuándo un contrto pue consirrse tipo finnciero? Autor: Gregorio Lbtut Serer. Universidd Vlenci. Según el PGC Pymes, y el nuevo PGC, un contrto se clificrá como finnciero, cundo ls condiciones económics

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 007 LA HIPERBOLA Definición : Un Hipérol es el lugr geométrico de un punto en

Más detalles

4.1 INTRODUCCIÓN 4. AGITACION EN LA INDUSTRIA

4.1 INTRODUCCIÓN 4. AGITACION EN LA INDUSTRIA 40 4. AGITACIO E LA IUSTRIA 4.1 ITROUCCIÓ L gitción se refiere forzr un fluido por medios mecánicos pr que dquier un movimiento circultorio en el interior de un recipiente. Los objetivos de l gitción pueden

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

CAPITULO I INTRODUCCIÓN A LA RESISTENCIA DE MATERIALES GUIA TRABAJOS PRACTICOS AÑO 2007

CAPITULO I INTRODUCCIÓN A LA RESISTENCIA DE MATERIALES GUIA TRABAJOS PRACTICOS AÑO 2007 SILI II IULO I INROUIÓN L RSISNI MRILS GUI RJOS RIOS ÑO 007..N 0.: ) lculr l tensión l que est sometido el lmbre de cero de l figur. b) lculr l deformción específic del cero de l figur c) lculr el corrimiento

Más detalles

IMPORTANCIA DE LA CERTIFICACIÓN AMBIENTAL

IMPORTANCIA DE LA CERTIFICACIÓN AMBIENTAL LLOYD S REGISTER QUALITY ASSURANCE LTD. IMPORTANCIA DE LA AMBIENTAL 1de 25 POR QUÉ UN SGA FACTORES DE PRESIÓN LEGISLACIÓN Endurecimiento y orientción l prevención (UE). SOCIEDAD Aumento de l preocupción

Más detalles

Pruebas t para una y dos muestras independientes

Pruebas t para una y dos muestras independientes Densidd Densidd AGRO 55 LAB 9 Pruebs t pr un y dos muestrs independientes 1. Clcule ls siguientes probbiliddes usndo l tbl t e InfoStt. Incluy un digrm en cd cso.. P(T>1.356) si gl=1 b. P(T

Más detalles

MOVIMIENTO DE RODADURA

MOVIMIENTO DE RODADURA E.T.S.. Agrónomos. U.P.. OVENTO DE ODADUA Cuerpos rodntes. Considermos el moimiento de cuerpos que, debido su geometrí, tienen l cpcidd de rodr: eser, ro, disco, supericie eséric, cilindro poydo sobre

Más detalles

Serie 240 Válvula de accionamiento neumático Tipo y Tipo Válvula de tres vías Tipo 3244 Ejecución DIN y ANSI

Serie 240 Válvula de accionamiento neumático Tipo y Tipo Válvula de tres vías Tipo 3244 Ejecución DIN y ANSI Serie 240 Válvul de ccionmiento neumático Tipo 3244-1 Tipo 3244-7 Válvul de tres vís Tipo 3244 Ejecución DIN ANSI Aplicción Válvul mezcldor o distribuidor pr l ingenierí de procesos e instlciones industriles

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() = m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

11 Perímetros y áreas de figuras planas

11 Perímetros y áreas de figuras planas 86464 _ 0371-0384.qxd 1//07 09:4 Págin 371 Perímetros y áres de figurs plns INTRODUCCIÓN En est unidd repsmos ls uniddes de longitud y superficie. Se introducen tmbién lguns uniddes de medid del sistem

Más detalles

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

6. Variable aleatoria continua

6. Variable aleatoria continua 6. Vrile letori continu Un diálogo entre C3PO y Hn Solo, en El Imperio Contrtc, cundo el Hlcón Milenrio se dispone entrr en un cmpo de steroides: - C3PO: Señor, l proilidd de sorevivir l pso por el cmpo

Más detalles

Normativa de señalización exterior e interior

Normativa de señalización exterior e interior Normtiv de señlizción exterior e interior 6 Normtiv de señlizción exterior e interior L señlizción es un sistem de informción cuyo ojetivo principl es loclizr un lugr determindo, y se en l ví púlic, el

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

Tema 8.4: Teorema de Runge. Aproximación de funciones holomorfas por funciones racionales

Tema 8.4: Teorema de Runge. Aproximación de funciones holomorfas por funciones racionales Tem 8.4: Teorem de Runge. Aproximción de funciones holomorfs por funciones rcionles Fcultd de Ciencis Experimentles, Curso 2008-09 Enrique de Amo, Universidd de Almerí Sbemos que ls funciones holomorfs

Más detalles

INVERSA DE UNA MATRIZ

INVERSA DE UNA MATRIZ NVES E UN TZ l igul que pr hllr determinntes, restringiremos nuestro estudio mtrices cudrds utiliremos l mtri identidd de orden n ( n ). Podemos demostrr que si es culquier mtri cudrd de orden n, entonces

Más detalles

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde

Más detalles

SOLUCIONARIO Poliedros

SOLUCIONARIO Poliedros SOLUCIONARIO Poliedros SGUICES06MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Poliedros Ítem Alterntiv 1 D A Comprensión E B 5 D 6 C 7 D 8 B 9 D 10 C 11 E 1 D 1 A 1 C 15 E Comprensión 16 B Comprensión 17

Más detalles

METODOLOGÍA PARA CAMBIO DE FLOTAS EN TRANSPORTE DE MERCANCIAS POR CARRETERA

METODOLOGÍA PARA CAMBIO DE FLOTAS EN TRANSPORTE DE MERCANCIAS POR CARRETERA METODOLOGÍA PARA CAMBIO DE FLOTAS EN TRANSPORTE DE MERCANCIAS POR CARRETERA Est metodologí es plicble ls ctividdes de proyecto que conllevn un cmbio de flot de vehículos pesdos en el trnsporte de mercncís

Más detalles

E.T.S. DE INGENIERÍA (ICAI). TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES Examen Septiembre 2009

E.T.S. DE INGENIERÍA (ICAI). TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES Examen Septiembre 2009 E.T.S. DE INGENIERÍ (ICI). TEORÍ DE ESTRUCTURS Y CONSTRUCCIONES INDUSTRIES Exmen Septiembre 009 EE TENTENTE El exmen const de vrios ejercicios, que se reprtirán sucesivmente, con un tiempo máximo pr l

Más detalles

CONCURSO GERENTE ESE HOSPITAL NIVEL I PUERTO RICO META

CONCURSO GERENTE ESE HOSPITAL NIVEL I PUERTO RICO META Repúblic de Colombi Deprtmento del Met Empres Socil del Estdo CONCURSO GERENTE ESE HOSPITAL NIVEL I PUERTO RICO META LA JUNTA DIRECTIVA DE LA ESE HOSPITAL NIVEL I DEL MUNICIPIO DE PUERTO RICO META DE CONFORMIDAD

Más detalles

Números reales. 1. Números y expresiones decimales. página El conjunto de los números reales página La recta real. Intervalos página 9

Números reales. 1. Números y expresiones decimales. página El conjunto de los números reales página La recta real. Intervalos página 9 Números reles E S Q U E M A D E L A U N I D A D.. Los números rcionles págin.. Los números irrcionles págin. Números y expresiones decimles págin. El conjunto de los números reles págin 8 4.. Orden y desiguldd

Más detalles

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 4 Ecuación de Bernoulli. Mediciones manométricas

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 4 Ecuación de Bernoulli. Mediciones manométricas MECNIC DE FLUIDOS Y MQUINS FLUIDODINMICS Guí Trbjos Prácticos N 4 Ecución de Bernoulli. Mediciones mnométrics. L presión mnométric en es -0, Kg/cm. Determinr el peso específico reltivo del líquido mnométrico.

Más detalles

FACTS Formas de usar más eficientemente las líneas eléctricas existentes.

FACTS Formas de usar más eficientemente las líneas eléctricas existentes. FA Forms de usr más eficientemente ls línes eléctrics existentes. Fustino de l Bodeg, Mrí Dolores Gutiérrez, Zlo Aginko, Koldobik J. Sgstbeiti Deprtmento de ngenierí Eléctric E...T.. de Bilbo (EH/PV) Plz

Más detalles

PRÁCTICA 5. Corrección del factor de potencia

PRÁCTICA 5. Corrección del factor de potencia PRÁTIA 5 orrección del fctor de potenci Objetivo: Determinr el fctor de potenci de un crg monofásic y de un crg trifásic Efectur l corrección del fctor de potenci de un crg monofásic y de un crg trifásic.

Más detalles

Una magnitud es cualquier propiedad que se puede medir numéricamente.

Una magnitud es cualquier propiedad que se puede medir numéricamente. Etueri Clses Prticulres Online Tem 4. Proporcionlidd Mgnitudes Un mgnitud es culquier propiedd que se puede medir numéricmente. Ejemplos: longitud, cpcidd de un recipiente, peso, Rzón L rzón es el cociente

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles