EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES"

Transcripción

1 EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) b) ln f( ) c) 5 si < f( ) 5 si Solución a) La función f( ) es derivable en su dominio, D (-, + ), por ser un polinomio y su derivada es f ( ) +. Para determinar el crecimiento y decrecimiento de f, se estudia el signo de f ( ) que en este caso es siempre positivo, por tanto, f es estrictamente creciente en (-, + ) y no tiene máimos ni mínimos relativos. ln b) La función f( ) es derivable en su dominio, D (, + ), y su derivada es: ln ln ( ) f. El signo de f ( ) depende del signo de su numerador ya que el denominador es siempre positivo. El signo de ln cambia en los puntos que lo anulan: ln ln e Se divide el dominio en los dos intervalos determinados por cada uno de ellos, obteniéndose: e y se estudia el signo de f ( ) en En (, e), se verifica ln <, por tanto f ( ) >, y por ello f es estrictamente creciente. En (e, + ), se verifica ln >, por tanto f ( ) <, y por ello f es estrictamente decreciente. De lo anterior se deduce que en e la función cambia de estrictamente creciente a estrictamente decreciente, por tanto, f tiene un máimo relativo estricto en dicho punto. 5 si < c) Como la función f( ) está definida a trozos, su estudio se realiza por 5 si separado en cada uno de los intervalos en los que tiene distinta definición: En (-, ), f ( ) -5 <, luego f es estrictamente decreciente. En (, + ), f ( ) 6 >, luego f es estrictamente creciente. En, la función cambia de estrictamente decreciente a estrictamente creciente, como además f es continua en ( ) f ( ) 5, ( ) f( ) 5 y f () -, se deduce que f tiene un mínimo relativo en dicho punto. Proyecto de innovación ARAGÓN TRES

2 . Hallar, si eisten, las asíntotas de la función f( ) e Solución Asíntotas verticales El único punto en el que la función no está definida es, por tanto es punto de discontinuidad de f y candidato a determinar una asíntota vertical. Para comprobarlo se calculan los límites laterales cuando tiende a. f( ) e + e + e ( ) + e como sigue: e + + e e e e + (L'Hôpital) + + f ( ) e e e., para resolver esta indeterminación se procede Por tanto, se concluye que la recta es asíntota vertical de f por la derecha y no lo es por la izquierda. Asíntotas horizontales Cuando tiende a + : asíntota horizontal en esta dirección. Cuando tiende a - : asíntota horizontal en esta dirección. Asíntotas oblicuas f( ) e e + e , luego, no eiste f( ) e e e, luego, tampoco eiste Son de la forma y m + n y al no haberse obtenido asíntotas horizontales ni cuando tiende a + ni cuando tiende a -, las asíntotas oblicuas se han de buscar en ambas direcciones. f( ) e e e + e n ( f( ) m) ( e ) ( e ) + e (L'Hôpital) e e + e + e + f( ) e m e e e Cuando tiende a + : m Cuando tiende a - : Proyecto de innovación ARAGÓN TRES

3 n ( f( ) m) ( e ) ( e ) e e e e e. (L'Hôpital) Por tanto, la recta y + es asíntota oblicua de f cuando + y cuando.. Dada la función + f( ) ln, determinar: a) el dominio de definición b) el crecimiento, el decrecimiento y los etremos relativos c) la concavidad, la conveidad y los puntos de infleión Solución + a) La función f( ) ln es composición de una función logarítmica y una racional, por tanto, para calcular su dominio hay que tener en cuenta que las dos estén definidas. + El logaritmo neperiano sólo se puede hallar si >. Luego hay que considerar dos casos: + > y > > y > (, + ) + < y < < y < (-, -) Además, para que no se anule el denominador de la fracción ha de ser. Por tanto, D (-, -) (, + ). b) Para estudiar el crecimiento, decrecimiento y etremos relativos se halla f ( ) quedando f ( ) ( + ) ( ) + ( + )( ) En la siguiente tabla se estudia el signo de f ( ) en D (-, -) (, + ): Signo (-, -) (, + ) f ( ) ( + )( ) - - f( ) Proyecto de innovación ARAGÓN TRES

4 Por tanto, f es estrictamente decreciente en (-, -) (, + ) y no tiene máimos ni mínimos relativos. c) Para estudiar la concavidad, la conveidad y los puntos de infleión se halla f ( ) derivando en f ( ) 6 6, obteniéndose f ( ). ( + )( ) 9 ( 9) El signo de f ( ) en D depende únicamente del signo de, ya que su denominador es siempre positivo, así: En (-, -), f ( ) <, luego f es estrictamente cóncava. En (, + ), f ( ) >, luego f es estrictamente convea. Por tanto, la función no tiene puntos de infleión ya que no eiste ningún punto en el que cambie la concavidad-conveidad estricta de la función. 4. Dada la función 4 f ( ) a + 4a + 6a + b + 4a + b + a, calcular los valores de los parámetros a y b para que en - tenga un punto de infleión y para que su gráfica pase por el punto,. Solución Para que - sea un punto de infleión de f es necesario que f ( ). Derivando se obtiene: f ( ) 4a + a + a + b + 4a + f ( ) a + 4a + a + f ( ) a( ) + 4 a( ) + a+ a+ a 6 Para comprobar si f tiene en - un punto de infleión veamos si f ( ). Derivando se obtiene: f ( ) 4a + 4a f ( ) 4 a( ) + 4a 4a sustituyendo a queda 6 Si la gráfica de f pasa por el punto f ( ) Por tanto, - es punto de infleión de f., se verifica f (), es decir: f() b 4 + b b b 5. Dada la función 8 si f( ) si > a a) Calcular los valores del parámetro a para los que f() es continua en. b) Para a estudiar el crecimiento, decrecimiento y etremos relativos de la función. c) Para a 5 estudiar las asíntotas y ramas parabólicas de la función. Proyecto de innovación ARAGÓN TRES 4

5 Solución a) Para que f() sea continua en se tiene que verificar f( ) a a Igualando queda, f ( ) f( ) f( ) f() + ( ) , f () y despejando se tiene a 6 a 5 b) Para a, la función a estudiar es La derivada de esta función es 8 si f( ) si > < si f ( ) si > 6 ya que no es continua puesto que a 5 Los puntos críticos se calculan a continuación: y en la función no es derivable f ( ) ( ) ( + )( ) y - Además también es punto crítico ya que la función no es derivable en él. Se estudia el signo de la derivada en los siguientes casos: En (-, -), f ( ) ( + )( ) >, luego f es estrictamente creciente. En (-, ), f ( ) ( + )( ) <, luego f es estrictamente decreciente. En (, ), f ( ) ( + )( ) >, luego f es estrictamente creciente. En (, + ), f ( ) >, luego f es estrictamente creciente. En el punto -, la función cambia de estrictamente creciente a estrictamente decreciente por lo tanto en - hay un máimo relativo de f y en, la función cambia de estrictamente decreciente a estrictamente creciente por lo tanto, en hay un mínimo relativo de f. c) Para a 5 la función queda 8 si f( ) si > 5 Para hallar las asíntotas verticales se estudian los límites laterales en el punto 5 ya que es el único que anula el denominador quedando: f( ) f ( ) Por tanto, la recta 5 es asíntota vertical de f por la derecha y por la izquierda. Para hallar las asíntotas horizontales, oblicuas y ramas parabólicas hay que estudiar los límites en las dos direcciones, + y : f( ) la recta y es asíntota horizontal cuando + Proyecto de innovación ARAGÓN TRES 5

6 ( ) ( ) 8 f la función no tiene asíntota horizontal cuando f( ) 8 + la función tiene una rama parabólica de eje horizontal cuando 6. Estudiar y representar gráficamente las siguientes funciones: a) ( ) f e b) Solución f( ) + + c) f( ) ln + a) Para estudiar la función e se realizan los siguientes pasos: f( ) ) La función no está definida para ya que anula el denominador de su eponente, por tanto, D R- {}. ) f() es continua en D por ser composición de dos funciones continuas ya que una es una función eponencial y la otra una función racional con denominador no nulo y es discontinua en ya que D. Además, f() es derivable en D y su derivada es f '( ) e y no es derivable en ya que no es continua. ) Para estudiar si la gráfica de f() es simétrica se halla f( ) e. Al no coincidir con f() ni con -f(), se concluye que no es simétrica ni respecto del eje OY ni respecto del origen. 4) La periodicidad de la función en este caso no es necesario estudiarla ya que no es trigonométrica. 5) Cortes con los ejes: Con OY, no eiste ya que D Con OX, no eiste ya que f( ) e para cualquier valor de 6) Crecimiento, decrecimiento y etremos relativos. Teniendo en cuenta que f '( ) e es negativa en D, se tiene que f es estrictamente decreciente para cualquier valor de D y no tiene etremos relativos. 7) Concavidad, conveidad y puntos de infleión. Derivando f '( ) e se calcula f ''( ) y se estudia su signo de la forma que sigue: Proyecto de innovación ARAGÓN TRES 6

7 e + e ( ) ''( ) e + f y f ''( ) si +, es decir, si 4 4 En la siguiente tabla se estudia el signo de f ''( ) en los intervalos determinados por y : Signo,, (, + ) + - f ''( ) - f( ) La función es estrictamente cóncava en, y estrictamente convea en, y en (, + ). Como en el punto cambia la concavidad-conveidad estricta de f( ) y f e e se deduce que el punto, e e es un punto de infleión. 8) Asíntotas. Para estudiar la eistencia de asíntotas verticales se calculan los límites laterales en el punto ya que es el único punto de discontinuidad: e e e + + e e e e + + Por tanto la recta es asíntota vertical de la función por la derecha y por la izquierda. Para analizar la eistencia de asíntotas horizontales se calculan los siguientes límites: + e e e + e e e Por lo tanto, la recta y es asíntota horizontal de f cuando + y cuando. Teniendo en cuenta el estudio realizado, la gráfica de la función f( ) e es: Proyecto de innovación ARAGÓN TRES 7

8 b) Para estudiar la función f( ) + + se realizan los siguientes pasos: ) D R - {-} ) f() es continua y derivable en D por ser cociente de polinomios con denominador no nulo. f() es discontinua en -, ya que la función no está definida en este punto, y por tanto, no es derivable en él. ( ) ( ) ) Para estudiar si la gráfica de f() es simétrica se halla f( ). Al + + no coincidir con f( ) ni con - f( ), se concluye que no es simétrica ni respecto del eje OY ni respecto del origen. 4) Cortes con los ejes: Con OY, f () + ± Con OX, y f( ) + + tiene soluciones reales Luego el único punto de corte es,. 5) Crecimiento, decrecimiento y etremos relativos. que no Se calcula ( )( + ) ( + ) f '( ) ( + ) ( + ) ( + ) 4 ± ± 6 5 Resolviendo + 4 5, queda y por tanto, la derivada se ( + 5)( ) puede escribir como f '( ) ( + ) En la tabla siguiente se estudia el signo de f '( ) en los intervalos determinados por los puntos -5, -, que son los que anulan al denominador o numerador de f '( ). Signo (-, -5) (-5, -) (-, ) (, + ) ( + ) ( + 5)( ) f '( ) ( + ) f( ) La función es estrictamente creciente en (-, -5) y en (, + ) y estrictamente decreciente en (-5, -) y en (-, ). Proyecto de innovación ARAGÓN TRES 8

9 En -5 hay un cambio de crecimiento a decrecimiento, luego se alcanza en este punto un máimo relativo. Para representarlo se calcula f ( 5), por lo tanto, el punto máimo es ( ) 5,. En hay un cambio de decrecimiento a crecimiento, luego se alcanza en este punto un mínimo relativo. Para representarlo se calcula (),. 6) Concavidad, conveidad y puntos de infleión. f, por lo tanto, el punto mínimo es ( ) Derivando en f '( ) ( + ) se obtiene f ''( ) : ( + 4)( + ) ( + 4 5)( + ) ( + 4)( + ) ( + 4 5) f ''( ) 4 ( + ) ( + ) ( + ) ( + ) Para estudiar el signo de f ''( ), como su numerador es positivo basta hacerlo en los intervalos determinados por -, único valor que anula su denominador: En (-, -), f ''( ) < la función es estrictamente cóncava. En (-, + ), f ''( ) > la función es estrictamente convea. Notar que en el punto - cambia la concavidad-conveidad estricta de f, pero no es un punto de infleión ya que no pertenece al dominio de definición. 7) Asíntotas. Para estudiar la eistencia de asíntotas verticales se calculan los límites laterales en - ya que - es el único punto de discontinuidad de f: ( ) + + ( ) + Por tanto la recta - es asíntota vertical de la función por la derecha y por la izquierda. Para analizar la eistencia de asíntotas horizontales se calculan los siguientes límites: Por lo tanto, no hay asíntotas horizontales pudiendo eistir asíntotas oblicuas o ramas parabólicas, que se estudian hallando los siguientes límites: + f( ) + + m ( + ) n ( f( ) m) Por tanto, la recta y es asíntota oblicua de f cuando + f( ) + + m ( + ) +. Proyecto de innovación ARAGÓN TRES 9

10 + + + n ( f( ) m) Por tanto, la recta y es asíntota oblicua de f cuando. No hay ramas parabólicas ya que eisten asíntotas oblicuas. Se pueden calcular los puntos de corte de f( ) y la asíntota y resolviendo la ecuación: + de la siguiente manera: Como la ecuación anterior no tiene solución, se concluye que la gráfica no corta a la asíntota oblicua. 8) Por último podemos construir la siguiente tabla de puntos relevantes obtenidos en los apartados anteriores: f( ) -5 - Teniendo en cuenta el estudio realizado, la gráfica de la función f( ) + + es: y - -5 y - - Proyecto de innovación ARAGÓN TRES

11 c) Para estudiar la función f( ) ln se realizan los siguientes pasos: + ) Para hallar el dominio hay que tener en cuenta que el logaritmo neperiano sólo está definido si >, para resolver esta inecuación se consideran los siguientes casos: + - si > y + > > y > - (, + ) - si < y + < < y < - (-, -) Por tanto, D (-, -) (, + ). ) f() es continua y derivable en D por ser composición de funciones continuas y derivables. ) Para estudiar si la gráfica de f() es simétrica se halla f( ) ln. Al no coincidir con + f( ) ni con - f( ), se concluye que no es simétrica ni respecto del eje OY ni respecto del origen. 4) Cortes con los ejes: Con OY, no eisten ya que D Con OX, y f( ) ln + + +, ecuación que no tiene solución + + Luego no eisten puntos de corte con los ejes. 5) Crecimiento, decrecimiento y etremos relativos. Se calcula f '( ) ( + ) ( + ) + Para estudiar su signo sólo hay que considerar los intervalos dados por los puntos -, que son los que anulan el denominador puesto que el numerador no se anula. En la tabla siguiente se estudia el signo de f '( ): f '( ) Signo (-, -) (, + ) ( + ) f( ) La función es estrictamente creciente en D, por lo tanto no tiene máimos ni mínimos relativos. 6) Concavidad, conveidad y puntos de infleión. Escribiendo f '( ) y derivando se calcula + f ''( ) ( + ) ( + ) Proyecto de innovación ARAGÓN TRES

12 Como f ''( ) se anula si - -, es decir, si es positivo en D, se tiene : que no pertenece a D, y su denominador En (-, -), f ''( ) > la función es estrictamente convea. En (, + ), f ''( ) < la función es estrictamente cóncava. Como no eiste ningún punto en el que f cambie su concavidad-conveidad estricta, se deduce que f no tiene puntos de infleión. 7) Asíntotas. Para estudiar la eistencia de asíntotas verticales, como f sólo está definida a la izquierda de - y a la derecha de, se calculan los siguientes límites laterales: f( ) ln ln ln ln ( ) + + ( ) ( ) ( ) f( ) ln ln ln ln Por tanto la recta - es asíntota vertical de la función por la izquierda. Por tanto la recta es asíntota vertical de la función por la derecha. Para analizar la eistencia de asíntotas horizontales se calculan los siguientes límites: f( ) ln ln ln f( ) ln ln ln + + Por tanto, la recta y es asíntota horizontal de f cuando + y cuando. + Teniendo en cuenta el estudio realizado, la gráfica de la función f( ) ln + y es: - Proyecto de innovación ARAGÓN TRES

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Tema 4: Representación de funciones Índice:. Información obtenida de la función... Dominio de la función.. Simetrías..3. Periodicidad.4. Puntos de corte con los ejes..5. Ramas

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Tema 7. Límites y continuidad de funciones

Tema 7. Límites y continuidad de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está

Más detalles

Representación gráfica de funciones

Representación gráfica de funciones Gráfica de una fución Representación gráfica de funciones La gráfica de una función está formada por el conjunto de puntos (x, y) para todos los valores de x pertenecientes al Dominio de la función gráfica

Más detalles

UNIDAD 1: LÍMITES DE FUNCIONES. CONTINUIDAD

UNIDAD 1: LÍMITES DE FUNCIONES. CONTINUIDAD UNIDAD : LÍMITES Y CONTINUIDAD UNIDAD : LÍMITES DE FUNCIONES CONTINUIDAD ÍNDICE DE LA UNIDAD - INTRODUCCIÓN - LÍMITE DE UNA FUNCIÓN EN UN PUNTO LÍMITES LATERALES - LÍMITES EN EL INFINITO 5 4- ÁLGEBRA DE

Más detalles

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í Unidad. Límites de funciones. Continuidad y ramas infinitas Resuelve Página 7 A través de una lupa AUMENTO DISTANCIA (dm) El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A

Más detalles

ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN

ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN Problema Datos Procedimiento Ejemplo Dominio de una La ecuación de Casos en los que en dominio no es IR: función la función Irracionales (ecluir valores

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

Unidad 5 Estudio gráfico de funciones

Unidad 5 Estudio gráfico de funciones Unidad 5 Estudio gráfico de funciones PÁGINA 84 SOLUCIONES Representar puntos en un eje de coordenadas. 43 Evaluar un polinomio. a) P(-1) = 1 + + 1 1 = 3 b) P(0) = -1 c) P(-) = 8 + 8 + 1 = 17 d) P(1) =

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 200 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

Funciones definidas a trozos

Funciones definidas a trozos Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad

Más detalles

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 TEMA 11 LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN 11.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función en un

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la

Más detalles

TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD

TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD TEMA 8: DE FUNCIONES. CONTINUIDAD 1. EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores de se hacen enormemente grandes ( ) o enormemente pequeños

Más detalles

Unidad 6 Estudio gráfico de funciones

Unidad 6 Estudio gráfico de funciones Unidad 6 Estudio gráfico de funciones PÁGINA 96 SOLUCIONES Representar puntos en un eje de coordenadas. 178 Evaluar un polinomio. a) b) c) d) e) Escribir intervalos. a) b) c) 179 PÁGINA 98 SOLUCIONES 1.a)

Más detalles

ANÁLISIS DE FUNCIONES RACIONALES

ANÁLISIS DE FUNCIONES RACIONALES ANÁLISIS DE FUNCIONES RACIONALES ( x 9) Dada la función f( x) = x 4 DETERMINE: Dominio, asíntotas, intervalos de crecimiento, intervalos de concavidad, extremos relativos y puntos de inflexión, representar

Más detalles

FUNCIONES Y GRÁFICAS.

FUNCIONES Y GRÁFICAS. FUNCIONES Y GRÁFICAS. CONTENIDOS: Concepto de función. Gráfica de una función. Estudio cualitativo de funciones dadas por sus gráficas Idea intuitiva de continuidad de una función. Repaso de funciones

Más detalles

Límites. 1. Calcula los límites de las siguientes funciones en los puntos que se indican: 2 2 2 a) lim b) lim c) lim d) lim

Límites. 1. Calcula los límites de las siguientes funciones en los puntos que se indican: 2 2 2 a) lim b) lim c) lim d) lim Límites CIT_H. Calcula los límites de las siguientes funciones en los puntos que se indican: ( ) + + + a) lim b) lim c) lim d) lim + + + + + e) lim f) lim g) lim h) lim + 0 + + 9 + j) lim k) lim l) lim

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA 1. MONOTONÍA (CRECIMIENTO O DECRECIMIENTO) Si una función es derivable en un punto = a, podemos determinar su crecimiento o decrecimiento en ese punto a partir del signo de

Más detalles

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11 1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

Gráfica de una función

Gráfica de una función CAPÍTULO 9 Gráfica de una función 9. Bosquejo de la gráfica de una función Para gráficar una función es necesario:. Hallar su dominio sus raíces.. Decidir si es par o impar, o bien ninguna de las dos cosas..

Más detalles

Límite de una función

Límite de una función Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS INTRODUCCIÓN La noción actual de función comienza a gestarse en el siglo XIV, cuando empiezan a preocuparse de medir y representar las variaciones de ciertas

Más detalles

Examen funciones 4º ESO 12/04/13

Examen funciones 4º ESO 12/04/13 Examen funciones 4º ESO 12/04/13 1) Calcula el dominio de las siguientes funciones: a. b. c. d. Calculamos las raíces del numerador y del denominador: Construimos la tabla para ver los signos: - - 0 +

Más detalles

SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA 1

SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA 1 MATEMÁTICAS:º BACHILLERATO SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA.- Calcular los etremos relativos de las siguientes funciones: a) f ( ) D(f) (Por ser polinómica) ; Posibles máimos o mínimos 6

Más detalles

REPRESENTACIÓN GRÁFICA DE FUNCIONES

REPRESENTACIÓN GRÁFICA DE FUNCIONES REPRESENTACIÓN GRÁFICA DE FUNCIONES a. Dominio de definición: D = Dom f() = { R eiste f()} b. Puntos de corte con los ejes: Con el eje OX (abscisas): f() = 0 : (,0). Ninguno, uno o más puntos. Con el eje

Más detalles

Tipos de funciones. Clasificación de funciones

Tipos de funciones. Clasificación de funciones Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

EJERCICIOS RESUELTOS DE CÓNICAS

EJERCICIOS RESUELTOS DE CÓNICAS EJERCICIOS RESUELTOS DE CÓNICAS 1. Hallar la ecuación de la circunferencia que tiene: a) el centro en el punto (, 5) y el radio es igual a 7. b) un diámetro con extremos los puntos (8, -) y (, 6). a) La

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo

Más detalles

Análisis de funciones y representación de curvas

Análisis de funciones y representación de curvas 12 Análisis de funciones y representación de curvas 1. Análisis gráfico de una función Aplica la teoría 1. Dada la siguiente gráfica, analiza todas sus características, es decir, completa el formulario

Más detalles

Ejercicios de representación de funciones

Ejercicios de representación de funciones Ejercicios de representación de funciones 1.- Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.

Más detalles

MATEMÁTICAS I 1º Bachillerato Capítulo 7: Límites y continuidad

MATEMÁTICAS I 1º Bachillerato Capítulo 7: Límites y continuidad MATEMÁTICAS I º Bachillerato Capítulo 7: Límites y continuidad file:///c:/users/cuenta~/appdata/local/temp/b006%0limitesycontinuida D%0Adela. 00 Índice. CONCEPTO DE LÍMITE.. DEFINICIÓN.. LÍMITES LATERALES..

Más detalles

Bloque 4. Cálculo Tema 4 Aplicaciones de la derivada Ejercicios resueltos

Bloque 4. Cálculo Tema 4 Aplicaciones de la derivada Ejercicios resueltos Bloque 4. Cálculo Tema 4 Aplicaciones de la derivada Ejercicios resueltos 4.4- Resolver los siguientes límites aplicando la regla de L Hôpital: ; a) sen e e lim ; b) lim ; c) lim e d) lim 0 0 sen 0 e)

Más detalles

TEMA 5. REPRESENTACIÓN DE FUNCIONES

TEMA 5. REPRESENTACIÓN DE FUNCIONES 94 TEMA 5. REPRESENTACIÓN DE FUNCIONES 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con el eje 1... Con el eje y 1.. Signo de la función 1.4. Periodicidad y simetría

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES

LÍMITES Y CONTINUIDAD DE FUNCIONES Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos

Más detalles

Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009

Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Estudio Gráfico de Funciones Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Índice 1. Función 2 1.1. Definición............................. 2 1.2. Clasificación............................

Más detalles

Ejercicios de Análisis propuestos en Selectividad

Ejercicios de Análisis propuestos en Selectividad Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa

Más detalles

representación gráfica de funciones

representación gráfica de funciones representación gráfica de funciones Esta Unidad pretende ser una aplicación práctica de todo lo aprendido hasta ahora en el bloque de Análisis. En ella nos centraremos en las funciones polinómicas y racionales.

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS LÍMITES DE FUNCIONES. CONTINUIDAD RAMAS INFINITAS Página 7 REFLEIONA RESUELVE Aproimaciones sucesivas Comprueba que: f () =,5; f (,9) =,95; f (,99) =,995 Calcula f (,999); f (,9999); f (,99999); A la vista

Más detalles

1-Comportamiento de una función alrededor de un punto:

1-Comportamiento de una función alrededor de un punto: Matemática II 7 Modulo Límites continuidad En esta sección desarrollaremos el concepto de límite, una de las nociones fundamentales del cálculo. A partir de este concepto se desarrollan también los conceptos

Más detalles

Representación Gráfica de la Hipérbola y la Parábola

Representación Gráfica de la Hipérbola y la Parábola Representación Gráfica de la Hipérbola y la Parábola La Parábola Todas las funciones que tienen por epresión algebraica un polinomio de º grado, tienen por representación n gráfica una parábola. f = a

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD UNIDAD 5 LÍMITES Y CONTINUIDAD Páginas 0 y Describe las siguientes ramas: a) f () b) f () no eiste c) f () d) f () + e) f () f) f () + g) f () h) f () no eiste; f () 0 i) f () + f () + j) f () 5 4 f ()

Más detalles

LA FUNCIÓN EXPONENCIAL Y LA FUNCIÓN LOGARÍTMICA. FUNCIONES DEFINIDAS A TROZOS. Función exponencial

LA FUNCIÓN EXPONENCIAL Y LA FUNCIÓN LOGARÍTMICA. FUNCIONES DEFINIDAS A TROZOS. Función exponencial LA FUNCIÓN EXPONENCIAL Y LA FUNCIÓN LOGARÍTMICA. FUNCIONES DEFINIDAS A TROZOS. Función eponencial La función eponencial es de la forma f () = a, tal que a > 0, a El valor a se llama base de la función

Más detalles

REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES Unidad didáctica 7. Funcines reales de variable real Autras: Glria Jarne, Esperanza Minguillón, Trinidad Zabal REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES CRECIMIENTO Y DECRECIMIENTO Dada una función real

Más detalles

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f) MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en

Más detalles

SOLUCIÓN. BLOQUE DE FUNCIONES.

SOLUCIÓN. BLOQUE DE FUNCIONES. SOLUCIÓN. BLOQUE DE FUNCIONES. Análisis de funciones 1. a) y c) son funciones, porque para cada valor de hay un único valor de y. b) no es una función, porque para cada valor de hay dos valores de y. 2.

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

a) PAR: Una función es simétrica con respecto al eje Y cuando se verifica:

a) PAR: Una función es simétrica con respecto al eje Y cuando se verifica: TEMA 10: REPRESENTACIÓN DE FUNCIONES. 10.1. DOMINIO. El dominio de definición de una función y = f{) (valores para los cuales eiste la función) es, en principio, todo ir, salvo que haya operaciones imposibles

Más detalles

1. Hallar los extremos de las funciones siguientes en las regiones especificadas:

1. Hallar los extremos de las funciones siguientes en las regiones especificadas: 1 1. DERIVACIÓN 1. Hallar los extremos de las funciones siguientes en las regiones especificadas: b) f(x) x (x 1) en el intervalo [, ] y en su dominio. DOMINIO. D R. CORTES CON LOS EJES. Cortes con el

Más detalles

Polinomios de Taylor.

Polinomios de Taylor. Tema 7 Polinomios de Taylor. 7.1 Polinomios de Taylor. Definición 7.1 Recibe el nombre de polinomio de Taylor de grado n para la función f en el punto a, denotado por P n,a, el polinomio: P n,a (x) = f(a)

Más detalles

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0100

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0100 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0100 1) Cierto artículo de lujo se vende en 1 000 pesos. La cantidad de ventas es de 0 000 artículos al año. Se considera imponer un impuesto

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS LÍMITES DE FUNCIONES. CONTINUIDAD RAMAS INFINITAS Página 7 REFLEIONA RESUELVE Aproimaciones sucesivas Comprueba que: f () = 6,5; f (,9) = 6,95; f (,99) = 6,995 Calcula f (,999); f (,9999); f (,99999);

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página REFLEXIONA Y RESUELVE Algunos ites elementales Utiliza tu sentido común para dar el valor de los siguientes ites: a,, b,, @ c,, 5 + d,, @ @ + e,, @ f,, 0 @ 0 @

Más detalles

Matemática I Extremos de una Función. Definiciones-Teoremas

Matemática I Extremos de una Función. Definiciones-Teoremas Universidad Centroccidental Lisandro Alvarado Decanato de Agronomía Programa Ingeniería Agroindustrial Departamento de Gerencia Estudios Generales Matemática I Etremos de una Función. Definiciones-Teoremas

Más detalles

1. Definición 2. Operaciones con funciones

1. Definición 2. Operaciones con funciones 1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de

Más detalles

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim DERIVADAS. CONTENIDOS. Recta tangente a una curva en un punto. Idea intuitiva del concepto de derivada de una función en un punto. Función derivada. sucesivas. Reglas de derivación Aplicación de la derivada

Más detalles

Estudio Gráfico de Funciones

Estudio Gráfico de Funciones Esquema 1 2 Esquema 1 2 Definición es una correspondencia entre dos conjuntos A B tal que a cada elemento del conjunto A le corresponde un único valor solo uno del conjunto B. La gráfica de la función

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página 7 REFLEXIONA Y RESUELVE Visión gráfica de los ites Describe análogamente las siguientes ramas: a) f() b) f() no eiste c) f() d) f() +@ e) f() @ f) f() +@ g) f()

Más detalles

Concepto de función y funciones elementales

Concepto de función y funciones elementales Concepto de unción unciones elementales Matemáticas I - º Bachillerato Las unciones describen enómenos cotidianos, económicos, psicológicos, cientíicos Tales unciones se obtienen eperimentalmente, mediante

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA : Límites continuidad de funciones en R n. -. Dibuja cada uno de los subconjuntos de R siguientes. Dibuja su

Más detalles

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder

Más detalles

3. Operaciones con funciones.

3. Operaciones con funciones. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lección. Funciones derivada. 3. Operaciones con funciones. En esta sección veremos cómo podemos combinar funciones para construir otras nuevas. Especialmente

Más detalles

UNIDAD 2: DERIVADAS Y APLICACIONES

UNIDAD 2: DERIVADAS Y APLICACIONES UNIDAD : DERIVADAS Y APLICACIONES UNIDAD : DERIVADAS Y APLICACIONES ÍNDICE DE LA UNIDAD - INTRODUCCIÓN 6 - DERIVADA DE UNA FUNCIÓN EN UN PUNTO 7 - INTERPRETACIÓN GEOMÉTRICA DE LA DERIVADA 8 4- CONTINUIDAD

Más detalles

13 Integral. indefinida. 1. Reglas de integración. Piensa y calcula. Aplica la teoría

13 Integral. indefinida. 1. Reglas de integración. Piensa y calcula. Aplica la teoría Integral indefinida. Reglas de integración Piensa y calcula Calcula: a y =, y' = b y' =, y = c y = cos, y' = d y' = cos, y = a y' = b y = c y' = sen d y = sen Aplica la teoría. 7 Se aplica la integral

Más detalles

TEMA 1: Cálculo Diferencial de una variable

TEMA 1: Cálculo Diferencial de una variable TEMA 1: Cálculo Diferencial de una variable Cálculo para los Grados en Ingeniería EPIG - UNIOVI Curso 2010-2011 Los números Naturales I Los números Naturales N = f1, 2, 3, g I Principio de inducción Supongamos

Más detalles

1. Funciones y sus gráficas

1. Funciones y sus gráficas FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada

Más detalles

b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. dx x 2 1 x 1 si x >1 x 1 x < 0

b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. dx x 2 1 x 1 si x >1 x 1 x < 0 ANÁLISIS. (Junio 994) a) Encontrar las asíntotas de la curva f () = 2 3 2 4 b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. 2. (Junio

Más detalles

Gráficas de funciones

Gráficas de funciones Apuntes Tema 1 Gráficas de funciones 1.1 Gráficas de funciones a) Función constante: f(x) = k b) Recta vertical: x = k c) Función lineal: f(x) = mx Todas pasan por el origen O(0, 0). 2 d) Función afín:

Más detalles

MATEMÁTICAS. TEMA 5 Límites y Continuidad

MATEMÁTICAS. TEMA 5 Límites y Continuidad MATEMÁTICAS TEMA 5 Límites y Continuidad MATEMÁTICAS º BACHILLERATO CCSS. TEMA 5: LÍMITES Y CONTINUIDAD ÍNDICE. Introducción. Concepto de función. 3. Dominio e imagen de una función. 4. Gráfica de algunas

Más detalles

8 Representación de funciones

8 Representación de funciones 8 Representación de unciones ACTIVIDADES INICIALES 8I Escribe los siguientes cocientes menor que el grado de Q(): a) + + a) + + P() ( + ) P( ) Por tanto: + Q( ) + P ( ) Q ( ) como R ( ) C ( ) + con C()

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA 7 APLICACIONES DE LA DERIVADA Página 68 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f decrece

Más detalles

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades: DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 11 Y 12

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 11 Y 12 Colegio La Inmaculada Misioneras Seculares de Jesús Obrero Matemáticas 4º E.S.O. ACTIVIDADES DE LOS TEMAS Y. Representa en los mismos ejes las siguientes funciones: y = - ; b) y = ; c) y = +. Representa

Más detalles

x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas.

x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas. f ( ) + +. Dominio D (f ) R 4. Recorrido Im( f ) [, ). Puntos de corte - Con el eje y, donde 0 y + + y P (0,) - Con el eje, donde y 0 No hay punto de corte con el eje 4. Asíntotas - Horizontales lim +

Más detalles

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS DOMINIO - Polinomio : D = R - Cocientes : D = R {puntos que anulan el denominador} - Raíces de índice par : D = {Lo

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

EJERCICIOS DE FUNCIONES REALES

EJERCICIOS DE FUNCIONES REALES EJERCICIOS DE FUNCIONES REALES.- La ley que relaciona el valor del área de un cuadrado con la longitud de su lado es una función. Sabemos que la epresión que nos relacionas ambas variables es. Observa

Más detalles

APLICACIONES DEL CÁLCULO DIFERENCIAL-II

APLICACIONES DEL CÁLCULO DIFERENCIAL-II APLICACIONES DEL CÁLCULO DIFERENCIAL-II. Estudia si crecen o decrecen las siguientes funciones en los puntos indicados: π a) f() cos en 0 b) f() ln ( arc tg ) en 0 π c) f() arc sen en 0 d) f() ln en 0

Más detalles

Propiedades de les desigualdades.

Propiedades de les desigualdades. Desigualdades Inecuaciones Diremos que a < b a es menor que b si b a es un número positivo. Gráficamente, a queda a l esquerra de b. Diremos que a > b a mayor que b si a b es un número positivo. Gráficamente,

Más detalles

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la

Más detalles

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím Matemáticas Empresariales I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES si 0. La función f ( ) sen es continua en = 0 si: p si 0 a) p = ½. b) p = 0. Para que sea continua en = 0 debe cumplirse que

Más detalles

Funciones. 63 Ejercicios para practicar con soluciones

Funciones. 63 Ejercicios para practicar con soluciones Funciones. 63 Ejercicios para practicar con soluciones Dadas las siguientes funciones gráficas, asocia cada función con su gráfica: a) f() = b) g() = - c) h() = 3 a) La 3; b) La ; c) La De las siguientes

Más detalles

1. Ecuaciones no lineales

1. Ecuaciones no lineales 1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar

Más detalles

, o más abreviadamente: f ( x)

, o más abreviadamente: f ( x) TEMA 5: 1. CONCEPTO DE FUNCIÓN Observa los siguientes ejemplos: El precio de una llamada telefónica depende de su duración. El consumo de gasolina de un coche depende de la velocidad del mismo. La factura

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

Límites y continuidad

Límites y continuidad Estudio de la continuidad de la función en el punto = : Comprobemos, como primera medida, que la función está definida en =. Para =, tenemos que determinar f() = + = 6 + = 8, luego eiste. Calculamos, entonces

Más detalles