Estacionalidad. Series de tiempo. Modelos econométricos. Modelos econométricos. Q= T Kα Lβ

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Estacionalidad. Series de tiempo. Modelos econométricos. Modelos econométricos. Q= T Kα Lβ"

Transcripción

1 Estacionalidad Qué es la estacionalidad? La estacionalidad es una componente que se presenta en series de frecuencia inferior a la anual (mensual, trimestral,...), y supone oscilaciones a corto plazo de período regular, inferior al año y amplitud regular. Se trata de la componente que introduce los matices más interesantes de cara a la predicción. En general, todas las series de frecuencia inferior a la anual presentan en mayor o menor medida estacionalidad. Estacionalidad Estacionalidad En el gráfico se recoge la evolución del Índice de Producción industrial de España, desde enero de 1998 hasta junio de Son datos mensuales, en base 2000=100, obtenidos del INE. Podríamos discutir si la serie presenta nítidamente tendencia o ciclo (realmente es un período muy pequeño, 5 años, para detectarlo gráficamente), pero este es un ejemplo de serie con estacionalidad. Obsérvese que año tras año, la serie presenta un comportamiento en los distintos meses de cada año muy similar. Todos los años la serie parece crecer en los primeros meses, decae ligeramente en abril, y, sobre todo, sufre una drástica caída de forma sistemática en el mes de agosto. Y así año tras año. Se detecta pues un patrón regular. Efectivamente, esa evolución de la serie responde a hechos sencillos. En los meses de agosto y de abril (si en este mes cae la Semana Santa) las empresas notan el bajón en su producción debido a las vacaciones. Una práctica relativamente frecuente en la modelización econométrica consiste en la utilización del logaritmo en lugar del valor directo de la variable observada. Esta transformación resulta habitual en econometría en distintos contextos: 1. permite la resolución de algunos de los problemas que suelen presentar los modelos econométricos como problemas simples de heteroscedasticidad. Este tipo de transformación tiene la importante propiedad de mantener la evolución temporal de la variable original, reduciendo proporcionalmente la variación relativa entre los distintos valores de la serie. 2. Permite la linealización de modelos originalmente especificados en términos no lineales. Ejemplo, estimar una función de producción de tipo Cobb-Douglas. Q= T Kα Lβ donde K, L representan las dotaciones de factores productivos (capital y trabajo, respectivamente); Q el nivel de producción, y T es una medida de la eficiencia técnica. A partir de esta formulación de la teoría económica, podríamos obtener un modelo econométrico como: 1

2 Obviamente este modelo no es lineal en los parámetros, por lo cual no es estimable a partir de los métodos usuales. Ahora bien si tomamos logaritmos a ambos lados de la ecuación anterior Se obtiene: lnq = ln T +α ln K + β ln L que podemos presentar como: y* = T * +α k * +β l * Como se observa este modelo ya es lineal, y puede ser estimado por mínimos cuadrados. La simple transformación de las variables lo permite. Una última razón hace interesante esta transformación, y es que los parámetros asociados a variables sobre las que previamente se han tomado logaritmos pueden ser interpretados directamente como elasticidades. ln Q = β ln L Lo cual, como es conocido, puede ser aproximado por la elasticidad parcial de la variable Q con respecto a la variable L. Los modelos econométricos exigen que las series a utilizar sean estacionarias en media y varianza. Es decir, que la serie no tenga tendencia, y que presente un grado de dispersión similar. La eliminación de la tendencia se consigue con diferenciación sucesiva, mientras que para obtener una dispersión similar se recurre a la transformación logarítmica. La transformación logarítmica, es útil en otras circunstancias. Por ejemplo, muchos modelos de especificación no lineal pueden ser fácilmente linealizados mediante una transformación logarítmica. Además, cuando tomamos logaritmos a ambos lado de una ecuación, podemos tener una aproximación al concepto de elasticidad. La metodología de los modelos estructurales no ha prestado gran atención al problema de la estacionalidad puesto que estos modelos suelen trabajar con datos de frecuencia anual. De hecho, cuando la estacionalidad de la variable endógena es similar a la que presentan las variables explicativas, no presenta especiales problemas ni precisa de tratamiento diferenciado. Cuando tal estacionalidad no coincide es preferible, frente a la posibilidad de desestacionalizar la serie, la de introducir variables ficticias estacionales. 2

3 Estacionariedad Qué se entiende por estacionariedad de una serie? Para definir la estacionariedad de una serie, se dispone de dos posibilidades: por una parte se dice que un proceso es estrictamente estacionario si sus propiedades, no se ven afectadas por cambios de origen temporal, esto es, cuando al realizar un mismo desplazamiento en el tiempo de todas las variables de cualquier distribución conjunta finita, resulta que esta distribución no varía. A efectos prácticos : 1) que la media sea aproximadamente constante en el tiempo; y 2) que la varianza o dispersión sea igualmente constante. Ello implica que si dividiéramos la muestra en varios sub-períodos (teóricamente infinitos períodos) la media y la varianza deben ser aproximadamente iguales. Un instrumento sencillo para detectar cuando la serie cumple o no esta propiedad es mediante la representación gráfica de la serie objeto de estudio. Efectivamente, una media constante implica la ausencia de tendencia en la serie, por lo que su representación debería arrojar algo muy parecido a una línea paralela al eje de abscisas. Igualmente, una varianza constante supone que las oscilaciones alrededor de tal media sean semejantes en cualquier momento del tiempo, lo cual técnicamente se conoce como homoscedasticidad, esto es, igual (homos) dispersión (cedasticidad). El gráfico puede ser suficiente para comprobar el cumplimiento de la homoscedasticidad. Cuando la serie es heteroscedástica, puede solucionarse de forma satisfactoria tomando logaritmos en la serie original. Efectivamente, la toma de logaritmos tiene la importante propiedad de disminuir la variabilidad de la serie, manteniendo el patrón de comportamiento. En la mayor parte de los casos, la toma de logaritmos ha de ser suficiente para que la heteroscedasticidad deje de ser un problema. Para la eliminación de la tendencia se utiliza, la diferenciación adecuada de la serie original. En la mayor parte de las series la toma de una diferencia será suficiente para eliminar la tendencia. En ese caso, la representación gráfica nos mostrará una línea oscilante sobre una línea horizontal al eje de abscisas. Si se mantiene la tendencia, se puede tomar una segunda diferencia. Veámoslo con un ejemplo: en la figura, se puede ver la evolución mensual, durante algo más de ocho años, del consumo de gasolina en España (variable CONGA, en trazo grueso). Esta misma serie nos servirá de ejemplo posteriormente. Evidentemente, la serie no es estacionaria, dado que muestra una clara tendencia al alza. Puesto que la tendencia puede ser adecuadamente recogida mediante una línea recta, parece que bastaría con realizar una sola diferencia a la serie original. Pero, por otra parte, da la impresión de que la serie presenta algo más de dispersión en los últimos años, por lo que podría interesar trabajar, antes de la diferenciación, con la serie en logaritmos (variable LCONGA, en trazo fino y representada con la escala de la derecha del gráfico). La nueva serie transformada presenta, en general, una menor dispersión y ésta parece, además, más similar para los diferentes años en subperiodos en que pudiera dividirse el gráfico. 3

4 Por supuesto que la toma de logaritmos no elimina la tendencia, por lo que, a continuación, será preciso calcular las primeras diferencias. En un nuevo gráfico, representamos la serie en logaritmos (LCONGA, ahora en trazo grueso y con la escala de la izquierda), así como la serie en diferencias (DLCONGA=LCONGA-LCONGA(- 1), en trazo fino y con la escala de la derecha del gráfico). La tendencia ha sido ahora eliminada en DLCONGA, cuyos valores oscilan alrededor de cero. Por tanto, esta última serie, con transformación logarítmica y en primeras diferencias, ya es estacionaria en media y varianza. La modelización ARIMA o Box-Jenkins parte de considerar que el valor observado de una serie (un dato de una variable) en un momento determinado de tiempo t es una realización de una variable aleatoria definida en dicho momento de tiempo. Por tanto, una serie de t datos es una muestra de un vector de t variables aleatorias ordenadas en el tiempo al que denominamos proceso estocástico. En ocasiones pretendemos predecir el comportamiento de una variable y en un momento futuro t, a partir del comportamiento que la variable tuvo en un momento pasado, por ejemplo, en el período anterior, Y(t-1) Formalmente notaríamos Yt = f(y(t-1)) Es decir, que el valor de la variable y en el momento t es función del valor tomado en el período t-1. Puesto que en el comportamiento de una variable influyen más aspectos, debemos incluir en la relación anterior un término de error, at, que es una variable aleatoria a la que suponemos ciertas características estadísticas apropiadas. Es decir: Ahora se debe elegir una forma funcional concreta para esta expresión. Por ejemplo, una forma lineal como 4

5 donde es un término independiente y es un parámetro que multiplica al valor de la variable y en el período t-1. Utilizando métodos estadísticos adecuados podemos estimar los parámetros de forma que estos cumplan propiedades estadísticas razonables y sean una buena (la mejor posible) estimación. Con ello obtendríamos una expresión como: Esta es la esencia de los modelos autorregresivos (o modelos AR). Se realiza una regresión de la variable sobre sí misma (auto-regresión) o, mejor dicho, sobre los valores que la variable tomó en el período/s anterior/es. que utilizaríamos a efectos de predicción. Un aspecto importante es el orden del modelo AR. Por ejemplo, el modelo Dependencia de los datos Cada observación se modela en función de datos anteriores. Modelo explicito, conocidos como ARIMA (Autoregresive Integrated Moving Average) Permite describir un valor como una función lineal de datos anteriores y errores debidos al azar. Modelos que explican el comportamiento de la variable endógena, a través del propio pasado, antes de incorporar el efecto de la variable explicativa (ARIMA). El principio básico de los modelos ARIMA, es que el efecto de un conjunto de variables explicativas x sobre y, debe ser estimado después que se haya controlado por los efectos pasados de la variable endógena. Se intenta explicar, en que medida las variables independientes explican la variación de la variable endógena, que no viene explicado por la variación de los valores pasados de dicha variable. 5

6 La metodología Box-Jenkins, intenta explicar el proceso que autogenera (explica) la variación de la variable endógena a través del tiempo. Requisito, es que todas las variables sean estacionarias, es decir no existe cambio sistemático en la media y varianza de los valores de dicha variable a lo largo del tiempo. 1. Recogida de datos (Recomiendan un mínimo de 50 observaciones), si es mensual, trabajar con 6 ó 10 años completos. 2. Representación gráfica de la serie, se recomienda utilizar medias y desviaciones típicas por subperíodos, para juzgar la estacionalidad. 3. Transformación previa de la serie para la estacionalidad, las transformaciones logarítmicas son necesarias en caso que la varianza no sea constante. 4. Eliminación de la Tendencia, la observación grafica indicará la existencia o no de tendencia. 5. Identificación del modelo, Consiste en determinar el tipo de modelo más adecuado para la serie objeto de estudio. 6. Estimación de los coeficientes del modelo, decidido el modelo, se procede a la estimación de sus parametros. 7. Contraste de validez conjunta del modelo, se utilizaran diversos procedimientos para valorar el modelo propuesto. 8. Análisis detallado de los errores, diferencias históricas entre valores reales y estimados por el modelo constituyen una fuente especial de interés para una valorización final del modelo. 9. Selección del modelo, en base a los resultados de las etapas anteriores, se elige el modelo. 10. Predicción, el modelo seleccionado servirá como fórmula inicial de predicción. 6

7 7

8 8

Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales.

Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales. Series Temporales Introducción Una serie temporal se define como una colección de observaciones de una variable recogidas secuencialmente en el tiempo. Estas observaciones se suelen recoger en instantes

Más detalles

Metodología. del ajuste estacional. Tablero de Indicadores Económicos

Metodología. del ajuste estacional. Tablero de Indicadores Económicos Metodología del ajuste estacional Tablero de Indicadores Económicos Metodología del ajuste estacional Componentes de una serie de tiempo Las series de tiempo están constituidas por varios componentes que,

Más detalles

ANÁLISIS DE SERIE DE TIEMPO DE CAUDALES DEL RÍO EL TALA PERIODO 1937-1960

ANÁLISIS DE SERIE DE TIEMPO DE CAUDALES DEL RÍO EL TALA PERIODO 1937-1960 ANÁLISIS DE SERIE DE TIEMPO DE CAUDALES DEL RÍO EL TALA PERIODO 1937-1960 Verón, Juan Antonio* ; Herrera, Carlos Gabriel*; Rodríguez, Norma Leonor** * Facultad de Tecnología y Ciencias Aplicada de la UNCa.

Más detalles

INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA

INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA Eva Medina Moral (Febrero 2002) EXPRESIÓN DEL MODELO BASICO DE REGRESIÓN LINEAL La expresión formal del modelo

Más detalles

Métodos y Modelos Cuantitativos para la toma de Decisiones

Métodos y Modelos Cuantitativos para la toma de Decisiones Métodos y Modelos Cuantitativos para la toma de Decisiones David Giuliodori Universidad Empresarial Siglo 21 David Giuliodori (UE-Siglo 21) MMC 1 / 98 Índice: 1 Conceptos Generales 2 Enfoque Clásico Tendencia

Más detalles

Pronósticos Por Lic. Gabriel Leandro, MBA http://www.auladeeconomia.com

Pronósticos Por Lic. Gabriel Leandro, MBA http://www.auladeeconomia.com Pronósticos Por Lic. Gabriel Leandro, MBA http:// 1.1. Necesidad de pronosticar Entorno altamente incierto La intuición no necesariamente da los mejores resultados Mejorar la planeación Competitividad

Más detalles

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009 Índice general 6. Regresión Múltiple 3 6.1. Descomposición de la variabilidad y contrastes de hipótesis................. 4 6.2. Coeficiente de determinación.................................. 5 6.3. Hipótesis

Más detalles

RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7)

RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7) Caracterización de las fuentes y formación de escalas de tiempo Rec. UIT-R TF.538-3 1 RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7)

Más detalles

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión... Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID ECONOMETRIA PRIMER PARCIAL 17 DE ENERO DE 2008 1.- A) La transformación estacionaria es SOLUCIONES

Más detalles

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de planificación y control.

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de planificación y control. ESTUDIOS DE CAPACIDAD POTENCIAL DE CALIDAD 1.- INTRODUCCIÓN Este documento proporciona las pautas para la realización e interpretación de una de las herramientas fundamentales para el control y la planificación

Más detalles

- se puede formular de la siguiente forma:

- se puede formular de la siguiente forma: Multicolinealidad 1 Planteamiento Una de las hipótesis del modelo de regresión lineal múltiple establece que no existe relación lineal exacta entre los regresores, o, en otras palabras, establece que no

Más detalles

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Modelación con ARMA

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Modelación con ARMA ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES Modelación con ARMA Método Box-Jenkins: Un libro que ha tenido una gran influencia es el de Box y Jenkins (1976): Time Series Analysis: Forecasting and

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

La demanda de plazas en la licenciatura de Medicina en España

La demanda de plazas en la licenciatura de Medicina en España La demanda de plazas en la licenciatura de Medicina en España Estudio econométrico por Comunidades Autónomas de la demanda de plazas en las facultades de Medicina españolas para el curso 2006/2007 Asignatura:

Más detalles

Métodos de promedios. Diplomado en Gestión Estratégica de las Finanzas Públicas MÉTODOS ESTADÍSTICOS PARA LA ESTIMACIÓN DE INGRESOS

Métodos de promedios. Diplomado en Gestión Estratégica de las Finanzas Públicas MÉTODOS ESTADÍSTICOS PARA LA ESTIMACIÓN DE INGRESOS MÉTODOS ESTADÍSTICOS PARA LA ESTIMACIÓN DE INGRESOS La estimación o proyección de ingresos futuros puede llevarse a cabo mediante diferentes métodos estadísticos de extrapolación, entre ellos: sistema

Más detalles

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características

Más detalles

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3 Capítulo 3 1. Introducción El análisis de regresión lineal, en general, nos permite obtener una función lineal de una o más variables independientes o predictoras (X1, X2,... XK) a partir de la cual explicar

Más detalles

Econometría II. Ejercicios propuestos

Econometría II. Ejercicios propuestos Econometría II Ejercicios propuestos Román Salmerón Gómez Multicolinealidad 1. En el modelo de regresión Y t = β 1 + β 2 X t + β 3 Z t + u t se verifica que X t = 1 2 Z t. Qué parámetros son estimables?

Más detalles

NT8. El Valor en Riesgo (VaR)

NT8. El Valor en Riesgo (VaR) NT8. El Valor en Riesgo (VaR) Introducción VaR son las siglas de Valor en el Riesgo (Value at Risk) y fue desarrollado por la división RiskMetric de JP Morgan en 1994. es una manera de medir el riesgo

Más detalles

15 ESTADÍSTICA BIDIMENSIONAL

15 ESTADÍSTICA BIDIMENSIONAL ESTADÍSTICA BIDIMENSINAL EJERCICIS PRPUESTS. Copia y completa la siguiente tabla. A B C Total A B C Total a 4 b c 0 7 Total 7 6 a 4 b c 4 3 0 7 Total 7 6 3 6 a) Qué porcentaje de datos presentan la característica

Más detalles

EJERCICIOS RESUELTOS DE SERIES TEMPORALES

EJERCICIOS RESUELTOS DE SERIES TEMPORALES EJERCICIOS RESUELTOS DE SERIES TEMPORALES Estadística Descriptiva: SERIES TEMPORALES Facultad Ciencias Económicas y Empresariales Departamento de Economía Aplicada Profesor: Santiago de la Fuente Fernández.

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

1. Funciones y sus gráficas

1. Funciones y sus gráficas FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada

Más detalles

METODOS ELEMENTALES DE PROCESAMIENTO DE SERIES DE TIEMPO

METODOS ELEMENTALES DE PROCESAMIENTO DE SERIES DE TIEMPO METODOS ELEMENTALES DE PROCESAMIENTO DE SERIES DE TIEMPO Jorge Galbiati Riesco En este apunte se da una visión general sobre algunos procedimientos en el análisis en series de tiempo. Inicialmente presentamos

Más detalles

Enseñanza e Investigación en Ciencias Sociales

Enseñanza e Investigación en Ciencias Sociales Cursos Metodológicos para la Enseñanza e Investigación en Ciencias Sociales Organizado por: Fundación General UGr-Empresa Facultad de Ciencias Económicas y Empresariales Universidad de Granada Econometría

Más detalles

Introducción a la Teoría de Probabilidad

Introducción a la Teoría de Probabilidad Capítulo 1 Introducción a la Teoría de Probabilidad Para la mayoría de la gente, probabilidad es un término vago utilizado en el lenguaje cotidiano para indicar la posibilidad de ocurrencia de un evento

Más detalles

SERIES DE TIEMPO EMPLEANDO EXCEL Y GRAPH

SERIES DE TIEMPO EMPLEANDO EXCEL Y GRAPH SERIES DE TIEMPO EMPLEANDO EXCEL Y GRAPH 1) DEFINICIÓN Las series de tiempo llamadas también series cronológicas o series históricas son un conjunto de datos numéricos que se obtienen en períodos regulares

Más detalles

www.fundibeq.org En estos casos, la herramienta Gráficos de Control por Variables" no es aplicable.

www.fundibeq.org En estos casos, la herramienta Gráficos de Control por Variables no es aplicable. GRAFICOS DE CONTROL POR ATRIBUTOS 1.- INTRODUCCIÓN Este documento describe la secuencia de construcción y las pautas de utilización de una de las herramientas para el control de procesos, los Gráficos

Más detalles

Unidad IV: Cinética química

Unidad IV: Cinética química 63 Unidad IV: Cinética química El objetivo de la cinética química es el estudio de las velocidades de las reacciones químicas y de los factores de los que dependen dichas velocidades. De estos factores,

Más detalles

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de gestión.

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de gestión. GRÁAFICOS DE CONTROL POR VARIABLES 1.- INTRODUCCIÓN Este documento describe la secuencia de construcción y las pautas de utilización de una de las herramientas más potentes para el control de procesos,

Más detalles

Aplicación 3: Rendimiento y riesgo de los activos financieros: el modelo CAPM

Aplicación 3: Rendimiento y riesgo de los activos financieros: el modelo CAPM Aplicación 3: Rendimiento y riesgo de los activos financieros: el modelo CAPM Idea de las modernas t as de finanzas: Relacionar el riesgo y el rdto (esperado) de un activo Más concretamente: explicar el

Más detalles

ESTUDIO DEL RENDIMIENTO DE LOS FONDOS DE INVERSIÓN CÓMO SE DETERMINA LA RENTABILIDAD DE UN FONDO?

ESTUDIO DEL RENDIMIENTO DE LOS FONDOS DE INVERSIÓN CÓMO SE DETERMINA LA RENTABILIDAD DE UN FONDO? ESTUDIO DEL RENDIMIENTO DE LOS FONDOS DE INVERSIÓN CÓMO SE DETERMINA LA RENTABILIDAD DE UN FONDO? El precio, o valor de mercado, de cada participación oscila según la evolución de los valores que componen

Más detalles

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán Capítulo 4 MEDIDA DE MAGNITUDES Autor: Santiago Ramírez de la Piscina Millán 4 MEDIDA DE MAGNITUDES 4.1 Introducción El hecho de hacer experimentos implica la determinación cuantitativa de las magnitudes

Más detalles

CLASE 0- MÉTODOS DE ALISADO EXPONENCIAL

CLASE 0- MÉTODOS DE ALISADO EXPONENCIAL CLASE 0- MÉTODOS DE ALISADO EXPONENCIAL Contextualización En la primera parte del curso hemos estudiado el análisis clásico de series temporales en el que se asume que una serie temporal resulta de la

Más detalles

Series de Tiempo. Una Introducción

Series de Tiempo. Una Introducción Series de Tiempo. Una Introducción Series de Tiempo Muchas veces, sobretodo para realizar pronósticos, resulta conveniente no suponer un modelo explícito para que explique la variables de interés, sino

Más detalles

TEMA 1. Introducción al análisis empírico de variables económicas.

TEMA 1. Introducción al análisis empírico de variables económicas. TEMA 1. Introducción al análisis empírico de variables económicas. Profesor: Pedro Albarrán Pérez Universidad de Alicante. Curso 2010/2011. Contenido 1 Datos Económicos Introducción Tipos de Datos. Tratamiento

Más detalles

Autor: M. en C. Miguel Ángel Martínez García

Autor: M. en C. Miguel Ángel Martínez García Instituto Politécnico Nacional Escuela Superior de Economía Sección de Estudios de Posgrado e Investigación Análisis de la Balanza Comercial a través de la función de exportaciones y la función de importaciones

Más detalles

Estimación de parámetros, validación de modelos y análisis de sensibilidad

Estimación de parámetros, validación de modelos y análisis de sensibilidad Tema 6 Estimación de parámetros, validación de modelos y análisis de sensibilidad 6.1 Calibración Una vez que se ha identificado el modelo y se ha programado, necesitamos aplicarlo al problema concreto

Más detalles

UN MODELO DE PRONÓSTICO PARA LAS PRIMAS DE SEGUROS DE VIDA Y PERSONAS

UN MODELO DE PRONÓSTICO PARA LAS PRIMAS DE SEGUROS DE VIDA Y PERSONAS UN MODELO DE PRONÓSTICO PARA LAS PRIMAS DE SEGUROS DE VIDA Y PERSONAS Wilson Mayorga M. Director de Cámara de Vida y Personas y Actuaría Con base en modelos de regresión que explican la evolución de las

Más detalles

INDICE MENSUAL DE ACTIVIDAD ECONÓMICA

INDICE MENSUAL DE ACTIVIDAD ECONÓMICA Metodología INDICE MENSUAL DE ACTIVIDAD ECONÓMICA El Consejo Monetario Centroamericano (CMCA), desde finales de la década del 80 ha estado trabajando con los Bancos Centrales de la Región Centroamericana

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA

Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA Tratamiento y Transmisión de Señales Ingenieros Electrónicos SEGUNDA PRÁCTICA NOTA: en toda esta práctica no se pueden utilizar bucles, para que los tiempos de ejecución se reduzcan. Esto se puede hacer

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

TEMA 6: Gráficos de Control por Variables

TEMA 6: Gráficos de Control por Variables TEMA 6: Gráficos de Control por Variables 1 Introducción 2 Gráficos de control de la media y el rango Función característica de operación 3 Gráficos de control de la media y la desviación típica 4 Gráficos

Más detalles

MODELOS DE CÁLCULO DE LA VOLATILIDAD *

MODELOS DE CÁLCULO DE LA VOLATILIDAD * MODELOS DE CÁLCULO DE LA VOLATILIDAD * Uno de los objetivos principales perseguidos en el análisis de series temporales es poder predecir de la manera más aproximada el comportamiento futuro que pueden

Más detalles

CAPÍTULO 2: MARCO TEÓRICO. El término inversión significa la asignación de fondos para la adquisición de valores o de

CAPÍTULO 2: MARCO TEÓRICO. El término inversión significa la asignación de fondos para la adquisición de valores o de CAPÍTULO 2: MARCO TEÓRICO 2.1. Valores El término inversión significa la asignación de fondos para la adquisición de valores o de bienes reales con el fin de obtener una utilidad o un interés. [2] Los

Más detalles

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO Unidad 1 Números Reales Utilizar los números enteros, racionales e irracionales para cuantificar situaciones de la vida cotidiana. Aplicar adecuadamente

Más detalles

Estadística aplicada y modelización. 10 de septiembre de 2005

Estadística aplicada y modelización. 10 de septiembre de 2005 Estadística aplicada y modelización. 10 de septiembre de 005 SOLUCIÓN MODELO A 1. Una persona se está preparando para obtener el carnet de conducir, repitiendo un test de 0 preguntas. En la siguiente tabla

Más detalles

Series de Tiempo. Series de Tiempo

Series de Tiempo. Series de Tiempo Series de Tiempo 1. Requisitos de Estadística Descriptiva: a. Media, Mediana b. Desviación estándar c. Regresión lineal 2. Qué es una serie de tiempo a. Componentes de la Serie de Tiempo (tipos de variación):

Más detalles

Margarita Valle León

Margarita Valle León Margarita Valle León En el estudio del comportamiento de las acciones, con vistas a tratar de predecir su evolución futura, se utilizan dos tipos de análisis: Análisis técnico Análisis fundamental Considera

Más detalles

1. TEMPORALIZACIÓN POR EVALUACIONES DE LOS CONTENIDOS

1. TEMPORALIZACIÓN POR EVALUACIONES DE LOS CONTENIDOS 1. TEMPORALIZACIÓN POR EVALUACIONES DE LOS CONTENIDOS Primera Evaluación TEMA 1. NÚMEROS REALES Distintos tipos de números. Recta real. Radicales. Logaritmos. Notación científica. Calculadora. TEMA 2.

Más detalles

CAPÍTULO II. 2 El espacio vectorial R n

CAPÍTULO II. 2 El espacio vectorial R n CAPÍTULO II 2 El espacio vectorial R n A una n upla (x 1, x 2,..., x n ) de números reales se le denomina vector de n coordenadas o, simplemente, vector. Por ejemplo, el par ( 3, 2) es un vector de R 2,

Más detalles

Regresión lineal múltiple

Regresión lineal múltiple . egresión lineal múltiple egresión lineal múltiple. Introducción. En el tema anterior estudiamos la correlación entre dos variables y las predicciones que pueden hacerse de una de ellas a partir del conocimiento

Más detalles

Reformas impositivas y crecimiento económico. César Pérez López Instituto de Estudios Fiscales (cesar.perez@ief.minhap.es)

Reformas impositivas y crecimiento económico. César Pérez López Instituto de Estudios Fiscales (cesar.perez@ief.minhap.es) Reformas impositivas y crecimiento económico César Pérez López Instituto de Estudios Fiscales (cesar.perez@ief.minhap.es) Nuria Badenes Pla Instituto de Estudios Fiscales (nuria.badenes@ief.minhap.es)

Más detalles

La metodologia Cuantitativa. Encuestas y muestras

La metodologia Cuantitativa. Encuestas y muestras La metodologia Cuantitativa. Encuestas y muestras Técnicas «cuantitativas» y «cualitativas» «Las técnicas cuantitativas»: Recogen la información mediante cuestiones cerradas que se planteal sujeto de forma

Más detalles

Econometría I. Carlos Velasco 1. Universidad Carlos III de Madrid

Econometría I. Carlos Velasco 1. Universidad Carlos III de Madrid Econometría I Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso 2007/08 C Velasco (MEI, UC3M)

Más detalles

6 Sexta. 6.1 Parte básica. Unidad Didáctica "REGRESIÓN Y CORRELACIÓN"

6 Sexta. 6.1 Parte básica. Unidad Didáctica REGRESIÓN Y CORRELACIÓN 352 6 Sexta Unidad Didáctica "REGRESIÓN Y CORRELACIÓN" 6.1 Parte básica 353 6.1.1 Introducción Regresión es una palabra un tanto rara. La utilizan los biólogos, los médicos, los psicólogos... y suena como

Más detalles

Capítulo 7: Distribuciones muestrales

Capítulo 7: Distribuciones muestrales Capítulo 7: Distribuciones muestrales Recordemos: Parámetro es una medida de resumen numérica que se calcularía usando todas las unidades de la población. Es un número fijo. Generalmente no lo conocemos.

Más detalles

17.- PARABRISAS RESOLUCIÓN

17.- PARABRISAS RESOLUCIÓN 17.- PARABRISAS La sección de control de calidad de una fábrica de parabrisas elige, aleatoriamente, una muestra de 100 parabrisas producidos por una determinada máquina y registra la longitud de los parabrisas

Más detalles

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos

Capítulo 10. Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Capítulo 10 Análisis descriptivo: Los procedimientos Frecuencias y Descriptivos Al analizar datos, lo primero que conviene hacer con una variable es, generalmente, formarse una idea lo más exacta posible

Más detalles

CIIF CENTRO INTERNACIONAL DE INVESTIGACION FINANCIERA

CIIF CENTRO INTERNACIONAL DE INVESTIGACION FINANCIERA I E S E Universidad de Navarra CIIF CENTRO INTERNACIONAL DE INVESTIGACION FINANCIERA INFORME SOBRE LA RELACION ENTRE CONSUMO, MOROSIDAD Y CICLOS BURSATILES Miguel A. Ariño* María Coello de Portugal** DOCUMENTO

Más detalles

Tema 3. Series de Tiempo

Tema 3. Series de Tiempo Tema 3. Series de Tiempo 3.3.1. Definición En Estadística se le llama así a un conjunto de valores observados durante una serie de períodos temporales secuencialmente ordenada, tales períodos pueden ser

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

SERIES DE TIEMPO INTRODUCCIÓN

SERIES DE TIEMPO INTRODUCCIÓN Clase Nº 5 SERIES DE TIEMPO INTRODUCCIÓN La forma más utilizada para el análisis de las tendencias futuras es realizar pronósticos. La función de un pronóstico de demanda de un bien, por ejemplo ventas

Más detalles

Observatorio de morosidad FEDEA. Predicciones de morosidad. Nota metodológica. Mayo 2014

Observatorio de morosidad FEDEA. Predicciones de morosidad. Nota metodológica. Mayo 2014 Observatorio de morosidad FEDEA Predicciones de morosidad Nota metodológica Mayo 2014 1. Predicción de tasa de morosidad agregada La morosidad agregada se refiere principalmente a los créditos morosos

Más detalles

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Una de las primeras necesidades que surgen en las Ciencias Experimentales es la de poder expresar los valores

Más detalles

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 UNIDAD 1: LOS NÚMEROS NATURALES. OPERACIONES Y RELACIONES El sistema de numeración decimal Estimación y redondeo de un número natural Las operaciones con números

Más detalles

Introducción. Estadística 1. 1. Introducción

Introducción. Estadística 1. 1. Introducción 1 1. Introducción Introducción En este tema trataremos de los conceptos básicos de la estadística, también aprenderemos a realizar las representaciones gráficas y a analizarlas. La estadística estudia

Más detalles

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD

Más detalles

PRESENTACIÓN GRÁFICA DE LOS DATOS

PRESENTACIÓN GRÁFICA DE LOS DATOS PRESENTACIÓN GRÁFICA DE LOS DATOS Una imagen dice más que mil palabras, esta frase explica la importancia de presentar los datos en forma gráfica. Existe una gran variedad de gráficos y la selección apropiada

Más detalles

Capítulo 3. Estimación de elasticidades

Capítulo 3. Estimación de elasticidades 1 Capítulo 3. Estimación de elasticidades Lo que se busca comprobar en esta investigación a través la estimación econométrica es que, conforme a lo que predice la teoría y lo que ha sido observado en gran

Más detalles

Control Estadístico de Procesos (SPC).

Control Estadístico de Procesos (SPC). Control Estadístico de Procesos (SPC). - Sesión 4ª de 4 - JAIME RAMONET FERNÁNDEZ Ingeniero Industrial Superior. PMP (PMI ). Formador y Consultor. Actitud requerida para recibir formación... y obtener

Más detalles

TEMA 9: Desarrollo de la metodología de Taguchi

TEMA 9: Desarrollo de la metodología de Taguchi TEMA 9: Desarrollo de la metodología de Taguchi 1 La filosofía de la calidad de Taguchi 2 Control de calidad Off Line y On Line Calidad Off Line Calidad On Line 3 Función de pérdida 4 Razones señal-ruido

Más detalles

El impulso. y el PBI. en el Perú: 1992 2009. crediticio

El impulso. y el PBI. en el Perú: 1992 2009. crediticio análisis El impulso crediticio y el PBI en el Perú: 1992 2009 Erick Lahura* y Hugo Vega* *Especialistas en Investigación Económica del BCRP. erick.lahura@bcrp.gob.pe hugo.vega@bcrp.gob.pe La literatura

Más detalles

Empresarial y Financiero

Empresarial y Financiero Curso de Excel Empresarial y Financiero SESIÓN : REGRESIÓN Rosa Rodríguez Relación con el Mercado Descargue de yahoo.com los Datos de precio ajustado de cierre de las acciones de General Electric (GE),

Más detalles

TEMA 3: TRATAMIENTO DE DATOS EN MS. EXCEL (I)

TEMA 3: TRATAMIENTO DE DATOS EN MS. EXCEL (I) VARIABLES Variable: característica de cada sujeto (cada caso) de una base de datos. Se denomina variable precisamente porque varía de sujeto a sujeto. Cada sujeto tiene un valor para cada variable. El

Más detalles

DISEÑO DE UN MODELO DE APROXIMACIÓN TRIMESTRAL PARA LA ECONOMÍA DE MADRID

DISEÑO DE UN MODELO DE APROXIMACIÓN TRIMESTRAL PARA LA ECONOMÍA DE MADRID DISEÑO DE UN MODELO DE APROXIMACIÓN TRIMESTRAL PARA LA ECONOMÍA DE MADRID Ana López Yigal Montejo Instituto L. R. Klein, UAM Junio 2000 RESUMEN El presente trabajo estudia la economía madrileña basándose

Más detalles

ANÁLISIS DEL MERCADO DE VALORES (3º GADE)

ANÁLISIS DEL MERCADO DE VALORES (3º GADE) ANÁLISIS DEL MERCADO DE VALORES (3º GADE) PARTE II: TEORÍAS Y TÉCNICAS DE EVALUACIÓN DE INVERSIONES. TEMA 7: ANÁLISIS TÉCNICO DE TÍTULOS DE RENTA VARIABLE ÍNDICE DE CONTENIDOS 7.1.- Tipos de gráficos 7.2.-

Más detalles

Control Estadístico del Proceso. Ing. Claudia Salguero Ing. Alvaro Díaz

Control Estadístico del Proceso. Ing. Claudia Salguero Ing. Alvaro Díaz Control Estadístico del Proceso Ing. Claudia Salguero Ing. Alvaro Díaz Control Estadístico del Proceso Es un conjunto de herramientas estadísticas que permiten recopilar, estudiar y analizar la información

Más detalles

Vectores Autorregresivos (VAR)

Vectores Autorregresivos (VAR) Vectores Autorregresivos (VAR) 1 Procesos estocasticos multivariados Y t = [Y 1t, Y 2t,, Y Nt ], t = 1, 2,..., T Estamos interesados en el comportamiento temporal de N variables simultaneamente. E(Y t

Más detalles

Departamento de Economía Aplicada I ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA EN CIENCIAS EMPRESARIALES ESTADÍSTICA

Departamento de Economía Aplicada I ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA EN CIENCIAS EMPRESARIALES ESTADÍSTICA ESCUELA UIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA E CIECIAS EMPRESARIALES ESTADÍSTICA Ejercicios Resueltos AÁLISIS ESTADÍSTICO DE DOS VARIABLES Y RE- GRESIÓ LIEAL SIMPLE Curso 6-7 Curso 6-7 1)

Más detalles

Una fórmula para la pendiente

Una fórmula para la pendiente LECCIÓN CONDENSADA 5.1 Una fórmula para la pendiente En esta lección aprenderás cómo calcular la pendiente de una recta dados dos puntos de la recta determinarás si un punto se encuentra en la misma recta

Más detalles

Contenido Ejemplos de MMS (ed.1) 1

Contenido Ejemplos de MMS (ed.1) 1 MANUAL DE MMS EJEMPLOS Contenido Ejemplos de MMS (ed.1) 1 Contenido Contenido... 1 I Estimación y previsión de modelos ARIMAX... 3 II Estimación y previsión de modelos cualitativos... 10 II.1 Sobre la

Más detalles

TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones.

TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones. TEMA 2. FILOSOFÍA DE LOS GRÁFICOS DE CONTROL. Principios básicos de los gráficos de control. Análisis de patrones. La herramienta que nos indica si el proceso está o no controlado o Estado de Control son

Más detalles

Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal

Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal Introducción El análisis de regresión lineal es una técnica estadística utilizada para estudiar la relación entre variables. Se

Más detalles

Tema 7. Límites y continuidad de funciones

Tema 7. Límites y continuidad de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está

Más detalles

Métodos y Diseños utilizados en Psicología

Métodos y Diseños utilizados en Psicología Métodos y Diseños utilizados en Psicología El presente documento pretende realizar una introducción al método científico utilizado en Psicología para recoger información acerca de situaciones o aspectos

Más detalles

Las Matemáticas En Ingeniería

Las Matemáticas En Ingeniería Las Matemáticas En Ingeniería 1.1. Referentes Nacionales A nivel nacional se considera que el conocimiento matemático y de ciencias naturales, sus conceptos y estructuras, constituyen una herramienta para

Más detalles

FISICA I Escuela Politécnica de Ingeniería de Minas y Energía AJUSTE POR MÍNIMOS CUADRADOS

FISICA I Escuela Politécnica de Ingeniería de Minas y Energía AJUSTE POR MÍNIMOS CUADRADOS AJUSTE POR MÍNIMOS CUADRADOS Existen numerosas leyes físicas en las que se sabe de antemano que dos magnitudes x e y se relacionan a través de una ecuación lineal y = ax + b donde las constantes b (ordenada

Más detalles

Los modelos que permite construir el ANOVA pueden ser reducidos a la siguiente forma:

Los modelos que permite construir el ANOVA pueden ser reducidos a la siguiente forma: Ignacio Martín Tamayo 25 Tema: ANÁLISIS DE VARIANZA CON SPSS 8.0 ÍNDICE --------------------------------------------------------- 1. Modelos de ANOVA 2. ANOVA unifactorial entregrupos 3. ANOVA multifactorial

Más detalles

Estudio sobre la evolución del número de pasajeros en el metro de Barcelona

Estudio sobre la evolución del número de pasajeros en el metro de Barcelona Estudio sobre la evolución del número de pasajeros en el metro de Barcelona Un análisis basado en Series Temporales. Autor: Origen 1.- Introducción 2.- Metodología estadística 3.- Análisis descriptivo

Más detalles

Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I

Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Índice 1. Objetivos de la práctica 2 2. Estimación de un modelo de regresión logística con SPSS 2 2.1. Ajuste de un modelo de regresión logística.............................

Más detalles

Otras medidas descriptivas usuales

Otras medidas descriptivas usuales Tema 7 Otras medidas descriptivas usuales Contenido 7.1. Introducción............................. 1 7.2. Medidas robustas.......................... 2 7.2.1. Media recortada....................... 2 7.2.2.

Más detalles

www.bvbusiness-school.com

www.bvbusiness-school.com Gráficos de Control de Shewart www.bvbusiness-school.com GRÁFICOS DE CONTROL DE SHEWART Una de las herramientas estadísticas más importantes en el Control Estadístico de Procesos son los Gráficos de Control.

Más detalles

STATISTICAL PROCESS CONTROL: MANUAL REFERENCIA QS 9000

STATISTICAL PROCESS CONTROL: MANUAL REFERENCIA QS 9000 STATISTICAL PROCESS CONTROL: MANUAL REFERENCIA QS 9000 SECCIÓN 2: SISTEMA DE CONTROL 1.- Proceso: Se entiende por proceso, la combinación de suministradores, productores, personas, equipos, imputs de materiales,

Más detalles

Diseño de un estudio de investigación de mercados

Diseño de un estudio de investigación de mercados Diseño de un estudio de investigación de mercados En cualquier diseño de un proyecto de investigación de mercados, es necesario especificar varios elementos como las fuentes a utilizar, la metodología,

Más detalles

REGRESIÓN LINEAL MÚLTIPLE

REGRESIÓN LINEAL MÚLTIPLE REGRESIÓN LINEAL MÚLTIPLE.- Planteamiento general....- Métodos para la selección de variables... 5 3.- Correlaciones parciales y semiparciales... 8 4.- Multicolinealidad en las variables explicativas...

Más detalles

SISTEMA DE INDICADORES CÍCLICOS Cifras al mes de junio de 2015

SISTEMA DE INDICADORES CÍCLICOS Cifras al mes de junio de 2015 BOLETÍN DE PRENSA NÚM. 372/15 2 DE SEPTIEMBRE DE 2015 AGUASCALIENTES, AGS. PÁGINA 1/5 SISTEMA DE INDICADORES CÍCLICOS Cifras al mes de junio de 2015 El INEGI presenta los resultados del Sistema de Indicadores

Más detalles