Estacionalidad. Series de tiempo. Modelos econométricos. Modelos econométricos. Q= T Kα Lβ

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Estacionalidad. Series de tiempo. Modelos econométricos. Modelos econométricos. Q= T Kα Lβ"

Transcripción

1 Estacionalidad Qué es la estacionalidad? La estacionalidad es una componente que se presenta en series de frecuencia inferior a la anual (mensual, trimestral,...), y supone oscilaciones a corto plazo de período regular, inferior al año y amplitud regular. Se trata de la componente que introduce los matices más interesantes de cara a la predicción. En general, todas las series de frecuencia inferior a la anual presentan en mayor o menor medida estacionalidad. Estacionalidad Estacionalidad En el gráfico se recoge la evolución del Índice de Producción industrial de España, desde enero de 1998 hasta junio de Son datos mensuales, en base 2000=100, obtenidos del INE. Podríamos discutir si la serie presenta nítidamente tendencia o ciclo (realmente es un período muy pequeño, 5 años, para detectarlo gráficamente), pero este es un ejemplo de serie con estacionalidad. Obsérvese que año tras año, la serie presenta un comportamiento en los distintos meses de cada año muy similar. Todos los años la serie parece crecer en los primeros meses, decae ligeramente en abril, y, sobre todo, sufre una drástica caída de forma sistemática en el mes de agosto. Y así año tras año. Se detecta pues un patrón regular. Efectivamente, esa evolución de la serie responde a hechos sencillos. En los meses de agosto y de abril (si en este mes cae la Semana Santa) las empresas notan el bajón en su producción debido a las vacaciones. Una práctica relativamente frecuente en la modelización econométrica consiste en la utilización del logaritmo en lugar del valor directo de la variable observada. Esta transformación resulta habitual en econometría en distintos contextos: 1. permite la resolución de algunos de los problemas que suelen presentar los modelos econométricos como problemas simples de heteroscedasticidad. Este tipo de transformación tiene la importante propiedad de mantener la evolución temporal de la variable original, reduciendo proporcionalmente la variación relativa entre los distintos valores de la serie. 2. Permite la linealización de modelos originalmente especificados en términos no lineales. Ejemplo, estimar una función de producción de tipo Cobb-Douglas. Q= T Kα Lβ donde K, L representan las dotaciones de factores productivos (capital y trabajo, respectivamente); Q el nivel de producción, y T es una medida de la eficiencia técnica. A partir de esta formulación de la teoría económica, podríamos obtener un modelo econométrico como: 1

2 Obviamente este modelo no es lineal en los parámetros, por lo cual no es estimable a partir de los métodos usuales. Ahora bien si tomamos logaritmos a ambos lados de la ecuación anterior Se obtiene: lnq = ln T +α ln K + β ln L que podemos presentar como: y* = T * +α k * +β l * Como se observa este modelo ya es lineal, y puede ser estimado por mínimos cuadrados. La simple transformación de las variables lo permite. Una última razón hace interesante esta transformación, y es que los parámetros asociados a variables sobre las que previamente se han tomado logaritmos pueden ser interpretados directamente como elasticidades. ln Q = β ln L Lo cual, como es conocido, puede ser aproximado por la elasticidad parcial de la variable Q con respecto a la variable L. Los modelos econométricos exigen que las series a utilizar sean estacionarias en media y varianza. Es decir, que la serie no tenga tendencia, y que presente un grado de dispersión similar. La eliminación de la tendencia se consigue con diferenciación sucesiva, mientras que para obtener una dispersión similar se recurre a la transformación logarítmica. La transformación logarítmica, es útil en otras circunstancias. Por ejemplo, muchos modelos de especificación no lineal pueden ser fácilmente linealizados mediante una transformación logarítmica. Además, cuando tomamos logaritmos a ambos lado de una ecuación, podemos tener una aproximación al concepto de elasticidad. La metodología de los modelos estructurales no ha prestado gran atención al problema de la estacionalidad puesto que estos modelos suelen trabajar con datos de frecuencia anual. De hecho, cuando la estacionalidad de la variable endógena es similar a la que presentan las variables explicativas, no presenta especiales problemas ni precisa de tratamiento diferenciado. Cuando tal estacionalidad no coincide es preferible, frente a la posibilidad de desestacionalizar la serie, la de introducir variables ficticias estacionales. 2

3 Estacionariedad Qué se entiende por estacionariedad de una serie? Para definir la estacionariedad de una serie, se dispone de dos posibilidades: por una parte se dice que un proceso es estrictamente estacionario si sus propiedades, no se ven afectadas por cambios de origen temporal, esto es, cuando al realizar un mismo desplazamiento en el tiempo de todas las variables de cualquier distribución conjunta finita, resulta que esta distribución no varía. A efectos prácticos : 1) que la media sea aproximadamente constante en el tiempo; y 2) que la varianza o dispersión sea igualmente constante. Ello implica que si dividiéramos la muestra en varios sub-períodos (teóricamente infinitos períodos) la media y la varianza deben ser aproximadamente iguales. Un instrumento sencillo para detectar cuando la serie cumple o no esta propiedad es mediante la representación gráfica de la serie objeto de estudio. Efectivamente, una media constante implica la ausencia de tendencia en la serie, por lo que su representación debería arrojar algo muy parecido a una línea paralela al eje de abscisas. Igualmente, una varianza constante supone que las oscilaciones alrededor de tal media sean semejantes en cualquier momento del tiempo, lo cual técnicamente se conoce como homoscedasticidad, esto es, igual (homos) dispersión (cedasticidad). El gráfico puede ser suficiente para comprobar el cumplimiento de la homoscedasticidad. Cuando la serie es heteroscedástica, puede solucionarse de forma satisfactoria tomando logaritmos en la serie original. Efectivamente, la toma de logaritmos tiene la importante propiedad de disminuir la variabilidad de la serie, manteniendo el patrón de comportamiento. En la mayor parte de los casos, la toma de logaritmos ha de ser suficiente para que la heteroscedasticidad deje de ser un problema. Para la eliminación de la tendencia se utiliza, la diferenciación adecuada de la serie original. En la mayor parte de las series la toma de una diferencia será suficiente para eliminar la tendencia. En ese caso, la representación gráfica nos mostrará una línea oscilante sobre una línea horizontal al eje de abscisas. Si se mantiene la tendencia, se puede tomar una segunda diferencia. Veámoslo con un ejemplo: en la figura, se puede ver la evolución mensual, durante algo más de ocho años, del consumo de gasolina en España (variable CONGA, en trazo grueso). Esta misma serie nos servirá de ejemplo posteriormente. Evidentemente, la serie no es estacionaria, dado que muestra una clara tendencia al alza. Puesto que la tendencia puede ser adecuadamente recogida mediante una línea recta, parece que bastaría con realizar una sola diferencia a la serie original. Pero, por otra parte, da la impresión de que la serie presenta algo más de dispersión en los últimos años, por lo que podría interesar trabajar, antes de la diferenciación, con la serie en logaritmos (variable LCONGA, en trazo fino y representada con la escala de la derecha del gráfico). La nueva serie transformada presenta, en general, una menor dispersión y ésta parece, además, más similar para los diferentes años en subperiodos en que pudiera dividirse el gráfico. 3

4 Por supuesto que la toma de logaritmos no elimina la tendencia, por lo que, a continuación, será preciso calcular las primeras diferencias. En un nuevo gráfico, representamos la serie en logaritmos (LCONGA, ahora en trazo grueso y con la escala de la izquierda), así como la serie en diferencias (DLCONGA=LCONGA-LCONGA(- 1), en trazo fino y con la escala de la derecha del gráfico). La tendencia ha sido ahora eliminada en DLCONGA, cuyos valores oscilan alrededor de cero. Por tanto, esta última serie, con transformación logarítmica y en primeras diferencias, ya es estacionaria en media y varianza. La modelización ARIMA o Box-Jenkins parte de considerar que el valor observado de una serie (un dato de una variable) en un momento determinado de tiempo t es una realización de una variable aleatoria definida en dicho momento de tiempo. Por tanto, una serie de t datos es una muestra de un vector de t variables aleatorias ordenadas en el tiempo al que denominamos proceso estocástico. En ocasiones pretendemos predecir el comportamiento de una variable y en un momento futuro t, a partir del comportamiento que la variable tuvo en un momento pasado, por ejemplo, en el período anterior, Y(t-1) Formalmente notaríamos Yt = f(y(t-1)) Es decir, que el valor de la variable y en el momento t es función del valor tomado en el período t-1. Puesto que en el comportamiento de una variable influyen más aspectos, debemos incluir en la relación anterior un término de error, at, que es una variable aleatoria a la que suponemos ciertas características estadísticas apropiadas. Es decir: Ahora se debe elegir una forma funcional concreta para esta expresión. Por ejemplo, una forma lineal como 4

5 donde es un término independiente y es un parámetro que multiplica al valor de la variable y en el período t-1. Utilizando métodos estadísticos adecuados podemos estimar los parámetros de forma que estos cumplan propiedades estadísticas razonables y sean una buena (la mejor posible) estimación. Con ello obtendríamos una expresión como: Esta es la esencia de los modelos autorregresivos (o modelos AR). Se realiza una regresión de la variable sobre sí misma (auto-regresión) o, mejor dicho, sobre los valores que la variable tomó en el período/s anterior/es. que utilizaríamos a efectos de predicción. Un aspecto importante es el orden del modelo AR. Por ejemplo, el modelo Dependencia de los datos Cada observación se modela en función de datos anteriores. Modelo explicito, conocidos como ARIMA (Autoregresive Integrated Moving Average) Permite describir un valor como una función lineal de datos anteriores y errores debidos al azar. Modelos que explican el comportamiento de la variable endógena, a través del propio pasado, antes de incorporar el efecto de la variable explicativa (ARIMA). El principio básico de los modelos ARIMA, es que el efecto de un conjunto de variables explicativas x sobre y, debe ser estimado después que se haya controlado por los efectos pasados de la variable endógena. Se intenta explicar, en que medida las variables independientes explican la variación de la variable endógena, que no viene explicado por la variación de los valores pasados de dicha variable. 5

6 La metodología Box-Jenkins, intenta explicar el proceso que autogenera (explica) la variación de la variable endógena a través del tiempo. Requisito, es que todas las variables sean estacionarias, es decir no existe cambio sistemático en la media y varianza de los valores de dicha variable a lo largo del tiempo. 1. Recogida de datos (Recomiendan un mínimo de 50 observaciones), si es mensual, trabajar con 6 ó 10 años completos. 2. Representación gráfica de la serie, se recomienda utilizar medias y desviaciones típicas por subperíodos, para juzgar la estacionalidad. 3. Transformación previa de la serie para la estacionalidad, las transformaciones logarítmicas son necesarias en caso que la varianza no sea constante. 4. Eliminación de la Tendencia, la observación grafica indicará la existencia o no de tendencia. 5. Identificación del modelo, Consiste en determinar el tipo de modelo más adecuado para la serie objeto de estudio. 6. Estimación de los coeficientes del modelo, decidido el modelo, se procede a la estimación de sus parametros. 7. Contraste de validez conjunta del modelo, se utilizaran diversos procedimientos para valorar el modelo propuesto. 8. Análisis detallado de los errores, diferencias históricas entre valores reales y estimados por el modelo constituyen una fuente especial de interés para una valorización final del modelo. 9. Selección del modelo, en base a los resultados de las etapas anteriores, se elige el modelo. 10. Predicción, el modelo seleccionado servirá como fórmula inicial de predicción. 6

7 7

8 8

Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales.

Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales. Series Temporales Introducción Una serie temporal se define como una colección de observaciones de una variable recogidas secuencialmente en el tiempo. Estas observaciones se suelen recoger en instantes

Más detalles

ANÁLISIS DE SERIE DE TIEMPO DE CAUDALES DEL RÍO EL TALA PERIODO 1937-1960

ANÁLISIS DE SERIE DE TIEMPO DE CAUDALES DEL RÍO EL TALA PERIODO 1937-1960 ANÁLISIS DE SERIE DE TIEMPO DE CAUDALES DEL RÍO EL TALA PERIODO 1937-1960 Verón, Juan Antonio* ; Herrera, Carlos Gabriel*; Rodríguez, Norma Leonor** * Facultad de Tecnología y Ciencias Aplicada de la UNCa.

Más detalles

Métodos y Modelos Cuantitativos para la toma de Decisiones

Métodos y Modelos Cuantitativos para la toma de Decisiones Métodos y Modelos Cuantitativos para la toma de Decisiones David Giuliodori Universidad Empresarial Siglo 21 David Giuliodori (UE-Siglo 21) MMC 1 / 98 Índice: 1 Conceptos Generales 2 Enfoque Clásico Tendencia

Más detalles

Metodología. del ajuste estacional. Tablero de Indicadores Económicos

Metodología. del ajuste estacional. Tablero de Indicadores Económicos Metodología del ajuste estacional Tablero de Indicadores Económicos Metodología del ajuste estacional Componentes de una serie de tiempo Las series de tiempo están constituidas por varios componentes que,

Más detalles

Pronósticos Por Lic. Gabriel Leandro, MBA http://www.auladeeconomia.com

Pronósticos Por Lic. Gabriel Leandro, MBA http://www.auladeeconomia.com Pronósticos Por Lic. Gabriel Leandro, MBA http:// 1.1. Necesidad de pronosticar Entorno altamente incierto La intuición no necesariamente da los mejores resultados Mejorar la planeación Competitividad

Más detalles

INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA

INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA Eva Medina Moral (Febrero 2002) EXPRESIÓN DEL MODELO BASICO DE REGRESIÓN LINEAL La expresión formal del modelo

Más detalles

Métodos de promedios. Diplomado en Gestión Estratégica de las Finanzas Públicas MÉTODOS ESTADÍSTICOS PARA LA ESTIMACIÓN DE INGRESOS

Métodos de promedios. Diplomado en Gestión Estratégica de las Finanzas Públicas MÉTODOS ESTADÍSTICOS PARA LA ESTIMACIÓN DE INGRESOS MÉTODOS ESTADÍSTICOS PARA LA ESTIMACIÓN DE INGRESOS La estimación o proyección de ingresos futuros puede llevarse a cabo mediante diferentes métodos estadísticos de extrapolación, entre ellos: sistema

Más detalles

RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7)

RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7) Caracterización de las fuentes y formación de escalas de tiempo Rec. UIT-R TF.538-3 1 RECOMENDACIÓN UIT-R TF.538-3 MEDICIONES DE LA INESTABILIDAD DE FRECUENCIA Y EN EL TIEMPO (FASE) (Cuestión UIT-R 104/7)

Más detalles

Aplicación 3: Rendimiento y riesgo de los activos financieros: el modelo CAPM

Aplicación 3: Rendimiento y riesgo de los activos financieros: el modelo CAPM Aplicación 3: Rendimiento y riesgo de los activos financieros: el modelo CAPM Idea de las modernas t as de finanzas: Relacionar el riesgo y el rdto (esperado) de un activo Más concretamente: explicar el

Más detalles

TEMA 1. Introducción al análisis empírico de variables económicas.

TEMA 1. Introducción al análisis empírico de variables económicas. TEMA 1. Introducción al análisis empírico de variables económicas. Profesor: Pedro Albarrán Pérez Universidad de Alicante. Curso 2010/2011. Contenido 1 Datos Económicos Introducción Tipos de Datos. Tratamiento

Más detalles

Enseñanza e Investigación en Ciencias Sociales

Enseñanza e Investigación en Ciencias Sociales Cursos Metodológicos para la Enseñanza e Investigación en Ciencias Sociales Organizado por: Fundación General UGr-Empresa Facultad de Ciencias Económicas y Empresariales Universidad de Granada Econometría

Más detalles

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009 Índice general 6. Regresión Múltiple 3 6.1. Descomposición de la variabilidad y contrastes de hipótesis................. 4 6.2. Coeficiente de determinación.................................. 5 6.3. Hipótesis

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

UN MODELO DE PRONÓSTICO PARA LAS PRIMAS DE SEGUROS DE VIDA Y PERSONAS

UN MODELO DE PRONÓSTICO PARA LAS PRIMAS DE SEGUROS DE VIDA Y PERSONAS UN MODELO DE PRONÓSTICO PARA LAS PRIMAS DE SEGUROS DE VIDA Y PERSONAS Wilson Mayorga M. Director de Cámara de Vida y Personas y Actuaría Con base en modelos de regresión que explican la evolución de las

Más detalles

EJERCICIOS RESUELTOS DE SERIES TEMPORALES

EJERCICIOS RESUELTOS DE SERIES TEMPORALES EJERCICIOS RESUELTOS DE SERIES TEMPORALES Estadística Descriptiva: SERIES TEMPORALES Facultad Ciencias Económicas y Empresariales Departamento de Economía Aplicada Profesor: Santiago de la Fuente Fernández.

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID ECONOMETRIA PRIMER PARCIAL 17 DE ENERO DE 2008 1.- A) La transformación estacionaria es SOLUCIONES

Más detalles

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características

Más detalles

Econometría II. Ejercicios propuestos

Econometría II. Ejercicios propuestos Econometría II Ejercicios propuestos Román Salmerón Gómez Multicolinealidad 1. En el modelo de regresión Y t = β 1 + β 2 X t + β 3 Z t + u t se verifica que X t = 1 2 Z t. Qué parámetros son estimables?

Más detalles

1. Funciones y sus gráficas

1. Funciones y sus gráficas FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada

Más detalles

Series de Tiempo. Una Introducción

Series de Tiempo. Una Introducción Series de Tiempo. Una Introducción Series de Tiempo Muchas veces, sobretodo para realizar pronósticos, resulta conveniente no suponer un modelo explícito para que explique la variables de interés, sino

Más detalles

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Modelación con ARMA

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Modelación con ARMA ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES Modelación con ARMA Método Box-Jenkins: Un libro que ha tenido una gran influencia es el de Box y Jenkins (1976): Time Series Analysis: Forecasting and

Más detalles

- se puede formular de la siguiente forma:

- se puede formular de la siguiente forma: Multicolinealidad 1 Planteamiento Una de las hipótesis del modelo de regresión lineal múltiple establece que no existe relación lineal exacta entre los regresores, o, en otras palabras, establece que no

Más detalles

CLASE 0- MÉTODOS DE ALISADO EXPONENCIAL

CLASE 0- MÉTODOS DE ALISADO EXPONENCIAL CLASE 0- MÉTODOS DE ALISADO EXPONENCIAL Contextualización En la primera parte del curso hemos estudiado el análisis clásico de series temporales en el que se asume que una serie temporal resulta de la

Más detalles

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de planificación y control.

www.fundibeq.org Además se recomienda su uso como herramienta de trabajo dentro de las actividades habituales de planificación y control. ESTUDIOS DE CAPACIDAD POTENCIAL DE CALIDAD 1.- INTRODUCCIÓN Este documento proporciona las pautas para la realización e interpretación de una de las herramientas fundamentales para el control y la planificación

Más detalles

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3 Capítulo 3 1. Introducción El análisis de regresión lineal, en general, nos permite obtener una función lineal de una o más variables independientes o predictoras (X1, X2,... XK) a partir de la cual explicar

Más detalles

6 Sexta. 6.1 Parte básica. Unidad Didáctica "REGRESIÓN Y CORRELACIÓN"

6 Sexta. 6.1 Parte básica. Unidad Didáctica REGRESIÓN Y CORRELACIÓN 352 6 Sexta Unidad Didáctica "REGRESIÓN Y CORRELACIÓN" 6.1 Parte básica 353 6.1.1 Introducción Regresión es una palabra un tanto rara. La utilizan los biólogos, los médicos, los psicólogos... y suena como

Más detalles

METODOS ELEMENTALES DE PROCESAMIENTO DE SERIES DE TIEMPO

METODOS ELEMENTALES DE PROCESAMIENTO DE SERIES DE TIEMPO METODOS ELEMENTALES DE PROCESAMIENTO DE SERIES DE TIEMPO Jorge Galbiati Riesco En este apunte se da una visión general sobre algunos procedimientos en el análisis en series de tiempo. Inicialmente presentamos

Más detalles

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión... Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación

Más detalles

Empresarial y Financiero

Empresarial y Financiero Curso de Excel Empresarial y Financiero SESIÓN : REGRESIÓN Rosa Rodríguez Relación con el Mercado Descargue de yahoo.com los Datos de precio ajustado de cierre de las acciones de General Electric (GE),

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales

ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO. Unidad 1 Números Reales ASIGNATURA: MATEMÁTICAS APL.CIENC.SOCIALES 1º BACHILLERATO Unidad 1 Números Reales Utilizar los números enteros, racionales e irracionales para cuantificar situaciones de la vida cotidiana. Aplicar adecuadamente

Más detalles

Reformas impositivas y crecimiento económico. César Pérez López Instituto de Estudios Fiscales (cesar.perez@ief.minhap.es)

Reformas impositivas y crecimiento económico. César Pérez López Instituto de Estudios Fiscales (cesar.perez@ief.minhap.es) Reformas impositivas y crecimiento económico César Pérez López Instituto de Estudios Fiscales (cesar.perez@ief.minhap.es) Nuria Badenes Pla Instituto de Estudios Fiscales (nuria.badenes@ief.minhap.es)

Más detalles

15 ESTADÍSTICA BIDIMENSIONAL

15 ESTADÍSTICA BIDIMENSIONAL ESTADÍSTICA BIDIMENSINAL EJERCICIS PRPUESTS. Copia y completa la siguiente tabla. A B C Total A B C Total a 4 b c 0 7 Total 7 6 a 4 b c 4 3 0 7 Total 7 6 3 6 a) Qué porcentaje de datos presentan la característica

Más detalles

Observatorio de morosidad FEDEA. Predicciones de morosidad. Nota metodológica. Mayo 2014

Observatorio de morosidad FEDEA. Predicciones de morosidad. Nota metodológica. Mayo 2014 Observatorio de morosidad FEDEA Predicciones de morosidad Nota metodológica Mayo 2014 1. Predicción de tasa de morosidad agregada La morosidad agregada se refiere principalmente a los créditos morosos

Más detalles

Regresión lineal múltiple

Regresión lineal múltiple . egresión lineal múltiple egresión lineal múltiple. Introducción. En el tema anterior estudiamos la correlación entre dos variables y las predicciones que pueden hacerse de una de ellas a partir del conocimiento

Más detalles

MODELOS DE CÁLCULO DE LA VOLATILIDAD *

MODELOS DE CÁLCULO DE LA VOLATILIDAD * MODELOS DE CÁLCULO DE LA VOLATILIDAD * Uno de los objetivos principales perseguidos en el análisis de series temporales es poder predecir de la manera más aproximada el comportamiento futuro que pueden

Más detalles

MÓDULO MATERIA CURSO SEMESTRE CRÉDITOS TIPO. Formación Básica Estadística 2º 3º 6 Básica

MÓDULO MATERIA CURSO SEMESTRE CRÉDITOS TIPO. Formación Básica Estadística 2º 3º 6 Básica GUIA DOCENTE DE LA ASIGNATURA TÉCNICAS CUANTITATIVAS I Curso 2015-2016 (Fecha última actualización: 23/04/15) MÓDULO MATERIA CURSO SEMESTRE CRÉDITOS TIPO Formación Básica Estadística 2º 3º 6 Básica PROFESORES*

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

DISEÑO DE UN MODELO DE APROXIMACIÓN TRIMESTRAL PARA LA ECONOMÍA DE MADRID

DISEÑO DE UN MODELO DE APROXIMACIÓN TRIMESTRAL PARA LA ECONOMÍA DE MADRID DISEÑO DE UN MODELO DE APROXIMACIÓN TRIMESTRAL PARA LA ECONOMÍA DE MADRID Ana López Yigal Montejo Instituto L. R. Klein, UAM Junio 2000 RESUMEN El presente trabajo estudia la economía madrileña basándose

Más detalles

Regresión múltiple. Modelos y Simulación. I. Introducción II. Marco teórico III. Aplicación IV. Conclusiones V. Bibliografía

Regresión múltiple. Modelos y Simulación. I. Introducción II. Marco teórico III. Aplicación IV. Conclusiones V. Bibliografía Regresión múltiple I. Introducción II. Marco teórico III. Aplicación IV. Conclusiones V. Bibliografía I.- INTRODUCCIÓN Como la Estadística Inferencial nos permite trabajar con una variable a nivel de intervalo

Más detalles

TEMA 6: Gráficos de Control por Variables

TEMA 6: Gráficos de Control por Variables TEMA 6: Gráficos de Control por Variables 1 Introducción 2 Gráficos de control de la media y el rango Función característica de operación 3 Gráficos de control de la media y la desviación típica 4 Gráficos

Más detalles

1. TEMPORALIZACIÓN POR EVALUACIONES DE LOS CONTENIDOS

1. TEMPORALIZACIÓN POR EVALUACIONES DE LOS CONTENIDOS 1. TEMPORALIZACIÓN POR EVALUACIONES DE LOS CONTENIDOS Primera Evaluación TEMA 1. NÚMEROS REALES Distintos tipos de números. Recta real. Radicales. Logaritmos. Notación científica. Calculadora. TEMA 2.

Más detalles

Gráfico de Dispersión de Notas en la Prueba 1 versus Notas en la Prueba Final Acumulativa de un curso de 25 alumnos de Estadística en la UTAL

Gráfico de Dispersión de Notas en la Prueba 1 versus Notas en la Prueba Final Acumulativa de un curso de 25 alumnos de Estadística en la UTAL 0. Describiendo relaciones entre dos variables A menudo nos va a interesar describir la relación o asociación entre dos variables. Como siempre la metodología va a depender del tipo de variable que queremos

Más detalles

Unidad IV: Cinética química

Unidad IV: Cinética química 63 Unidad IV: Cinética química El objetivo de la cinética química es el estudio de las velocidades de las reacciones químicas y de los factores de los que dependen dichas velocidades. De estos factores,

Más detalles

Contenido Ejemplos de MMS (ed.1) 1

Contenido Ejemplos de MMS (ed.1) 1 MANUAL DE MMS EJEMPLOS Contenido Ejemplos de MMS (ed.1) 1 Contenido Contenido... 1 I Estimación y previsión de modelos ARIMAX... 3 II Estimación y previsión de modelos cualitativos... 10 II.1 Sobre la

Más detalles

CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO Estadística Superior CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. REGRESIÓN LINEAL SIMPLE Y MÚLTIPLE 1.1. Regresión lineal simple 1.2. Estimación y predicción por intervalo en regresión lineal

Más detalles

Modelos de elección binaria

Modelos de elección binaria Modelos de elección binaria Prof.: Begoña Álvarez García Econometría II 2007-2008 Estamos interesados en la ocurrencia o no-ocurrencia de un cierto evento (ej: participación en el mercado laboral; inversión

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

NT8. El Valor en Riesgo (VaR)

NT8. El Valor en Riesgo (VaR) NT8. El Valor en Riesgo (VaR) Introducción VaR son las siglas de Valor en el Riesgo (Value at Risk) y fue desarrollado por la división RiskMetric de JP Morgan en 1994. es una manera de medir el riesgo

Más detalles

La demanda de plazas en la licenciatura de Medicina en España

La demanda de plazas en la licenciatura de Medicina en España La demanda de plazas en la licenciatura de Medicina en España Estudio econométrico por Comunidades Autónomas de la demanda de plazas en las facultades de Medicina españolas para el curso 2006/2007 Asignatura:

Más detalles

Vectores Autorregresivos (VAR)

Vectores Autorregresivos (VAR) Vectores Autorregresivos (VAR) 1 Procesos estocasticos multivariados Y t = [Y 1t, Y 2t,, Y Nt ], t = 1, 2,..., T Estamos interesados en el comportamiento temporal de N variables simultaneamente. E(Y t

Más detalles

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD

Más detalles

INDICE MENSUAL DE ACTIVIDAD ECONÓMICA

INDICE MENSUAL DE ACTIVIDAD ECONÓMICA Metodología INDICE MENSUAL DE ACTIVIDAD ECONÓMICA El Consejo Monetario Centroamericano (CMCA), desde finales de la década del 80 ha estado trabajando con los Bancos Centrales de la Región Centroamericana

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

Procesos de Media Móvil y ARMA

Procesos de Media Móvil y ARMA Capítulo 4 Procesos de Media Móvil y ARMA Los procesos AR no pueden representar series de memoria muy corta, donde el valor actual de la serie sólo está correlado con un número pequeño de valores anteriores

Más detalles

Econometría I. Carlos Velasco 1. Universidad Carlos III de Madrid

Econometría I. Carlos Velasco 1. Universidad Carlos III de Madrid Econometría I Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso 2007/08 C Velasco (MEI, UC3M)

Más detalles

Sistemas de vectores deslizantes

Sistemas de vectores deslizantes Capítulo 1 Sistemas de vectores deslizantes 1.1. Vectores. Álgebra vectorial. En Física, se denomina magnitud fsica (o simplemente, magnitud) a todo aquello que es susceptible de ser cuantificado o medido

Más detalles

Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal

Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal Introducción El análisis de regresión lineal es una técnica estadística utilizada para estudiar la relación entre variables. Se

Más detalles

V. Un Modelo Simple de Crecimiento Neoclásico de Equilibrio General

V. Un Modelo Simple de Crecimiento Neoclásico de Equilibrio General Analistas Económicos de Andalucía V. Un Modelo Simple de Crecimiento Neoclásico de Equilibrio General Los ejercicios de contabilidad del crecimiento realizados en los epígrafes anteriores resultan muy

Más detalles

Departamento de Economía Aplicada I ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA EN CIENCIAS EMPRESARIALES ESTADÍSTICA

Departamento de Economía Aplicada I ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA EN CIENCIAS EMPRESARIALES ESTADÍSTICA ESCUELA UIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA E CIECIAS EMPRESARIALES ESTADÍSTICA Ejercicios Resueltos AÁLISIS ESTADÍSTICO DE DOS VARIABLES Y RE- GRESIÓ LIEAL SIMPLE Curso 6-7 Curso 6-7 1)

Más detalles

Tema 3. Series de Tiempo

Tema 3. Series de Tiempo Tema 3. Series de Tiempo 3.3.1. Definición En Estadística se le llama así a un conjunto de valores observados durante una serie de períodos temporales secuencialmente ordenada, tales períodos pueden ser

Más detalles

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 UNIDAD 1: LOS NÚMEROS NATURALES. OPERACIONES Y RELACIONES El sistema de numeración decimal Estimación y redondeo de un número natural Las operaciones con números

Más detalles

Control de calidad del Hormigón

Control de calidad del Hormigón Control de calidad del Hormigón Calidad Hay muchos factores involucrados en la producción del hormigón, desde los materiales, la dosificación de la mezcla, el transporte, la colocación, el curado y los

Más detalles

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán Capítulo 4 MEDIDA DE MAGNITUDES Autor: Santiago Ramírez de la Piscina Millán 4 MEDIDA DE MAGNITUDES 4.1 Introducción El hecho de hacer experimentos implica la determinación cuantitativa de las magnitudes

Más detalles

Problemas resueltos del Tema 3.

Problemas resueltos del Tema 3. Terma 3. Distribuciones. 9 Problemas resueltos del Tema 3. 3.1- Si un estudiante responde al azar a un examen de 8 preguntas de verdadero o falso Cual es la probabilidad de que acierte 4? Cual es la probabilidad

Más detalles

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O.

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. Este programa está destinado a los alumnos que han promocionado a cursos superiores sin haber superado esta materia.

Más detalles

Estudio sobre la evolución del número de pasajeros en el metro de Barcelona

Estudio sobre la evolución del número de pasajeros en el metro de Barcelona Estudio sobre la evolución del número de pasajeros en el metro de Barcelona Un análisis basado en Series Temporales. Autor: Origen 1.- Introducción 2.- Metodología estadística 3.- Análisis descriptivo

Más detalles

DETERMINANTES MACROECONÓMICOS DE LOS SEGUROS DE VIDA Y PERSONAS

DETERMINANTES MACROECONÓMICOS DE LOS SEGUROS DE VIDA Y PERSONAS DETERMINANTES MACROECONÓMICOS DE LOS SEGUROS DE VIDA Y PERSONAS Wilson Mayorga M. Director de Cámara de Vida y Personas y Actuaría Mediante la estimación de modelos de regresión lineal se cuantificó el

Más detalles

CAPÍTULO 2: MARCO TEÓRICO. El término inversión significa la asignación de fondos para la adquisición de valores o de

CAPÍTULO 2: MARCO TEÓRICO. El término inversión significa la asignación de fondos para la adquisición de valores o de CAPÍTULO 2: MARCO TEÓRICO 2.1. Valores El término inversión significa la asignación de fondos para la adquisición de valores o de bienes reales con el fin de obtener una utilidad o un interés. [2] Los

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

CONTROL Y MEJORA DE UN PROCESO. GRÁFICOS DE CONTROL. CONTROL ESTADÍSTICO DE PROCESOS. SPC

CONTROL Y MEJORA DE UN PROCESO. GRÁFICOS DE CONTROL. CONTROL ESTADÍSTICO DE PROCESOS. SPC CONTROL Y MEJORA DE UN PROCESO. GRÁFICOS DE CONTROL. CONTROL ESTADÍSTICO DE PROCESOS. SPC 1. INTRODUCCIÓN. Mientras el Dr. Walter Shewhart de los Laboratorios Bell estudiaba datos de procesos en la década

Más detalles

Tema 3: El modelo de regresión lineal múltiple

Tema 3: El modelo de regresión lineal múltiple Econometría 1 curso 2009-2010 Tema 3: El modelo de regresión lineal múltiple Genaro Sucarrat (Departamento de Economía, UC3M) http://www.eco.uc3m.es/sucarrat/ Recordamos: El modelo de regresión lineal

Más detalles

ESTUDIO DEL RENDIMIENTO DE LOS FONDOS DE INVERSIÓN CÓMO SE DETERMINA LA RENTABILIDAD DE UN FONDO?

ESTUDIO DEL RENDIMIENTO DE LOS FONDOS DE INVERSIÓN CÓMO SE DETERMINA LA RENTABILIDAD DE UN FONDO? ESTUDIO DEL RENDIMIENTO DE LOS FONDOS DE INVERSIÓN CÓMO SE DETERMINA LA RENTABILIDAD DE UN FONDO? El precio, o valor de mercado, de cada participación oscila según la evolución de los valores que componen

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

Control Estadístico de Procesos (SPC).

Control Estadístico de Procesos (SPC). Control Estadístico de Procesos (SPC). - Sesión 4ª de 4 - JAIME RAMONET FERNÁNDEZ Ingeniero Industrial Superior. PMP (PMI ). Formador y Consultor. Actitud requerida para recibir formación... y obtener

Más detalles

INNOVACIÓN DOCENTE EN TÉCNICAS DE PREDICCIÓN ECONÓMICA

INNOVACIÓN DOCENTE EN TÉCNICAS DE PREDICCIÓN ECONÓMICA INNOVACIÓN DOCENTE EN TÉCNICAS DE PREDICCIÓN ECONÓMICA Balaguer, Jacint 1 Ripollés, Jordi 2 Departamento de Economía Facultad de Ciencias Jurídicas y Económicas Universidad Jaume I de Castellón Av. de

Más detalles

El impulso. y el PBI. en el Perú: 1992 2009. crediticio

El impulso. y el PBI. en el Perú: 1992 2009. crediticio análisis El impulso crediticio y el PBI en el Perú: 1992 2009 Erick Lahura* y Hugo Vega* *Especialistas en Investigación Económica del BCRP. erick.lahura@bcrp.gob.pe hugo.vega@bcrp.gob.pe La literatura

Más detalles

Estadística. Conceptos de Estadística. Un individuo o unidad estadística es cada uno de los elementos que componen la población.

Estadística. Conceptos de Estadística. Un individuo o unidad estadística es cada uno de los elementos que componen la población. Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2015 /2016

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2015 /2016 RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2015 /2016 DEPARTAMENTO: MATEMÁTICAS MATERIA: MATEMÁTICAS ACADÉMICAS CURSO: 3º ESO OBJETIVOS DEL ÁREA DE MATEMÁTICAS A LAS ENSEÑANZAS ACADÉMICAS 3º ESO

Más detalles

Modelos de series de tiempo para predecir la inflación en Venezuela

Modelos de series de tiempo para predecir la inflación en Venezuela Colección Banca Central y Sociedad BANCO CENTRAL DE VENEZUELA Modelos de series de tiempo para predecir la inflación en Venezuela José Guerra, Gustavo Sánchez y Belkis Reyes Serie Documentos de Trabajo

Más detalles

Análisis de los datos del robo de vehículos asegurados: una aplicación de las series de tiempo. Alejandro Román Vásquez

Análisis de los datos del robo de vehículos asegurados: una aplicación de las series de tiempo. Alejandro Román Vásquez Análisis de los datos del robo de vehículos asegurados: una aplicación de las series de tiempo Alejandro Román Vásquez 2 de mayo del 2012 Índice general 1. Introducción 5 1.1. Contexto, motivación y propósito

Más detalles

Series de Tiempo. Series de Tiempo

Series de Tiempo. Series de Tiempo Series de Tiempo 1. Requisitos de Estadística Descriptiva: a. Media, Mediana b. Desviación estándar c. Regresión lineal 2. Qué es una serie de tiempo a. Componentes de la Serie de Tiempo (tipos de variación):

Más detalles

Análisis descriptivo de series temporales aplicadas al precio medio de la vivienda en España

Análisis descriptivo de series temporales aplicadas al precio medio de la vivienda en España Análisis descriptivo de series temporales aplicadas al precio medio de la vivienda en España Justo Puerto María Paz Rivera * MaMaEuSch ** Management Mathematics for European Schools 94342 - CP - 1-2001

Más detalles

FACTORES COMUNES EN LA VOLATILIDAD DE LOS TIPOS DE INTERÉS DEL MERCADO INTERBANCARIO

FACTORES COMUNES EN LA VOLATILIDAD DE LOS TIPOS DE INTERÉS DEL MERCADO INTERBANCARIO "FACTORES COMUNES EN LA VOLATILIDAD DE LOS TIPOS DE INTERÉS DEL MERCADO INTERBANCARIO" José Miguel Navarro Azorín Dpto. de Métodos Cuantitativos para la Economía Universidad de Murcia (versión preliminar)

Más detalles

La metodologia Cuantitativa. Encuestas y muestras

La metodologia Cuantitativa. Encuestas y muestras La metodologia Cuantitativa. Encuestas y muestras Técnicas «cuantitativas» y «cualitativas» «Las técnicas cuantitativas»: Recogen la información mediante cuestiones cerradas que se planteal sujeto de forma

Más detalles

Control Estadístico del Proceso. Ing. Claudia Salguero Ing. Alvaro Díaz

Control Estadístico del Proceso. Ing. Claudia Salguero Ing. Alvaro Díaz Control Estadístico del Proceso Ing. Claudia Salguero Ing. Alvaro Díaz Control Estadístico del Proceso Es un conjunto de herramientas estadísticas que permiten recopilar, estudiar y analizar la información

Más detalles

17.- PARABRISAS RESOLUCIÓN

17.- PARABRISAS RESOLUCIÓN 17.- PARABRISAS La sección de control de calidad de una fábrica de parabrisas elige, aleatoriamente, una muestra de 100 parabrisas producidos por una determinada máquina y registra la longitud de los parabrisas

Más detalles

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD Curso Asignatura 2009/2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II 1º Comentarios acerca del programa del segundo curso del Bachillerato, en relación con la Prueba de Acceso a la Universidad INTRODUCCIÓN

Más detalles

T.3 ESTIMACIÓN PUNTUAL

T.3 ESTIMACIÓN PUNTUAL T.3 ESTIMACIÓN PUNTUAL 1. INTRODUCCIÓN: ESTIMACIÓN Y ESTIMADOR 2. PROPIEDADES DE LOS ESTIMADORES 3. MÉTODOS DE ESTIMACIÓN. EJEMPLO 1, EJEMPLO 2 1. Introducción: Estimación y Estimador En este tema se analizan

Más detalles

Correlación entre variables

Correlación entre variables Correlación entre variables Apuntes de clase del curso Seminario Investigativo VI Por: Gustavo Ramón S.* * Doctor en Nuevas Perspectivas en la Investigación en Ciencias de la Actividad Física y el Deporte

Más detalles

FISICA I Escuela Politécnica de Ingeniería de Minas y Energía AJUSTE POR MÍNIMOS CUADRADOS

FISICA I Escuela Politécnica de Ingeniería de Minas y Energía AJUSTE POR MÍNIMOS CUADRADOS AJUSTE POR MÍNIMOS CUADRADOS Existen numerosas leyes físicas en las que se sabe de antemano que dos magnitudes x e y se relacionan a través de una ecuación lineal y = ax + b donde las constantes b (ordenada

Más detalles

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA IES Fco Ayala de Granada Sobrantes 00 (Modelo ) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 00 (Modelo ) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO Sea el recinto del plano definido

Más detalles

TABLAS DINAMICAS DE MORTALIDAD Y SUPERVIVENCIA

TABLAS DINAMICAS DE MORTALIDAD Y SUPERVIVENCIA TABLAS DINAMICAS DE MORTALIDAD Y SUPERVIVENCIA Ana Debón 1 Ramón Sala 2 Universitat de Valencia Resumen: Es una realidad que la esperanza de vida está aumentando en todos los países desarrollados. Así

Más detalles

Diplomatura en CIENCIAS EMPRESARIALES ESTADISTICA EMPRESARIAL

Diplomatura en CIENCIAS EMPRESARIALES ESTADISTICA EMPRESARIAL Universidad Rey Juan Carlos Facultad de CC. Jurídicas y Sociales (Campus de Vicálvaro) asignatura: Diplomatura en CIENCIAS EMPRESARIALES ESTADISTICA EMPRESARIAL curso y duración: 2º Anual carácter: Troncal

Más detalles

Medición de la atención en un call center usando box-jenkins

Medición de la atención en un call center usando box-jenkins Revista de la Facultad de Ingeniería Industrial 15(1): 100-109 (2012) UNMSM ISSN: 1560-9146 (Impreso) / ISSN: 1810-9993 (Electrónico) Medición de la atención en un call center usando box-jenkins Recibido:

Más detalles

Estadística aplicada y modelización. 10 de septiembre de 2005

Estadística aplicada y modelización. 10 de septiembre de 2005 Estadística aplicada y modelización. 10 de septiembre de 005 SOLUCIÓN MODELO A 1. Una persona se está preparando para obtener el carnet de conducir, repitiendo un test de 0 preguntas. En la siguiente tabla

Más detalles

Capítulo 18. Análisis de regresión lineal: El procedimiento Regresión lineal. Introducción

Capítulo 18. Análisis de regresión lineal: El procedimiento Regresión lineal. Introducción Capítulo 18 Análisis de regresión lineal: El procedimiento Regresión lineal Introducción El análisis de regresión lineal es una técnica estadística utilizada para estudiar la relación entre variables.

Más detalles

TEMA 3: TRATAMIENTO DE DATOS EN MS. EXCEL (I)

TEMA 3: TRATAMIENTO DE DATOS EN MS. EXCEL (I) VARIABLES Variable: característica de cada sujeto (cada caso) de una base de datos. Se denomina variable precisamente porque varía de sujeto a sujeto. Cada sujeto tiene un valor para cada variable. El

Más detalles

ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral

ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral Enero 2005 1.- INTRODUCCIÓN En múltiples ocasiones el analista o investigador se enfrenta al problema de determinar

Más detalles