Potencial eléctrico. du = - F dl

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Potencial eléctrico. du = - F dl"

Transcripción

1 Introducción Como la fuerza gravitatoria, la fuerza eléctrica es conservativa. Existe una función energía potencial asociada con la fuerza eléctrica. Como veremos, la energía potencial asociada a una partícula en un campo eléctrico es proporcional a la carga. La energía potencial por unidad de carga se denomina potencial eléctrico. El potencial eléctrico se mide en volts y frecuentemente se llama voltaje. Potencial eléctrico En general, cuando una fuerza conservativa F actúa sobre una partícula que experimenta un desplazamiento dl, la variación de la función energía potencial du viene definida por: du = - F dl Cuando la carga experimenta un desplazamiento dl en un campo eléctrico E la energía potencial electrostática experimenta un cambio y si la carga se desplaza desde una posición inicial a hasta otra final b, la variación de energía potencial electrostática es: La variación de energía potencial es proporcional a la carga testigo q 0. La variación de energía potencial por unidad de carga se denomina diferencia de potencial dv: Ecuación 1.

2 dv = du/ q 0 = - E dl Ecuación 2. Para un desplazamiento finito desde el punto a al punto b, el cambio de potencial es: Ecuación 3. La diferencia de potencial V b - V a es el valor negativo del trabajo por unidad de carga realizado por el campo eléctrico sobre una carga testigo positiva cuando ésta se desplaza del punto a al punto b. La variación de la función V denominada potencial eléctrico (o simplemente potencial). Como el potencial eléctrico es la energía potencial electrostática por unidad de carga, la unidad SI para el potencial y diferencia de potencial es el joule por coulomb, llamada Volt: 1 V = 1 J / C Las dimensiones de potencial son también las mismas que el campo eléctrico multiplicado por la distancia. Así pues, la unidad de campo eléctrico E, el newton por coulomb, es también igual a volt por metro: 1 N / C = 1 V / m Si situamos una carga de prueba positiva q 0 en un campo eléctrico E y la dejamos en libertad, se acelerará en la dirección de E a lo largo de la línea del campo. La energía cinética de la carga se incrementará, y su energía potencial disminuirá. Así, la carga se mueve hacia una región de menor energía potencial del mismo modo que un cuerpo masivo cae hacia una región de menor energía potencial gravitatoria. Para una carga testigo puntual, una región de menor energía potencial es una región de menor potencial.

3 En la física atómica y nuclear, encontramos frecuentemente partículas elementales, tales como electrones y protones, con cargas de magnitud e que se mueven a través de diferencias de potencial de varios miles o millones de volts. Como la energía tiene dimensiones de carga eléctrica multiplicada por potencial eléctrico, una unidad conveniente de energía es el producto de la carga electrónica e por el volt. Esta unidad se denomina electrón-volt (ev). La conversión de unidades entre electón-volt y joule se obtiene expresando la carga electrónica en coulombs: 1 ev = 1.6 x C V = 1.6 x J Potencial debido a un sistema de cargas puntuales El potencial eléctrico debido a una carga puntual q en el origen puede calcularse a partir del campo eléctrico, el cual viene dado por: Si una carga testigo q 0 a la distancia r experimenta un desplazamiento dl= dr ^r, la variación de su energía potencial es du = -q 0 E dl y el cambio de potencial eléctrico es: Integrando se obtiene: Ecuación 4. en donde V 0 es una constante de integración.

4 Es costumbre definir el potencial cero a una distancia infinita de la carga puntual (es decir, para r = ). Por tanto, la constante V 0 es cero y el potencial a una distancia r de la carga puntual es: V= 0 para r = Ecuación 5. El potencial es positivo o negativo según el signo de la carga q. Para determinar el potencial en un punto causado por varias cargas puntuales, hay que calcular el potencial en dicho punto debido a cada una de las cargas por separado y sumar todos ellos. Esta es una consecuencia del principio de superposición del campo eléctrico. Si E 1 es el campo eléctrico en un punto debido a la carga q 1, el campo neto en dicho punto producido por todas las cargas es: Por tanto, según la definición de diferencia de potencial resulta para un desplazamiento dl: Si la distribución de carga es finita, es decir, si no hay cargas en el infinito, podemos considerar que es cero el potencial en el infinito y sumar el potencial correspondiente a cada carga puntual. El potencial debido a un sistema de cargas puntuales q i será por tanto: Ecuación 6. en donde la suma debe extenderse a todas las cargas y r i0 es la distancia desde la carga i al punto P donde deseamos calcular el potencial.

5 El trabajo necesario para llevar una carga de prueba desde el infinito hasta el punto a una distancia de una carga en el origen es. El trabajo por unidad de carga es, que es el potencial eléctrico en el punto respecto a un potencial cero en el infinito. Si la carga testigo se libera desde el punto, el eléctrico realiza el trabajo sobre la carga cuando ésta se mueve hasta el infinito. Energía potencial electrostática Si tenemos una carga puntual q 1, el potencial a una distancia r 12 de la misma, viene dado por: El trabajo necesario para trasladar una segunda carga puntual q 2 desde el infinito hacia una distancia r 12 es W 2 = q 2 V= kq 1 q 2 /r 12. Para transportar una tercera carga, debe realizarse trabajo contra el campo eléctrico producido por ambas q 1 y q 2. El trabajo necesario para transportar una tercera carga q 3 que dista r 13 de q 1 y r 23 de q 2 es W 3 = kq 3 q 1 /r 13 + kq 2 q 3 /r 23. Este trabajo es la energía potencial electrostática del sistema formado por las tres cargas puntuales. Es independiente del orden en que las cargas son transportadas a sus posiciones finales. En general, W T = kq 1 q 2 /r 12 + kq 3 q 1 /r 13 + kq 2 q 3 /r 23. La energía potencial electrostática de un sistema de cargas puntuales es igual al

6 trabajo necesario para transportar las cargas desde una separación infinita a sus posiciones finales. Potencial sobre el eje de un anillo cargado Consideremos un anillo uniformemente cargado de radio a y carga Q, como indica la figura Sea dq un elemento de carga del anillo. La distancia desde este elemento de la carga al punto del campo P sobre el eje del anillo es r = (x² + a²) ½. Como esta distancia es la misma para todos los elementos de carga sobre el anillo, puede sacarse fuera de la integral en la ecuación y el potencial en el punto P debido al anillo es: Geometría para el cálculo del potencial eléctrico en un punto situado en el eje de un anillo de radio a uniformemente cargado.. Potencial sobre un disco uniformemente cargado Calcularemos el potencial sobre el eje de un disco uniformemente cargado. El disco tiene un radio R y es portador de una carga total Q. La densidad de carga superficial sobre el disco es, por tanto, =Q/ R². Tomaremos como eje x el eje del disco y consideraremos el disco como una serie concéntrica de cargas anulares. La figura muestra uno de estos anillos de radio a y anchura da. El área del anillo es 2 a da. El potencial en un punto P sobre el eje x debido a este elemento anular de carga viene dado por la ecuación:

7 Geometría para el cálculo de potencial eléctrico en un punto situado sobre el eje uniformemente cargado. de un disco de radio El potencial sobre el eje del disco se calcula integrando desde a = 0 hasta a = R:. Esta integral es de la forma con u = x² + a² y n = -½. La integración nos da: Potencial en las proximidades de un plano infinito de carga: Continuidad de V Si R se hace muy grande, nuestro disco se aproxima a un plano infinito. Cuando R se hace infinito, la función potencial se hace infinita. Para estos casos, determinamos en primer lugar el campo eléctrico (por integración directa o mediante la ley de Gauss) y luego calculamos el potencial a partir de su definición. Si se trata de un plano infinito de carga de densidad s situado en el plano yz, el campo eléctrico para valores positivos de x viene dado

8 por: El potencial se calcula a partir de su definición (ecuación 3). Si el potencial en el plano yz donde x = 0 es V 0,el potencial en cualquier valor arbitrario positivo x es: Donde se ha considerado como condición de contorno V(x) = 0 en x = 0 Para valores positivos de x, el potencial tiene su valor máximo V 0 en x = 0 y disminuye linealmente con la distancia desde el plano. Como el potencial no tiende a un valor límite cuando x tiende a infinito, no podemos elegir el potencial cero para x =. Sin embargo, sí podemos escoger V de modo que no sea cero en x = 0 o en cualquier otro punto. Potencial en el interior y en el exterior de una corteza esférica de carga A continuación determinaremos el potencial debido a una corteza esférica de radio R y carga Q distribuida uniformemente en su superficie. Estamos interesados en hallar el potencial en todos los puntos en el interior y en el exterior de la corteza. Puesto que esta distribución de carga es de extensión infinita, podríamos calcular el potencial por integración directa, pero esta integración es compleja. Como el campo eléctrico para esta distribución de carga se obtiene fácilmente mediante la ley de Gauss y obtener el potencial a partir del campo eléctrico conocido. Dentro de la corteza esférica, el campo eléctrico es cero. La variación de potencial en cualquier desplazamiento dentro de la corteza es, por tanto, cero. Así pues, el potencial será constante en todos los puntos dentro de la corteza. Cuando r se aproxima a R desde el exterior de la corteza, el potencial se aproxima a kq/r. Por tanto, el valor constante de V en el interior debe ser kq/r para que V varíe de modo continuo. Así,

9 Figura 4 Potencial eléctrico de una corteza esférica uniformemente cargada de radio en función de la distancia al centro de la corteza. Dentro de ella el potencial tiene valor constante. Fuera de la corteza el potencial es el mismo que el originado por una carga puntual en el centro de la esfera. Un error frecuente es pensar que el potencial debe ser cero en el interior de una corteza esférica porque el campo eléctrico es cero. Realmente, el campo eléctrico nulo implica simplemente que el potencial no varía. Potencial próximo a una carga lineal infinita Calcularemos ahora el potencial debido a una carga lineal uniforme infinita. Supongamos que la carga por unidad de longitud sea. Como ya vimos, el campo eléctrico producido por una carga lineal infinita apunta en dirección que le aleja de la línea (si es positivo) y viene expresado por E r = 2k /r. Integrando resulta: Se elegirá como potencial cero al correspondiente a cierta distancia r= a. Campo eléctrico y potencial Las líneas del campo eléctrico señalan en la dirección del potencial decreciente. Si el potencial es conocido, puede utilizarse para calcular el campo eléctrico. Consideremos un pequeño desplazamiento dl en un campo eléctrico arbitrario E. La variación de potencial es:

10 en donde es el componente E paralelo al desplazamiento. Dividiendo por dl, resulta: Si el desplazamiento dl es perpendicular al campo eléctrico, el potencial no varía. La variación más grande de V se produce cuando el desplazamiento dl es paralelo o antiparalelo a E. Un vector que señala en la dirección de la máxima variación de una función escalar y cuyo módulo es igual a la derivada de la función con respecto a la distancia en dicha dirección, se denomina gradiente de la función. El campo eléctrico es opuesto al gradiente del potencial V. Las líneas de campo señalan en la dirección de máxima disminución de la función potencial. En notación vectorial, el gradiente de V se escribe. Así: Así pues, la ecuación anterior en coordenadas rectangulares es:

Introducción. El concepto de energía potencial también tiene una aplicación muy importante en el estudio de la electricidad.

Introducción. El concepto de energía potencial también tiene una aplicación muy importante en el estudio de la electricidad. Potencial Eléctrico Presentación basada en el material contenido en: R. Serway,; Physics for Scientists and Engineers, Saunders College Publishers, 3 rd edition. Introducción El concepto de energía potencial

Más detalles

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica Energía Potencial eléctrica Si movemos la carga q2 respecto a la carga q1 Recordemos que la diferencia en la energía tenemos que: potencial U cuando una partícula se mueve entre dos puntos a y b bajo la

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

3.2 Potencial debido a un sistema de cargas puntuales. 3.4 Cálculo del potencial para distribuciones continuas de carga.

3.2 Potencial debido a un sistema de cargas puntuales. 3.4 Cálculo del potencial para distribuciones continuas de carga. CAPÍTULO 3 El potencial eléctrico Índice del capítulo 3 31 3.1 Diferencia de potencial eléctrico. 3.2 Potencial debido a un sistema de cargas puntuales. 3.33 Determinación del potencial eléctrico a partir

Más detalles

Problemas de Campo eléctrico 2º de bachillerato. Física

Problemas de Campo eléctrico 2º de bachillerato. Física Problemas de Campo eléctrico 2º de bachillerato. Física 1. Un electrón, con velocidad inicial 3 10 5 m/s dirigida en el sentido positivo del eje X, penetra en una región donde existe un campo eléctrico

Más detalles

Campo eléctrico 1: Distribuciones discretas de carga

Campo eléctrico 1: Distribuciones discretas de carga Campo eléctrico 1: Distribuciones discretas de carga Introducción Carga eléctrica Conductores y aislantes y carga por inducción Ley de Coulomb El campo eléctrico Líneas de campo eléctrico Movimiento de

Más detalles

Trabajo, Energía y Potencial

Trabajo, Energía y Potencial Cátedra de Física Experimental II Física III Trabajo, Energía y Potencial Prof. Dr. Victor H. Rios 2015 METAS DE APRENDIZAJE Al estudiar este capítulo, usted aprenderá: A calcular la energía potencial

Más detalles

4. LA ENERGÍA POTENCIAL

4. LA ENERGÍA POTENCIAL 4. LA ENERGÍA POTENCIAL La energía potencial en un punto es una magnitud escalar que indica el trabajo realizado por las fuerzas de campo para traer la carga desde el infinito hasta ese punto. Es función

Más detalles

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía.

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía. INTRODUCCIÓN. Mecánica Racional 20 Este método es útil y ventajoso porque analiza las fuerzas, velocidad, masa y posición de una partícula sin necesidad de considerar las aceleraciones y además simplifica

Más detalles

5.3 Teorema de conservación de la cantidad de movimiento

5.3 Teorema de conservación de la cantidad de movimiento 105 UNIDAD V 5 Sistemas de Partículas 5.1 Dinámica de un sistema de partículas 5.2 Movimiento del centro de masa 5.3 Teorema de conservación de la cantidad de movimiento 5.4 Teorema de conservación de

Más detalles

Electric Field, PE, & Voltage - 1 v 1.2 2009 Goodman & Zavorotniy

Electric Field, PE, & Voltage - 1 v 1.2 2009 Goodman & Zavorotniy ampo eléctrico, Energía Potencial Eléctrica y Voltaje ampo Eléctrico La idea de campo eléctrico es una idea muy importante y útil a la vez que fácil de comprender. Basta con mirar lo que ya hemos estudiado

Más detalles

UNIVERSIDAD NACIONAL SANTIAGO ANTUNEZ DE MAYOLO FACULTAD DE INGENIERÍA CIVIL CAMPO ELECTRICO CURSO: FISICA III DOCENTE: MAG. OPTACIANO VÁSQUEZ GARCÍA

UNIVERSIDAD NACIONAL SANTIAGO ANTUNEZ DE MAYOLO FACULTAD DE INGENIERÍA CIVIL CAMPO ELECTRICO CURSO: FISICA III DOCENTE: MAG. OPTACIANO VÁSQUEZ GARCÍA UNIVERSIDAD NACIONAL SANTIAGO ANTUNEZ DE MAYOLO FACULTAD DE INGENIERÍA CIVIL CAMPO ELECTRICO CURSO: FISICA III DOCENTE: MAG. OPTACIANO VÁSQUEZ GARCÍA HUARAZ PERÚ 2010 I. INTRODUCCIÓN 2.1 CAMPOS ESCALARES

Más detalles

Ambas barras se atraen. En cambio, cuando ambas barras se frotan con piel, las barras se repelen. entre si. Las barras de vidrio

Ambas barras se atraen. En cambio, cuando ambas barras se frotan con piel, las barras se repelen. entre si. Las barras de vidrio Antecedentes Semana 1 Qué tanto dependemos de la electricidad? De que tipo son las fuerzas que mantienen unidos a las partes de un átomo? De que tipo son las fuerzas que mantienen unidos entre si a los

Más detalles

PROBLEMAS DE ELECTROSTÁTICA

PROBLEMAS DE ELECTROSTÁTICA PROBLEMAS DE ELECTROSTÁTICA 1.-Deducir la ecuación de dimensiones y las unidades en el SI de la constante de Permitividad eléctrica en el vacío SOLUCIÓN : N -1 m -2 C 2 2.- Dos cargas eléctricas puntuales

Más detalles

TEMA 8 CAMPO ELÉCTRICO

TEMA 8 CAMPO ELÉCTRICO TEMA 8 CAMPO ELÉCTRICO INTERACCIÓN ELECTROSTÁTICA Los antiguos griegos ya sabían que el ámbar frotado con lana adquiría la propiedad de atraer cuerpos ligeros. Todos estamos familiarizados con los efectos

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 5 Campo eléctrico Ejercicio 1 La masa de un protón es 1,67 10 7 kg y su carga eléctrica 1,6 10 19 C. Compara la fuerza de repulsión eléctrica entre dos protones situados en

Más detalles

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. CONCEPTO DE TRABAJO: A) Trabajo de una fuerza constante Todos sabemos que cuesta trabajo tirar de un sofá pesado, levantar una pila de libros

Más detalles

TEMA: CAMPO ELÉCTRICO

TEMA: CAMPO ELÉCTRICO TEMA: CAMPO ELÉCTRICO C-J-06 Una carga puntual de valor Q ocupa la posición (0,0) del plano XY en el vacío. En un punto A del eje X el potencial es V = -120 V, y el campo eléctrico es E = -80 i N/C, siendo

Más detalles

INTERACCIÓN GRAVITATORIA

INTERACCIÓN GRAVITATORIA INTERACCIÓN GRAVITATORIA 1. Teorías y módulos. 2. Ley de gravitación universal de Newton. 3. El campo gravitatorio. 4. Energía potencial gravitatoria. 5. El potencial gravitatorio. 6. Movimientos de masas

Más detalles

CONCEPTOS BÁSICOS DE ELECTRICIDAD

CONCEPTOS BÁSICOS DE ELECTRICIDAD CONCEPTOS BÁSICOS DE ELECTRICIDAD Ley de Coulomb La ley de Coulomb nos describe la interacción entre dos cargas eléctricas del mismo o de distinto signo. La fuerza que ejerce la carga Q sobre otra carga

Más detalles

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen.

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. Física 2º de Bachillerato. Problemas de Campo Eléctrico. 1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. 2.-

Más detalles

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración Tema 4 Dinámica Fuerza Fuerza es lo que produce cualquier cambio en la velocidad de un objeto Una fuerza es lo que causa una aceleración La fuerza neta es la suma de todas las fuerzas que actúan sobre

Más detalles

= 4.38 10 0.956h = 11039 h = 11544 m

= 4.38 10 0.956h = 11039 h = 11544 m PAEG UCLM / Septiembre 2014 OPCIÓN A 1. Un satélite de masa 1.08 10 20 kg describe una órbita circular alrededor de un planeta gigante de masa 5.69 10 26 kg. El periodo orbital del satélite es de 32 horas

Más detalles

Tema 5: Dinámica del punto II

Tema 5: Dinámica del punto II Tema 5: Dinámica del punto II FISICA I, 1º Grado en Ingeniería Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Leyes de Newton Dinámica del punto material Trabajo mecánico

Más detalles

POTENCIAL ELECTRICO. W q. B o

POTENCIAL ELECTRICO. W q. B o POTENCIAL ELECTRICO Un campo eléctrico que rodea a una barra cargada puede describirse no solo por una intensidad de campo eléctrico E (Cantidad Vectorial) si no también como una cantidad escalar llamada

Más detalles

Campo y potencial eléctrico de una carga puntual

Campo y potencial eléctrico de una carga puntual Campo y potencial eléctrico de una carga puntual Concepto de campo Energía potencial Concepto de potencial Relaciones entre fuerzas y campos Relaciones entre campo y diferencia de potencial Trabajo realizado

Más detalles

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA CMO LÉCTRICO FC 0 NDLUCÍ. a) xplique la relación entre campo y potencial electrostáticos. b) Una partícula cargada se mueve espontáneamente hacia puntos en los que el potencial electrostático es mayor.

Más detalles

POTENCIAL ELECTRICO. 1. Establezca la distinción entre potencial eléctrico y energía potencial eléctrica.

POTENCIAL ELECTRICO. 1. Establezca la distinción entre potencial eléctrico y energía potencial eléctrica. POTENCIAL ELECTRICO 1. Establezca la distinción entre potencial eléctrico y energía potencial eléctrica. Energía potencial eléctrica es la energía que posee un sistema de cargas eléctricas debido a su

Más detalles

03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES

03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES 03 ENERGÍA ALGUNOS COMENTARIOS Y CUESTIONES Feynman: Es importante darse cuenta que en la física actual no sabemos lo que la energía es 03.0 Le debe interesar al óptico la energía? 03.1 Fuerza por distancia.

Más detalles

INTRODUCCIÓN A VECTORES Y MAGNITUDES

INTRODUCCIÓN A VECTORES Y MAGNITUDES C U R S O: FÍSIC Mención MTERIL: FM-01 INTRODUCCIÓN VECTORES Y MGNITUDES La Física tiene por objetivo describir los fenómenos que ocurren en la naturaleza, a través de relaciones entre magnitudes físicas.

Más detalles

Trabajo Practico 1: Fuerza Eléctrico y Campo Eléctrico

Trabajo Practico 1: Fuerza Eléctrico y Campo Eléctrico Universidad Nacional del Nordeste Facultad de Ingeniería Cátedra: Física III Profesor Adjunto: Ing. Arturo Castaño Jefe de Trabajos Prácticos: Ing. Cesar Rey Auxiliares: Ing. Andrés Mendivil, Ing. José

Más detalles

Líneas Equipotenciales

Líneas Equipotenciales Líneas Equipotenciales A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En esta experiencia se estudia

Más detalles

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a Física P.A.U. ELECTOMAGNETISMO 1 ELECTOMAGNETISMO INTODUCCIÓN MÉTODO 1. En general: Se dibujan las fuerzas que actúan sobre el sistema. Se calcula la resultante por el principio de superposición. Se aplica

Más detalles

UNIVERSIDAD PÚBLICA DE NAVARRA DEPARTAMENTO DE FÍSICA OLIMPIADA DE FÍSICA FASE LOCAL

UNIVERSIDAD PÚBLICA DE NAVARRA DEPARTAMENTO DE FÍSICA OLIMPIADA DE FÍSICA FASE LOCAL UNIVERSIDAD PÚBLICA DE NAVARRA DEPARTAMENTO DE FÍSICA OLIMPIADA DE FÍSICA FASE LOCAL 6 de Marzo de 2012 Apellidos, Nombre:... Centro de Estudio:... En la prueba de selección se plantean 9 problemas de

Más detalles

G = 6'67.10-11 N.m 2 /kg 2

G = 6'67.10-11 N.m 2 /kg 2 Demostrar que el campo gravitatorio es un campo conservativo. Un campo es conservativo si el trabajo que realizan las fuerzas del campo para trasladar una masa de un punto a otro es independiente del camino

Más detalles

INTRO.CARGAS ELÉCTRICAS EN... FENÓMENOS ELECTROSTÁTICOS

INTRO.CARGAS ELÉCTRICAS EN... FENÓMENOS ELECTROSTÁTICOS INTRO.CARGAS ELÉCTRICAS EN... La carga eléctrica constituye una propiedad fundamental de la materia. Se manifiesta a través de ciertas fuerzas, denominadas electrostáticas, que son las responsables de

Más detalles

Fisica III -10 - APENDICES. - APENDICE 1 -Conductores -El generador de Van de Graaff

Fisica III -10 - APENDICES. - APENDICE 1 -Conductores -El generador de Van de Graaff Fisica III -10 - APENDICES - APENDICE 1 -Conductores -El generador de Van de Graaff - APENDICE 2 - Conductores, dirección y modulo del campo en las proximidades a la superficie. - Conductor esférico. -

Más detalles

E.U.I.T.I.Z. (1º Electrónicos) Curso 2006-07 Electricidad y Electrometría. P. resueltos Tema 1 1/27

E.U.I.T.I.Z. (1º Electrónicos) Curso 2006-07 Electricidad y Electrometría. P. resueltos Tema 1 1/27 E.U.I.T.I.Z. (1º Electrónicos) Curso 2006-07 Electricidad y Electrometría. P. resueltos Tema 1 1/27 Tema 1. Problemas resueltos 1. Cuáles son las similitudes y diferencias entre la ley de Coulomb y la

Más detalles

Las órbitas de los planetas son elípticas, ocupando el Sol uno de sus focos.

Las órbitas de los planetas son elípticas, ocupando el Sol uno de sus focos. 1. LEYES DE KEPLER: Las tres leyes de Kepler son: Primera ley Las órbitas de los planetas son elípticas, ocupando el Sol uno de sus focos. a es el semieje mayor de la elipse b es el semieje menor de la

Más detalles

Las leyes de Kepler y la ley de la Gravitación Universal

Las leyes de Kepler y la ley de la Gravitación Universal Las leyes de Kepler y la ley de la Gravitación Universal Rosario Paredes y Víctor Romero Rochín Instituto de Física, UNAM 16 de septiembre de 2014 Resumen Estas notas describen con cierto detalle la deducción

Más detalles

1 Flujo del campo eléctrico. Ley de Gauss

1 Flujo del campo eléctrico. Ley de Gauss 1 Flujo del campo eléctrico Ley de Gauss El número de líneas de campo que atraviesan una determinada superficie depende de la orientación de esta última con respecto a las líneas de campo. ds es un vector

Más detalles

Solución: a) M = masa del planeta, m = masa del satélite, r = radio de la órbita.

Solución: a) M = masa del planeta, m = masa del satélite, r = radio de la órbita. 1 PAU Física, junio 2010. Fase específica OPCIÓN A Cuestión 1.- Deduzca la expresión de la energía cinética de un satélite en órbita circular alrededor de un planeta en función del radio de la órbita y

Más detalles

MATERIA Y ENERGÍA (Física)

MATERIA Y ENERGÍA (Física) MATERIA Y ENERGÍA (Física) 1. Tema 1: Conceptos generales. 1. La materia. Propiedades macroscópicas y su medida 2. Estructura microscópica de la materia 3. Interacción gravitatoria y electrostática 4.

Más detalles

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N)

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 1. Definición de Viga de alma llena TEORÍA TEMA 9 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 3. Determinación de los esfuerzos característicos i. Concepto de Polígonos de Presiones ii. Caso

Más detalles

Nivelación de Matemática MTHA UNLP 1. Vectores

Nivelación de Matemática MTHA UNLP 1. Vectores Nivelación de Matemática MTHA UNLP 1 1. Definiciones básicas Vectores 1.1. Magnitudes escalares y vectoriales. Hay magnitudes que quedan determinadas dando un solo número real: su medida. Por ejemplo:

Más detalles

La curvatura en el periastro y el problema de Kepler The curvature in the periastro and the problem of Kepler

La curvatura en el periastro y el problema de Kepler The curvature in the periastro and the problem of Kepler La curvatura en el periastro y el problema de Kepler The curvature in the periastro and the problem of Kepler Campillo IES Ruiz de Alda Isaac Peral s/n 30730 San Javier (Murcia) solivare@fresno.pntic.mec.es

Más detalles

TEORÍA ELECTROMAGNÉTICA APÉNDICE A INTRODUCCIÓN AL CÁLCULO VECTORIAL

TEORÍA ELECTROMAGNÉTICA APÉNDICE A INTRODUCCIÓN AL CÁLCULO VECTORIAL Página Principal del Profesor: Luis Gerardo Guerrero Ojeda Ir al Capítulo 1 Página Principal de Apuntes de Cursos Pág. Principal de los Apuntes de Teoría TEORÍA ELECTROMAGNÉTICA APÉNDICE A INTRODUCCIÓN

Más detalles

EJERCICIOS DE POTENCIAL ELECTRICO

EJERCICIOS DE POTENCIAL ELECTRICO EJERCICIOS DE POTENCIAL ELECTRICO 1. Determinar el valor del potencial eléctrico creado por una carga puntual q 1 =12 x 10-9 C en un punto ubicado a 10 cm. del mismo como indica la figura 2. Dos cargas

Más detalles

Vectores. Observación: 1. Cantidades vectoriales.

Vectores. Observación: 1. Cantidades vectoriales. Vectores. 1. Cantidades vectoriales. Los vectores se definen como expresiones matemáticas que poseen magnitud y dirección, y que se suman de acuerdo con la ley del paralelogramo. Los vectores se representan,

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

ESCULA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER DE ELECTROSTATICA

ESCULA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER DE ELECTROSTATICA ESCULA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER DE ELECTROSTATICA Aceleración de la gravedad 9,8m/s Constante de permitividad 8,85x10-1 Nm /C Masa del protón 1,67x10-7 kg Masa

Más detalles

Tema 4. Sistemas de partículas

Tema 4. Sistemas de partículas Física I. Curso 2010/11 Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca Profs. Alejandro Medina Domínguez y Jesús Ovejero Sánchez Tema 4. Sistemas de partículas Índice 1. Introducción

Más detalles

Trabajo, fuerzas conservativas. Energia.

Trabajo, fuerzas conservativas. Energia. Trabajo, fuerzas conservativas. Energia. TRABAJO REALIZADO POR UNA FUERZA CONSTANTE. Si la fuerza F que actúa sobre una partícula constante (en magnitud y dirección) el movimiento se realiza en línea recta

Más detalles

V = Ep /q = w /q = 75. 10-4 J / 12. 10-8 C = 6,25. 10 4 V

V = Ep /q = w /q = 75. 10-4 J / 12. 10-8 C = 6,25. 10 4 V Ejercicio resuelto Nº 1 En un punto de un campo eléctrico, una carga eléctrica de 12. 10-8 C, adquiere una energía potencial de 75. 10-4 J. Determinar el valor del Potencial Eléctrico en ese punto. En

Más detalles

2 Olimpiada Asiática de Física

2 Olimpiada Asiática de Física 2 Olimpiada Asiática de Física Taipei, Taiwan 200 Problema : ¾Cuándo se convertirá la Luna en un satélite sincrónico? El periodo de rotación de la Luna en torno a su eje es actualmente el mismo que su

Más detalles

Cap. 24 La Ley de Gauss

Cap. 24 La Ley de Gauss Cap. 24 La Ley de Gauss Una misma ley física enunciada desde diferentes puntos de vista Coulomb Gauss Son equivalentes Pero ambas tienen situaciones para las cuales son superiores que la otra Aquí hay

Más detalles

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.

Más detalles

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff Seminario Universitario Material para estudiantes Física Unidad 2. Vectores en el plano Lic. Fabiana Prodanoff CONTENIDOS Vectores en el plano. Operaciones con vectores. Suma y producto por un número escalar.

Más detalles

Entonces el trabajo de la fuerza eléctrica es : =F d (positivo porque la carga se desplaza en el sentido en que actúa la fuerza (de A a B)

Entonces el trabajo de la fuerza eléctrica es : =F d (positivo porque la carga se desplaza en el sentido en que actúa la fuerza (de A a B) Consideremos la siguiente situación. Una carga Q que genera un campo eléctrico uniforme, y sobre este campo eléctrico se ubica una carga puntual q.de tal manara que si las cargas son de igual signo la

Más detalles

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o. ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.

Más detalles

1. Magnitudes vectoriales

1. Magnitudes vectoriales FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda mbvelascob@uqvirtual.edu.co CICLO: V INICADORES DE LOGRO VECTORES 1. Adquiere

Más detalles

La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo)

La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo) Existen ciertas magnitudes que quedan perfectamente determinadas cuando se conoce el nombre de una unidad y el numero de veces que se ha tomado.estas unidades se llaman escalares (tiempo, volumen, longitud,

Más detalles

MOMENTO ANGULAR Y TORCAS COMO VECTORES

MOMENTO ANGULAR Y TORCAS COMO VECTORES MOMENTO ANGULAR Y TORCAS COMO VECTORES OBJETIVOS: Identificar la torca y el momento angular como magnitudes vectoriales. Examinar las propiedades matemáticas del producto cruz y algunas aplicaciones. Describir

Más detalles

Fundamentos de importancia del Trabajo, Energía y Potencia en física

Fundamentos de importancia del Trabajo, Energía y Potencia en física Fundamentos de importancia del Trabajo, Energía y Potencia en física INTRODUCCIÓN En el campo de la Física no se habla de trabajo simplemente, sino de Trabajo Mecánico y se dice que una fuerza realiza

Más detalles

Tema 1. Movimiento armónico simple (m.a.s.)

Tema 1. Movimiento armónico simple (m.a.s.) Tema 1. Movimiento armónico simple (m.a.s.) Si observas los movimientos que suceden alrededor tuyo, es muy probable que encuentres algunos de ellos en los que un objeto se mueve de tal forma que su posición

Más detalles

Electrotecnia General Tema 8 TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL

Electrotecnia General Tema 8 TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL TEMA 8 CAMPO MAGNÉTICO CREADO POR UNA CORRIENTE O UNA CARGA MÓVIL 8.1. CAMPO MAGNÉTICO CREADO POR UN ELEMENTO DE CORRIENTE Una carga eléctrica en movimiento crea, en el espacio que la rodea, un campo magnético.

Más detalles

requerido). vectoriales, y operan según el Álgebra a continuación. 2.1.2 Vector. dirección. representados.

requerido). vectoriales, y operan según el Álgebra a continuación. 2.1.2 Vector. dirección. representados. 2.1 Vectores. 2.1.1 Introducción. Cuando queremos referirnos al tiempo que demanda un suceso determinado, nos basta con una magnitud (se demoró 3 segundos, saltó durante 1 minuto, volverá el próximo año,

Más detalles

Representación de un Vector

Representación de un Vector VECTORES Vectores Los vectores se caracterizan por tener una magnitud, expresable por un número real, una dirección y un sentido. Un ejemplo de vectores son los desplazamientos. Otro ejemplo de vectores

Más detalles

FÍSICA 2º DE BACHILLERATO Problemas: CAMPO ELÉCTRICO NOVIEMBRE.2011

FÍSICA 2º DE BACHILLERATO Problemas: CAMPO ELÉCTRICO NOVIEMBRE.2011 FÍSIC º DE BCHILLER Problemas: CMP ELÉCRIC NVIEMBRE.0. Dos cargas puntuales iguales, de, 0 6 C cada una, están situadas en los puntos (0,8) m y B (6,0) m. Una tercera carga, de, 0 6 C, se sitúa en el punto

Más detalles

Teoría y Problemas resueltos paso a paso

Teoría y Problemas resueltos paso a paso Departamento de Física y Química 1º Bachillerato Teoría y Problemas resueltos paso a paso Daniel García Velázquez MAGNITUDES. INTRODUCCIÓN AL ANÁLISIS DIMENSIONAL Magnitud es todo aquello que puede ser

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

Elementos de álgebra vectorial

Elementos de álgebra vectorial Hier auf glatten Felsenwegen laufe ich tanzend dir entgegen, tanzend wie Du pfeifst und singst : der Du ohne Schiff und Ruder, als der Freiheit frei ster Bruder ueber wilde Meere springst. Friedrich Nietzsche

Más detalles

CÁLCULO PARA LA INGENIERÍA 1

CÁLCULO PARA LA INGENIERÍA 1 CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!

Más detalles

1. ESCALARES Y VECTORES

1. ESCALARES Y VECTORES 1. ESCLRES Y VECTORES lgunas magnitudes físicas se especifican por completo mediante un solo número acompañado de su unidad, por ejemplo, el tiempo, la temperatura, la masa, la densidad, etc. Estas magnitudes

Más detalles

5. Introducción a la Formulación Lagrangiana y Hamiltoniana

5. Introducción a la Formulación Lagrangiana y Hamiltoniana 5. Introducción a la Formulación Lagrangiana y Hamiltoniana Introducción Definiciones: coordenadas, momentos y fuerzas generalizados. Función Lagrangiana y ecuaciones de Euler-Lagrange. Coordenadas cíclicas.

Más detalles

Módulo 1: Electrostática Condensadores. Capacidad.

Módulo 1: Electrostática Condensadores. Capacidad. Módulo 1: Electrostática Condensadores. Capacidad. 1 Capacidad Hemos visto la relación entre campo eléctrico y cargas, y como la interacción entre cargas se convierte en energía potencial eléctrica Ahora

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

TRABAJO Y ENERGÍA. Campos de fuerzas

TRABAJO Y ENERGÍA. Campos de fuerzas TRABAJO Y ENERGÍA 1. Campos de fuerzas. Fuerzas dependientes de la posición. 2. Trabajo. Potencia. 3. La energía cinética: Teorema de la energía cinética. 4. Campos conservativos de fuerzas. Energía potencial.

Más detalles

VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5.

VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5. VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5. Elementos de un vector. 6. Concepto de origen de un vector. 7.

Más detalles

Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig.

Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig. Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA Trabajo realizado por una fuerza. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig. N 1), fig N 1 Desde el punto de vista

Más detalles

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO 1. Trabajo mecánico y energía. El trabajo, tal y como se define físicamente, es una magnitud diferente de lo que se entiende sensorialmente por trabajo. Trabajo

Más detalles

EXAMEN FÍSICA PAEG UCLM. SEPTIEMBRE 2013. SOLUCIONARIO OPCIÓN A. PROBLEMA 1

EXAMEN FÍSICA PAEG UCLM. SEPTIEMBRE 2013. SOLUCIONARIO OPCIÓN A. PROBLEMA 1 OPCIÓN A. PROBLEMA 1 Una partícula de masa 10-2 kg vibra con movimiento armónico simple de periodo π s a lo largo de un segmento de 20 cm de longitud. Determinar: a) Su velocidad y su aceleración cuando

Más detalles

Movimiento Armónico Simple. Estudio cinemático, dinámico y energético

Movimiento Armónico Simple. Estudio cinemático, dinámico y energético Movimiento Armónico Simple Estudio cinemático, dinámico y energético Objetivos Identificar el M.A.S. como un movimiento rectilíneo periódico, oscilatorio y vibratorio Saber definir e identificar las principales

Más detalles

Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE

Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE Roberto Imaz Gutiérrez. Este capítulo se publica bajo Licencia Creative Commons BY NC SA 3.0 Capítulo 4. FLEXIÓN PURA Y FLEXIÓN SIMPLE 4.1 GENERALIDADES Se dice que una pieza está sometida a flexión pura

Más detalles

GUÍA DE APOYO PARA TRABAJO COEF. 2 SEGUNDO AÑO MEDIO TRABAJO Y ENERGÍA

GUÍA DE APOYO PARA TRABAJO COEF. 2 SEGUNDO AÑO MEDIO TRABAJO Y ENERGÍA Liceo N 1 de niñas Javiera Carrera Departamento de Física. Prof.: L. Lastra- M. Ramos. GUÍA DE APOYO PARA TRABAJO COEF. 2 SEGUNDO AÑO MEDIO TRABAJO Y ENERGÍA Estimada alumna la presente guía corresponde

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Guía de ejercicios 5to A Y D

Guía de ejercicios 5to A Y D Potencial eléctrico. Guía de ejercicios 5to A Y D 1.- Para transportar una carga de +4.10-6 C desde el infinito hasta un punto de un campo eléctrico hay que realizar un trabajo de 4.10-3 Joules. Calcular

Más detalles

1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE

1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE Trabajo y energía 1. Trabajo y energía Hasta ahora hemos estudiado el movimiento traslacional de un objeto en términos de las tres leyes de Newton. En este análisis la fuerza ha jugado un papel central.

Más detalles

Electrostática: ejercicios resueltos

Electrostática: ejercicios resueltos Electrostática: ejercicios resueltos 1) Dos cargas de 4 y 9 microculombios se hallan situadas en los puntos (2,0) y (4,0) del eje 0X. Calcula el campo y el potencial eléctrico en el punto medio. 2) Dos

Más detalles

MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO

MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO BOLILLA 5 MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO Sistemas de referencia Inerciales y No-inerciales En la bolilla anterior vimos que las leyes de Newton se cumplían en marcos de referencia inercial.

Más detalles

CARGAS ELÉCTRICAS EN REPOSO

CARGAS ELÉCTRICAS EN REPOSO CARGAS ELÉCTRICAS EN REPOSO SERIE DE ARTÍCULOS DE DIVULGACIÓN DE LA FÍSICA POR INTERNET Resumen. La carga eléctrica constituye una propiedad fundamental de la materia. Se manifiesta a través de ciertas

Más detalles

C 4 C 3 C 1. V n dσ = C i. i=1

C 4 C 3 C 1. V n dσ = C i. i=1 apítulo 2 Divergencia y flujo Sea V = V 1 i + V 2 j + V 3 k = (V 1, V 2, V 3 ) un campo vectorial en el espacio, por ejemplo el campo de velocidades de un fluido en un cierto instante de tiempo, en un

Más detalles

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

1.1Estándares de longitud, masa y tiempo

1.1Estándares de longitud, masa y tiempo CLASES DE FISICA 1 PRIMER PARCIAL 1) UNIDADES DE MEDIDA 2) VECTORES 3) MOVIMIENTO EN UNA DIMENSION 4) MOVIMIENTO EN DOS DIMENSIONES 5) MOVIMIENTO RELATIVO FÍSICA Y MEDICIONES Al igual que todas las demás

Más detalles

Guía de Repaso 12: Diferencia de potencial eléctrico. Tensión o voltaje

Guía de Repaso 12: Diferencia de potencial eléctrico. Tensión o voltaje Guía de Repaso 12: Diferencia de potencial eléctrico. Tensión o voltaje 1- Recordando los comentarios relacionados con la Figura 20-2 (pág. 874) que hicimos en esta sección, diga que significa expresar

Más detalles

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles