PROBLEMAS CAPÍTULO 5 V I = R = X 1 X

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBLEMAS CAPÍTULO 5 V I = R = X 1 X"

Transcripción

1 PROBLEMAS APÍULO 5.- En el cicuito de la figua, la esistencia consume 300 W, los dos condensadoes 300 VAR cada uno y la bobina.000 VAR. Se pide, calcula: a) El valo de R,, y L. b) La potencia disipada en R si po accidente se desconecta. c) uál es el valo de paa el cual el facto de potencia del conjunto es de 0,9 en etaso?. RESOLUIÓN: a) Paa obtene los valoes de R, ó L de una impedancia, conocido su tiángulo de potencias, es necesaio calcula el valo de la tensión ente los extemos de la misma, o la coiente que cicula po ella, ya que: V P= R R I = R R Q= X L, I L, V = X L, L, Paa el condensado es conocida la tensión ente sus extemos, po tanto: 300= 00 ; X = 33,3 Ω X = x π x f x X ; = 3,9µ F Del esto de los elementos pasivos no es conocido ni la tensión ente sus extemos ni la coiente que cicula po ellos. Paa posegui, se han de agupa los elementos hasta una sección del cicuito en la que se conozca o bien la tensión o bien la coiente. En este caso, se habán de agupa L, R y ya que es conocida la tensión en los extemos de.

2 Haciendo el agupamiento se obtiene el esquema de la figua. El tiángulo de potencias del conjunto se obtiene de la siguiente foma: Q= Q L P = PR = 300 W - Q = =700 VAR S = P +Q =76,6 VA ( onocida la tensión en los extemos del conjunto de cagas se puede calcula la coiente que fluye hacia 76, ellas, así se tiene que: S =V I ; I = = 3,8 A 00 omo esta coiente cicula po la bobina, y es conocido su tiángulo de potencias, se llega a:.000 = X L 3,8 ; X L = 69 Ω X L L= ; x π x f x L L= 0 mh Habá que agupa R y ya que es conocida la coiente que cicula po la bobina. El tiángulo de potencias del conjunto seá: P = PR = 300W ; Q= Q = 300VAR( a ; S = P + Q = 44,3VA po tanto, la tensión ente los extemos de R y vendá dada po: 44,3 =V x 3,8 ; V =,4 V,4 Paa la esistencia R, se tiene que: 300= R ; R= 4,4 Ω y paa el condensado se obtiene: 300=,4 ; X = 4,4 Ω X = x π x f x X ; =77 µ F b) Al supimi vaía la impedancia del conjunto inicial R, L,. Po tanto, vaía la coiente que cicula po la bobina y po consiguiente la tensión ente los extemos de la esistencia. Así la nueva configuación tendá

3 un nuevo tiángulo de potencias. eniendo en cuenta que los valoes de R y L pemanecen invaiables, la impedancia del conjunto seá: Z = 4,4 + j 69= 80,4 59 Ω 00 omo la tensión pemanece igual, la coiente po la impedancia Z vendá dada po: I = =,5 A 80,4 Po tanto, la potencia disipada po la esistencia seá: PR = 4,4 x,5 = 56 W c) En el apatado a), se obtuvo el tiángulo de potencias del conjunto de cagas exceptuado. Repesentando dicho tiángulo y el tiángulo de potencias del condensado tal que el tiángulo de potencias total tenga un facto de potencia de 0,9 en etaso, se tiene el diagama de la figua. En él que se ha epesentado: P = 300 W ; Q=700 VAR( ; S =76,VA ; fp = 0,39( ; θ = 66,8 Paa el nuevo facto de potencia se tiene que: f p= 0,9( ; θ = 5, Q Del tiángulo de potencias, con el facto de potencias coegido: tg 5,8 = ; Q = 554,7 VAR( 300 a

4 Q V = =V x x π x f x ; = 44 µ F X.- Paa alimenta una estación aeopotuaia se utiliza un tansfomado monofásico de 50 kva, 0 V, 50 Hz. En dicha instalación existen las siguientes cagas: 0 motoes de inducción monofásicos de 5 V, 0 V, 50 Hz, fp= 0,84 en etaso cada uno de ellos. 40 tubos fluoescentes, paa alumbado geneal, de 60 W, 0 Hz, fp= 0,5 en etaso, po unidad. Distintas tomas de alimentación con un consumo total de kw, 0 V, 50 Hz y facto de potencia unidad. Al conjunto de cagas anteiomente citadas se le petende añadi un equipo de aie acondicionado, cuya placa de caacteísticas es: 3.70 W, 0 V, 50 Hz, 8,8 A, siendo el equipo inductivo. Se pide, obtene la foma más sencilla de conecta todas las cagas, paa que funcionen coecta y simultáneamente todos los elementos involucados, haciendo los cálculos petinentes paa llega a dicha solución. RESOLUIÓN: Paa que todas las cagas funcionen adecuada y simultáneamente, se han de conecta en paalelo con la fuente, en este caso el tansfomado, ya que todas las cagas han de funciona a 0 V. El tansfomado tiene un capacidad máxima de 50 kva, cuyo valo no ha de sobepasase. El coecto funcionamiento se compobaá analizando el tiángulo de potencias total y viendo si la potencia apaente total del conjunto es mayo, meno o igual a la potencia apaente nominal del tansfomado. Paa los motoes: PM = 0 x 5 x736 = W ; QM = PM +QM = 3.770,4VAR( PM S M = = = ,5 VA fpm 0, Paa los tubos fluoescentes: PF = 40 x 60=.400 W ; S F = = 4.800VA ; Q 0,5 Paa las tomas de alimentación: P =.000W ; Q = 0 VAR ; S =.000VA Paa el equipo de aie acondicionado: PE = 3.70W ; S E = 0 x 8,8 = 4.36 VA ; El tiángulo de potencias total, del conjunto de cagas, viene dado po: P = PM + PF + P + PE = W Q = Q +Q +Q +Q = 9.755,5 VAR( M S F = VA _ 54 kva E F = 4.56,9VAR Q E ( =.88,VAR Po tanto, la potencia apaente total del conjunto de cagas es supeio a la potencia apaente nominal del tansfomado, con lo que éste no puede alimenta todas las cagas. Si se conecta un condensado en paalelo con el conjunto de cagas, al mantenese constante la tensión de alimentación, las cagas funcionaán adecuadamente y el efecto del condensado seá el de educi la (

5 coiente de alimentación y po tanto disminui la potencia apaente del conjunto cagas-condensado. Este efecto se muesta en el diagama de la figua. Del tiángulo de potencias del conjunto caga-condensado tiene que: S = P +( Q - Q ) Q =7.776 VAR ( a desestimándose la solución de la potencia eactiva caga-condensado en adelanto. V omo la tensión se mantiene a 0 V, se obtiene: X = ; X = 6, Ω ; = 5,4 µ F Q 3.- Un cicuito de luces paa la navegación aéea se puede epesenta, en deteminadas condiciones de funcionamiento, po el esquema mostado en la siguiente figua. Medido el facto de potencia de tabajo del geneado de coiente se obtiene un valo de 0'9 en etaso. La impedancia Z A de tipo inductivo, que epesenta las luces con sus tansfomadoes de aislamiento, disipan una potencia apaente de 5'8 kva con un facto de potencia 0'86 en etaso. La impedancia Z de tipo capacitivo, que epesenta efectos esistivo capacitivos, disipa una potencia apaente de,5 kva. Po último, la impedancia Z B de tipo inductivo, que simula pédidas del conjunto del cicuito, consume una potencia apaente de 5 kva. Medida la potencia apaente total del conjunto Z B, se obtiene un valo de 5'6 kva. Se pide: a) alcula las potencias activa y eactiva de Z B y Z, así como las suministadas po el geneado. b) Si la coiente del geneado es de 6,6 A, 50 Hz, calcula la capacidad del condensado que había de se

6 conectado en seie con el geneado de coiente paa que el facto de potencia del conjunto sea la unidad. RESOLUIÓN: a) Se epesenta en la figua, el tiángulo de potencias de la caga Z A, así como las potencias apaentes de Z B, Z y del conjunto de ambos Z B,. El tiángulo de potencias total, debido a Z A, Z B y Z, se puede obtene a pati de la epesentación de la S + 5,8-5,6 figua, calculando peviamente el ángulo δ: cos δ = = 0,9964 x 5,8 x S δ = 30,68-5,84 = 4,84 A pati del teoema del coseno se tiene que: S -,56 S +,8 = 0 S = 5,78 + _ 5,78 -,8 =,4 kva La ota solución, S = 0,0 kva, no es válida ya que implicaía un valo de S B, no coecto en elación a los valoes de S B y S. En la figua se muestan las dos soluciones a S.

7 El tiángulo de potencias total se obtiene conocido el facto de potencia del geneado, po tanto: P = S x fp = 0,6 kw Q = S - Q = 4,97 kvar( El tiángulo de potencias total se puede pone como suma: P = PB, + PA Q = Q +Q B, A como: P A = S A cos θ A= 5 8 x 0 86 = 5 kw ; Q = S A - P A = A 9 kvar( po tanto: PB, = 5 3 kw ; Q = B, kvar( S B, = P B, +Q = 5 B, 7 kva ; fpb, = 0 93( ; α = ac cos 0 93= 6 5, ,5 Po ota pate: cos β = = 0,894 ; β = 6,5 x 5,6 x 5 así pues: α + β = 4 8 po tanto: PB = S B x cos ( α + β )= 3,3 kw Q = S B x sen ( α + β )= 3,7 kvar B ( y además: P = PB, - PB = kw Q = Q - Q = 6 kvar B, B ( a b) Paa que el facto de potencia del conjunto sea la unidad, la potencia eactiva del condensado conectado en seie debeá se igual a la potencia eactiva del conjunto de cagas, así se tiene que: Facto de potencia unidad => Q = 0 Q = - Q = 4 97 kvar( a QOND = X x I => X = 567 Ω = 5 6 µ F OND 4.- Paa el cicuito de la figua, se pide:.- on el inteupto K abieto: a) La lectua del vatímeto cuando sus teminales de tensión A y B se conectan a los teminales y D espectivamente. b) La lectua del vatímeto cuando sus teminales de tensión A y B se conectan a los teminales M y N espectivamente..- on el inteupto K ceado, la lectua del vatímeto es de 85 W, con la conexión descita en a), y de W con la conexión descita en b), calcula el valo de la impedancia Z θ.

8 RESOLUIÓN:.- a) Llamando a la coiente que cicula po la impedancia 4 + j 3 Ω, se tiene que: 0-90 I = = 44-6,87 A 5 36,57 El diagama fasoial con la epesentación de la tensión y de la coiente es el de la figua. po tanto, la lectua del vatímeto vendá dada po: W = 5 x 44 x cos ( 6,87 )= W Este valo de la potencia no tiene ningún significado físico, es deci, no coesponde a la potencia disipada po una impedancia. b) El nuevo diagama fasoial seá el de la figua y la nueva lectua del vatímeto vendá dada po: W = 0 x 44 x cos ( 6,87-90 )=7.744 W

9 En este caso, la lectua coesponde a la potencia disipada po la impedancia 4 + j 3 Ω, cuyo valo coincide con el calculado a tavés de la potencia disipada po su pate esistiva: P = R x I = 4 x 44 =7.744 W.- Llamando I = I - α, a la coiente suministada po el geneado de tensión 0-90º voltios, se puede epesenta el diagama fasoial de la figua. La posición del faso ha de se la indicada, en el cuato cuadante, ya que en caso contaio las lectuas de los vatímetos no seían las indicadas. Así, si el faso coiente estuviese en el pime cuadante la segunda lectua seía negativa, si estuviese en el segundo cuadante las dos lectuas seían negativas y si estuviese en el tece cuadante la pimea lectua seía negativa. De las lectuas de los vatímetos se tiene que: 85= 5 x I x cosα = 0 x I x cos ( 90 -α ) de estas dos ecuaciones se obtiene: α = 88,99 ; I = 38,6 A I = 38,6-88,99 A La impedancia total, agupación de la impedancia 4 + j 3 Ω y Z θ vendá dada po: 0-90 Z = = 5,7 -,0 Ω 38,6-88, ,87 x Z θ como ambas impedancias están en paalelo: 5,7 -,0 = 5 36,87 + Z θ Z θ = 8,05-8,88 = - j 8 Ω

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica?

CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica? UESTIONES Y POBLEMAS DE AMPO ELÉTIO Ejecicio nº ómo se manifiesta la popiedad de la mateia denominada caga eléctica? La popiedad de la mateia denominada caga eléctica se manifiesta mediante fuezas de atacción

Más detalles

Tablas y formulas prácticas

Tablas y formulas prácticas Tablas y fomulas pácticas ECCÓN Automation Technology Poducts Tablas y fómulas pácticas NDCE Tabla de esquemas típicos en sistemas de conmutación (tansfeencias)... Tabla de potencias y coientes nominales...

Más detalles

Adaptación de impedancias

Adaptación de impedancias .- El tansfomado ideal Adaptación de impedancias I +V +V TI Tansfomado ideal V elaciones V-I: V = I = a. I, válidas paa cualquie fecuencia. a Si se conecta una esistencia al secundaio, ente el nodo +V

Más detalles

5 Procedimiento general para obtener el esquema equivalente de un transformador

5 Procedimiento general para obtener el esquema equivalente de un transformador Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado 45 5 Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado En este capítulo se encontaá el esquema equivalente de

Más detalles

PROBLEMAS DE ELECTROESTÁTICA

PROBLEMAS DE ELECTROESTÁTICA PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín

Más detalles

INDUCCIÓN ELECTROMAGNÉTCA Y ENERGÍA DEL CAMPO MAGNÉTICO

INDUCCIÓN ELECTROMAGNÉTCA Y ENERGÍA DEL CAMPO MAGNÉTICO NDUCCÓN EECTROMAGNÉTCA Y ENERGÍA 1. ey de inducción de Faaday. ey de enz.. Ejemplos: fem de movimiento y po vaiación tempoal de. 3. Autoinductancia. 4. Enegía magnética. OGRAFÍA:. DE CAMPO MAGNÉTCO -Tiple-Mosca.

Más detalles

Física Universitaria 2 5 de junio 2006 Enrique Sánchez y Aguilera, Rodolfo Estrada Guerrero, Abraham Vilchis CONSTANTE DIELÉCTRICA RELATIVA

Física Universitaria 2 5 de junio 2006 Enrique Sánchez y Aguilera, Rodolfo Estrada Guerrero, Abraham Vilchis CONSTANTE DIELÉCTRICA RELATIVA CONSTANTE DIELÉCTRICA RELATIVA OBJETIVO: El alumno podá detemina la constante dieléctica elativa de divesos mateiales dielécticos mediante la medición de la capacitancia de un condensado de placas paalelas.

Más detalles

INTRODUCCION AL ANALISIS VECTORIAL

INTRODUCCION AL ANALISIS VECTORIAL JOSÉ MILCIDEZ DÍZ, REL CSTILLO, ERNNDO VEG PONTIICI UNIVERSIDD JVERIN, DEPRTMENTO DE ÍSIC INTRODUCCION L NLISIS VECTORIL Intoducción Pate Pate 3 Pate 4 (Pate ) Donde encuente el símbolo..! conduce a una

Más detalles

GEOMETRÍA. punto, la recta y el plano.

GEOMETRÍA. punto, la recta y el plano. MISIÓN 011-II GEMETRÍ STUS GEMETRÍ a geometía es la ama de las Matemáticas que tiene po objeto el estudio de las figuas geométicas. Se denomina figua geomética a cualquie conjunto no vacío de puntos del

Más detalles

Parte 3: Electricidad y Magnetismo

Parte 3: Electricidad y Magnetismo Pate 3: Electicidad y Magnetismo 1 Pate 3: Electicidad y Magnetismo Los fenómenos ligados a la electicidad y al magnetismo, han sido obsevados y estudiados desde hace muchos siglos. No obstante ello, las

Más detalles

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014

IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014 IES Fco Ayala de Ganada Junio de 014 (Modelo 1) Soluciones Gemán-Jesús Rubio Luna Opción A Ejecicio 1 opción A, modelo_1 Junio 014 Sea f : R R definida po f(x) x + ax + bx + c. [1 7 puntos] Halla a, b

Más detalles

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA

CAMPO GRAVITATORIO FCA 10 ANDALUCÍA CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe

Más detalles

Víctor Lituma Silva Rafael Pérez Ordóñez Marcos Guerrero Zambrano ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL GUAYAQUIL-ECUADOR 2009

Víctor Lituma Silva Rafael Pérez Ordóñez Marcos Guerrero Zambrano ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL GUAYAQUIL-ECUADOR 2009 1 DEÑO E MPLEMENACÓN DE UN COMPENADOR EÁCO DE POENCA REACA (D-ACOM); BAADO EN UN CONERDOR RFÁCO CON MODULACÓN NUODAL DE ANCHO DE PULO (PWM), CONROLADO POR UN PROCEADOR DGAL DE EÑALE (DP M30C000) ícto Lituma

Más detalles

Un sencillo medidor vectorial de impedancias eléctricas para el laboratorio Fernando Valcarce Codes

Un sencillo medidor vectorial de impedancias eléctricas para el laboratorio Fernando Valcarce Codes Enseñanza Un sencillo medido vectoial de impedancias elécticas paa el laboatoio Fenando Valcace Codes An aangement fo vectoial electical-impedance measuements is descibed which is pecise and accuate enough

Más detalles

www.fisicaeingenieria.es Vectores y campos

www.fisicaeingenieria.es Vectores y campos www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

ELECTRICIDAD MODULO 2

ELECTRICIDAD MODULO 2 .Paniagua Física 20 ELECTRICIDD MODULO 2 Enegía Potencial Eléctica nalicemos la siguiente situación física: una patícula q 0 cagada elécticamente se mueve desde el punto al punto B. Estos puntos están

Más detalles

Tema 3. Campo eléctrico

Tema 3. Campo eléctrico Tema 3 Campo eléctico Pogama 1. Inteacción eléctica. Campo eléctico.. Repesentación mediante líneas de campo. Flujo eléctico: Ley de Gauss. 3. Enegía y potencial elécticos. Supeficies equipotenciales.

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejecicios esueltos Boletín 2 Campo gavitatoio y movimiento de satélites Ejecicio 1 En el punto A(2,0) se sitúa una masa de 2 kg y en el punto B(5,0) se coloca ota masa de 4 kg. Calcula la fueza esultante

Más detalles

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición

Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición Potencial eléctico Intoducción. Tabajo y enegía potencial en el campo eléctico Potencial eléctico. Gadiente. Potencial de una caga puntual: Pincipio de supeposición Potencial eléctico de distibuciones

Más detalles

SISTEMA DE ILUMINACION AUDIO-RITMICA

SISTEMA DE ILUMINACION AUDIO-RITMICA SISTEMA DE ILUMINACION AUDIO-RITMICA AUTOR: Otega Villaseño Manuel Eduado e-mail: eduadox@hotmail.com ESCUELA: Univesidad de Guadalajaa, Cento Univesitaio de Ciencias Exactas e Ingenieías C.U.C.E.I. MATERIA:

Más detalles

Instrumentación Nuclear Conf. # 2 Tema I. Procesamiento y Conformación de Pulsos.

Instrumentación Nuclear Conf. # 2 Tema I. Procesamiento y Conformación de Pulsos. Instumentación Nuclea onf. # 2 Tema I. Pocesamiento y onfomación de Pulsos. Sumaio: aacteísticas geneales de los pulsos. oncepto de Ancho de Banda y su elación con el tiempo de subida de un pulso. Objetivo

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar.

Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar. TRABAJO Y ENERGÍA TRABAJO Es el poducto escala de la fueza aplicada al cuepo po el vecto desplazamiento. Po lo tanto es una magnitud escala. W = F.D = F.D. cos a Su unidad en el sistema intenacional es

Más detalles

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva.

TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva. TEMA PRELIMINAR 1. Sistemas de Repesentación y Geometía. En esta pate de la intoducción, se tata de encuada el estudio de los sistemas de epesentación dento de lo que es la geometía. Paa ello se va a intenta

Más detalles

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico.

Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico. Campo eléctico. Intoducción a la Física Ambiental. Tema 7. Tema7. IFA (Pof. RAMOS) 1 Tema 7.- Campo eléctico. El campo eléctico: unidades. Líneas del campo eléctico. Potencial eléctico: unidades. Fueza

Más detalles

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA

CAMPO GRAVITATORIO FCA 04 ANDALUCÍA CAPO GAVIAOIO FCA 04 ANDALUCÍA. a) Al desplazase un cuepo desde una posición A hasta ota B, su enegía potencial disminuye. Puede aseguase que su enegía cinética en B es mayo que en A? azone la espuesta.

Más detalles

Almacenan energía magnética generada como consecuencia de las variaciones de corriente. Suelen ser fabricados a medida por el propio diseñador.

Almacenan energía magnética generada como consecuencia de las variaciones de corriente. Suelen ser fabricados a medida por el propio diseñador. 6. nductancias Almacenan enegía magnética geneada como consecuencia de las vaiaciones de coiente. Suelen se fabicados a medida po el popio diseñado. Pincipios de la teoía electomagnética Magnitudes a utiliza:

Más detalles

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico

TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico Univesidad Nacional del Nodeste Facultad de Ingenieía Cáteda: Física III Pofeso Adjunto: Ing. Atuo Castaño Jefe de Tabajos Pácticos: Ing. Cesa Rey Auiliaes: Ing. Andés Mendivil, Ing. José Epucci, Ing.

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES

AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES 7 CAPITULO 4 AYUDAS GRAFICAS CARTA DE SMITH Y APLICACIONES Existe vaios métodos de ayudas gáficas paa el diseño, acople y solució de poblemas e líeas de tasmisió, que ha ido evolucioado co el tiempo. Keell

Más detalles

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ

D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ Cuso Mecánica (FI-1A), Listado de ejecicios. Edito: P. Aceituno 34 Escuela de Ingenieía. Facultad de Ciencias Físicas y Matemáticas. Univesidad de Chile. D: FUERZAS CENTRALES Y MOVIMIENTOS PLANETARIOS

Más detalles

ENSAYO de TRANSFORMADORES

ENSAYO de TRANSFORMADORES NTRODCCÓN ENSAYO de TRANSFORMADORES Nobeto A. Lemozy La veificación del coecto funcionamiento de cualquie equipo es de suma impotancia, en paticula cuando se tata de unidades gandes y de mucho costo, y

Más detalles

A r. 1.5 Tipos de magnitudes

A r. 1.5 Tipos de magnitudes 1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante

Más detalles

RECTAS Y ÁNGULOS. SEMIRRECTA.- Un punto de una recta la divide en dos semirrectas. La semirrecta tiene principio pero no tiene fin.

RECTAS Y ÁNGULOS. SEMIRRECTA.- Un punto de una recta la divide en dos semirrectas. La semirrecta tiene principio pero no tiene fin. RECTAS Y ÁNGULOS 5º de E. Pimaia RECTAS Y ÁNGULOS -TEMA 5 RECTA.- Es una sucesión infinita de puntos que tienen la misma diección. La ecta no tiene ni pincipio ni fin. Po dos puntos del plano pasa una

Más detalles

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice

Más detalles

TEMA3: CAMPO ELÉCTRICO

TEMA3: CAMPO ELÉCTRICO FÍIC º BCHILLERTO. CMPO ELÉCTRICO. TEM3: CMPO ELÉCTRICO o Natualeza eléctica de la mateia. o Ley de Coulomb vs Ley de Newton. o Pincipio de supeposición. o Intensidad del campo elético. o Líneas del campo

Más detalles

2. CINEMATICA EL MOVIMIENTO Y SU DESCRIPCIÓN

2. CINEMATICA EL MOVIMIENTO Y SU DESCRIPCIÓN 19. CINEMATICA La descipción matemática del movimiento constituye el objeto de una pate de la física denominada cinemática. Tal descipción se apoya en la definición de una seie de magnitudes que son caacteísticas

Más detalles

2. CURVAS EN EL SISTEMA POLAR

2. CURVAS EN EL SISTEMA POLAR 2. CURVAS EN EL SISTEMA POLAR Objetivo: El alumno obtendá ecuaciones en foma pola de cuvas en el plano y deteminaá las caacteísticas de éstas a pati de su ecuación en foma pola. Contenido: 2.1 Sistema

Más detalles

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS

6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS 6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la

Más detalles

UNIDAD Nº 2 VECTORES Y FUERZAS

UNIDAD Nº 2 VECTORES Y FUERZAS UNIVERSIDAD DE SANTIAGO DE CHILE DEPARTAMENTO DE FISICA FISICA EXPERIMENTAL PLAN ANUAL INGENIERIA FISICA 1 e SEMESTRE 2012 UNIDAD Nº 2 VECTORES Y FUERZAS OBJETIVOS Medi el módulo de un vecto fueza usando

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

Primer Periodo ELEMENTOS DE TRIGONOMETRIA

Primer Periodo ELEMENTOS DE TRIGONOMETRIA Matemática 10 Gado. I.E. Doloes Maía Ucós de Soledad. INSEDOMAU Pime Peíodo Pofeso: Blas Toes Suáez. Vesión.0 Pime Peiodo ELEMENTOS DE TRIGONOMETRIA Indicadoes de logos: Conveti medidas de ángulos en adianes

Más detalles

Parametrizando la epicicloide

Parametrizando la epicicloide 1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))

Más detalles

rad/s EXAMEN FÍSICA PAEG UCLM. JUNIO 2013. SOLUCIONARIO

rad/s EXAMEN FÍSICA PAEG UCLM. JUNIO 2013. SOLUCIONARIO EXAMEN FÍSICA PAEG UCLM. JUNIO 01. SOLUCIONARIO OPCIÓN A. PROBLEMA 1 Una onda tansvesal se popaga po una cueda tensa fija po sus extemos con una velocidad de 80 m/s, y al eflejase se foma el cuato amónico

Más detalles

Apéndice D. Estimación de los efectos capacitivos e inductivos entre el inyector y el detector

Apéndice D. Estimación de los efectos capacitivos e inductivos entre el inyector y el detector Apénice D D-1 Apénice D. Estimación e os efectos capacitivos e inuctivos ente e inyecto y e etecto E acopamiento capacitivo e inuctivo ente e sistema inyecto y e etecto puee povoca eoes en a tensión etectaa.

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

GUÍA 9: CÁLCULO DE POTENCIAS Y FACTOR DE POTENCIA

GUÍA 9: CÁLCULO DE POTENCIAS Y FACTOR DE POTENCIA GUÍA 9: CÁCUO DE POTECIA Y FACTOR DE POTECIA 1. Triángulo de potencias Del triángulo se definen tres tipos de potencias encontradas en cargas inductivas y capacitivas, cuando están siendo alimentadas por

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Indica cuál de las siguientes afimaciones es falsa: a) En la época de Aistóteles ya se aceptaba que la iea ea esféica. b) La estimación del adio teeste que llevó a cabo

Más detalles

Examen de Selectividad de Física. Junio 2009. Soluciones.

Examen de Selectividad de Física. Junio 2009. Soluciones. Depatamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madid) Examen de Selectividad de Física. Junio 009. Soluciones. Pimea pate Cuestión 1.- Un satélite atificial de 500 kg que descibe una óbita

Más detalles

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio.

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio. Difeencia de potencial y potencial elécticos En el campo gavitatoio. Difeencia de potencial y potencial elécticos El tabajo se cuantifica po la fueza que ejece el campo y la distancia ecoida. W F d Difeencia

Más detalles

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m

+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6

Más detalles

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es

La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es LGUNS CUESTIONES TEÓICS SOE LOS TEMS Y.. azone si las siuientes afimaciones son vedadeas o falsas a) El tabajo que ealiza una fueza consevativa sobe una patícula que se desplaza ente dos puntos, es meno

Más detalles

PAUTA ACTIVIDADES: COMENZANDO CON EL LENGUAJE ALGEBRAICO

PAUTA ACTIVIDADES: COMENZANDO CON EL LENGUAJE ALGEBRAICO PAUTA ACTIVIDADES: COMENZANDO CON EL LENGUAJE ALGEBRAICO Joaquín ha comenzado a utiliza letas paa epesenta distintas situaciones numéicas. Obseve lo que ealiza con el siguiente enunciado: A Matías le egalaon

Más detalles

Fenómenos Ondulatorios: Interferencias

Fenómenos Ondulatorios: Interferencias Fenómenos Ondulatoios: Inteeencias Fenómenos de supeposición de ondas. Inteeencias (pags 67-76 Guadiel) Cuando en un punto de un medio coinciden dos o más ondas (petubaciones) se dice que en ese punto

Más detalles

Condensadores Eléctricos

Condensadores Eléctricos ondensadores Eléctricos R S T R S T c R S T c ONDENSADORES Generalidades El condensador es un componente eléctrico cuya función es la de almacenar carga eléctrica y su aplicación más importante es la de

Más detalles

PRINCIPADO DE ASTURIAS / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO

PRINCIPADO DE ASTURIAS / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO PINCIPADO D ASUIAS / SPIM 04. LOGS / FÍSICA / XAMN COMPLO XAMN COMPLO PUAS D APIUD PAA L ACCSO A LA UNIVSIDAD LOGS Cso 00-004 FÍSICA l almno elegiá CUAO de las seis opciones popestas Opción.- Demosta qe

Más detalles

En la figura se muestra el esquema del circuito eléctrico correspondiente a los datos proporcionados en el enunciado.

En la figura se muestra el esquema del circuito eléctrico correspondiente a los datos proporcionados en el enunciado. EJECCO DE OTENCA EN TEMA TFÁCO. EJECCO 1.- n sistma tifásico tifila d 40 V y scuncia T, alimnta una caga tifásica quilibada conctada n tiángulo, fomado po impdancias d valo 0 80º Ω. Halla la lctua d dos

Más detalles

MODELADO DEL FLUJO EN UNA PLANTA DE TRATAMIENTO DE AGUA

MODELADO DEL FLUJO EN UNA PLANTA DE TRATAMIENTO DE AGUA MODELADO DEL FLUJO EN UNA PLANTA DE TRATAMIENTO DE AGUA Raymundo López, Juan Moales, Alen Díaz, Mabel Vaca, Aaceli Laa y Atuo Lizadí. Univesidad Autónoma Metopolitana- Azcapotzalco Depatamento de Enegía,

Más detalles

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos

Más detalles

CAPÍTULO IV POTENCIA EN SISTEMAS TRIFÁSICOS

CAPÍTULO IV POTENCIA EN SISTEMAS TRIFÁSICOS CAPÍTULO IV POTENCIA EN SISTEMAS TRIFÁSICOS Con las siguientes premisas recordaremos nuestros conceptos dados de la potencia eléctrica en circuitos monofásicos: La potencia es tanto mayor cuanto menor

Más detalles

CARACTERIZACIÓN Y DISEÑO DE BOBINAS Y TRANSFORMADORES

CARACTERIZACIÓN Y DISEÑO DE BOBINAS Y TRANSFORMADORES CARACTERIZACIÓN Y DISEÑO DE BOBINAS Y TRANSFORMADORES EFECTOS CAPACITIOS CONCEPTOS BÁSICOS DE ELECTROSTÁTICA Cagas puntuales F a,b Q a Q b Fueza ente os cagas F a, b 4 π o Q Q a b [ N] Intensia e campo

Más detalles

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales

Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales Capitulo 9: Leyes de Keple, Gavitación y Fuezas Centales Índice. Las 3 leyes de Keple 2. Campo gavitacional 4 3. Consevación de enegía 6 4. Movimiento cicula 8 5. Difeentes tayectoias 0 6. Demosta Leyes

Más detalles

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA

Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA Electostática táti Clase 3 Ecuación de Laplace y Ecuación de Poisson Teoema de Unicidad. Métodos de las Imágenes Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA 2 E V m

Más detalles

VECTORES, DERIVADAS, INTEGRALES

VECTORES, DERIVADAS, INTEGRALES Física Tema 0-1 º Bachilleato Vectoes, deivadas, integales Tema 0 VECTORES, DERIVADAS, INTEGRALES 1.- Vectoes. Componentes de un vecto.- Suma y difeencia de vectoes 3.- Poducto de un vecto po un númeo

Más detalles

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB

CAMPO ELÉCTRICO 7.1. FENÓMENOS DE ELECTRIZACIÓN 7.2. LEY DE COULOMB 7 CAMPO ELÉCTRICO 7.. FENÓMENOS DE ELECTRIZACIÓN. Un péndulo electostático es un dispositivo fomado po una esfea ligea, de mateial aislante, suspendida de un hilo de masa despeciable. Utilizando ese dispositivo,

Más detalles

III. PLIEGO DE CONDICIONES:

III. PLIEGO DE CONDICIONES: III. PLIEGO DE CONDICIONES: Pliego Condiciones. Selección de componentes. Componentes TC_FPGA Nombe del componente en el diseño R, R2, R3, R4, R5, R3 Tipo componente Valo Encapsulado Cant. Funcionalidad

Más detalles

Cómo funcionan los dispositivos que utilizan energía espacial? Una explicación a partir de la Teoría de Einstein-Cartan-Evans

Cómo funcionan los dispositivos que utilizan energía espacial? Una explicación a partir de la Teoría de Einstein-Cartan-Evans 1 Cómo funcionan los dispositivos que utilizan enegía espacial? Una explicación a pati de la Teoía de Einstein-Catan-Evans Host Eckadt Munich, Alemania Alpha Institute fo Advanced Study (www.aias.us) Resumen

Más detalles

Elementos de la geometría plana

Elementos de la geometría plana Elementos de la geometía plana Elementos de la geometía plana El punto Los elementos básicos de la geometía plana El punto es el elemento mínimo del plano. Los otos elementos geométicos están fomados po

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física Geneal Poecto PMME - Cuso 8 Instituto de Física Facultad de Inenieía UdelaR TÍTULO MOVIMIENTO RELATIVO MOVIMIENTO E PROYECTIL. EL ALEGRE CAZAOR QUE VUELVE A SU CASA CON UN FUERTE OLOR ACÁ. AUTORES

Más detalles

EL ESPACIO VECORIAL MAGNITUDES VECTORIALES

EL ESPACIO VECORIAL MAGNITUDES VECTORIALES EL ESPACIO VECORIAL MAGNITUDES VECTORIALES Son las que paa queda pefectamente definidas es necesaio da: - Punto de aplicación - Diección - Sentido - Módulo o valo del VECTOR MODULO Y COSENOS DIRECTORES

Más detalles

TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1

TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1 TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1 página 2 SEGUNDO BIMESTRE 1 FUNCIONES DE MAS DE 90 GRADOS 1.1 CONCEPTOS Y DEFINICIONES Los valoes de las funciones tigonométicas solamente eisten paa

Más detalles

Deflexión de rayos luminosos causada por un cuerpo en rotación

Deflexión de rayos luminosos causada por un cuerpo en rotación 14 Defleión de ayos luminosos causada po un cuepo en otación 114 Intoducción Cuando un ayo luminoso pasa po la cecanía de un cuepo se ve obligado a abandona su tayectoia ectilínea y cuvase más o menos

Más detalles

FACTOR DE POTENCIA. Cos φ

FACTOR DE POTENCIA. Cos φ FACTOR DE POTENCIA Cos φ El Factor de Potencia, es el indicador del correcto aprovechamiento de la energía Eléctrica y puede tomar valores, entre 0 y 1, lo que significa que: Factor de Potencia, es un

Más detalles

Práctica 8: Carta de Smith

Práctica 8: Carta de Smith Páctica 8: Cata de Smith Objetivo Familiaización con el manejo de la Cata de Smith. Contenidos Repesentación de impedancias y admitancias. Obtención de paámetos de las líneas empleando la Cata de Smith.

Más detalles

Actividad xx Determinación de resistividades Efecto piel en conductores.

Actividad xx Determinación de resistividades Efecto piel en conductores. Actividad xx Deteminación de esistividades Efecto piel en conductoes. Método de las cuato puntas o método de Kelvin Objetivo Deteminación expeimental de la esistividad (o conductividad) de divesas muestas

Más detalles

Transistores de Efecto de Campo

Transistores de Efecto de Campo 1 Tansistoes e Efecto e Campo El fenómeno e moula la conuctancia e un semiconucto po un campo eléctico aplicao pepenicula a la supeficie el semiconucto se enomina "efecto e campo". Los tansistoes basaos

Más detalles

ELECTROSTATICA. La electrostática es la parte de la física que estudia las cargas eléctricas en equilibrio. Cargas eléctricas

ELECTROSTATICA. La electrostática es la parte de la física que estudia las cargas eléctricas en equilibrio. Cargas eléctricas ELECTROSTTIC La electostática es la pate de la física que estudia las cagas elécticas en equilibio. Cagas elécticas Existen dos clases de cagas elécticas, llamadas positiva y negativa, las del mismo signo

Más detalles

Examen de Selectividad de Física. Septiembre 2008. Soluciones.

Examen de Selectividad de Física. Septiembre 2008. Soluciones. Depatamento de Física y Química. I. E.. Atenea (.. Reyes, Madid) Examen de electividad de Física. eptiembe 2008. oluciones. Pimea pate Cuestión 1. Calcule el módulo del momento angula de un objeto de 1000

Más detalles

CAMPOS ELECTROMAGNÉTICOS Tema 3 Ecuaciones de Maxwell

CAMPOS ELECTROMAGNÉTICOS Tema 3 Ecuaciones de Maxwell CAMPOS ELECTROMAGNÉTICOS Tema Ecuaciones de Mawell P.- En una egión totalmente vacía ha un campo eléctico E = kt uˆ oto magnético con B B =. La magnitud k es constante. Calcula B. = B = ε µ + k k ' P.-

Más detalles

100 Cuestiones de Selectividad

100 Cuestiones de Selectividad Física de º Bachilleato 100 Cuestiones de Selectividad 1.- a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. (And-010-P1) La velocidad de escape es la mínima velocidad

Más detalles

10.- www.lortizdeo.tk I.E.S. Francisco Grande Covián Campo Gravitatorio mailto:lortizdeo@hotmail.com 27/01/2005 Física 2ªBachiller

10.- www.lortizdeo.tk I.E.S. Francisco Grande Covián Campo Gravitatorio mailto:lortizdeo@hotmail.com 27/01/2005 Física 2ªBachiller www.lotizdeo.tk I.E.S. Fancisco Gande Covián Campo Gavitatoio mailto:lotizdeo@hotmail.com 7/01/005 Física ªBachille 10.- Un satélite atificial descibe una óbita elíptica, con el cento de la iea en uno

Más detalles

r r r r r µ Momento dipolar magnético

r r r r r µ Momento dipolar magnético A El valo φ180 o es una posición de equilibio inestable. Si se desplaza un poco especto a esta posición, la espia tiende a tasladase aún más de φ180 o. τ F ( b/ )sinϕ ( a)( bsinϕ) El áea de la espia es

Más detalles

Unidad Nº 6: Electrostática

Unidad Nº 6: Electrostática Electostática Unidad Nº 6: Electostática Noción de caga eléctica omo sabemos, los cuepos mateiales se ataen unos a otos con una fueza denominada ''fueza gavitatoia''. Esta atacción tiene consecuencias

Más detalles

Examen de Física-1, 1 Ingeniería Química Diciembre de 2010 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 Ingeniería Química Diciembre de 2010 Cuestiones (Un punto por cuestión). Examen de Física-, Ingenieía Química Diciembe de Cuestiones (Un punto po cuestión). Cuestión : Los vectoes (,, ), (,, 5) y (,, ), están aplicados en los puntos A (,, ), B (,, ) y C (,, ) espectivamente.

Más detalles

OPCIÓN A FÍSICA. 30/11/2010. E r

OPCIÓN A FÍSICA. 30/11/2010. E r OPCIÓN A FÍSICA. 0//00 PROBLEMA EXPERIMENTAL (.5 p). En el laboatoio de física se ealiza un expeimento paa medi la densidad de un sólido y de una disolución. Paa ello se utiliza un dinamómeto, se pesa

Más detalles

Ejemplo 6-3. Tema 2. Electrocinética V =IR. Resolver circuitos simples. Resistencias Ley de Ohm: I, intensidad de corriente eléctrica.

Ejemplo 6-3. Tema 2. Electrocinética V =IR. Resolver circuitos simples. Resistencias Ley de Ohm: I, intensidad de corriente eléctrica. Tema 2. Electocinética Ojetivos: Defini los conceptos intensidad de coiente eléctica, velocidad de aaste, densidad de coiente y esistencia. Estalece la ley de Ohm. Defini la esistividad, y conoce su dependencia

Más detalles

Leyes de Kepler Movimiento de masas puntuales en las proximidades de la superficie terrestre Satélites. Velocidad orbital y velocidad de escape.

Leyes de Kepler Movimiento de masas puntuales en las proximidades de la superficie terrestre Satélites. Velocidad orbital y velocidad de escape. TEM : INTERCCIÓN GRVITTORI PRTE Genealización del concepto de tabajo a una fueza vaiable. Teoema del tabajo y la enegía cinética. Fuezas consevativas. Enegía potencial asociada a una fueza consevativa.

Más detalles

Análisis de respuesta en frecuencia

Análisis de respuesta en frecuencia Análisis de espuesta en fecuencia Con el témino espuesta en fecuencia, nos efeimos a la espuesta de un sistema en estado estable a una entada senoidal. En los métodos de la espuesta en fecuencia, la fecuencia

Más detalles

Tema 9. Potencia en Sistemas Trifásicos. Índice P T =? Q T =? S T =? 9.1.- Potencias en sistemas equilibrados y simétricos en tensiones.

Tema 9. Potencia en Sistemas Trifásicos. Índice P T =? Q T =? S T =? 9.1.- Potencias en sistemas equilibrados y simétricos en tensiones. ema 9 otencia en istemas rifásicos Índice 9..- otencias en sistemas equilibrados y simétricos en tensiones. 9..- Corrección del factor de potencia. G Generador ase ase ase eutro ' ' ' ' ECEO ACO 9..- edida

Más detalles

Kronotek: Configuración de Red para VoIP

Kronotek: Configuración de Red para VoIP Konotek: Configuación de Red paa VoIP Contenido 1. Intoducción... 2 2. Impotancia de la Configuación de Red... 2 3. Pasos Pevios: Cálculo del númeo de líneas de voz... 3 Pime paso: obtención del ancho

Más detalles

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (II) SEGUNDA PARTE: corriente

Más detalles

CORRIENTE ALTERNA MONO Y TRIFÁSICA

CORRIENTE ALTERNA MONO Y TRIFÁSICA UNERSDAD DE ANTABRA DEARTAMENTO DE NGENERÍA EÉTRA Y ENERGÉTA OEÓN: EETROTENA ARA NGENEROS NO ESEASTAS ORRENTE ATERNA MONO Y TRFÁSA Miguel Angel Rodríguez ozueta Doctor ngeniero ndustrial OBSERAONES SOBRE

Más detalles

FUERZA ELECTRO MOTRIZ Y RESISTENCIA INTERNA DE UNA PILA

FUERZA ELECTRO MOTRIZ Y RESISTENCIA INTERNA DE UNA PILA FUEZA ELECTO MOTIZ Y ESISTENCIA INTENA DE UNA ILA Intoducción: En la figua 1 se muesta un cicuito de dos esistencias 1 y 2 conectadas en seie, este gupo a su vez está conectado en seie con una pila ideal

Más detalles

COLEGIO ESTRADA DE MARIA AUXILIADORA CIENCIA, TRABAJO Y VALORES: MI PROYECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (10 )

COLEGIO ESTRADA DE MARIA AUXILIADORA CIENCIA, TRABAJO Y VALORES: MI PROYECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (10 ) COLEGIO ESTRADA DE MARIA AUILIADORA CIENCIA, TRABAJO VALORES: MI PROECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (0 ) Fecha: Nombe del estudiante: N O T A La nivelación es en foma de talle donde

Más detalles

Introducción a circuitos de corriente continua

Introducción a circuitos de corriente continua Univesidad de Chile Facultad de Ciencias Físicas y Matemáticas Depatamento de Física FI2003 - Métodos Expeimentales Semeste Pimavea 2010 Pofesoes: R. Espinoza, C. Falcón, R. Muñoz & R. Pujada GUIA DE LABORATORIO

Más detalles

FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA

FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA Univesidad de Cantabia Tesis Doctoal FORMACIÓN DE IMÁGENES EN ÓPTICA ADAPTATIVA Vidal Fenández Canales Capítulo 1 LA TURBULENCIA ATMOSFÉRICA La atmósfea no se compota como un medio homogéneo paa la popagación

Más detalles

Importancia de la corrección del factor de potencia (PFC)

Importancia de la corrección del factor de potencia (PFC) www.fuentes-switching.electrosoft.cl Importancia de la corrección del factor de potencia (PFC) M. Patricio Cohen Introducción Al conectar una carga a la red eléctrica, la potencia que podemos consumir

Más detalles

Fuerza magnética sobre conductores.

Fuerza magnética sobre conductores. Fueza magnética sobe conductoes. Peviamente se analizó el compotamiento de una caga q que se mueve con una velocidad dento de un campo magnético B, la cual expeimenta una fueza dada po la expesión: F q(v

Más detalles

CAPITULO IV FORMAS DE ONDA. CONDENSADORES E INDUCTORES

CAPITULO IV FORMAS DE ONDA. CONDENSADORES E INDUCTORES CAPITULO IV FORMAS DE ONDA. CONDENSADORES E INDUCTORES 4.1.- FORMAS DE ONDA. 4.1.1.- Introducción. En la mayor parte de los análisis que se han realizado hasta el momento se han utilizado fuentes continuas,

Más detalles