RESOLUCIÓN Y DISCUSIÓN DE PROBLEMAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "RESOLUCIÓN Y DISCUSIÓN DE PROBLEMAS"

Transcripción

1 "" "a" "n" "" DP. - AS Mateáticas ISSN: X RESOLUCIÓN Y DISCUSIÓN DE PROBLEMAS DE ENUNCIADO VERBAL CON PARÁMETROS 6 - PAU - Universidad de Oviedo J Un agente inobiliario puede realizar tipos de operaciones: venta de un piso nuevo, venta de un piso usado y alquiler. Por la venta de cada piso nuevo recibe una pria de PTAS. Si la operación es la venta de un piso usado recibe 6 PTAS. Se desconoce la pria cuando la operación es un alquiler. Este es el núero total de operaciones fue 5, la pria total por la venta de pisos fue superior en PTAS a la obtenida por alquileres y la pria total por venta de pisos nuevos fue el triple que por alquileres. (a) Plantea un sistea de ecuaciones (sin resolverlo) para obtener el núero de operaciones realizadas (en función del valor desconocido de la pria de alquiler). (b) Indica una pria a la que es iposible que se hayan pagado los alquileres. (c) Indica tres prias a las que es posible que se hayan pagado los alquileres. (d) Si la pria de alquileres fue de PTAS, cuántas operaciones de cada tipo se realizaron? RESOLUCIÓN apartado (a) DETERMINACIÓN DE INCÓGNITAS x "Núero de ventas de pisos nuevos" y "Núero de ventas de pisos usados" z "Núero de alquileres" DETERMINACIÓN DE PARÁMETROS "Valor desconocido de la pria por un alquiler" PLANTEAMIENTO: x + y + z = 5 x + 6y = + z x = z Colocaos térinos seejantes en cada iebro, reducios y obteneos el siguiente sistea para obtener el núero de operaciones realizadas (en función del valor desconocido de la pria de alquiler) RESOLUCIÓN apartado (b) x + y + z = 5 x + 6 y z = 4 x z = Para estudiar la copatibilidad del sistea, lo resolveos por el étodo de Gauss: ( ) () 4 6 ( 4) () Fijaos la ª fila y odificaos la ª y ª con las operaciones indicadas a la izquierda y derecha, respectivaente: ( ) () Fijaos la priera y segunda filas y odificaos la tercera con las operaciones indicadas a la izquierda Siplificaos la º fila: 4

2 Abel Martín + = = = RESOLUCIÓN apartado (b) ( + ) z = z = pero SISTEMA INCOMPATIBLE Es iposible que se hayan pagado los alquileres con una pria de. RESOLUCIÓN apartado (c) Para = SISTEMA INCOMPATIBLE Es sistea es copatible deterinado RESUMEN SOLUCIÓN A SISTEMA COMPATIBLE DETERMINADO Para indicar tres prias a las que es posible que se hayan pagado los alquileres, observaos la atriz del sistea resultante: Las prias por alquileres podrían ser = 5, = 55, = 6, es decir, valores distintos de. PTAS, aunque habría que hacer un estudio ucho ás profundo ya que, dependiendo del contexto, los valores de x, y, z tendrían que ser núeros enteros positivos, que por el exceso y laboriosidad de los de cálculos excede los objetivos del tea y lo dejaos para una posible apliación. RESOLUCIÓN apartado (d) 6 Para = 4 z = 4-6 y 8 = y = y = - x + + = 5 Se realizaron venta de pisos nuevos, ventas de pisos usados y de alquileres" 7 - PAU - Universidad de Oviedo J En una faracia se coercializan tipos de chapú de cierta arca: noral, con vitainas y anticaspa. Se sabe que el precio al que se vende el noral es de euros y el de vitainas es de euros. Se desconoce el precio al que vende el anticaspa. Por otro lado, el dinero total obtenido por las ventas de los tipos de chapú el es pasado fue de euros y el dinero obtenido en ventas con el chapú noral fue 56 euros inferior al dinero total obtenido en ventas con el resto. Adeás, el dinero total obtenido en ventas con el chapú de vitainas y el anticaspa fue el iso que el que hubiera obtenido vendiendo 8 unidades del anticaspa y ninguna de las deás. z = y = x = DISCUSIÓN DE UN SISTEMA CON PARÁMETROS

3 DP. - AS Mateáticas ISSN: X (a) Plantea un sistea de ecuaciones (en función del precio desconocido del chapú anticaspa, que puedes llaar por ejeplo ) donde las incógnitas (x, y, z) sean las unidades vendidas el es pasado de cada tipo de chapú. (b) Qué puedes concluir sobre el precio del chapú anticaspa a partir de un estudio de la copatibilidad del sistea? (c) Si se sabe que el núero de unidades vendidas del anticaspa fue, utiliza el resultado del apartado (b) para calcular las unidades vendidas de los otros. RESOLUCIÓN apartado a DDEETTEERRMMIINNAACCIIÓÓNN DDEE IINNCCÓÓGGNNIITTAASS x "Núero de unidades vendidas el es pasado de chapú noral". y "Núero de unidades vendidas el es pasado de chapú con vitainas". z "Núero de unidades vendidas el es pasado de chapú anticaspa". DDEETTEERRMMIINNAACCIIÓÓNN DDEE PPAARRÁÁMMEETTRROOSS "Precio desconocido del chapú anticaspa" PPLLAANNTTEEAAMMIIEENNTTOO:: x + y + z = x + 56 = y + z y + z = 8 Reducios y obteneos el siguiente sistea en función del precio desconocido del chapú anticaspa RESOLUCIÓN apartado b x + y + z = x - y - z = - 56 y + z = = 56 = 68 = ( ) () () () 6 6 z = z = Infinitas soluciones Sistea copatible indeterinado para = z = p.ej, = z = - 68 Pero 68 Sistea incopatible RESUMEN SOLUCIÓN = SISTEMA COMPATIBLE INDETERMINADO SISTEMA INCOMPATIBLE

4 Abel Martín Por lo que resolveos para = - 6y - z = y = z - 6y = z y = 8 - z x + y + z = x + (8 - z) + z = x z + z = x = 8 x = 4 Se trata de un sistea copatible indeterinado, de solución generalizada: (4, 8 - z, z) RESOLUCIÓN apartado c Para z = : El precio del anticaspa es de. (4, 8 - z, z) (4, 8 -, ) (4, 8, ) Si vendieron unidades de chapú anticaspa, ese iso es habrán vendido 4 unidades de chapú noral y 8 con vitainas. RATIFICACIÓN DE RESULTADOS CON CALCULADORA GRÁFICA Vaos a coprobar con la calculadora gráfica, sustituyendo "" por diversos valores en el sistea del enunciado: = F Si sustituios en el prier sistea, para =, z = La calculadora gráfica no es capaz de resolver sisteas copatibles indeterinados. F La calculadora gráfica resuelve el problea de anera sencilla. Coo se puede observar, se confiran nuestros resultados obtenidos con LÁPIZ Y PAPEL. 8.- En una granja se venden pollos, pavos y perdices; los pollos y los pavos, a razón de y.5 /Kg, respectivaente, aunque de las perdices no se acuerda (supongaos que son "" /kg). En cierta seana los ingresos totales de la granja ascendieron a 57. Adeás se sabe que la cantidad de pollo vendida superó en Kg a la de pavo y que se vendió de perdiz la itad que la de pavo. (a) Plantea un sistea de ecuaciones (en función de "") para averiguar la cantidad vendida de cada tipo de carne. (b) Estudia la copatibilidad del sistea, en función de "". Puedes dar algún precio al que sea iposible haber vendido las perdices? RESOLUCIÓN apartado a DDEETTEERRMMIINNAACCIIÓÓNN DDEE IINNCCÓÓGGNNIITTAASS x "Cantidad de kg de pollo vendidos" y "Cantidad de kg de pavo vendidos" z "Cantidad de kg de perdiz vendidos" DDEETTEERRMMIINNAACCIIÓÓNN DDEE PPAARRÁÁMMEETTRROOSS "Precio del kg de perdiz en " PPLLAANNTTEEAAMMIIEENNTTOO:: RESOLUCIÓN apartado b x +.5y + z = 57 x = y + z = y x +.5y + z = 57 x y = y + z = DISCUSIÓN DE UN SISTEMA CON PARÁMETROS 4

5 DP. - AS Mateáticas ISSN: X Resolveos el sistea por el étodo de Gauss Colocaos las ecuaciones de fora que el paráetro quede lo ás abajo y a la derecha posible: ( ) ().5 57 Fijaos la ª y ª filas y odificaos la ª con las operaciones indicadas a la izquierda: (.5) ().5 55 Fijaos la priera y segunda filas y odificaos la tercera con las operaciones indicadas a la izquierda. 7 + = = - 7 = Procedaos a estudiar la copatibilidad del sistea: (7 + ) z = 55 z = 55 SISTEMA INCOMPATIBLE. Ojo: para = - 7 el precio sería iposible, pero coo el precio no puede ser negativo, se dice que no se puede dar un precio al que sea iposible haber vendido las perdices - 7 SISTEMA COMPATIBLE DETERMINADO. ANÁLISIS CRÍTICO DE LOS RESULTADOS De lo que se deduce que cualquier precio es posible haber vendido las perdices. RATIFICACIÓN DE RESULTADOS CON CALCULADORA GRÁFICA Vaos a coprobar con la calculadora gráfica, sustituyendo "" por diversos valores en el sistea del enunciado: = - 7 F para = ( ) F para = 4 ( ) F Coo se puede observar, se confiran nuestros resultados obtenidos con LÁPIZ Y PAPEL. 5

DP. - AS - 5119 2007 Matemáticas ISSN: 1988-379X

DP. - AS - 5119 2007 Matemáticas ISSN: 1988-379X DP. - AS - 59 7 Matemáticas ISSN: 988-379X 5 Un almacén distribuye cierto producto que fabrican 3 marcas distintas: A, B y C. La marca A lo envasa en cajas de 5 gramos y su precio es de, la marca B lo

Más detalles

Sistemas de ecuaciones lineales con 3 incógnitas de enunciado verbal

Sistemas de ecuaciones lineales con 3 incógnitas de enunciado verbal Sistemas de ecuaciones lineales con 3 incógnitas de enunciado verbal SISTEMAS DE ECUACIONES DE ENUNCIADO VERBAL CON 3 INCÓGNITAS. RESUELTOS EN ABIERTO PAU Universidad de Oviedo Junio 996 005. En una confitería

Más detalles

SISTEMAS DE ECUACIONES LINEALES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS

SISTEMAS DE ECUACIONES LINEALES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS 1 SISTEMAS DE ECUACIONES LINEALES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS 102. PAU Universidad de Oviedo Fase General OPCIÓN A junio 2010 Dos amigos, Ana y Nicolás, tienen en total 60 euros. Además se

Más detalles

RESOLUCIÓN Y DISCUSIÓN DE PARÁMETROS

RESOLUCIÓN Y DISCUSIÓN DE PARÁMETROS Curso ON LINE Tema 4 005 RESOLUCIÓN Y DISCUSIÓN DE PROBLEMAS DE ENUNCIADO VERBAL CON PARÁMETROS Una empresa manda sus pedidos por correo ordinario o bien utilizando un servicio de mensajeros. Cada paquete

Más detalles

LAS MATRICES. OPERACIONES CON MATRICES.

LAS MATRICES. OPERACIONES CON MATRICES. DP. - AS - Matemáticas ISSN: - X www.aulamatematica.com LAS MATRICES. OPERACIONES CON MATRICES. Escribe una matri A de dimensión señala cuál es el elemento a B Escribe una matri B de dimensión señala cuál

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE LAS PALMAS JUNIO 2014. (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE LAS PALMAS JUNIO 2014. (RESUELTOS por Antonio Menguiano) IES CSTELR DJOZ PRUE DE CCESO (LOGSE) UNIVERSIDD DE LS PLS JUNIO (RESUELTOS por ntonio enguiano) TEÁTICS II Tiepo áio: horas inutos Elija una de las dos opciones, o, conteste a las cuatro cuestiones que

Más detalles

OBJETIVO 2: "INTERPRETAR GEOMÉTRICAMENTE UN SISTEMA DE ECUACIONES"

OBJETIVO 2: INTERPRETAR GEOMÉTRICAMENTE UN SISTEMA DE ECUACIONES SISTEMAS DE ECUACIONES, MATEMÁTICAS Y CALCULADORAS. Marta Martín Sierra. Facultad de Matemáticas. Universidad de Oviedo. Abel Martín. Dpto. Matemáticas IES Pérez de Ayala de Oviedo. INTRODUCCIÓN Parece

Más detalles

CONSERVACIÓN DE LA ENERGIA

CONSERVACIÓN DE LA ENERGIA CONSERVACIÓN DE LA ENERGIA ASIMOV - 8 - ENERGÍA MECÁNICA - CONSERVACIÓN DE LA ENERGÍA ENERGÍA POTENCIAL Suponé que sostengo una cosa a del piso y la suelto. Al principio la cosa tiene velocidad inicial

Más detalles

b) Los lados de un triángulo rectángulo tienen por medida tres números naturales consecutivos. Halla dichos lados.

b) Los lados de un triángulo rectángulo tienen por medida tres números naturales consecutivos. Halla dichos lados. Problemas Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz Reduce a común denominador el siguiente conjunto de fracciones: + ; y Común denominador: ( + )( ) MCM + ( )( ) ( )( + )( ) ( ) (

Más detalles

Soluciones a las actividades

Soluciones a las actividades Soluciones a las actividades BLOQUE I Álgebra 1. Sistemas lineales 2. Matrices 3. Determinantes 4. Sistemas lineales con parámetros 1 Sistemas lineales 1. Sistemas de ecuaciones lineales Piensa y calcula

Más detalles

SISTEMAS DE ECUACIONES. RESOLUCIÓN DE PROBLEMAS DE ENUNCIADO VERBAL. MÉTODO DE GAUSS Y CALCULADORA.

SISTEMAS DE ECUACIONES. RESOLUCIÓN DE PROBLEMAS DE ENUNCIADO VERBAL. MÉTODO DE GAUSS Y CALCULADORA. SISTEMAS DE ECUACIONES. RESOLUCIÓN DE PROBLEMAS DE ENUNCIADO VERBAL. MÉTODO DE GAUSS Y CALCULADORA. 001 002 003 004 005 006 007 008 009 010 011 012 Una tienda posee 3 tipos de conservas, A, B y C. El precio

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Índice general 1. Sistemas de ecuaciones lineales 2 2. Método de sustitución 5 3. Método de igualación 9 4. Método de eliminación 13 5. Conclusión 16 1 Sistemas de ecuaciones

Más detalles

CAPÍTULO VI AMORTIZACIONES

CAPÍTULO VI AMORTIZACIONES CAPÍTULO VI AMORTIZACIONES 324 6.1.- AMORTIZACIONES 6.1.1.- CONCEPTOS BÁSICOS En el ábito de las finanzas y el coercio, el concepto aortización está asociado a deuda, es decir, se refiere al pago gradual

Más detalles

III OLIMPIADA DE FÍSICA CHECOSLOVAQUIA, 1969

III OLIMPIADA DE FÍSICA CHECOSLOVAQUIA, 1969 OLIMPID INTERNCIONL DE FÍSIC Probleas resueltos y coentados por: José Luis Hernández Pérez y gustín Lozano Pradillo III OLIMPID DE FÍSIC CHECOSLOVQUI, 1969 1.- El sistea ecánico de la figura inferior consta

Más detalles

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS Sistemas de dos ecuaciones con dos incógnitas. Un sistema lineal de dos ecuaciones con dos incógnitas es de la forma: a b c ' ' ' con a b c a b c números reales

Más detalles

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z

Curso ON LINE Tema 5. x + y + z = 5 1200x + 600y = 2000 + m z 1200x = 3 m z Curso ON LINE Tem 5 Un gente inmobilirio puede relir tipos de operciones: vent de un piso nuevo, vent de un piso usdo lquiler. Por l vent de cd piso nuevo recibe un prim de. Si l operción es l vent de

Más detalles

Es un sistema de dos vectores deslizables de la misma magnitud que están en distintas rectas sostén con la misma dirección pero sentido contrario

Es un sistema de dos vectores deslizables de la misma magnitud que están en distintas rectas sostén con la misma dirección pero sentido contrario MECANICA TEORÍA Moento Entonces Sistea Par o Cupla de Vectores Es un sistea de dos vectores deslizables de la isa agnitud que están en distintas rectas sostén con la isa dirección pero sentido contrario

Más detalles

GESTION FINANCIERA. TEMA 4º. El INTERES COMPUESTO. 1.- Capitalización compuesta.

GESTION FINANCIERA. TEMA 4º. El INTERES COMPUESTO. 1.- Capitalización compuesta. GESTION FINANCIERA. TEMA 4º. El INTERES COMPUESTO. 1.- Capitalización copuesta. Concepto de capitalización copuesta. Térinos a utilizar en la capitalización copuesta. Cálculo del capital final o ontante.

Más detalles

SISTEMAS DE ECUACIONES: MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES: MÉTODO DE GAUSS Ejercicio nº 1.- SISTEMAS DE ECUACIONES: MÉTODO DE GAUSS Resuelve estos sistemas, mediante el método de Gauss: Las soluciones del sistema son: Ejercicio nº 2.- Por un rotulador, un cuaderno y una carpeta

Más detalles

http://www.matematicaaplicada.info 1 de 17 jezasoft@gmail.com SOLUCIÓN NUMÉRICA

http://www.matematicaaplicada.info 1 de 17 jezasoft@gmail.com SOLUCIÓN NUMÉRICA http://www.ateaticaaplicada.info 1 de 17 La Dorada, 07 de Octubre de 011 SOLUCIÓN NUMÉRICA 7. La copañía de udanzas Raírez cobra $70 por transportar cierta áquina 15 illas y $100 por transportar la isa

Más detalles

U2-T4: Un método personalizado: Gauss

U2-T4: Un método personalizado: Gauss AVISO: Esta página ha sido generada para facilitar la impresión de los contenidos. Los enlaces externos a otras páginas no serán funcionales. U2-T4: Un método personalizado: Gauss 1. Karl F. Gauss. Im

Más detalles

Capítulo 5: Ecuaciones de segundo grado y sistemas lineales

Capítulo 5: Ecuaciones de segundo grado y sistemas lineales º de ESO Capítulo : Ecuaciones de segundo grado sistemas lineales Autora: Raquel Hernández Revisores: Sergio Hernández María Molero Ilustraciones: Raquel Hernández Banco de Imágenes de INTEF Ecuaciones

Más detalles

ced Au Au Au f Cu Cu Cu f

ced Au Au Au f Cu Cu Cu f Probleas calorietria Ejeplo 1.- 100 g de una aleación de oro y cobre, a la teperatura de 75.5ºC se introducen en un caloríetro con 502 g de agua a 25ºC, la teperatura del equilibrio es de 25.5ºC. Calcular

Más detalles

Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II Antonio Francisco Roldán López de Hierro * Convocatoria

Más detalles

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 gramos del primer elemento y 1 gramo del segundo; un kilo

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

www.aulamatematica.com

www.aulamatematica.com www.aulamatematica.com APLIICACIIÓN DE DERIIVADAS:: PROBLEMAS DE OPTIIMIIZACIIÓN CON 1 VARIIABLE.. 004 Los costes de fabricación C(x) en euros de cierta variedad de galletas dependen de la cantidad elaborada

Más detalles

EJERCICIOS DE SISTEMAS DE ECUACIONES

EJERCICIOS DE SISTEMAS DE ECUACIONES EJERCICIOS DE SISTEMAS DE ECUACIONES Ejercicio nº 1.- a) Resuelve por sustitución: 5x y 1 3x 3y 5 b) Resuelve por reducción: x y 6 4x 3y 14 Ejercicio nº.- a) Resuelve por igualación: 5x y x y b) Resuelve

Más detalles

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG)

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) PAEG Junio 0 Propuesta A Matemáticas aplicadas a las CCSS II º Bachillerato UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales

Más detalles

4 Ecuaciones y sistemas

4 Ecuaciones y sistemas Solucionario Ecuaciones y sistemas ACTIVIDADES INICIALES.I. Comprueba si las siguientes ecuaciones tienen como soluciones,,. a) 0 b) 5 () 8 a) 0 () () es solución. 0 8 9 6 0 6 0 0 9 5 5 6 5 es solución.

Más detalles

) = 5. Operaciones con polinomios 54 SOLUCIONARIO 1. POLINOMIOS. SUMA Y RESTA 2. MULTIPLICACIÓN DE POLINOMIOS

) = 5. Operaciones con polinomios 54 SOLUCIONARIO 1. POLINOMIOS. SUMA Y RESTA 2. MULTIPLICACIÓN DE POLINOMIOS 54 SOLUCIONARIO 5. Operaciones con polinomios. POLINOMIOS. SUMA RESTA PIENSA CALCULA Dado el cubo de la figura, calcula en función de : a) El área. b) El volumen. a) A ( ) = 6 b) V ( ) = CARNÉ CALCULISTA

Más detalles

III.- CAMPOS DE INTERÉS. Lección 14ª: Cambios de Fase

III.- CAMPOS DE INTERÉS. Lección 14ª: Cambios de Fase III.- CAMPOS DE INERÉS Lección 4ª: Cabios de Fase.- Introducción....- Condiciones generales de equilibrio de los sisteas heterogéneos ulticoponentes: eorea de Gibbs... 3.- Regla de las Fases... 4 4.- Clasificación

Más detalles

Tema 6. Análisis de Circuitos en Régimen Sinusoidal Permanente

Tema 6. Análisis de Circuitos en Régimen Sinusoidal Permanente Tea 6. Análisis de Circuitos en Régien Sinusoidal Peranente 6. ntroducción 6. Fuentes sinusoidales 6.3 Respuesta sinusoidal en estado estable 6.4 Fasores 6.5 Relaciones fasoriales para R, L y C 6.6 pedancia

Más detalles

Inecuaciones y Sistemas de Inecuaciones Lineales con una Incóg

Inecuaciones y Sistemas de Inecuaciones Lineales con una Incóg PreUnAB Inecuaciones y Sistemas de Inecuaciones Lineales con una Incógnita Clase # 11 Agosto 2014 Intervalos Reales Orden en R Dados dos números reales a y b, se dice que a es menor que b, a < b, si b

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario)

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario) Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS (Solucionario) 2 Í N D I C E CAPÍTULO : MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES CAPÍTULO 2: ESPACIOS VECTORIALES

Más detalles

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que

Más detalles

ENERGÍA (II) FUERZAS CONSERVATIVAS

ENERGÍA (II) FUERZAS CONSERVATIVAS NRGÍA (II) URZAS CONSRVATIVAS IS La Magdalena. Avilés. Asturias Cuando elevaos un cuerpo una altura h, la fuerza realiza trabajo positivo (counica energía cinética al cuerpo). No podríaos aplicar la definición

Más detalles

Problemas de Algebra Matricial

Problemas de Algebra Matricial Matrices Problemas de lgebra Matricial Matrices. Eplicitar las siguientes matrices. a) m=, n= a i i, b) m=, n= a si i=, a si i, i, c) m=, n= a, i, d) m=, n= a i i, i. Crear matrices de tal forma que cumplan

Más detalles

HOJA 5 SUCESIONES Y PROGRESIONES

HOJA 5 SUCESIONES Y PROGRESIONES HOJA 5 SUCESIONES Y PROGRESIONES Sucesión: Término general 1.- Calcula el término general de las sucesiones: a) -1, 2, 5, 8, 11, b) 3, 3/2, ¾, 3/8, c) 1, 4, 9, 16, 25, 2.- Halla el término general de cada

Más detalles

http://www.youtube.com/watch?v=puen0s0idwc http://www.youtube.com/watch?v=fhmvwv5wfuo http://www.youtube.com/watch?v=38nysgkjxdg

http://www.youtube.com/watch?v=puen0s0idwc http://www.youtube.com/watch?v=fhmvwv5wfuo http://www.youtube.com/watch?v=38nysgkjxdg .- Sistema ecuaciones lineales por Gauss Resuelve por Gauss 3 7 3 3 3 3 6 http://www.outube.com/watch?vpuen0s0idwc.- Sistema ecuaciones lineales por Gauss Resuelve por Gauss 3-3 5-3 -0 0 http://www.outube.com/watch?vfhmvwv5wfuo

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

ACTIVIDADES DEL TEMA 4

ACTIVIDADES DEL TEMA 4 ACTIVIDADES DEL TEMA. Resuelve las siguientes ecuaciones: a. 0 0 c. 0 b. 9 0 d. 0. Resuelve las siguientes ecuaciones bicuadradas: a. 0 b. 0. Resuelve las siguientes ecuaciones de primer grado: a. ( -

Más detalles

5 SISTEMAS DE ECUACIONES

5 SISTEMAS DE ECUACIONES 5 SISTEMAS DE ECUACINES EJERCICIS PRPUESTS 5. Escribe estos enunciados en forma de una ecuación con dos incógnitas. a) Un número más el doble de otro es. La diferencia de dos números es 5. c) Un número

Más detalles

Iniciación a las Matemáticas para la ingenieria

Iniciación a las Matemáticas para la ingenieria Iniciación a las Matemáticas para la ingenieria Los números naturales 8 Qué es un número natural? 11 Cuáles son las operaciones básicas entre números naturales? 11 Qué son y para qué sirven los paréntesis?

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 9 PRACTICA Sistemas lineales Comprueba si el par (, ) es solución de alguno de los siguientes sistemas: x + y 5 a) x y x y 5 x + y 8 El par (, ) es solución de un sistema si al sustituir x

Más detalles

TEMA: ECUACIONES CON NÚMEROS NATURALES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA.

TEMA: ECUACIONES CON NÚMEROS NATURALES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA. TEMA: ECUACIONES CON NÚMEROS NATURALES INTRODUCCIÓN: Las ecuaciones sirven, básicamente, para resolver problemas ya sean matemáticos, de la vida diaria o de cualquier ámbito- y, en ese caso, se dice que

Más detalles

ÁLGEBRA. Nota: Los sistemas de ecuaciones lineales se deben resolver por el método de Gauss.

ÁLGEBRA. Nota: Los sistemas de ecuaciones lineales se deben resolver por el método de Gauss. Pruebas de Acceso a la Universidad de Zaragoza. Matemáticas aplicadas a las Ciencias Sociales. ÁLGEBRA Junio 1994. Un aficionado a la Bolsa invirtió.000.000 de pesetas en acciones de tres empresas A, B

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1. Disponemos de 210.000 euros para invertir en bolsa. Nos recomiendan dos tipos de acciones. Las del tipo A, que rinden el 10% y las del tipo B, que rinden el 8%. Decidimos

Más detalles

EL MUELLE. LAS FUERZAS ELÁSTICAS

EL MUELLE. LAS FUERZAS ELÁSTICAS EL MUELLE. LAS FUERZAS ELÁSTICAS En una pista horizontal copletaente lisa, se encuentra un uelle de 30 c de longitud y de constante elástica 100 N/. Se coprie 0 c y se sitúa una asa de 500 g frente a él.

Más detalles

5 Ecuaciones lineales y conceptos elementales de funciones

5 Ecuaciones lineales y conceptos elementales de funciones Programa Inmersión, Verano 206 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 3023 Clase #6: martes, 7 de junio de 206. 5 Ecuaciones lineales y conceptos elementales

Más detalles

Problemas de 2 o Bachillerato (ciencias sociales) Isaac Musat Hervás

Problemas de 2 o Bachillerato (ciencias sociales) Isaac Musat Hervás Problemas de 2 o Bachillerato ciencias sociales) Isaac Musat Hervás 27 de mayo de 2007 2 Índice General 1 Problemas de Álgebra 5 1.1 Matrices, Exámenes de Ciencias Sociales............ 5 1.2 Sistemas de

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

PRUEBA OBJETIVA. Encierre con un círculo la letra o letras que correspondan a las alternativas válidas de entre las propuestas.

PRUEBA OBJETIVA. Encierre con un círculo la letra o letras que correspondan a las alternativas válidas de entre las propuestas. PRUEBA OBJETIVA Encierre con un círculo la letra o letras que correspondan a las alternativas válidas de entre las propuestas. 1. Capital financiero es: a) Es la edida de un bien econóico referida al oento

Más detalles

EXAMEN DE SISTEMAS DE ECUACIONES

EXAMEN DE SISTEMAS DE ECUACIONES EXAMEN DE SISTEMAS DE ECUACIONES Se recomienda: a) Antes de hacer algo, leer todo el examen. b) Resolver antes las preguntas que se te den mejor. c) Responde a cada parte del examen en una hoja distinta.

Más detalles

Curso ON LINE Tema 8. Resolvemos el sistema por el método de Gauss

Curso ON LINE Tema 8. Resolvemos el sistema por el método de Gauss SISTEMAS DE ECUACIONES. RESOLUCIÓN DE PROBLEMAS DE ENUNCIADO VERBAL. MÉTODO DE GAUSS Y CALCULADORA Un almacén distribuye cierto producto que fabrican 3 marcas distintas: A, B y C. La marca A lo envasa

Más detalles

Lorenzo Javier Martín García Juan Antonio Velasco Mate. En este trabajo se utiliza el Sistema de Cálculo Simbólico

Lorenzo Javier Martín García Juan Antonio Velasco Mate. En este trabajo se utiliza el Sistema de Cálculo Simbólico 8 Suas de Rieann con Sisteas de Cálculo Sibólico noviebre, pp. 47-5 Lorenzo Javier Martín García Juan Antonio Velasco Mate ARTÍCULOS En este trabajo se utiliza el Sistea de Cálculo Sibólico Maple para

Más detalles

Experimentación con Descartes na Aula. Galicia 2008

Experimentación con Descartes na Aula. Galicia 2008 Experimentación con Descartes na Aula. Galicia 2008 Follas de traballo Se traballará coas páxinas web da unidade á vez que se completan as follas de traballo, e se realizarán as actividades propostas que

Más detalles

EJERCICIOS UNIDAD 7: SISTEMAS DE ECUACIONES LINEALES. 1. Clasifique y resuelva los siguientes sistemas de ecuaciones lineales:

EJERCICIOS UNIDAD 7: SISTEMAS DE ECUACIONES LINEALES. 1. Clasifique y resuelva los siguientes sistemas de ecuaciones lineales: IES Padre Poveda (Guadi Mateáticas II Departaento de Mateáticas Bloque II: Álgebra Lineal Profesor: Raón Lorente Navarro Unidad 7: Sisteas de Ecuaciones Lineales EJERCICIOS UNIDAD 7: SISTEMAS DE ECUACIONES

Más detalles

Vamos a ver algunos conceptos básicos de solfeo. La progresión de la escala de las notas musicales va de la siguiente manera:

Vamos a ver algunos conceptos básicos de solfeo. La progresión de la escala de las notas musicales va de la siguiente manera: Conceptos Básicos aos a ver algunos conceptos básicos de solfeo. La progresión de la escala de las notas usicales va de la siguiente anera: # Re# Fa# # La# Re i Fa La Si / / Qué quiere decir esto? Figura

Más detalles

Movimiento armónico simple

Movimiento armónico simple UNIDAD Moviiento arónico siple Un trapolín ejerce una fuerza de restauración sobre la persona que salta directaente proporcional a la fuerza edia necesaria para desplazar la colchoneta. El oviiento hacia

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente. ÁLGEBRA DE MATRICES Página 49 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes

Más detalles

a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7

a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7 1 Resuelve las siguientes ecuaciones: a) x 1 = x + x 6 = c) x 9x + = d) x 6x 7 = = a) x = 1 y x = 1 x = 3 y x = c) x = 4 y x = 5 d) x = 1 y x = 7 Resuelve las siguientes ecuaciones de primer grado: a)

Más detalles

EJERCICIOS PROPUESTOS. Copia y completa de modo que estas expresiones sean igualdades numéricas. a) 5 2 13 c) 2 32 b) 4 5 17 d) 4 6 18 10

EJERCICIOS PROPUESTOS. Copia y completa de modo que estas expresiones sean igualdades numéricas. a) 5 2 13 c) 2 32 b) 4 5 17 d) 4 6 18 10 5 ECUACIONES EJERCICIOS PROPUESTOS 5.1 Copia y completa de modo que estas epresiones sean igualdades numéricas. a) 5 1 c) b) 5 17 d) 6 1 10 a) 5 10 1 c) 16 b) 5 17 d) 6 1 10 5. Sustituye las letras por

Más detalles

6 Ecuaciones de 1. er y 2. o grado

6 Ecuaciones de 1. er y 2. o grado 8985 _ 009-08.qd /9/07 5:7 Página 09 Ecuaciones de. er y. o grado INTRODUCCIÓN La unidad comienza diferenciando entre ecuaciones e identidades, para pasar luego a la eposición de los conceptos asociados

Más detalles

SUCESIONES INFINITAS

SUCESIONES INFINITAS SUCESIONES INFINITAS 1 2 Ejercicio: Cálculo del término general de una sucesión: Encontrar el quincuagésimo término de la sucesión 1, 3, 5, 7,... Es una progresión aritmética de diferencia 2. Su término

Más detalles

EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES

EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES EECUACIONES LINEALES EN UNA VARIABLE ECUACIONES CUADRATICAS EN UNA VARIABLE APLICACIONES RESOLVER ECUACIONES LINEALES EN UNA VARIABLE RESOLVER ECUACIONES CUADRATICAS EN UNA VARIABLE RESOLVER PROBLEMAS

Más detalles

Los números racionales

Los números racionales Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones

Más detalles

Ecuaciones y sistemas lineales

Ecuaciones y sistemas lineales UNIDAD Ecuaciones y sistemas lineales D e sobra son conocidas las ecuaciones. Refrescamos y profundizamos en su estudio: ecuaciones de primer y segundo grado, así como otras polinómicas de grados superiores,

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE 4 MOVIMIENO ARMÓNICO SIMPLE 4.. MOVIMIENOS PERIÓDICOS. Conocido el período de rotación de la Luna alrededor de la ierra, y sabiendo que la Luna no eite luz propia, sino que refleja la que recibe del Sol,

Más detalles

Suponga que trata de calcular la rapidez de una flecha disparada con un arco.

Suponga que trata de calcular la rapidez de una flecha disparada con un arco. TRABAJO Y ENERGÍA CINÉTICA 6?Cuando una ara de fuego se dispara, los gases que se expanden en el cañón epujan el proyectil hacia afuera, de acuerdo con la tercera ley de Newton, el proyectil ejerce tanta

Más detalles

Propuesta A. 2 0 b) Dada la ecuación matricial: X =, despeja y calcula la matriz X (0.75 ptos) 1 1

Propuesta A. 2 0 b) Dada la ecuación matricial: X =, despeja y calcula la matriz X (0.75 ptos) 1 1 Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (014) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A o B. Se

Más detalles

Guía complementaria / PTL Guía de Ejercicios Vectores y algunas Aplicaciones.

Guía complementaria / PTL Guía de Ejercicios Vectores y algunas Aplicaciones. Guía de Ejercicios Vectores y algunas plicaciones. 1 Notabene : Todas las agnitudes vectoriales se presentan en esta guía con negrita y cursiva. Por distracción, puede haberse oitido tal cosa en algún

Más detalles

EJERCICIOS UNIDAD 7: SISTEMAS DE ECUACIONES LINEALES. 1. Clasifique y resuelva los siguientes sistemas de ecuaciones lineales: α α.

EJERCICIOS UNIDAD 7: SISTEMAS DE ECUACIONES LINEALES. 1. Clasifique y resuelva los siguientes sistemas de ecuaciones lineales: α α. IES Padre Poveda (Guadi Mateáticas II Departaento de Mateáticas Bloque II: Álgebra Lineal Profesor: Raón Lorente Navarro Unidad : Sisteas de Ecuaciones Lineales EJERCICIOS UNIDAD : SISTEMAS DE ECUACIONES

Más detalles

ELIJA CUATRO DE LOS SEIS BLOQUES PROPUESTOS.

ELIJA CUATRO DE LOS SEIS BLOQUES PROPUESTOS. PRUEBAS DE ACCESO A LA UNIVERSIDAD Curso 008-009 MATEMÁTICAS II ELIJA CUATRO DE LOS SEIS BLOQUES PROPUESTOS. Bloque 1. Dado el número real a, se considera el sistema a) Discuta el sistema según los valores

Más detalles

Sistemas de ecuaciones de primer grado con dos incógnitas

Sistemas de ecuaciones de primer grado con dos incógnitas Unidad Didáctica 4 Sistemas de ecuaciones de primer grado con dos incógnitas Objetivos 1. Encontrar y reconocer las relaciones entre los datos de un problema y expresarlas mediante el lenguaje algebraico.

Más detalles

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-)

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) CÁLCULO MATEMÁTICO BÁSICO LOS NUMEROS ENTEROS Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) Si un número aparece entre barras /5/, significa que su

Más detalles

Tema: Ecuaciones y sistemas de ecuaciones

Tema: Ecuaciones y sistemas de ecuaciones Tema: Ecuaciones y sistemas de ecuaciones 1. Las siguientes ecuaciones tienen alguna solución entera. Intenta encontrarlas tanteando. Qué tipo de ecuación es cada una?. a) x + 6 = b) x x = 0 c) x x = 1

Más detalles

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

Ecuaciones de primer y segundo grado

Ecuaciones de primer y segundo grado Ecuaciones de primer y segundo grado El fin del mundo En octubre de la cárcel de Wittenberg acogió una curiosa reunión: allí estaba Lutero visitando a su íntimo amigo Michael Stifel. Este, aplicando a

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 7 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica a) En qué punto se cortan la gráfica roja la azul del dibujo de la izquierda? b) Tienen algún punto en común las rectas de la

Más detalles

Programación Lineal. Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal

Programación Lineal. Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal Programación Lineal Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal Ejemplo: Plan de producción de PROTRAC En esta ficha vamos a comentar cómo se construyó

Más detalles

TEMA 6 FUNCIONES. María Juan Pablo Julia Manuel Ángela Enrique Alejandro Carmen

TEMA 6 FUNCIONES. María Juan Pablo Julia Manuel Ángela Enrique Alejandro Carmen TEMA 6 FUNCIONES 1.- Estudia y clasifica las relaciones que aparecen en las siguientes situaciones (elementos relacionados, características de la relación, dependencia entre elementos, conjuntos que se

Más detalles

Sistema de ecuaciones lineales

Sistema de ecuaciones lineales Sistema de ecuaciones lineales Los métodos de solución de sistemas de ecuaciones son un recurso muy útil para resolver diversas situaciones de la vida que pueden ser traducidas a un modelo matemático y

Más detalles

Recomendaciones para la preparación de las P.A.U. en la materia MATEMÁTICAS para Mayores de 25 años.

Recomendaciones para la preparación de las P.A.U. en la materia MATEMÁTICAS para Mayores de 25 años. MATEMÁTICAS para Mayores de 25 años Recomendaciones para la preparación de las P.A.U. en la materia MATEMÁTICAS para Mayores de 25 años. Curso 2014-2015 Conviene recordar que los contenidos y criterios

Más detalles

Soluciones varias y, de nuevo, el Torneo. Problemas Comentados XXXVIII

Soluciones varias y, de nuevo, el Torneo. Problemas Comentados XXXVIII http://www.sinewton.org/numeros ISSN: 1887-1984 Volumen 87, noviembre de 2014, páginas 143-154 José Antonio Rupérez Padrón y Manuel García Déniz (Club Matemático 1 ) Resumen: Soluciones de los problemas

Más detalles

El Valor Dinámico Borroso de la Empresa a Partir del Cálculo del Coste Unitario Estándar Que Proporciona el Sistema MRP II

El Valor Dinámico Borroso de la Empresa a Partir del Cálculo del Coste Unitario Estándar Que Proporciona el Sistema MRP II El Valor Dináico Borroso de la Epresa a Partir del Cálculo del Coste Unitario Estándar Que Proporciona el Sistea MRP II Antoni Vidal Suñé, Albert Fonts Ribas El trabajo que se presenta desarrolla, en la

Más detalles

Tema 4. Resolución de sistemas de ecuaciones lineales

Tema 4. Resolución de sistemas de ecuaciones lineales Tema 4. Resolución de sistemas de ecuaciones lineales Bueno, hemos llegado al final de la unidad y ahora se van a aclarar muchas cosas. Seguro que hasta el momento has estado pensando " y todo esto para

Más detalles

Lección 14: Problemas que se resuelven por sistemas de ecuaciones lineales

Lección 14: Problemas que se resuelven por sistemas de ecuaciones lineales GUÍA DE MATEMÁTICAS III Lección 14: Problemas que se resuelven por sistemas de ecuaciones lineales A continuación veremos algunos problemas que se resuelven con sistemas de ecuaciones algunos ejemplos

Más detalles

Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas:

Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas: Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones 1 Resuelve las siguientes ecuaciones bicuadradas: 4 a) x 13x + 36 = 0 4 b) x 6x + 5 = 0 a) Realizando el cambio de variable: x = z

Más detalles

Opción A Ejercicio 1 opción A, modelo 4 Septiembre 2014

Opción A Ejercicio 1 opción A, modelo 4 Septiembre 2014 IES Fco Ayala de Granada Septiembre de 014 (Modelo 4) Soluciones Germán-Jesús Rubio Luna [ 5 puntos] Sabiendo que Sabiendo que 0 0 cos(3) - e + a sen() Opción A Ejercicio 1 opción A, modelo 4 Septiembre

Más detalles

UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD. Miguel A. Jorquera

UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD. Miguel A. Jorquera UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD Miguel A. Jorquera BACHILLERATO MATEMÁTICAS II JUNIO 2 ii Índice General 1 Examen Junio 2. Opción B 1 2 SOLUCIONES del examen de junio 2 Opción

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD UNIDAD 5 LÍMITES Y CONTINUIDAD Páginas 0 y Describe las siguientes ramas: a) f () b) f () no eiste c) f () d) f () + e) f () f) f () + g) f () h) f () no eiste; f () 0 i) f () + f () + j) f () 5 4 f ()

Más detalles

Sistemas de Ecuaciones

Sistemas de Ecuaciones 4 Sistemas de Ecuaciones Objetivos En esta quincena aprenderás a: Reconocer y clasificar los sistemas de ecuaciones según su número de soluciones. Obtener la solución de un sistema mediante una tablas.

Más detalles

PAU, 2014 (septiembre)

PAU, 2014 (septiembre) PAU, 2015 (modelo) Una empresa comercializa un determinado producto. Compra a su proveedor cada unidad que comercializa, a un precio de 150. La empresa se está planteando la producción del bien que distribuye.

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES HOJA 5: Optimización 5-1. Hallar los puntos críticos de las siguiente funciones y clasificarlos: a fx, y = x y + xy.

Más detalles

Cambio de representaciones para variedades lineales.

Cambio de representaciones para variedades lineales. Cambio de representaciones para variedades lineales 18 de marzo de 2015 ALN IS 5 Una variedad lineal en R n admite dos tipos de representaciones: por un sistema de ecuaciones implícitas por una familia

Más detalles

PRACTICA 4: CÁLCULOS DE ACTUADORES NEUMÁTICOS

PRACTICA 4: CÁLCULOS DE ACTUADORES NEUMÁTICOS PRACTCA : CÁLCULOS DE ACTUADORES NEUMÁTCOS Se trata de seleccionar los actuadores adecuados para un anipulador de un proceso de epaquetado de latas de atún. Coo se puede apreciar en el dibujo, en prier

Más detalles

Selectividad Septiembre 2013 OPCIÓN B

Selectividad Septiembre 2013 OPCIÓN B Pruebas de Acceso a las Universidades de Castilla y León ATEÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

9 FUNCIONES DE PROPORCIONALIDAD DIRECTA E INVERSA

9 FUNCIONES DE PROPORCIONALIDAD DIRECTA E INVERSA 9 FUNCINES DE PRPRCINALIDAD DIRECTA E INVERSA EJERCICIS PRPUESTS 9. Dibuja la gráfica de la función que eprese que el precio del litro de gasolina en los últimos 6 meses ha sido siempre de 0,967 euros.

Más detalles