GENERALIDADES. La Empresa de Transmisión Eléctrica, S. A. (ETESA) maneja 151 estaciones, clasificadas de la siguiente manera:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "GENERALIDADES. La Empresa de Transmisión Eléctrica, S. A. (ETESA) maneja 151 estaciones, clasificadas de la siguiente manera:"

Transcripción

1 GENERALIDADES I. DEFINICIÓN DE METEOROLOGÍA Es la ciecia iterdiscipliaria que estudia el estado del tiempo, el medio atmosférico, los feómeos allí producidos y las leyes que lo rige. Es el estudio de los feómeos atmosféricos y de los mecaismos que produce el tiempo, orietado a su predicció. II. HISTORIA DE LA METEOROLOGÍA El térmio "meteorología" proviee de Meteorologica, título del libro escrito alrededor del año 340 a. de C. por Aristóteles, quie preseta observacioes mixtas y especulacioes sobre el orige de los feómeos atmosféricos y celestes. Los progresos e este campo se cetraro e la creació de istrumetos más precisos, como el termómetro creado por Galileo e 1607, seguido de la iveció del barómetro por Evagelista Torricelli e El aemómetro fue costruido e 1667 por Robert Hooke, mietras Horace de Saussure completa el eleco del desarrollo de los más importates istrumetos meteorológicos e 1780 co el higrómetro a cabello, que mide la humedad del aire. A iicios del siglo XX, se da la creació de la modera previsió del tiempo calculada e base matemática. La primera previsió del tiempo realizada co computador se realiza e la década de E 1960, el lazamieto del TIROS-1, sigificó el iicio de ua era de difusió global de las iformacioes climáticas. E los años recietes, se ha estado desarrollado modelos climáticos usados para estudiar los cambios climáticos a largo plazo. III. EQUIPOS E INSTRUMENTOS METEOROLÓGICOS La meteorología utiliza istrumetos eseciales, como el barómetro, el termómetro y el higrómetro, para determiar los valores absolutos, medios y extremos de los factores climáticos. Para el trazado de mapas y la elaboració de prediccioes es fudametal la recogida coordiada de datos e amplias zoas, lo que se realiza co la ayuda de los satélites meteorológicos. IV. ESTACIONES METEOROLÓGICAS Ua estació meteorológica es ua istalació destiada a medir y registrar regularmete, diversas variables meteorológicas. Estos datos se utiliza tato para la elaboració de prediccioes meteorológicas, a partir de modelos uméricos, como para estudios climáticos. La Empresa de Trasmisió Eléctrica, S. A. (ETESA) maeja 151 estacioes, clasificadas de la siguiete maera: Tipo de estació TOTAL A. B. A Automáticas.. A Automáticas Satelitales.. Pluviógrafos.. Pluviómetros. Pluviómetros Automáticos.. Catidad

2 De maera más compresiva teemos que so: 95 estacioes meteorológicas covecioales climatológicas (mecáicas) para realizar las lecturas a los istrumetos que mide lluvia, temperatura, humedad relativa del aire y evaporació. 43 estacioes meteorológicas automáticas Tipo A co búsqueda de iformació e sitio que mide precipitació, temperatura, humedad relativa, radiació solar, presió atmosférica, ráfagas y velocidad del vieto co su respectiva direcció. 13 estacioes meteorológicas automáticas Tipo A co trasmisió satelital e tiempo real provistas de sesores digitales. V. OBSERVACIONES METEOROLÓGICAS Observació meteorológica Cosiste e la medició y determiació de todos los elemetos que, e su cojuto, represeta las codicioes del estado de la atmósfera e u mometo dado y e u determiado lugar, utilizado istrumetal adecuado. Las observacioes realizadas por ETESA so a través del satélite GOES 12 de los Estados Uidos de Norteamérica. VI. UNIDADES DE MEDIDA PRECIPITACIÓN Y EVAPORACIÓN E la precipitació se mide la tasa de acumulació de lluvia, por uidad de área horizotal. Ua acumulació de 1mm correspode al volume de 1 litro por metro cuadrado de superficie. E la mayoría de las estacioes meteorológicas, la precipitació se mide ua vez al día. La medició de la evaporació cosiste e agregar diariamete agua al taque de evaporació, de modo que se repoga la que se pierde por evaporació. La catidad de agua agregada es equivalete a la evaporació del día. La Precipitació Pluvial y Evaporació se expresa e milímetros (mm) y las lecturas se efectúa diariamete a las 07:00 horas. TEMPERATURA Se utiliza la uidad de medida e grado cetígrado (ºC), que correspode a las lecturas directas efectuadas e los termómetros de extremas. E la escala Celsius de temperatura, el cero correspode a la temperatura del puto de cogelamieto del agua, y el 100 a su temperatura de ebullició, ambos a ivel del mar. HUMEDAD ATMOSFÉRICA Y BRILLO SOLAR La medició más frecuete es la humedad relativa, que correspode a la fracció porcetual etre la presió parcial del vapor de agua y la presió de vapor de agua, e el puto de saturació a la temperatura ambiete. E las estacioes moderas, el registro de todas las variables de brillo solar se realiza e forma automática, y los sesores está itegrados e circuitos electróicos. La iformació se guarda e u medio magético para su posterior procesamieto computacioal. La presetació de la Humedad Relativa y el Brillo Solar se da e porcetaje (%).

3 VIENTO E las medicioes del vieto se especifica su itesidad o fuerza (uidad = m/s) y su direcció. Esta se expresa segú u código alfabético, que idica la direcció geográfica desde dode sopla el vieto (N: Norte; E: Este; S: Sur; W: Oeste, y las direccioes itermedias, como NE o SSW). Tambié, se utiliza u código umérico que idica el águlo desde dode sopla el vieto, co respecto al Norte, de acuerdo a la siguiete coveció: 0º = orte; 90º = este; 180º = sur; 270º = oeste. E las estacioes meteorológicas, el vieto se mide a 2 m sobre la superficie y los sesores debe istalarse e u lugar bie expuesto. La Fuerza o Velocidad del Vieto se da e metros por segudo (m/s). VII. ELABORACIÓN DE LOS CUADROS Y GRÁFICAS CUADROS Precipitació pluvial: E este cuadro se icluye el total aual de precipitació pluvial registrado e los diez últimos años. Precipitació pluvial, por mes: Cotiee los totales mesuales de la precitació registrada y el total aual de cada estació. Precipitació aual y máxima mesual: Este cuadro está dividido e dos seccioes: la precipitació aual y la precipitació máxima mesual. La precipitació aual está compredida por la catidad de lluvia o precipitació aual, los días de lluvia que se haya registrado durate el año y el promedio diario obteido e base a 365 días, para cada estació. Xi = Σxi z Xi = promedio diario e la i-ésima estació Σxi = suma de la precipitació mesual e la i-ésima estació z = 365 días La precipitació máxima mesual comprede la precipitació registrada durate u año y e el mes de ocurrecia, para cada estació. Promedio de temperatura máxima, míima y media: Icluye el promedio mesual de temperatura máxima, míima y media obteido de la suma de los registros promedios diarios, dividido etre el total de días (estos datos so proporcioados por ETESA, la ACP y la AAC); la sumatoria de las mismas es dividido etre el úmero de meses que hubo registro para obteer el promedio aual.

4 t 1 = Σt 1 t 2 = Σt 2 t 1 = promedio de temperatura máxima t 2 = promedio de temperatura míima Σt 1 = suma de los promedios de cada mes de la temperatura máxima e la i-ésima estació Σt 2 = suma de los promedios de cada mes de la temperatura míima e la i-ésima estació = catidad de meses co iformació e la i-ésima estació Para obteer el promedio de temperatura media se suma el promedio de la temperatura máxima co el promedio de la temperatura míima y se divide etre dos. t = t 1 + t 2 /2 t = promedio de temperatura media t 1 = promedio de la temperatura máxima t 2 = promedio de la temperatura míima Promedio de evaporació: El promedio mesual de evaporació es obteido de los registros que se lleva a cabo e las estacioes meteorológicas. El promedio total aual se obtiee de la sumatoria de los promedios mesuales, sumiistrados por ETESA y la ACP, dividido etre el total de meses que hubo iformació. X = promedio aual e la i-ésima estació Σ x i = suma de los promedios de cada mes e la i-ésima estació = catidad de meses co iformació e la i-ésima estació Promedio de humedad relativa: El promedio de humedad relativa es proporcioado por ETESA, la ACP y la AAC, y es el resultado de la sumatoria de los registros diarios etre la catidad de días co iformació; los resultados auales de cada estació se obtiee al sumar los promedios mesuales y dividirlos etre los meses que hubo iformació.

5 X = promedio aual e la i-ésima estació Σ x i = suma de los promedios de cada mes e la i-ésima estació = catidad de meses co iformació e la i-ésima estació Porcetaje de brillo solar: Es elaborado co los datos del promedio mesual de isolació registrado e las estacioes, proporcioados por ETESA. El promedio aual de cada estació se obtiee al sumar los promedios mesuales y dividirlos etre los meses que hubo iformació. X = promedio aual e la i-ésima estació Σ x i = suma de los promedios de cada mes e la i-ésima estació = catidad de meses co iformació e la i-ésima estació Promedio de velocidad del vieto: Cotiee la velocidad promedio mesual del vieto registrado e las estacioes meteorológicas del país. El promedio aual de cada estació se obtiee al sumar los promedios mesuales, proporcioados por ETESA y la ACP, y dividirlos etre los meses que hubo iformació. X = promedio aual e la i-ésima estació Σ x i = suma de los promedios de cada mes e la i-ésima estació = catidad de meses co iformació e la i-ésima estació GRÁFICAS Precipitació pluvial máxima aual: Gráfica 1 Se elabora co el máximo registro pluvial e las estacioes, por año. Lluvia máxima aual: Gráfica 2 e el año. Es elaborada co el registro de la máxima catidad de lluvia caída e la provicia y comarca

6 Lluvia máxima mesual: Gráfica 3 Registra la catidad máxima de lluvia caída e el mes. Estacioes co ua precipitació mayor de 5,000mm y co más de 200 días de lluvia: Gráfica 4 Se toma e cueta para la elaboració de la misma a las estacioes que presetaro más de 200 días y co el registro pluvial aual mayor a 5,000mm. Promedio de temperatura máxima, míima y media: Gráfica 5 tipo A. Se realiza co las estacioes que registraro la mayor temperatura e el año y que so de Promedio de evaporació y humedad relativa: Gráfica 6 y 7 Se toma e cueta las estacioes de tipo A que registraro la mayor evaporació y el mayor porcetaje de humedad relativa. Promedio aual de brillo solar: Gráfica 8 Se toma e cueta las estacioes de tipo A que registraro el mayor porcetaje. Velocidad del vieto: Gráfica 9 Se toma e cueta la mayor velocidad mesual.

Generalidades. Esta publicación presenta información de 95 estaciones meteorológicas activas en el 2014, manejadas por las siguientes entidades:

Generalidades. Esta publicación presenta información de 95 estaciones meteorológicas activas en el 2014, manejadas por las siguientes entidades: Geeralidades I. Defiició de meteorología Es la ciecia iterdiscipliaria que estudia el estado del tiempo, el medio atmosférico, los feómeos allí producidos y las leyes que lo rige. Es el estudio de los

Más detalles

GENERALIDADES. Hidrometeorología: rama de la Meteorología que se relaciona con los recursos hídricos o acuáticos.

GENERALIDADES. Hidrometeorología: rama de la Meteorología que se relaciona con los recursos hídricos o acuáticos. GENERALIDADES I. METEOROLOGÍA Es la ciecia iterdiscipliaria que estudia el estado del tiempo, el medio atmosférico, los feómeos allí producidos y las leyes que lo rige. Es el estudio de los feómeos atmosféricos

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

EJERCICIOS DE PORCENTAJES E INTERESES

EJERCICIOS DE PORCENTAJES E INTERESES EJERCICIOS DE PORCENTAJES E INTERESES Ejercicio º 1.- Por u artículo que estaba rebajado u 12% hemos pagado 26,4 euros. Cuáto costaba ates de la rebaja? Ejercicio º 2.- El precio de u litro de gasóleo

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Uidad Cetral del Valle del Cauca acultad de Ciecias Admiistrativas, Ecoómicas y Cotables Programa de Cotaduría Pública Curso de Matemáticas iacieras Profesor: Javier Herado Ossa Ossa Ejercicios resueltos

Más detalles

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECANICA MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FERNANDO ESPINOSA FUENTES Necesidad del reemplazo. Si se matiee u riesgo durate u tiempo

Más detalles

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES La serie estadística de Ídice de Precios al por Mayor se iició e 1966, utilizado e

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

1.1. Campos Vectoriales.

1.1. Campos Vectoriales. 1.1. Campos Vectoriales. Las fucioes, ampliamete empleadas e la igeiería, para modelar matemáticamete y caracterizar magitudes físicas, y cuyo domiio podría ser multidimesioal, puede teer u rago uidimesioal

Más detalles

TEMA 3.- OPERACIÓN FINANCIERA

TEMA 3.- OPERACIÓN FINANCIERA . DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,

Más detalles

CONCEPTOS BÁSICOS DE PRESTAMOS.

CONCEPTOS BÁSICOS DE PRESTAMOS. GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,

Más detalles

ASIGNATURA: MATEMATICAS FINANCIERAS

ASIGNATURA: MATEMATICAS FINANCIERAS APUNTES DOCENTES ASIGNATURA: MATEMATICAS FINANCIERAS PROFESORES: MARIN JAIMES CARLOS JAVIER SARMIENTO LUIS JAIME UNIDAD 3: EVALUACIÓN ECONÓMICA DE PROYECTOS DE INVERSIÓN EL VALOR PRESENTE NETO VPN Es ua

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) U cliete de u supermercado ha pagado u total de 156 euros por 24 litros de leche,

Más detalles

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas Sistemas Automáticos. Ig. Orgaizació Cov. Juio 05. Tiempo: 3,5 horas NOTA: Todas las respuestas debe ser debidamete justificadas. Problema (5%) Ua empresa del sector cerámico dispoe de u horo de cocció

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES MATERIAL DIDÁCTICO DE PILOTAJE PARA ÁLGEBRA 2 OPERACIONES ALGEBRAICAS FUNDAMENTALES ÍNDICE DE CONTENIDO 2. Suma, resta, multiplicació y divisió 6 2.1. Recoociedo la estructura de moomios y poliomios 6

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida.

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida. UNIDAD 8 MODELO DE ASIGNACIÓN características de asigació. método húgaro o de matriz reducida. Ivestigació de operacioes Itroducció U caso particular del modelo de trasporte es el modelo de asigació,

Más detalles

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 2000 (Modelo 1) Solució Germá-Jesús Rubio Lua Los Exámees del año 2000 me los ha proporcioado D. José Gallegos Ferádez OPCIÓN A EJERCICIO 1_A (2 putos) Dibuje el recito

Más detalles

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general 5 Progresioes Objetivos E esta quicea aprederás a: Recoocer ua sucesió de úmeros. Recoocer y distiguir las progresioes aritméticas y geométricas. Calcular él térmio geeral de ua progresió aritmética y

Más detalles

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS Curso Preparació y Evaluació Social de Proyectos Sistema Nacioal de Iversioes Divisió de Evaluació Social de Iversioes MINISTERIO DE DESARROLLO SOCIAL

Más detalles

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables :

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables : 1 1. LEY FINANCIERA DE CAPITALIZACIÓN SIMPLE. 1.- Calcular los itereses producidos por u capital de 1800 colocado 10 días al 7% de iterés aual simple. a) Cosiderado el año civil. b) Cosiderado el año comercial.

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004 Solució del eame de Ivestigació Operativa de Sistemas de septiembre de 4 Problema (,5 putos: Ua marca de cereales para el desayuo icluye u muñeco de regalo e cada caja de cereales. Hay tres tipos distitos

Más detalles

A N U A L I D A D E S

A N U A L I D A D E S A N U A L I D A D E S INTRODUCCION Y TERMINOLOGIA Se deomia aualidad a u cojuto de pagos iguales realizados a itervalos iguales de tiempo. Se coserva el ombre de aualidad por estar ya muy arraigado e el

Más detalles

USO RACIONAL DE LA ENERGÍA

USO RACIONAL DE LA ENERGÍA USO RACIONAL DE LA ENERGÍA Ahorros mediate Aislamieto Térmico e la Costrucció Ig. V. L. Volatio, Arq. P. A. Bilbao Uidad Técica Habitabilidad Higrotérmica INTI Costruccioes Arq. P. E. Azqueta, Ig. P. U.

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES Las medidas de PML a ser implemetadas, se recomieda e base a las opcioes de PML calificadas como ecoómicamete factibles.

Más detalles

MANUAL PARA CAMARÓGRAFOS DEL DE LOS TALLERES DE

MANUAL PARA CAMARÓGRAFOS DEL DE LOS TALLERES DE MANUAL PARA CAMARÓGRAFOS DEL DE LOS TALLERES DE PARA CAMARÓGRAFOS DEL DE LOS TALLERES DE FORMACIÓN DE LOS DIRECTIVOS SINDICALES. EVALUACIÓN DOCENTE DE CARÁCTER DIAGNÓSTICO FORMATIVA (ECDF) 2016 Este maual

Más detalles

Teorías de falla bajo cargas estáticas

Teorías de falla bajo cargas estáticas Teorías de falla bajo cargas estáticas Carlos Armado De Castro P. Coteido: - Itroducció - Falla de materiales dúctiles - Falla de materiales frágiles. Itroducció La falla es la pérdida de fució de u elemeto

Más detalles

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA CAPÍTULO I CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA El campo de la estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Motgomery

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTIAS FINANIERAS Secció: 1 Profesores: ristiá Bargsted Adrés Kettlu oteido Matemáticas Fiacieras: Iterés Simple vs Iterés ompuesto Valor Presete y Valor Futuro Plaificació estratégica Matemáticas

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL

ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL Dr. Wisto Castañeda Vargas ASPECTOS GENERALES Ua aualidad es u cojuto de dos o más flujos, e el que a partir del segudo, los períodos

Más detalles

Valoración de permutas financieras de intereses (IRS) *

Valoración de permutas financieras de intereses (IRS) * Valoració de permutas fiacieras de itereses (IRS) * JOSÉ E. ROMERO FERNÁNDEZ Agecia Estatal de Admiistració Tributaria SUMARIO 1. INTRODUCCIÓN. 2. INSTRUMENTOS FINANCIEROS DERIVADOS. 3. LOS MERCADOS. 4.

Más detalles

TEMA 3 CARGAS ELÉCTRICAS Y ESTIMACIÓN DE LA DEMANDA. - 4) Calculo de la potencia demandada por cada tipo de receptor

TEMA 3 CARGAS ELÉCTRICAS Y ESTIMACIÓN DE LA DEMANDA. - 4) Calculo de la potencia demandada por cada tipo de receptor TEMA 3 CARGAS ELÉCTRICAS Y ESTIMACIÓN DE LA DEMANDA Coteido - 1) Clasificació de los receptores - 2) Tesioes Nomiales Normalizadas - 3) Cosideracioes geerales - 4) Calculo de la potecia demadada por cada

Más detalles

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 375 REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 376 Revisió de alguos idicadores para medir desigualdad Medidas de Desigualdad Para medir el grado de desigualdad e la

Más detalles

ESTADÍSTICA. Al preguntar a 20 individuos por el número de personas que viven en su casa, hemos obtenido las siguientes respuestas:

ESTADÍSTICA. Al preguntar a 20 individuos por el número de personas que viven en su casa, hemos obtenido las siguientes respuestas: ESTADÍSTICA Ejercicio º.- Al pregutar a 0 idividuos por el úmero de persoas que vive e su casa, hemos obteido las siguietes respuestas: Elabora ua tabla de frecuecias. Ejercicio º.- E ua empresa de telefoía

Más detalles

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica.

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica. págia 05. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto {,,, 4,

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5) IES Fco Ayala de Graada Sobrates de 008 (Modelo 5) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 008 (MODELO 5) OPCIÓN A EJERCICIO 1_A De las restriccioes que debe cumplir las

Más detalles

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta.

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta. . POTENCIAS DE MATRICES CUADRADAS E este capítulo vamos a tratar de expoer distitas técicas para hallar las potecias aturales de matrices cuadradas. Esta cuestió es de gra importacia y tiee muchas aplicacioes

Más detalles

MARTINGALAS Rosario Romera Febrero 2009

MARTINGALAS Rosario Romera Febrero 2009 1 MARTINGALAS Rosario Romera Febrero 2009 1. Nocioes básicas De ició: Sea (; F; P ) u espacio de probabilidad y T 6= ; y sea (F t ) t2t ua ltració e F. Ua familia fx t g t2t de v.a. reales de idas sobre

Más detalles

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno:

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno: Uidad 5 Aualidades vecidas Objetivos Al fializar la uidad, el alumo: Calculará el valor de la reta de ua perpetuidad simple vecida. Calculará el valor actual de ua perpetuidad simple vecida. Calculará

Más detalles

COMUNICACIÓN A 5272 27/01/2012

COMUNICACIÓN A 5272 27/01/2012 2012 Año de Homeaje al doctor D. Mauel Belgrao A LAS ENTIDADES FINANCIERAS: COMUNICACIÓN A 5272 27/01/2012 Ref.: Circular LISOL 1-545 CONAU 1-962 Exigecia de capital míimo por riesgo operacioal. Determiació

Más detalles

Ejercicios sobre la aplicación de las diferentes leyes que caracterizan a los gases

Ejercicios sobre la aplicación de las diferentes leyes que caracterizan a los gases Ejercicios sobre la aplicació de las diferetes leyes que caracteriza a los gases 1. g de oxígeo se ecuetra ecerrados e u recipiete de L, a ua presió de 1,5 atm. Cuál es la temperatura del gas si se supoe

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva Itroducció Se defie alguos coceptos básicos para ua compresió ituitiva de la Estadística. Se itroduce los primeros coceptos sobre el uso y maejo de datos uméricos, que permite distiguir

Más detalles

Imposiciones y Sistemas de Amortización

Imposiciones y Sistemas de Amortización Imposicioes y Sistemas de Amortizació La Imposició u caso particular de reta e el cual cada térmio devega iterés (simple o compuesto) desde la fecha de su aboo hasta la fecha fial. Imposicioes Vecidas

Más detalles

MEDIDAS DE TENDENCIA CENTRAL CON EXCEL

MEDIDAS DE TENDENCIA CENTRAL CON EXCEL ) MEDIA ARITMÉTICA MEDIDAS DE TENDENCIA CENTRAL CON EXCEL Las medidas de tedecia cetral so medidas represetativas que como su ombre lo idica, tiede a ubicarse hacia el cetro del cojuto de datos, es decir,

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 2)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 2) IES Fco Ayala de Graada Sobrates de 0 (Modelo ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 0 (MODELO ) OPCIÓN A EJERCICIO _A ( 5 putos) Halle la matriz X que verifique la ecuació

Más detalles

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios

Polinomios. Definición de polinomio y sus propiedades. Grado de un polinomio e igualdad de polinomios Poliomios Defiició de poliomio y sus propiedades U poliomio puede expresarse como ua suma de productos de fucioes de x por ua costate o como ua suma de térmios algebraicos; es decir U poliomio e x es ua

Más detalles

5. Crecimiento, decrecimiento. y Economía

5. Crecimiento, decrecimiento. y Economía 5. Crecimieto, decrecimieto y Ecoomía Matemáticas aplicadas a las Ciecias Sociales I. Sucesioes. Matemática fiaciera 3. Fució epoecial y logarítmica 4. Modelos de crecimieto 80 Crecimieto, decrecimieto

Más detalles

FORMULAS PARA EL PRODUCTO : CREDITO CONSUMO

FORMULAS PARA EL PRODUCTO : CREDITO CONSUMO FORMULAS PARA EL PRODUCTO : CREDITO CONSUMO DEFINICIONES Crédito de Cosumo: So aquellos créditos que se otorga a persoas aturales co igresos depedietes o idepedietes co la fialidad de ateder gastos de

Más detalles

RECOMENDACIONES A LOS ALUMNOS

RECOMENDACIONES A LOS ALUMNOS GUIA DE TRABAJO PRACTICO Nº PAGINA Nº RECOMENDACIONES A LOS ALUMNOS La Asigatura Matemáticas de las carreras Profesorado y Liceciatura e Biología, correspode a primer año; su régime es aual, co tres horas

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Juio de 03 (Reserva Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 03 MODELO (RESERVA ) OPCIÓN A EJERCICIO (A) ( 5 putos) U fabricate elabora

Más detalles

Guía de Extensiones del sector turístico Guía de Extensiones. del sector turístico. BS Factura. Guía de formato de factura ST Versión 1.

Guía de Extensiones del sector turístico Guía de Extensiones. del sector turístico. BS Factura. Guía de formato de factura ST Versión 1. BS Factura Guía de Etesioes del sector turístico Guía de Etesioes del sector turístico Barceloa, Eero 2007 Guía de formato de factura ST Versió 1.1 I d i c e 0. Itroducció... 3 1. Etesioes del sector turístico...

Más detalles

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II IES Fco Ayala de Graada Sobrates de 011 (Modelo ) Germá-Jesús Rubio Lua SOLUCIONES Modelo PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN

Más detalles

Ejercicio 1. Sea el recinto limitado por las siguientes inecuaciones: y + 2x 2; 2y 3x 3; 3y x 6.

Ejercicio 1. Sea el recinto limitado por las siguientes inecuaciones: y + 2x 2; 2y 3x 3; 3y x 6. Materiales producidos e el curso: Curso realizado e colaboració etre la Editorial Bruño y el IUCE de la UAM de Madrid del 1 de marzo al 30 de abril de 013 Título: Curso Moodle para matemáticas de la ESO

Más detalles

Soluciones Hoja de Ejercicios 2. Econometría I

Soluciones Hoja de Ejercicios 2. Econometría I Ecoometría I. Solucioes Hoja 2 Carlos Velasco. MEI UC3M. 2007/08 Solucioes Hoja de Ejercicios 2 Ecoometría I 1. Al pregutar el saldo Z (e miles de euros) de su cueta de ahorro cojuta a u matrimoio madrileño

Más detalles

CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD

CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD MCAL103/03 LIBRO: PARTE: TÍTULO: CAL. CONTROL Y ASEGURAMIENTO DE CALIDAD 1. CONTROL DE CALIDAD 03. Aálisis Estadísticos de Cotrol de Calidad A. CONTENIDO Este Maual cotiee los procedimietos para aalizar,

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

12. LUBRICACIÓN. 12.1 Finalidad de la Lubricación. 12.2 Métodos de Lubricación. Tabla 12.1 Comparación de Lubricación por Grasa y Aceite

12. LUBRICACIÓN. 12.1 Finalidad de la Lubricación. 12.2 Métodos de Lubricación. Tabla 12.1 Comparación de Lubricación por Grasa y Aceite 1. LUBRICACIÓN 1.1 Fialidad de la Lubricació La fialidad pricipal de la lubricació es reducir la fricció y el desgaste e el iterior de los rodamietos que podría causar fallos prematuros. Los efectos de

Más detalles

11. TRANSFORMADOR IDEAL

11. TRANSFORMADOR IDEAL . TAFOMADO DEA.. TODUCCÓ Cuado el flujo magético producido por ua bobia alcaza ua seguda bobia se dice que existe etre las dos bobias u acople magético, ya que el campo magético variable que llega a la

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

Capítulo I. La importancia del factor de potencia en las redes. eléctricas

Capítulo I. La importancia del factor de potencia en las redes. eléctricas La importacia del factor de potecia e las redes eléctricas. Itroducció Las fuetes de alimetació o geeradores de voltaje so las ecargadas de sumiistrar eergía e las redes eléctricas. Estas so de suma importacia,

Más detalles

INTRODUCCIÓN HISTÓRICA.

INTRODUCCIÓN HISTÓRICA. Aplicació de los Sistemas Evolutivos al Tratamieto de Imágees Ferado Galido Soria Escuela Superior de Cómputo (ESCOM) Istituto Politécico Nacioal Av. Miguel Othó de Medizábal y Av. Jua de Dios Bátiz s/

Más detalles

SISTEMA INFORMATIZADO PARA EL PROCESAMIENTO DEL INVENTARIO FORESTAL

SISTEMA INFORMATIZADO PARA EL PROCESAMIENTO DEL INVENTARIO FORESTAL EDU101 SOFTWARE INVENFOR 1.0 SISTEMA INFORMATIZADO PARA EL PROCESAMIENTO DEL INVENTARIO FORESTAL Autor: 1 Ig. Ricardo Iouye Rodríguez Co-Autores: 2 MSc. Caridad Salazar Alea 3 Ig. Jua J. Ramos Herádez

Más detalles

TEMA4: MATEMÁTICA FINANCIERA

TEMA4: MATEMÁTICA FINANCIERA TEMA4: MATEMÁTICA FINANCIEA 1. AUMENTOS Y DISMINUCIONES POCENTUALES Si expresamos u porcetaje % como u úmero decimal: tato por uo: r = 23 23% = 0, 23 obteemos el Para calcular el porcetaje % de ua catidad

Más detalles

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación) Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =

Más detalles

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA U Modelo de Costeo por Procesos JOSE ANTONIO CARRANZA PALACIOS *, JUAN MANUEL RIVERA ** INTRODUCCION U aspecto fudametal e la formulació

Más detalles

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones Modulo IV Iversioes y Criterios de Decisió Aálisis de Iversioes 1. Iversió e la empresa 2. Métodos aproximados de valoració y selecció de iversioes 3. Criterio del valor actualizado eto (VAN) 4. Criterio

Más detalles

FORMULAS PARA EL PRODUCTO: CREDITO A LA MICROEMPRESA

FORMULAS PARA EL PRODUCTO: CREDITO A LA MICROEMPRESA FORMULAS PARA EL PRODUCTO: CREDITO A LA MICROEMPRESA DEFINICIONES: CRÉDITO A LA MICROEMPRESA: So aquellos créditos que se otorga a persoas aturales y jurídicas que realiza algua actividad ecoómica por

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 5 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 5 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 00 (Modelo 5 Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A (3 putos) Para fabricar tipos de cable, A y B, que se vederá a 50 y 00 pts el metro, respectivamete,

Más detalles

Muestreo. Tipos de muestreo. Inferencia Introducción

Muestreo. Tipos de muestreo. Inferencia Introducción Germá Jesús Rubio Lua Catedrático de Matemáticas del IES Fracisco Ayala Muestreo. Tipos de muestreo. Iferecia Itroducció Nota.- Puede decirse que la Estadística es la ciecia que se preocupa de la recogida

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció

Más detalles

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones.

Este centro consta de 20 cuartos sencillos, 12 cuartos dobles, 7 corredores y 4 salas de sesiones. reguta 6 utos Ua empresa de limpieza cotrata persoal e forma putual depediedo de las solicitudes de trabajo de sus clietes. ara el iicio de ua coferecia iteracioal, u cliete platea la limpieza a fodo del

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A IES Fco Ayala de Graada Juio de 014 (Colisioes Modelo 3) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 014 MODELO 3 (COLISIONES) OPCIÓN A EJERCICIO 1 (A) 1 a Sea las matrices

Más detalles

MC Fco. Javier Robles Mendoza Primavera 2009

MC Fco. Javier Robles Mendoza Primavera 2009 1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN APUNTES CURSO: ALGEBRA SUPERIOR INGENIERIA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Medoza Primavera 2009 2

Más detalles

Análisis de Señales y Sistemas Digitales. Concepto Algoritmo Implementación

Análisis de Señales y Sistemas Digitales. Concepto Algoritmo Implementación Aálisis de Señales y Sistemas Digitales FFT Cocepto Algoritmo Implemetació 2010 FFT Trasformada Rápida de Fourier Cocepto La trasformada rápida de fourier (FFT) es u algoritmo que permite él cálculo eficiete

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco MEDIDAS DE RESUMEN Jorge Galbiati Riesco Las medidas de resume sirve para describir e forma resumida u cojuto de datos que costituye ua muestra tomada de algua població. Podemos distiguir cuatro grupos

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO.-.3 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Informe sobre el Cálculo de Errores de Muestreo Encuesta sobre Condiciones de Vida - ECV

Informe sobre el Cálculo de Errores de Muestreo Encuesta sobre Condiciones de Vida - ECV Iforme sobre el Cálculo de Errores de Muestreo Ecuesta sobre Codicioes de Vida - ECV EUSKAL ESTATISTIKA ERAKUNDA INDICE. Itroducció...3 2. Método de expasió de Taylor...3 3. Cálculo de errores....4 3.

Más detalles

I. Derogar el Instructivo No. SAP-12/98: Valorización de Instrumentos Financieros adquiridos con los Recursos de los Fondos de Pensiones.

I. Derogar el Instructivo No. SAP-12/98: Valorización de Instrumentos Financieros adquiridos con los Recursos de los Fondos de Pensiones. RESOLUCION No. A-DO-AF 028/99 9 de Marzo de 1999 LA SUPERINTENDENTE DE PENSIONES CONSIDERANDO: I. Que mediate resolució No. A-DO-AF-013/98, de fecha 3 de Marzo de 1998, se emitió el Istructivo No. SAP-12/98:

Más detalles

CANTIDAD EN QUÍMICA QCA 07

CANTIDAD EN QUÍMICA QCA 07 .- Razoe: a) Qué volume es mayor el de u mol de itrógeo o el de u mol de oxígeo, ambos medidos e las mismas codicioes de presió y temperatura? b) Qué masa es mayor la de u mol de itrógeo o la de uo de

Más detalles

FORMULAS Y EJEMPLOS EXPLICATIVOS PARA EL CALCULO DE INTERESES

FORMULAS Y EJEMPLOS EXPLICATIVOS PARA EL CALCULO DE INTERESES FORMULAS Y EJEMPLOS EXPLICATIVOS PARA EL CALCULO DE INTERESES Cosideracioes Las fórmulas detalladas tiee el objeto de iformar sobre el cálculo del iterés del crédito y la cuota a pagar La tasa de iterés

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

PLAN DE PREVENCIÓN DE LA OBESIDAD INFANTIL DESDE LA OFICINA DE FARMACIA EN CASTILLA-LA MANCHA INFORME DE RESULTADOS

PLAN DE PREVENCIÓN DE LA OBESIDAD INFANTIL DESDE LA OFICINA DE FARMACIA EN CASTILLA-LA MANCHA INFORME DE RESULTADOS PLAN DE PREVENCIÓN DE LA OBESIDAD INFANTIL EN CASTILLA-LA MANCHA DESDE LA OFICINA DE FARMACIA PLAN DE PREVENCIÓN DE LA OBESIDAD INFANTIL DESDE LA OFICINA DE FARMACIA EN CASTILLA-LA MANCHA INFORME DE RESULTADOS

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN PRUEBA PARCIAL N o 3 Profesor: Hugo S. Salias. Primer Semestre 2012 1. El ivel

Más detalles

La contribución de la clase de Computación a la introducción y desarrollo de conceptos elementales de Matemática Numérica en el nivel medio.

La contribución de la clase de Computación a la introducción y desarrollo de conceptos elementales de Matemática Numérica en el nivel medio. La cotribució de la clase de Computació a la itroducció y desarrollo de coceptos elemetales de Matemática Numérica e el ivel medio. MsC. Rubé Rodríguez Ramos Lic. Eric Crespo Hurtado Dr. C. Tomás Crespo

Más detalles

Caracterización de redes Objetivos del capítulo

Caracterización de redes Objetivos del capítulo 1 Caracterizació de redes Objetivos del capítulo 4 4 4 4 4 4 4 Itroducir los coceptos básicos de redes de comuicacioes. Describir los pricipios de fucioamieto de las redes locales. Idetificar los distitos

Más detalles

Para construir intervalos de confianza recordemos la distribución muestral de la proporción muestral $p :

Para construir intervalos de confianza recordemos la distribución muestral de la proporción muestral $p : Itervalos de Cofiaza para ua proporció Cuado hacemos u test de hipótesis decidimos sobre u valor hipotético del parámetro. Qué proporció de mujeres espera compartir las tareas de la casa co su pareja?

Más detalles

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada

Más detalles

CAPÍTULO 7: INFERENCIA PARA PROPORCIONES Y MEDIAS

CAPÍTULO 7: INFERENCIA PARA PROPORCIONES Y MEDIAS Págia 1 de 13 CAPÍTULO 7: INFERENCIA PARA PROPORCIONES Y MEDIAS E este capítulo etraremos al fial del ciclo del método cietífico, usado la iformació de la muestra para geeralizar y llegar a coclusioes

Más detalles

SUCESIONES TI 83. T 3 España T 3 EUROPE

SUCESIONES TI 83. T 3 España T 3 EUROPE SUCESIONES TI 83 T 3 España T 3 EUROPE Ferado Jua Alfred Mollá Oofre Mozó José Atoio Mora Pascual Pérez Tomás Queralt Julio Rodrigo Salvador Caballero Floreal Gracia Sucesioes TI83 ÍNDICE. Itroducció...

Más detalles

Parámetros de tiempo para

Parámetros de tiempo para Parámetros de tiempo para cotrol y diagóstico INTRODUCCIÓN. Ua de las actividades importates a ivel de sistemas que se debe desarrollar e toda etidad que cuete co u recurso computacioal de soporte para

Más detalles

Probabilidad con técnicas de conteo

Probabilidad con técnicas de conteo UNIA 3 Probabilidad co técicas de coteo Objetivos Al fializar la uidad, el alumo: distiguirá y utilizará las reglas de multiplicació y de suma para el cálculo de la catidad de arreglos co y si orde explicará

Más detalles

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con Curso -3 OBJETIVOS Objetivos Geerales Itroducir el cálculo de fucioes de ua variable como fudameto del aálisis ecoómico margial y los problemas de optimizació. Matemáticas Empresariales Doble Grado e ADE

Más detalles

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves. Financial math.

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves. Financial math. Matemáticas Fiacieras Material recopilado por El Prof. Erique Mateus Nieves Fiacial math. 2.10 DESCUENO El descueto es ua operació de crédito que se realiza ormalmete e el sector bacario, y cosiste e que

Más detalles