CÁLCULO DE DEPÓSITOS DE HORMIGÓN ARMADO PARA AGUA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CÁLCULO DE DEPÓSITOS DE HORMIGÓN ARMADO PARA AGUA"

Transcripción

1 CÁLCULO D DPÓSITOS D HORIGÓN RDO PR GU

2 DPÓSITOS CILÍNDRICOS. Determinaión de la oliitaione: La oliitaione en la parede del depóito, a una altura x on: xiale N x, ortante V x y letore x. La euaione para reolverlo on: quilibrio de uerza radiale: quilibrio de momento: Deormaión del depóito: Relaión omento-deormaión:

3 Donde Z x e la preión del agua a la altura x: Z γ * (L-x); ν e el oeiiente de Poion del hormigón (ν 0.); y e el módulo de elatiidad del hormigón. Operando, e llega a la euaión dierenial iguiente: Con la ondiione de ontorno iguiente: n x0: ω0 dω/dx0 n xl: x 0 V x 0 Reolviendo la euaión, e obtiene la deormaión ωω(x), y on ella e determinan lo euerzo N x, V x, x. Lo valore apareen en la tabla adjunta. etodología a eguir 1) Clae de expoiión: n general puede oniderare la lae IV. Si e trata de intalaione indutriale o depuradora de agua ería la lae Q. ) Reitenia mínima del hormigón: Si la lae de expoiión e la IV, k 30 N/mm. Si la lae e la Q, k 35 N/mm. 3) Coeiiente de eguridad: γ 1.5; γ 1.15; γ 1.6 4) Reubrimiento de la armadura Para la lae IV: 35mm; para la lae Q : 40mm. Si el ontrol de ejeuión no e inteno, e aumentarán en 10mm. 5) peor de la parede: n prinipio, h 0.05 * L * R Donde L e la altura del agua, y R el radio del depóito 6) Cálulo de la oliitaione por la aión del agua: a. Se determina α 1.3, y e alula la ontante del depóito (α*l) Rxh b. Con la ontante del depóito e determinan en la tabla lo valore de K 1, K y β.. Se alulan lo euerzo axiale: N γ * R * L * K1 γ * R * h * L d. Se alulan lo momento letore: * K * 3(1 ν ) e. Se alula el ortante máximo: V γ * R * h * β max

4 γ * L 1. Se determina el ortante en la bae: V0 (1 ) α α * L 7) Cálulo de la armadura horizontale: N n prinipio,, donde N e el axial alulado en Newton, y 100 e 100 la tenión del aero en N/mm. n todo ao, deberá umplire que ) Cálulo de la armadura vertiale: Conoido el momento, e mayora: Cálulo por el diagrama retangular: U 0.85* d * b * d 0 γ d * U 1 U 0 (1 d 1 ) U * d 0 U 1 yd demá, e debe umplir que: * 0.04* * yd d 9) timaión de la tenione de una pieza de hormigón armado ometida a traión imple ante de la iuraión del hormigón: nte de la iuraión, la tenión del aero erá, y la del hormigón α. l equilibrio interno exige que N * + * La deormaione unitaria del hormigón y del aero erán repetivamente: ε t ε Debe umplire que toma entre 10 y 15. t ε ε ; t t * m ; donde el valor de m e Sutituyendo y depejando, e obtiene t, que debe er menor o igual que la reitenia araterítia del hormigón a traión: N t t, k, on 3 t, k 0.1* + m * k ta omprobaión etá en deuo, y ha ido utituida por la omprobaión a iuraión.

5 10) Comprobaión de la iuraión: l anho de la iura, egún la lae de expoiión, deberá umplir: Clae IV Clae Q w mx < 0.mm Donde ϖ 1.7 * * ε Siendo: mx w max < 0.1mm m Separaión media de la iura (en mm): m m φ * K1 largamiento medio de la armadura teniendo en uenta la olaboraión del hormigón: (1 ε K m ), no menor que : Reubrimiento en mm. 0.4 : Separaión entre barra. Si > 15φ, e tomará 15φ. K para traión imple; K para lexión imple φ: Diámetro de la barra traionada má gruea.,e Área de hormigón de la zona de reubrimiento donde la barra traionada inluyen de orma eetiva., e Seión total de la armadura ituada en el área de la eión eiaz. ódulo de deormaión del aero ( N/mm ). K 0.5 (alvo para arga intantánea, que vale 1) Tenión de erviio de la armadura en la eión iurada. n el ao de traión, N n el ao de lexión, 0.8* d * Tenión de la armadura para que la ibra má traionada del hormigón alane el valor t,m.

6 3 t, m 0.3* k T i 0.8* d *, iendo i t, m b h 6 * 11) Comprobaión del epeor a euerzo ortante: l no llevar armadura tranveral, deberá umplire (rt. 44): 3 Vd 0.1* ε * (100* * k ) * b * d, max ρ1 1 ε d, on d en mm. ρ 1, no mayor que 0.0 b * d JPLO D CÁLCULO D UN DPÓSITO CILÍNDRICO D HORIGÓN RDO: Dato: - Diámetro: 0m. - ltura: 4m. 1) Clae de expoiión: IV ) H-30; ero: yk 400 N/mm La armadura erán redondo de 1mm; la horizontale exteriore, y la vertiale interiore 3) γ 1.5; γ 1.15; γ yd 347.8N d 0N 1.5 4) reubrimiento mínimo: r min 35mm, r nom mm 5) h 0.05* * m 300 mm. Canto útil: Para la armadura horizontale: d / 49 mm Para la armadura vertiale: d mm ) α Rxh 10*0.3 Contante del depóito: 0.75*4 3 Coeiiente máximo: K en x/l 0.6 K en x/l 0

7 K en x/l 0,4 β 1.47 Traión máxima: omento en la bae: N 1000 *10* 4* Kp / m omento para x/l 0.4: -669 m*kp/m 1000 *10 * 0.3* 4 * m * Kp / m * 3(1 0. ) Cortante máximo: V γ * R * h * β 1000 *10 * 0.3* Kp / m max 1000 * 4 1 Cortante en la bae: V 0 (1 ) 1778Kp / m * * 4 7) Por traión: mm / m 100 n ada ara: / 669. mm /m. Cuantía mínima: *1000 * mm < mm Se dipone de un redondo de 1mm ada 150mm en ada ara, reulta: 1000mm / 150mm 6.66 redondo en ada ara. 1 real (( π * ) * 6.66) * mm 4 8) rmadura interior: 3050 m*n d 1.6 * m * N d 37mm U 0.85* 0 *1000 * N 0 *36880 U (1 1 ) N * 0.37 U yd mm *300 * mm Coloando un redondo de 1mm ada 180mm: real ( π ) * 68mm * 0 *1000 *300 * yd 0.04 * d * 690mm La dipoiión anterior no no vale, oloamo un redondo de 1 ada 160mm:

8 real ( π ) * 706mm rmadura exterior: m*n/m. l tener un valor menor que el anterior, e dipone de la mima armadura mínima: Redondo de 1 ada 160mm. 9) 3 t, k.1* 30 N / 0 mm N N/m 300* mm mm m 10 t N + m * N * < N Por tanto, e umplen la tenione ante de la iuraión 10) rmadura horizontale (traión): ε m φ * K1, e 300, 1000 * ( ) * mm 4 e 45mm 150mm K φ * K, e m 1 * * * 0.5* m (1 K T i 0.8* d * ) 88.8N t, k 1 * mm i t, m b + h t, m.3* 0.3* 30.89N / 0 mm k 1000 *300 i mm * N * 49 *1057 / 411.7N

9 ε m ϖ mx K N/mm (1 0.5* ) 4.33* * * ε m m 1.7 * 39.4* 4.33*10 Suiiente para el ambiente de lae IV rmadura vertiale (lexión): 3050 m*n mm*n 57mm 160mm K φ 1mm,ei : 706mm mm < 0. ltura / + 7.5*1 153mm > h/ 150mm,ei 150 * mm d 37mm 1 * m * * *0.15* 73mm * 37 *706 17N b * h 1000 *300 i t, m.8* mm * N 6 6 i 0.8* d * * 37 * N ε m (1 K ) (1 0.5( ) ).79 *10 < 0.4 * 3.44 * ω k 1.7 * 73*3.44 * mm < 0. Comprobaión a euerzo ortante: V max N; V d 1.6 * N 00 ε ρ * * 37 3 V 0.1 *1.9 *(100 *.98*10 *30) *1000 * N > 3 1/ 3 V d

10

CURSO AVANZADO DE DISEÑO Y CÁLCULO DE ESTRUCTURAS DE HORMIGÓN ARMADO. Albacete. Abril-julio de 2010.

CURSO AVANZADO DE DISEÑO Y CÁLCULO DE ESTRUCTURAS DE HORMIGÓN ARMADO. Albacete. Abril-julio de 2010. COL. OFICIAL INGENIEROS AGRÓNOMOS DE ALBACETE COL. OFICIAL INGENIEROS TÉCNICOS AGRICOLAS DE CENTRO (ALBACETE) E.T.S. INGENIEROS AGRÓNOMOS DE ALBACETE CURSO AVANZADO DE DISEÑO Y CÁLCULO DE ESTRUCTURAS DE

Más detalles

CÁLCULO EN AGOTAMIENTO

CÁLCULO EN AGOTAMIENTO CÁLCULO EN AGOTAMIENTO A) HIPÓTESIS BÁSICAS *Hipótei e Bernouilli Mantenimiento e eione plana. *Reitenia última e lo materiale: k ; k *Deormaione última e lo materiale: -Hormigón: 0,002 en ompreión imple

Más detalles

Fuerza de fricción estática

Fuerza de fricción estática Laboratorio de Meánia. Experimento 10 Fuerza de friión etátia Objetivo general Etudiar la fuerza de friión etátia. Objetivo epeífio Determinar lo oefiiente de friión entre diferente pareja de materiale.

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

hormigón armado y pretensado II curso 2010-2011 E.L.S. fisuración (actualizado a la EHE 2008)

hormigón armado y pretensado II curso 2010-2011 E.L.S. fisuración (actualizado a la EHE 2008) hormigón armado y pretenado II uro 2010-2011 E.L.S. fiuraión (atualizado a la EHE 2008) 1 ESTDO LÍMITE DE SERVICIO DE FISURCIÓN ÍNDICE 1. Introduión 1.1. Obervaión de ditinto tipo de fiura 1.2. Lo ELS

Más detalles

CAPÍTULO V: CLASIFICACIÓN DE SECCIONES 5.1. INTRODUCCIÓN

CAPÍTULO V: CLASIFICACIÓN DE SECCIONES 5.1. INTRODUCCIÓN CAPÍTULO V: 5.. INTRODUCCIÓN Las seiones estruturales, sean laminadas o armadas, se pueden onsiderar omo un onjunto de hapas, algunas son internas (p.e. las almas de las vigas aiertas o las alas de las

Más detalles

C a p í t u l o 3 POTENCIAL ELECTROSTÁTICO PROMEDIO

C a p í t u l o 3 POTENCIAL ELECTROSTÁTICO PROMEDIO C a p í t u l o 3 POTENCIAL ELECTROSTÁTICO PROMEDIO En el Capítulo e obtuvieron la ecuacione para lo flujo electrocinético en término del potencial electrotático promedio ψ() en el interior del poro cilíndrico.

Más detalles

Tema 4 : TRACCIÓN - COMPRESIÓN

Tema 4 : TRACCIÓN - COMPRESIÓN Tema 4 : TRCCIÓN - COMPRESIÓN F σ G O σ σ z N = F σ σ σ y Problemas Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 4.1.-Calcular el incremento de longitud que tendrá un pilar de hormigón

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 007-008 CONVOCATORIA: SEPTIEMBRE TECNOLOGÍA INDUSTRIAL II Lo alumno deberán elegir una de la do opcione. Cada ejercicio vale,5 punto. La pregunta del

Más detalles

CAPÍTULO 7. ADECUACIÓN DEL PROYECTO A RESULTADOS DEL ANÁLISIS NUMÉRICO. En este capítulo se evaluarán las características de los elementos

CAPÍTULO 7. ADECUACIÓN DEL PROYECTO A RESULTADOS DEL ANÁLISIS NUMÉRICO. En este capítulo se evaluarán las características de los elementos CAPÍTULO 7. ADECUACIÓN DEL PROYECTO A RESULTADOS DEL ANÁLISIS NUMÉRICO 7.1 Descripción En este capítulo se evaluarán las características de los elementos estructurales que componen al edificio y se diseñarán

Más detalles

`ži`ril=bk=olqro^ iìáë=_~ μå_ä òèìéò mêçñéëçê=`çä~äçê~ççê af`lmfr. OPENCOURSEWARE INGENIERIA CIVIL I.T. Obras Públicas / Ing.

`ži`ril=bk=olqro^ iìáë=_~ μå_ä òèìéò mêçñéëçê=`çä~äçê~ççê af`lmfr. OPENCOURSEWARE INGENIERIA CIVIL I.T. Obras Públicas / Ing. OPENCOURSEWARE INGENIERIA CIVIL I.T. Obras Públicas / Ing. Caminos `ži`ril=bk=olqro^ iìáë=_~ μå_ä òèìéò mêçñéëçê=`çä~äçê~ççê af`lmfr (c) 2010-11 Luis Bañón Blázquez. Universidad de Alicante página 1 l_gbqfslp

Más detalles

Funciones vectoriales de variable vectorial. Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m

Funciones vectoriales de variable vectorial. Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m Funciones vectoriales de variable vectorial Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m x y x = (x 1, x 2,, x n ), y = (y 1, y 2,, y m ) e y j = f j (x 1, x 2,, x n ), 1 j n n =

Más detalles

Predimensionado de vigas. Prof. Argimiro Castillo Gandica

Predimensionado de vigas. Prof. Argimiro Castillo Gandica Predimensionado de vigas Prof. Argimiro Castillo Gandica Teoría Fundamental Los principios fundamentales del predimensionado de vigas lo comprende: Teoría de la flexión: explica las relaciones entre las

Más detalles

1. Principios Básicos de Resistencia de Materiales

1. Principios Básicos de Resistencia de Materiales DPTO. NGNRÍ MCÁNC, NRGÉTC Y D MTRLS 004 V. BDOL. Principio Báico de Reitencia de Materiale.. QULBRO STÁTCO Se define como aquella condición en la cual ometido el cuerpo a una erie de fuera momento eteriore

Más detalles

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas

Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas Automáca Ejercicio Capítulo.DiagramadeBloqueyFlujograma JoéRamónlataarcía EtheronzálezSarabia DámaoFernándezPérez CarlooreFerero MaríaSandraRoblaómez DepartamentodeecnologíaElectrónica eingenieríadesitemayautomáca

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividade del final de la unidad. Explica brevemente qué entiende por foco ditancia focal para un dioptrio eférico. Razona cómo erá el igno de la ditancia focal objeto la ditancia focal imagen egún que

Más detalles

Parte de la Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto. Cálculo de Viviendas de Mampostería

Parte de la Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Concreto. Cálculo de Viviendas de Mampostería Conreto reorzado Parte de la Normas Ténias Complementarias para Diseño Construión de Estruturas de Conreto Cálulo de Viviendas de Mampostería Elaboró: M. I. Wiliams de la Cruz Rodríguez E-Mail: albasus@avantel.net

Más detalles

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.

TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS. IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene

Más detalles

Cálculo y elección óptima de un depósito de agua 119

Cálculo y elección óptima de un depósito de agua 119 Cálculo y elección ópima de un depósio de agua 119 CPÍTULO 4 EJEPLOS DE CÁLCULO DE DEPÓSITOS 4.1.- INTRODUCCIÓN En el presene capíulo se presenan cuaro ejemplos de aplicación de los disinos crierios empleados

Más detalles

11 Efectos de la esbeltez

11 Efectos de la esbeltez 11 Efetos de la esbeltez CONSIDERACIONES GENERALES El diseño de las olumnas onsiste básiamente en seleionar una seión transversal adeuada para la misma, on armadura para soportar las ombinaiones requeridas

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves d Accés a la Universitat. Curs 2012-2013 Tecnología industrial Serie 4 La prueba consta de dos partes de dos ejercicios cada una. La primera parte es común y la segunda tiene dos opciones (A y B),

Más detalles

Prontuario de Hormigón Armado

Prontuario de Hormigón Armado Prontuario de Hormigón Armado Luis López García Jesús Antonio López Perales Pedro Jesús Alcobendas Cobo Amparo Moreno Valencia Carlos Sierra Fernández índice Coeficientes parciales de seguridad para las

Más detalles

3.- CONCEPTOS BÁSICOS

3.- CONCEPTOS BÁSICOS 3.- ONEPTOS ÁSIOS 3. ESFUERZOS EN RRS: ONVENIO DE SIGNOS Los esfuerzos en los elementos estructurales lineales deberán seguir el convenio de signos que se esquematiza a continuación. Los esfuerzos que

Más detalles

ANTECEDENTES PARA CÁLCULO DE VIGAS EN PANEL COVINTEC

ANTECEDENTES PARA CÁLCULO DE VIGAS EN PANEL COVINTEC ANTECEDENTES PARA CÁLCULO DE IGAS EN PANEL COINTEC Anteedente de Cálulo para iga en Panele Covinte iga Geometría: Fig. 1 Nomenlatura: h: altura total de la viga h : altura del hormigón o mortero uperior

Más detalles

ÍNDICE 1.- DESCRIPCIÓN... 2

ÍNDICE 1.- DESCRIPCIÓN... 2 ÍNDICE 1.- DESCRIPCIÓN... 2 2.- COMPROBACIONES... 2 2.1.- Perímetro del soporte (P5)... 2 2.1.1.- Zona adyacente al soporte o carga (combinaciones no sísmicas)... 2 2.2.- Perímetro crítico (P5)... 4 2.2.1.-

Más detalles

EJERCICIO: DIMENSIONAMIENTO Y COMPROBACIÓN DE SECCIONES RECTANGULARES

EJERCICIO: DIMENSIONAMIENTO Y COMPROBACIÓN DE SECCIONES RECTANGULARES HORMIGÓN ARMADO Y PRETENSADO (HAP1) CURSO 010/011 EJERCICIO: DIMENSIONAMIENTO Y COMPROBACIÓN DE SECCIONES RECTANGULARES Dimensionar ó omprobar la seión e la figura en aa uno e los supuestos que se menionan

Más detalles

ESTRUCTURAS ARTICULADAS

ESTRUCTURAS ARTICULADAS ESTRUTURAS ARTIULADAS Prof. arlos Navarro Departamento de Mecánica de Medios ontinuos y Teoría de Estructuras uando necesitemos salvar luces importantes (> 10 ó 15 m), o necesitamos vigas de gran canto,

Más detalles

CONCEPTOS BÁSICOS DEL CÁLCULO ESTRUCTURAL

CONCEPTOS BÁSICOS DEL CÁLCULO ESTRUCTURAL CONCETOS ÁSICOS DEL CÁLCULO ESTRUCTURL rof. Carlos Naarro Departamento de ecánica de edios Continuos Teoría de Estructuras ODELO DEL TERIL ientras no digamos los contrario, supondremos que el material

Más detalles

UNIDAD 2 Características mecánicas de los materiales

UNIDAD 2 Características mecánicas de los materiales UNIDAD Características mecánicas de los materiales.1 CUESTIONES DE AUTOEVALUACIÓN 1 - El alargamiento y la estricción son medidas directas de la: a) Resistencia. b) Ductilidad. c) Tenacidad. d) Dureza.

Más detalles

Adaptación de impedancias en amplif. de RF. 1.1. Introducción. Universidad Tecnológica Nacional Facultad Regional Córdoba Departamento Electrónica

Adaptación de impedancias en amplif. de RF. 1.1. Introducción. Universidad Tecnológica Nacional Facultad Regional Córdoba Departamento Electrónica Univeridad Tecnológica Nacional Facultad Regional Córdoba Departamento Electrónica Documento UTN Nº EA3-5- Adaptación de impedancia en amplif de RF Introducción o amplificadore de potencia e uan generalmente

Más detalles

INTERCAMBIADORES DE CALOR

INTERCAMBIADORES DE CALOR 1 OBJETO: INTERCAMBIADORES DE CALOR Estudio del comportamiento de un cambiador de calor de carcasa y tubos. Determinación de su coeficiente global de transmisión de calor, DMLT, F, eficiencia, NUT, y pérdidas

Más detalles

STEEL BUILDINGS IN EUROPE

STEEL BUILDINGS IN EUROPE STEEL BUILDINGS IN EUROPE Edificios de acero de varias plantas Parte 8: Herramienta para el cálculo de la resistencia de elementos: descripción Edificios de acero de varias plantas Parte : Herramienta

Más detalles

DATOS DE LOS MATERIALES PARA EL PROYECTO

DATOS DE LOS MATERIALES PARA EL PROYECTO TÍTULO 5º CÁLCULO Con ormato: Arriba: 4 cm, Distancia del encabezado desde el borde: 1,27 cm, Distancia del pie de página desde el borde: 1 cm CAPÍTULO VIII DATOS DE LOS MATERIALES PARA EL PROYECTO Artículo

Más detalles

Estructuras de acero: Problemas Pilares

Estructuras de acero: Problemas Pilares Estruturas de aero: Problemas Pilares Dimensionar un pilar de 5 m de altura mediante un peril HEB, sabiendo que ha de soportar simultáneamente una arga axial de ompresión F de 50 unas argas horiontales

Más detalles

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un

CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un CAPÍTULO. INTEGRACIÓN DE FUNCIONES RACIONALES.. Introducción.. Raíce comune.. Diviión entera de polinomio.. Decompoición de un polinomio en producto de factore.5. Método de fraccione imple.6. Método de

Más detalles

CAPÍTULO 2 CO CEPTOS DE RESISTE CIA DE MATERIALES

CAPÍTULO 2 CO CEPTOS DE RESISTE CIA DE MATERIALES CAPÍULO 2 CO CEPO DE REIE CIA DE MAERIALE 2.1 I RODUCCIÓ En este capítulo se presenta una revisión de los aspectos más pertinentes para el curso de Diseño I de la teoría de resistencia de materiales. e

Más detalles

Comprobación de una viga biapoyada de hormigón armado con sección rectangular

Comprobación de una viga biapoyada de hormigón armado con sección rectangular Comprobación de una viga biapoyada de hormigón armado con sección rectangular J. Alcalá * V. Yepes Enero 2014 Índice 1. Introducción 2 2. Descripción del problema 2 2.1. Definición geométrica........................

Más detalles

INTERCAMBIADORES DE CALOR

INTERCAMBIADORES DE CALOR INERCAMBIADORES DE CALOR 1 EMA 4. INERCAMBIADORES 1. Interambaidores (2h Indie Interambiadores de alor. Utilidad. ipos Estudio térmio de los interambiadores de alor. Coeiiente global de transmision de

Más detalles

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen:

1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen: 0 Óptica geométrica Actividade del interior de la unidad. Tenemo un dioptrio eférico convexo de 5 cm de radio que epara el aire de un vidrio de índice de refracción,567. Calcula la ditancia focal e imagen.

Más detalles

CÁLCULOS RELATIVOS A LOS ESTADOS LÍMITE DE SERVICIO

CÁLCULOS RELATIVOS A LOS ESTADOS LÍMITE DE SERVICIO CAPÍTULO XI CÁLCULOS RELATIVOS A LOS ESTADOS LÍMITE DE SERVICIO Artículo 49º Estado Límite de Fisuración 49.1 Consideraciones generales Para las comprobaciones relativas al Estado Límite de Fisuración,

Más detalles

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos eunión de Grupo de Invetigación en Ingeniería Eléctrica. Santander Modelo de generadore aíncrono para la evaluación de perturbacione emitida por parque eólico A. Feijóo, J. Cidrá y C. Carrillo Univeridade

Más detalles

Física PRUEBA DE ACCESO A LA UNIVERSIDAD 2013 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR. Examen

Física PRUEBA DE ACCESO A LA UNIVERSIDAD 2013 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR. Examen PRUEBA DE ACCESO A LA UNIVERSIDAD 03 Fíica BACHILLERAO FORMACIÓN PROFESIONAL CICLOS FORMAIVOS DE GRADO SUPERIOR Eamen Criterio de Corrección Calificación UNIBERSIAERA SARZEKO PROBAK 03ko EKAINA FISIKA

Más detalles

Las órbitas de los planetas son elípticas, ocupando el Sol uno de sus focos.

Las órbitas de los planetas son elípticas, ocupando el Sol uno de sus focos. 1. LEYES DE KEPLER: Las tres leyes de Kepler son: Primera ley Las órbitas de los planetas son elípticas, ocupando el Sol uno de sus focos. a es el semieje mayor de la elipse b es el semieje menor de la

Más detalles

TABLAS CON LAS CONSTANTES MECANOGEOMÉTRICAS DE LOS PERFILES DE ACERO

TABLAS CON LAS CONSTANTES MECANOGEOMÉTRICAS DE LOS PERFILES DE ACERO TABLAS CON LAS CONSTANTES MECANOGEOMÉTRICAS DE LOS PERFILES DE ACERO ÍNDICE página I.1.- PERFILES LAMINADOS I.1 Tabla I.1.- PERFILES IPN I.3 Tabla I.2.- PERFILES IPE I.3 Tabla I.3.- PERFILES HEB I.4 Tabla

Más detalles

¾ Relacionadas con habilidad del material para soportar esfuerzos (cargas)

¾ Relacionadas con habilidad del material para soportar esfuerzos (cargas) 6. PROPIEDADES DE LOS MATERIALES Intrínsicas (microestructura) Prop. Mecánicas de volumen Atributivas (comercialización) Costos Prop. Físicas de volumen Prop. de Producción Prop. de Superficie Prop. de

Más detalles

NORMAS Y ESPECIFICACIONES PARA ESTUDIOS, PROYECTOS, CONSTRUCCIÓN E INSTALACIONES

NORMAS Y ESPECIFICACIONES PARA ESTUDIOS, PROYECTOS, CONSTRUCCIÓN E INSTALACIONES NORMAS Y ESPECIFICACIONES PARA ESTUDIOS, PROYECTOS, CONSTRUCCIÓN E INSTALACIONES VOLUMEN 4 Seguridad Estrutural Diseño de Estruturas de Conreto NORMATIVIDAD E INVESTIGACIÓN VOLUMEN 4 SEGURIDAD ESTRUCTURAL

Más detalles

Neumática e Hidráulica

Neumática e Hidráulica Neumática e Hidráulica N. T0.- Introducción a la Neumática Las trasparencias son el material de apoyo del profesor para impartir la clase. No son apuntes de la asignatura. l alumno le pueden servir como

Más detalles

Movimiento y Coordenadas

Movimiento y Coordenadas Capítulo 1 Movimiento y Coordenadas 1.1. Posición y movimiento Los primeros movimientos que fueron descritos por medio de ecuaciones, en el marco de lo que entendemos por física, posiblemente fueron los

Más detalles

Ejémplo de cálculo estructural utilizando el Sistema Concretek : (Preparado por: Ing. Denys Lara Lozada)

Ejémplo de cálculo estructural utilizando el Sistema Concretek : (Preparado por: Ing. Denys Lara Lozada) Ejémplo de álulo estrutural utilizando el Sistema Conretek : (Preparado por: Ing. Denys Lara Lozada) Para el siguiente ejemplo se diseñará una losa de teho de dimensiones según se muestra en la figura:

Más detalles

TEMA VI: Cálculo de recipientes de pared delgada

TEMA VI: Cálculo de recipientes de pared delgada TEMA VI: Cálculo de recipientes de pared delgada 1. Introducción. Envolventes de pequeño espesor Podemos definir una envolvente como aquel sólido elástico en el que una de sus dimensiones es mucha menor

Más detalles

Propiedades básicas de suelos

Propiedades básicas de suelos Proiedades básicas de suelos 2.1 Materiales y fases 1. Fase sólida Partículas de minerales 2. Fase líquida Agua adsorbida o libre Otro tio de líquido 3. Fase gaseosa Aire Gases Proiedades ara la identificación

Más detalles

4 Cálculos y Selección de Componentes.

4 Cálculos y Selección de Componentes. 4 Cálculos y Selección de Componentes. 4.1 ornillo de bolas. En esta sección se presenta la selección y cálculo de ornillo de Bolas Recirculantes utilizado en SEDL1 (ver lista de planos en Anexo). Los

Más detalles

XIV.- ALIMENTACIÓN AL RODETE CÁMARA ESPIRAL

XIV.- ALIMENTACIÓN AL RODETE CÁMARA ESPIRAL XIV.- ALIMENTACIÓN AL OETE CÁMAA ESPIAL XIV..- IMENSIONAMIENTO PAA TUBINAS FANCIS (ELECTOCONSULT) c [m/s] 0,44 5,4 nq Figura 4.. Vlocia ntraa n la spiral n función la vlocia spcífica n s. Figura 4.. Esquma

Más detalles

Cálculo y elección óptima de un depósito de agua 199

Cálculo y elección óptima de un depósito de agua 199 Cálculo y elección óptima de un depósito de agua 199 CAPÍTULO 6 CONCLUSIONES 6.1.- INTRODUCCIÓN En este capítulo se exponen las conclusiones que se derivan de los distintos estudios desarrollados a lo

Más detalles

ANEJO 7: CÁLCULOS CONSTRUCTIVOS DE LA SALA DE CALDERAS

ANEJO 7: CÁLCULOS CONSTRUCTIVOS DE LA SALA DE CALDERAS ANEJO 7: CÁLCULOS CONSTRUCTIVOS DE LA SALA DE CALDERAS ANEJO 7: CÁLCULOS CONSTRUCTIVOS DE LA SALA DE CALDERAS. 1. Consideraciones previas.. Cálculo de las correas. 3. Cálculo de la cercha. Cálculo del

Más detalles

Tema 8: Análisis Discriminante. Clasificación. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. Análisis discriminante

Tema 8: Análisis Discriminante. Clasificación. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. Análisis discriminante Aurea Grané. Máster en Estadística. Universidade Pedagógica. 1 Aurea Grané. Máster en Estadística. Universidade Pedagógica. 2 Análisis discriminante Tema 8: Análisis Discriminante y Clasificación Aurea

Más detalles

Errores y Tipo de Sistema

Errores y Tipo de Sistema rrore y Tipo de Sitema rror dinámico: e la diferencia entre la eñale de entrada y alida durante el período tranitorio, e decir el tiempo que tarda la eñal de repueta en etablecere. La repueta de un itema

Más detalles

Inversión en el plano

Inversión en el plano Inversión en el plano Radio de la circunferencia x 2 + y 2 + Ax + By + D = 0 Circunferencia de centro (a, b) y radio r: (x a) 2 + (y b) 2 = r 2. Comparando: x 2 + y 2 2ax 2by + a 2 + b 2 r 2 = 0 con x

Más detalles

Aislamiento térmico en cañerías y estanques. Fundamentos teóricos, ejemplos prácticos.

Aislamiento térmico en cañerías y estanques. Fundamentos teóricos, ejemplos prácticos. Aislamiento térmico en cañerías y estanques Fundamentos teóricos, ejemplos prácticos. Índice 1. Fundamentos teóricos transferencia de calor. 1.1. Conducción. 1.2. Convección. 1.3. Radiación. 2. Aislamiento

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real Tema 1. Hidráulica. Generalidades 1. Definición. Propiedades fundamentales de los líquidos 3. Conceptos previos: Peso, Densidad, Peso específico, Presión 4. Compresibilidad de un líquido 5. Tensión superficial

Más detalles

Estructuras de acero: Problemas Vigas

Estructuras de acero: Problemas Vigas Estructuras de acero: Problemas Vigas Dimensionar con un perfil IPE una viga biapoada de 5 m de luz que soporta una sobrecarga de 0 kn/m uniformemente repartida. El acero es S75. Solución: Se supone un

Más detalles

Problema C1. Curva de calentamiento

Problema C1. Curva de calentamiento Problema C. Curva de calentamiento (4 Puntos) El diagrama adjunto muestra la temperatura de un cuerpo de masa m 0, g en función del calor que se le a transferido. a) Calcule los calores específicos del

Más detalles

CÁLCULOS MECÁNICOS DE LAS ESTRUCTURAS SOPORTES DE ANTENAS

CÁLCULOS MECÁNICOS DE LAS ESTRUCTURAS SOPORTES DE ANTENAS CÁLCULOS MECÁNICOS DE LAS ESTRUCTURAS SOPORTES DE ANTENAS SISTEMA TERRENAL Normas generales Las antenas para la captación de las señales terrenales se montarán sobre mástil o torreta, bien arriostradas

Más detalles

ÓPTICA GEOMÉTRICA 12.1. FORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO

ÓPTICA GEOMÉTRICA 12.1. FORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO 2 ÓPTICA GEOMÉTRICA 2.. ORMACIÓN DE IMÁGENES EN UN ESPEJO PLANO. En la imagen que e forma de un objeto en un epejo plano e invierten la izquierda la derecha, pero no la parte de arriba la parte de abajo

Más detalles

Capítulo 4 Trabajo y energía

Capítulo 4 Trabajo y energía Capítulo 4 Trabajo y energía 17 Problemas de selección - página 63 (soluciones en la página 116) 10 Problemas de desarrollo - página 69 (soluciones en la página 117) 61 4.A PROBLEMAS DE SELECCIÓN Sección

Más detalles

Fundamentos físicos de la teledetección

Fundamentos físicos de la teledetección Tema 1 Fundamentos físicos de la teledetección 1.1 La radiación electromagnética Dada la importancia que la radiación electromagnética tiene como transmisor de información en todas las formas de teledetección,

Más detalles

Mecanismos y Elementos de Máquinas. Cálculo de uniones soldadas. Sexta edición - 2013. Prof. Pablo Ringegni

Mecanismos y Elementos de Máquinas. Cálculo de uniones soldadas. Sexta edición - 2013. Prof. Pablo Ringegni Meanismos y Elementos de Máquinas álulo de uniones soldadas Sexta ediión - 013 Prof. Pablo Ringegni álulo de uniones soldadas INTRODUIÓN... 3 1. JUNTAS SOLDADAS A TOPE... 3 1.1. Resistenia de la Soldadura

Más detalles

La solución del problema requiere de una primera hipótesis:

La solución del problema requiere de una primera hipótesis: RIOS 9 Cuarto Simpoio Regional obre Hidráulica de Río. Salta, Argentina, 9. CALCULO HIDRAULICO EN RIOS Y DISEÑO DE CANALES ESTABLES SIN USAR ECUACIONES TRADICIONALES Eduardo E. Martínez Pérez Profeor agregado

Más detalles

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590.

Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590. 5//8 Senore generadore y u acondicionadore apítulo Nota: La ecuacione, figura y problema citado en el dearrollo de lo problema de ete capítulo que no contengan W en u referencia correponden al libro impreo.

Más detalles

ELASTICIDAD. Determinar experimentalmente el módulo de elasticidad de un material usando una viga.

ELASTICIDAD. Determinar experimentalmente el módulo de elasticidad de un material usando una viga. ELASTICIDAD OBJETIVOS Observar el fenómeno de deformación de una viga provocado al actuar sobre ella un esfuerzo normal y un momento flector Relacionar los criterios básicos para determinar el material,

Más detalles

S Cargas Longit tramo Superficie Q p. prop P Forjado Sobrecarga Viento 3, ,3 0,2 0,2

S Cargas Longit tramo Superficie Q p. prop P Forjado Sobrecarga Viento 3, ,3 0,2 0,2 S Cargas Longit tramo Superficie Q p. prop P Forjado Sobrecarga Viento 3,5 189 0,3 0, 0, Según el articulo 4.3.5 de la EHE para el armado minimo de una viga según cuantia geometrica, debe ser, dada la

Más detalles

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm.

9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm. 9 Óptica geométrica EJERCICIOS PROPUESTOS 9. Indica la caracterítica de la imagen que oberva una perona que e etá mirando en un epejo plano. La imagen e virtual derecha. Virtual, porque e puede ver pero

Más detalles

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real

Cátedra de Ingeniería Rural Escuela Universitaria de Ingeniería Técnica Agrícola de Ciudad Real Ecuela Univeritaria e Ingeniería Técnica grícola e Ciua Real En una etructura e hormigón armao prefabricao, e eea calcular la armaura necearia (longituinal y tranveral) e una viga biapoyaa e m e luz y

Más detalles

masa densidad M V masa densidad COLEGIO NTRA.SRA.DEL CARMEN_TECNOLOGÍA_4º ESO EJERCICIOS DEL PRINCIPIO DE ARQUÍMEDES.-

masa densidad M V masa densidad COLEGIO NTRA.SRA.DEL CARMEN_TECNOLOGÍA_4º ESO EJERCICIOS DEL PRINCIPIO DE ARQUÍMEDES.- 1.Explia el prinipio de Arquímedes y ita dos ejemplos, de la vida real, en los que se ponga de manifiesto diho prinipio. El prinipio de Arquímedes india que un uerpo sumergido en un fluido experimenta

Más detalles

Capítulo 4. Elasticidad

Capítulo 4. Elasticidad Capítulo 4 Elasticidad 1 Ley de Hooke Cuando estiramos o comprimimos un muelle, la fuerza recuperadora es directamente proporcional al cambio de longitud x respecto de la posición de equilibrio: F = k

Más detalles

D E C 9 & $ 9 B E F 10 $ 8

D E C 9 & $ 9 B E F 10 $ 8 CADA LETRA CORRESPONDE A UN NÚMERO DEL 1 AL 5 AVERIGUA A QUE NÚMERO CORRESPONDE CADA UNA. D E C 9 & $ 9 B E F 10 & @ $ 8 B E F 10 $ $ # 14 5 12 12 29 7 10 14 31 Φ Π Δ 12 P E E 5 Χ Φ Φ 12 P P W 8 Χ Δ Φ

Más detalles

2. ARMADO DE LA VIGA A CORTANTE (CONSIDERE ESTRIBOS Ø 6mm). Comprobación a compresión oblícua ( Comprobación a tracción en el alma (

2. ARMADO DE LA VIGA A CORTANTE (CONSIDERE ESTRIBOS Ø 6mm). Comprobación a compresión oblícua ( Comprobación a tracción en el alma ( EJERCICIO DE CORTANTE Dada la viga: Viga: canto = 70 cm; Ancho = 35 cm Pilar: canto = 30 cm; Ancho = 30 cm Luz: 9 m...sometido A LAS CARGAS (ya mayoradas) QUE SE INDICAN EN EL GRAFICO ADJUNTO, (DESPRECIE

Más detalles

bibjbkqlp=ab=`fjbkq^`fþk

bibjbkqlp=ab=`fjbkq^`fþk OPENCOURSEWARE INGENIERIA CIVIL I.T. Obras Públicas / Ing. Caminos bibjbkqlp=ab=`fjbkq^`fþk iìáë=_~ μå_ä òèìéò mêçñéëçê=`çä~äçê~ççê af`lmfr (c) 2010-11 Luis Bañón Blázquez. Universidad de Alicante página

Más detalles

SERVICELSAPUBLICACIONES

SERVICELSAPUBLICACIONES SERVICELSAPUBLICACIONES Departamento de asesoramiento técnico de CELSA Publicación especializada para los profesionales de la construcción nº 1 Anclaje y solapo de las mallas electrosoldadas de acuerdo

Más detalles

JUNTA MONETARIA RESOLUCION JM-349-94

JUNTA MONETARIA RESOLUCION JM-349-94 JUNTA MONETARIA RESOLUCION JM-349-94 Inerta en el Punto Tercero, del acta número 34-94 correpondiente a la eión celebrada por la Junta Monetaria el 20 de julio de 1994. PUNTO TERCERO: El Superintendente

Más detalles

Teoría de Colas (Líneas de Espera) Administración de la Producción

Teoría de Colas (Líneas de Espera) Administración de la Producción Teoría de Cola (Línea de Epera) Adminitración de la Producción 3C T La cola La cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad Lo

Más detalles

MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL. Con el apoyo académico de la Universidad Católica de Lovaina y la Universidad de Gante (Bélgica)

MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL. Con el apoyo académico de la Universidad Católica de Lovaina y la Universidad de Gante (Bélgica) MAESTRIA EN INGENIERIA DE CONTROL INDUSTRIAL Con el apoyo académico de la Univeridad Católica de Lovaina y la Univeridad de Gante Bélgica PROGRAMA DE AUTOMATIZACION INDUSTRIAL Univeridad de Ibagué Marzo

Más detalles

5. Introducción a la Formulación Lagrangiana y Hamiltoniana

5. Introducción a la Formulación Lagrangiana y Hamiltoniana 5. Introducción a la Formulación Lagrangiana y Hamiltoniana Introducción Definiciones: coordenadas, momentos y fuerzas generalizados. Función Lagrangiana y ecuaciones de Euler-Lagrange. Coordenadas cíclicas.

Más detalles

ESFUERZO Y DEFORMACION

ESFUERZO Y DEFORMACION Introducción ESFUERZO Y DEFORMACION El diseño de cualquier elemento o de un sistema estructural implica responder dos preguntas: El elemento es resistente a las cargas aplicadas? y Tendrá la suficiente

Más detalles

ANCLAJES Y EMPALMES POR ADHERENCIA

ANCLAJES Y EMPALMES POR ADHERENCIA 9.A.- ANCLAJES ANCLAJES Y EMPALMES POR ADHERENCIA 9.A.1.- Anclaje de barras y alambres rectos traccionados 9.A.1.1.- Expresión general El CIRSOC 201-2005, artículo 12.2.3, indica la siguiente expresión

Más detalles

Variación n de las temperaturas en el ciclo

Variación n de las temperaturas en el ciclo Análisis térmico t de la inyección Variación n de las temperaturas en el ciclo Juan de Juanes Márquez M Sevillano Interés s del control de temperatura del molde Una de los parámetros más m s importantes

Más detalles

CAPITULO 3 CARGAS DE VIENTO

CAPITULO 3 CARGAS DE VIENTO CAPITULO 3 CARGAS DE VIENTO 3.0 Referencia. El Capítulo 3 está basado en el texto, tablas y figuras de la Sección 6 de ASCE 7-98 - Cargas de diseño mínimas para edificios y otras estructuras. 3.1 Provisiones

Más detalles

Resolución de problemas. Temas: VOR e ILS

Resolución de problemas. Temas: VOR e ILS Resolución de problemas. Temas: VOR e ILS Autor: Mario E. Casado García 3er Curso ITT ST Índice 1. Problema tema 5: VOR......3 2. Problema tema 7: ILS.....7 3. Referencias..12 2 1. Problema tema 5: VOR

Más detalles

Capítulo 6 Acciones de control

Capítulo 6 Acciones de control Capítulo 6 Aiones de ontrol 6.1 Desripión de un bule de ontrol Un bule de ontrol por retroalimentaión se ompone de un proeso, el sistema de mediión de la variable ontrolada, el sistema de ontrol y el elemento

Más detalles

Caja Castilla La Mancha CCM

Caja Castilla La Mancha CCM CCM Caja Castilla La Mancha .INTRODUCCION El hormigón armado es un material compuesto que surge de la unión de hormigón en masa con armadura de acero, con el fin de resolver el problema de la casi nula

Más detalles

MAQUINAS HIDRAULICAS: BOMBAS

MAQUINAS HIDRAULICAS: BOMBAS MAQUINAS HIDRAULICAS: BOMBAS UNA MAQUINA HIDRAULICA ES AQUELLA EN QUE EL FLUIDO QUE INTERCAMBIA ENERGIA CON LA MISMA NO MODIFICA SU DENSIDAD A SU PASO POR LA MAQUINA Y POR ENDE EN SU DISEÑO Y SU ESTUDIO

Más detalles

XXV OLIMPIADA DE FÍSICA CHINA, 1994

XXV OLIMPIADA DE FÍSICA CHINA, 1994 OMPD NTENCON DE FÍSC Prolemas resueltos y omentados por: José uis Hernández Pérez y gustín ozano Pradillo XX OMPD DE FÍSC CHN, 99.-PTÍCU ETST En la teoría espeial de la relatividad la relaión entre la

Más detalles

DISEÑO A FLEXIÓN BASADO EN CURVAS ESFUERZO- DEFORMACIÓN

DISEÑO A FLEXIÓN BASADO EN CURVAS ESFUERZO- DEFORMACIÓN DISEÑO A FLEXIÓN BASADO EN CURVAS ESFUERZO- DEFORMACIÓN Ing. Marcelo Romo Proaño, M.Sc. Centro de Investigaciones Científicas Escuela Politécnica del Ejército mromo@espe.edu.ec RESUMEN Se presentan curvas

Más detalles

ANÁLISIS Y DISEÑO DE MUROS DE CONTENCIÓN DE CONCRETO ARMADO

ANÁLISIS Y DISEÑO DE MUROS DE CONTENCIÓN DE CONCRETO ARMADO ANÁLISIS Y DISEÑO DE MUROS DE CONTENCIÓN DE CONCRETO ARMADO Segunda impresión adaptada a la Norma Venezolana 175-006 RAFAEL ANGEL TORRES BELANDRIA UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERIA MERIDA

Más detalles

PERNOS ESTRUCTURALES DE ALTA RESISTENCIA PARA PRECARGA EN 14399-1

PERNOS ESTRUCTURALES DE ALTA RESISTENCIA PARA PRECARGA EN 14399-1 PERNOS ESTRUCTURALES DE ALTA RESISTENCIA PARA PRECARGA EN 1399-1 Índie Sistemas de montaje de tornillo/tuera/arandela (Consulte la tabla más abajo) 2 La empresa 3 Tornillos estruturales de alta resistenia

Más detalles

INTRODUCCIÓN Y AGRADECIMIENTOS

INTRODUCCIÓN Y AGRADECIMIENTOS ÍNDICE INTRODUCCIÓN Y AGRADECIMIENTOS El preente trabajo pretende er el egundo de lo do que han de er entregado para optar al título de Diplomado en Etudio Avanzado DEA por la Univeridad Autónoma de Madrid

Más detalles

Algunos errores frecuentes en cálculos de líneas y elección de cables para BT

Algunos errores frecuentes en cálculos de líneas y elección de cables para BT Algunos errores frecuentes en cálculos de líneas y elección de cables para BT Lisardo Recio Maíllo www.prysmian.es 1.- Errores en los cálculos Cables termoplásticos (PVC) y cables termoestables (XLPE)

Más detalles