ESTRUCTURA DE LAS SIMILARIDADES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTRUCTURA DE LAS SIMILARIDADES"

Transcripción

1 ESTRUCTURA DE LAS SIMILARIDADES Ramón Gonzalez del Campo Lus Garmenda 2 Jord Recasens 3 SIC. Faculad de Informáca, 2 DISIA. Faculad de Informáca. UCM, 3 Unversa Polècnca de Caalunya. Resumen En ese arículo se defne formalmene el concepo de esrucura de smlardad, se cuena el número de esrucuras de smlardades hasa dmensón 5, se propone una nomenclaura y un algormo que asgna una esrucura a cada smlardad. Palaras Clave: Relacón orrosa, Mnransvdad, Smlardad. INTRODUCCIÓN Las relacones orrosas de smlardad permen dar grados de parecdo enre los elemenos de un unverso y encuenran numerosas aplcacones en méodos de cluserng y de nferenca orrosa. Sus alfa-cores son relacones de equvalenca cláscas, por lo que ofrecen numerosas ''rejllas'' o parcones de un unverso. Por oro lado son Mn-preórdenes [], por lo que proporconan conclusones según Tarsk cuando se ulzan para hacer nferenca medane la regla composconal de nferenca. En el esudo de esas mporanes relacones, nos damos cuana de que muchas de ellas se parecen mucho y oras no. Nos parece muy defnr lo que vamos a llamar ''esrucura'' de smlardad, que nos ayude a enenderlas y a clasfcarlas según a qué esrucura perenezcan. Ese arículo comenza defnendo el concepo de esrucura como clases de equvalenca de una relacón de equvalenca RE, que relacona dos smlardades s enen la msma esrucura. Para defnr RE defnmos oras dos relacones de equvalenca, R y RT, que relacona dos smlardades s se pueden ransformar una en ora medane una permuacón y medane una relacón monóona esrca. Hemos esudado y conado las esrucuras de las smlardades hasa la dmensón 5 2 PRELIMINARES Sea E={e,...,e n } un conjuno fno. Una relacón dfusa es una ransformacón R:E E [0,]. El grado de relacón para los elemenos e y e j, R(e,e j ), se denoa como r j. Defncón 2.: Un operador naro T:[0,] [0,] [0,] es una -norma o norma rangular [4,2] s sasface: - T(,x)=x - T(y,x)=T(x,y) - T(x,T(y,z))=T(T(x,y),z) - S x x' y y enonces T(x,y) T(x',y') Defncón 2.2: Dada una -norma T, una relacón dfusa R:E E [0,] es T-ransva s T(R(a,),R(a,c)) R(a,c) a,,c E. Eso es, s T(r k,r kj ) r j,j,k:..n. Defncón 2.3: Dada una relacón dfusa, R, es una Proxmdad s safsface: - Reflexva: r = - Smérca: r j =r j, j n S además R es una relacón T-ransva, se denomna T- ndsnguldad [6,7]. S la T-norma es el mínmo, a esa T-ndsnguldad se le llama Smlardad [8]. 3 RELACIONES ENTRE RELACIONES BORROSAS Defncón 3.: Sean A y B dos marces de dmensón n, esán relaconadas por R T s y solo s T al que T: A B, T(a j )= j al que es monóona esrca. Lema 3.: R T es una relacón de equvalenca. - Es reflexva con T gual a la funcón dendad. - Es smérca: s A R T B enonces B R T - A. - Es ransva: s A R T B y B R T' C enonces: A R T' T C. El número de clases de equvalenca, S n /R T esán conados en [5]. XIV Congreso Español sore Tecnologías y Lógca fuzzy 2

2 Lema 3.2: Dada una marz de una smlardad A, s permuamos las flas y las correspondenes columnas, denoado por B=P (A), oenemos una marz que represena a una smlardad. Una permuacón, = { } :..n, consse en reequear los índces de la sguene forma:. - Es reflexva: =a = - Es smérca: j =a j =a j = j - Es mn-ransva: mn( k, kj j ) ya que mn(a k,a k j })a j Defncón 3.2: Sean A y B dos marces de dmensón n, esán relaconadas por R s y solo s exse una permuacón al que B=P (A). Lema 3.3: R es una relacón de equvalenca. - Es reflexva: A R A pues A=P (A) con =(..n). - Es smérca: A R B B=P (A) P (B)=P (P (A)) pueso que: A=P (P (A)). - Es ransva: A R B, B R C A=P (B),B=P (C) A=P (P (C)) A=P ' (C). La sguene relacón de equvalenca ndca s dos smlardades enen la msma ''esrucura''. Lema 3.4: R E es una relacón de equvalenca. - Es reflexva: AR E A omando =(..n) ya que AR A y A R Id A. - Es smérca por ser R T y R smércas. - Es ransva por ser R T y R ransvas. Defncón 3.4: Sea S n el conjuno de smlardades de dmensón n. Cada elemeno de pares de R E (S n /R E ) es una esrucura de smlardad de dmensón n. 4 CONTEO DE ESTRUCTURAS DE SIMILARIDAD Para nvesgar el número de esrucuras de smlardad nos asamos en el sguene lema: Lema 4.(Teorema de Lee [3]): Sean C y D dos relacones orrosas y: T C F E(;C,D)= F D S C y D son smlardades enonces E(;C,D)= E amén es una smlardad [0,mn(mn(C),mn(D))]. Para cada marz, S n, que represena una smlardad de dmensón n exse una descomposcón: S n =P (E(;C nn, D n2n2 )) Para odas las smlardades de dmensón n nvesgamos el número de esrucuras dferenes a parr de las descomposcones posles: E(;C,D). Casos: n=2: Solamene exse una esrucura: a a n=3: Las descomposcones con (n =,n 2 =2) y (n =2,n 2 =) represenan a la msma esrucura ajo la permuacón =(3,2,). a E(;C,D)= a donde a. Por lo ano, exsen 2 esrucuras: a a a a a y a a a donde a >. n=4: - Las descomposcones con (n =,n 2 =3) y (n =3,n 2 =) represenan la msma esrucura ajo la permuacón =(4,2,3,). Las smlardades de dmensón 4 son de dos posles formas: - Descomposcón con (n =3,n 2 =): a a con a. Susuyendo cada desgualdad por una desgualdad esrca o una gualdad oenemos 4 posles esrucuras. - Descomposcón con (n =2,n 2 =2): a a donde a y (a C y D). Los casos con = ya se han endo en cuena en la descomposcón aneror. Tenemos 2 esrucuras adconales. - En oal, para n=4 exsen 6 esrucuras. 22 XIV Congreso Español sore Tecnologías y Lógca fuzzy

3 n=5: Las descomposcones con (n =,n 2 =4) y (n =4,n 2 =) represenan la msma esrucura ajo la permuacón =(5,2,3,4,). Las descomposcones con (n =2,n 2 =3): sean ac y, cd. Enonces se verfca: Comnacones posles de valores de a,,c: o a c 2 3 casos dsnos o a c 2 2 casos dsnos o (porque a= ya se ha raado) c a 2 casos dsnos adconales (porque a=c ya se ha raado y s a= oenemos una esrucura ya raada en la descomposcón aneror). - En oal, enemos 22 esrucuras dsnas para n=5. 4. HACIA UNA NOMENCLATURA DE LAS ESTRUCTURAS Sea S cualquer smlardad de dmensón n. Consderemos la descomposcón: T C F E(;C,D)= F D Sea z el número de elemenos de F y F T. Se verfca: n 2 =n 2 + n n n 2 z=2n n 2 Sea I={..n +n 2 -}. Denoamos cada esrucura medane la expresón: S (n,z) {q}{p} donde: - n es la dmensón, z es el número de elemenos de las sumarces F y F T. - q es el número de veces que aparece el valor. Para los elemenos de C se cumple: q n 2 -n. El valor del puene, q, es el prmer valor para el que se verfca q > n 2 -n. Para los elemenos de D se cumple: q q n 2 2 -n 2 Sea {p } la lsa de los valores dsnos de S, además: p j, al que s k<j la magnud del valor k es mayor que la magnud del valor j. S {p }={..k} con k n +n 2 - la ommos. Ejemplos: a - se denoa por S (2,2). a a a a - a a y a se denoan por a a S (3,4) {6} y S (3,4) {2,4} respecvamene. a a - con a>> se denoa S (4,8) {2,4,8}. S a>= enonces: S (4,8) {2,2} a a - con a>c>= se c c denoa S (5,2) {2,6,2}{,3,2}. Ese es el ejemplo más pequeño en el que podemos aprecar que la relacón enre los valores de las smlardades C y D es relevane. En la marz aneror s c>a, por ejemplo, no exse una funcón T monóona esrca que con la msma marz en la que se dé c<a. Son esrucuras dferenes: S (5,2) {2,6,2}{3,,2} y S (5,2) {2,6,2}{,3,2}. 4.2 ALGORITMO DE CLASIFICACIÓN DE SIMILARIDADES Podemos clasfcar fáclmene cualquer smlardad de dmensón n, S, en alguna esrucura de dmensón n con la que esé R E relaconada, medane el sguene algormo. Pasos: - Sea 0 j0 = el mínmo valor. - Sean I = { al que N y j0 = }, y I' = N \ I. - Sea el vecor al que: =I I'. - Para cada p,q {..n} hacer: a pq = [p] [q]. - z =2card(I) card(i ) - Sea {c } la lsa de las magnudes de los valores de C y {d } la lsa de valores de D, amos ordenados decrecenemene. - Sea {a j } la lsa de valores de S ordenados decrecenemene por su magnud. - Sea la lsa {nc } al que nc es el número de veces que aparece el valor en C y la lsa {nd } al que nd es el número de veces que aparece el valor j en D. - Para cada p,q I hacer: s a pq =c ncremena nc. - Para cada p,q I hacer: s a pq =d ncremena nd. - Perenece a S n,z {{nc},z,{nd}} {a} XIV Congreso Español sore Tecnologías y Lógca fuzzy 23

4 Ejemplo: Sea la smlardad, S, con n=4 : 0,4 0,7 0,4 0,4 0,4 0,6 0,7 0,4 0,4 0,4 0,6 0,4 Pasos: - El mínmo valor es: 2 =0,4. - I= {,3}, I'= {2,4}. - = {,3,2,4}. - Oenemos: 0,7 0,4 0,4 0,7 0,4 0,4 0,4 0,4 0,6 0,4 0,4 0,6 Esa smlardad se clasfca en S 4,8 {2,8,2}{,2}. 5 ÁRBOLES JERÁRQUICOS Y ESTRUCTURAS Una de las razones del nerés en el esudo de las smlardades es que generan ároles de parcones ndexados. En efeco, para cada enrada de a de la smlardad S defnda en el unverso X, la relacón crsp: x x j s y sólo s S(x,x j ) a es una parcón P a de X y s a, enonces P a es un refnameno de P. Defncón 5.: Un árol es un grafo sn cclos. Los nodos con una sola arsa se llaman hojas. La dsanca enre dos nodos es el número de arsas que los separan. Defncón 5.2: Un árol jerárquco es un árol con un nodo prvlegado A al que: - La dsanca d enre A y las hojas del árol es consane. - El cardnal de los nodos a dsanca k de A es menor que el cardnal de los nodos a dsanca k+ de A para odo k=,...,d. Es nmedao comproar los sguenes resulados. Proposcón 5.3: Dos relacones de smlardad generan el msmo árol (no ndexado) s y sólo s son equvalenes por R T. Proposcón 5.4: Dos relacones de smlardad generan el msmo árol ndexado salvo permuacones de sus ramas s y sólo s son equvalenes por R. Proposcón 5.5: Dos relacones de smlardad generan el msmo árol (no ndexado) salvo permuacones de sus ramas s y sólo s son equvalenes por R E. La úsqueda de esrucuras de smlardades es pues equvalene a hallar odos los ároles jerárqucos salvo permuacones de sus ramas. En la represenacón de las esrucuras medane ároles jerárqucos: - cada nodo represena una smlardad, - cada nodo hoja represena un ojeo del unverso X. - las arsas que unen nodos de dos nveles consecuvos represenan el valor de la relacón de los ojeos y/o smlardades. Ejemplos: a a - La smlardad S (3,4) {6}: a a se a a corresponde con el árol: - La smlardad S (3,4) {2,4}: a corresponde con el árol: a - La smlardad S (4,8) {2,4,8}: se corresponde con el árol: a a se 6 CONCLUSIONES Y TRABAJO FUTURO Una vez hemos defndo formalmene el concepo de esrucura, hemos enconrado una noacón adecuada para represenar cada esrucura y hemos enconrado una algormo que decde a que 24 XIV Congreso Español sore Tecnologías y Lógca fuzzy

5 esrucura perenece una smlardad, permendo una clasfcacón de las smlardades según su esrucura y un mejor enendmeno de las msmas que podría ser consderado para esudar el comporameno de las smlardades en dsnas aplcacones según su forma. Segumos uscando una fórmula, seguramene recursva, que nos cuene el número de esrucuras de smlardades de dmensón mayor a 5, y un algormo que genere un represenane de dchas esrucuras para cualquer dmensón, que podría acercarnos una manera de represenacón, a una mejor comprensón y como generador unversal de odas las smlardades fnas. Referencas [] J. Elorza y P. Burllo. On he relaon eween fuzzy preorders and fuzzy consequence operaors. In. J. Unceran. Fuzzness Knowl.-Based Sys., 7(3):29{234, 999}. [2] J. Jacas y J. Recasens. Fuzzy -ransve relaons: egenvecors and generaors. Fuzzy Ses Sys., 72(2):47{54, 995}. [3] Hsuan-Shh Lee. An opmal algorhm for compung he max-mn ransve closure of a fuzzy smlary marx. Fuzzy Ses and Sysems, 23():29{36, 200}. [4] Sklar A. Schwezer, B. Proalsc Merc Spaces. Dover Pulcaons, 984. [5] Rera T. How smlary marces are? Sochasca, 2(4), 978. [6] Valverde L. Trllas, E. An nqury no ndsngushaly operaors, n Aspecs of Vagueness. Redel Pus, 984. [7] L. Valverde. On he srucure of f-ndsngushaly operaors. Fuzzy Ses and Sysems 7, pages 33{328, 985}. [8] L. A. Zadeh. Smlary relaons and fuzzy orderngs. Inform. Sc. 3, pages 77{200, 97}. XIV Congreso Español sore Tecnologías y Lógca fuzzy 25

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC 9. IUITOS DE SEGUNDO ODEN Y 9.. INTODUIÓN En el capíulo aneror mos como los crcuos ressos con capacancas o los crcuos ressos con nducancas enen arables que son calculadas medane ecuacones dferencales de

Más detalles

Estadística de Precios de Vivienda

Estadística de Precios de Vivienda Esadísca de recos de Vvenda Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden Tema 5. Análss Transoro de Crcuos de Prmer y egundo Orden 5.1 Inroduccón 5.2 Crcuos C sn fuenes 5.3 Crcuos C con fuenes 5.4 Crcuos L 5.5 Crcuos LC sn fuenes v() 5.6 Crcuos LC con fuenes () C () C v( )

Más detalles

4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos

4o. Encuentro. Matemáticas en todo y para todos. Uso de las distribuciones de probabilidad en la simulación de sistemas productivos 4o. Encuenro. Maemácas en odo y para odos. Uso de las dsrbucones de probabldad en la smulacón de ssemas producvos Leopoldo Eduardo Cárdenas Barrón lecarden@esm.mx Deparameno de Ingenería Indusral y de

Más detalles

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos Curso 26/7 Economería II Tema 9: Modelos con reardos dsrbudos (I) 1. Análss de los efecos dnámcos en un modelo de reardos dsrbudos 2. La dsrbucón de reardos Tema 9 1 9.1. Análss de los efecos dnámcos en

Más detalles

Estadística de Precios de Suelo

Estadística de Precios de Suelo Esadísca de Precos de Suelo Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida

Análisis de supervivencia. Albert Sorribas Grup de Bioestadística I Biomatemàtica Departament de Ciències Mèdiques Bàsiques Universitat de Lleida Análss de supervvenca Alber Sorrbas Grup de Boesadísca I Bomaemàca Deparamen de Cènces Mèdques Bàsques Unversa de Lleda Esquema general Inroduccón al análss de supervvenca Tpos de esudos El concepo de

Más detalles

1. MODELOS DE SERIES TEMPORALES UNIECUACIONALES

1. MODELOS DE SERIES TEMPORALES UNIECUACIONALES oro hasco rgoyen, Dpo. Economía Aplcada, UAM. EJEMPLO DE MODELOS EONOMÉTROS Ver el aso 9 (pag. 55 y ss.) del lbro de A. Puldo y A. López (999), Predccón y Smulacón aplcada a la economía y gesón de empresas.

Más detalles

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D PROBEMAS E IRUITOS ON TRANSISTORES Problema : eermnar los punos de funconameno de los dsposvos semconducores de los sguenes crcuos: +2V +2V +2V β= β= K β= β= (a) (b) (c) (d) Problema 2: eermnar el puno

Más detalles

Consideraciones generales sobre dinámica estructural

Consideraciones generales sobre dinámica estructural Capíulo Consderacones generales sobre dnámca esrucural Inroduccón El obeo de la dnámca esrucural es el análss de esrucuras bao cargas dnámcas, es decr cargas que varían en el empo. Aunque la mayoría de

Más detalles

Los esquemas de la reproduccio n de Marx

Los esquemas de la reproduccio n de Marx Los esquemas de la reproducco n de Marx Alejandro Valle Baeza Los esquemas de la reproduccón smple y amplada consuyen sólo una pare del análss del proceso de crculacón del capal. Fueron presenados en la

Más detalles

Mecanismos de palanca. Apuntes.

Mecanismos de palanca. Apuntes. Mecansmos de palanca. Apunes. Oreses González Qunero Deparameno de Ingenería Mecánca Faculad de de Ingenerías Químca y Mecánca 2007 1 1.- Inroduccón. El análss de los mecansmos y máqunas ene por objevo

Más detalles

El signo negativo indica que la fem inducida es una E que se opone al cambio de la corriente.

El signo negativo indica que la fem inducida es una E que se opone al cambio de la corriente. AUTO-INDUCTANCIA: Una bobna puede nducr una fem en s msma.s la correne de una bobna camba, el flujo a ravés de ella, debdo a la correne, ambén se modfca. Así como resulado del cambo de la correne de la

Más detalles

Tema 4. Condensadores y Bobinas

Tema 4. Condensadores y Bobinas Tema 4. ondensadores y Bobnas 4. Inroduccón 4. ondensadores 4.3 Energía almacenada en un condensador 4.4 Asocacón de condensadores 4.5 Bobnas 4.6 Energía almacenada en una bobna 4.7 Asocacón de bobnas

Más detalles

5. Los sistemas de pensiones y el ahorro nacional

5. Los sistemas de pensiones y el ahorro nacional 5. Los ssemas de pensones y el ahorro naconal Uno de los aspecos más mporanes ras la reforma a un ssema de pensones es su mpaco sobre el ahorro naconal dado el vínculo enre ése y el desempeño de la economía.

Más detalles

Recuperación de la Información

Recuperación de la Información ssema de recuperacón de nformacón Recuperacón de la Informacón consula documenos mach Documenos Concepos Báscos relevane? ssema de recuperacón de nformacón palabras clave ndexado Las palabras clave (keywords)

Más detalles

Optimización del balance de carga en circuitos de distribución primaria

Optimización del balance de carga en circuitos de distribución primaria energéca Vol. XXX, No. /009 TRABAJOS TEORCOEXPERMENTALES Opmzacón del balance de carga en crcuos de dsrbucón prmara gnaco Pérez Recbdo: Ocubre del 008 Aprobado: Dcembre del 008 Resumen/ Absrac Las medcones

Más detalles

Índices de precios y Preferencias Reveladas. Microeconomía Douglas C. Ramírez V.

Índices de precios y Preferencias Reveladas. Microeconomía Douglas C. Ramírez V. Índces de precos y referencas Reveladas Mcroeconomía Douglas C. Ramírez V. LOS ÍNDICES Los números índces o índces son un nsrumeno esadísco muy úl y de uso muy exenddo. G.R. Carl. En Iala, en 1764 realzó

Más detalles

METODOLOGÍA PARA EL CÁLCULO DEL ÍNDICE COLCAP

METODOLOGÍA PARA EL CÁLCULO DEL ÍNDICE COLCAP METODOLOGÍA PARA EL CÁLCULO DEL ÍNDICE COLCAP MARZO DE 20 TABLA DE CONTENIDO. GENERALIDADES:... 3.. VALOR BASE... 3.2. NÚMERO DE EMISORES QUE COMPONEN EL ÍNDICE... 3.3. ACCIONES POR EMISOR... 3.4. PARTICIPACIÓN

Más detalles

ESTIMACIÓN DE LAS ELASTICIDADES DE LA DEMANDA DE GASOLINA EN EL ECUADOR: UN ANÁLISIS EMPÍRICO

ESTIMACIÓN DE LAS ELASTICIDADES DE LA DEMANDA DE GASOLINA EN EL ECUADOR: UN ANÁLISIS EMPÍRICO ESTIMACIÓN DE LAS ELASTICIDADES DE LA DEMANDA DE GASOLINA EN EL ECUADOR: UN ANÁLISIS EMPÍRICO Fabrco Morán Rugel 1, José Zúñga Basdas 2, Francsco Marro García 3 RESUMEN Después de haber analzado las écncas

Más detalles

7) Considere los ejercicios 2.b) y 2.c) a) Encuentre un nuevo modelo en variable de estados considerando la transformación dada por:

7) Considere los ejercicios 2.b) y 2.c) a) Encuentre un nuevo modelo en variable de estados considerando la transformación dada por: 7 Consdere los ejerccos.b.c a Encuenre un nueo modelo en arable de esados consderando la ransformacón dada por: x x x x b Para.d halle la ransformacón por auoalores Resoleremos el ncso a para el ejercco.c

Más detalles

1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA

1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA hp://www.vinuesa.com 1.- ALGORITMOS RÁPIDOS PARA LA EJECUCIÓN DE FILTROS DE PILA 1.1.- INTRODUCCIÓN Los filros de pila consiuyen una clase de filros digiales no lineales. Un filro de pila que es usado

Más detalles

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase

Técnicas cualitativas para las Ecuaciones diferenciales de primer orden: Campos de pendientes y líneas de fase Lección 5 Técnicas cualiaivas para las Ecuaciones diferenciales de primer orden: Campos de pendienes y líneas de fase 5.. Técnicas Cualiaivas Hasa ahora hemos esudiado écnicas analíicas para calcular,

Más detalles

Cálculo y Estadística

Cálculo y Estadística Cálculo y Esadísca PROBABILIDAD, VARIABLES ALEATORIAS Y DISTRIBUCIONES ª Prueba de Evaluacón Connua 0--5 Tes en Moodle correspondene a la pare de Probabldad, Varables Aleaoras y Dsrbucones ( Punos).- Una

Más detalles

PRÁCTICA 1: Identificación del modelo de un motor de C.C. con entrada en escalón de tensión

PRÁCTICA 1: Identificación del modelo de un motor de C.C. con entrada en escalón de tensión PÁCTICA 1: Idenfcacón del modelo de un moor de C.C. con enrada en escalón de ensón Ojevos: Guón: Caracerzar un moor de C.C. Deermnar las consanes y τ. Smulacón del funconameno de un moor de C.C. en Sm.

Más detalles

Circuitos Rectificadores 1/8

Circuitos Rectificadores 1/8 Crcuos Recfcadores 1/8 1. Inroduccón Un crcuo recfcador es un crcuo que ene la capacdad de converr una señal de c.a. en una señal de c.c. pulsane, ransformando así una señal bpolar en una señal monopolar.

Más detalles

David Ceballos Hornero Departament de Matemàtica Econòmica, Financera i Actuarial. Universitat de Barcelona ceballos@eco.ub.es

David Ceballos Hornero Departament de Matemàtica Econòmica, Financera i Actuarial. Universitat de Barcelona ceballos@eco.ub.es Tme dependence on Fnancal Operaons of Invesmen Davd eballos Hornero Deparamen de Maemàca Econòmca, Fnancera Acuaral. Unversa de Barcelona ceballos@eco.ub.es Dynamc analyss of a Fnancal Operaon of Invesmen

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. Una parícula se muee en la dirección posiia del eje X, de modo que su elocidad aría según la ley = α donde α es una consane. Teniendo en cuena que en el

Más detalles

TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS

TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS 3 39 Ssema de generacón elécrca con pla de combusble de óxdo sóldo almenado con resduos foresales y su opmzacón medane algormos basados

Más detalles

CRÉDITO AGRICOLA. Consideraciones del producto:

CRÉDITO AGRICOLA. Consideraciones del producto: Versón: CA-5.04. CRÉDITO AGRICOLA Consderacones del produco: Son crédos que se oorgan para fnancameno de acvdades agropecuaras y se basan en la capacdad de pago de los clenes y su hsoral credco. Se conceden

Más detalles

LA MODELIZACIÓN DE PROCESOS

LA MODELIZACIÓN DE PROCESOS L MODELIZIÓN DE ROESOS En ese capíulo, se presena una meodología en desarrollo para modelos dnámcos de procesos químcos. Después de esudar ese capíulo, el esudane debería ser capaz de: Escrbr las ecuacones

Más detalles

Determinantes de los spreads de tasas de los bonos. corporativos: revisión de la literatura

Determinantes de los spreads de tasas de los bonos. corporativos: revisión de la literatura UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS ECONÓMICAS Y ADMINISTRATIVAS ESCUELA DE ECONOMÍA Y ADMINISTRACIÓN Deermnanes de los spreads de asas de los bonos corporavos: revsón de la leraura SEMINARIO PARA

Más detalles

FASCÍCULO: MATRICES Y DETERMINANTES

FASCÍCULO: MATRICES Y DETERMINANTES FSÍULO: MRIES Y DEERMINNES on el avance de la ecnología en especal con el uso de compuadoras personales, la aplcacón de los concepos de marz deermnane ha cobrado alcances sn precedenes en nuesros días.

Más detalles

Nota de Clase 5 Introducción a modelos de Data Panel: Generalidades

Nota de Clase 5 Introducción a modelos de Data Panel: Generalidades oa de Clase 5 Inroduccón a modelos de Daa Panel: Generaldades. Por qué daos de panel? Los modelos de daos de panel son versones mas generales de los modelos de core ansversal seres de empo vsos hasa el

Más detalles

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA.

UD: 3. ENERGÍA Y POTENCIA ELÉCTRICA. D: 3. ENEGÍA Y OENCA ELÉCCA. La energía es definida como la capacidad de realizar rabajo y relacionada con el calor (ransferencia de energía), se percibe fundamenalmene en forma de energía cinéica, asociada

Más detalles

CICLO BASICO DE INGENIERIA. Aplicar los conceptos fundamentales relacionados con el algebra matricial y calculo de determinantes.

CICLO BASICO DE INGENIERIA. Aplicar los conceptos fundamentales relacionados con el algebra matricial y calculo de determinantes. REPÚLI OLIVRIN DE VENEZUEL MINISTERIO DEL PODER POPULR PR L DEFENS UNIVERSIDD NIONL EPERIMENTL DE L FUERZ RMD NÚLEO ZULI DIVISIÓN DE SERETRÍ RRER: SIGNTUR: MT - NOMRE DEL PROFESOR: ILO SIO DE INGENIERI

Más detalles

Productos derivados sobre bienes de consumo

Productos derivados sobre bienes de consumo Producos dervados sobre benes de consumo Francsco Venegas Marínez, Salvador Cruz Ake n Resumen: Ese rabajo de nvesgacón desarrolla un modelo de equlbro general con expecavas raconales en empo connuo úl

Más detalles

DEFINICIÓN DE INDICADORES

DEFINICIÓN DE INDICADORES DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.

Más detalles

TEMA I: FUNCIONES ELEMENTALES

TEMA I: FUNCIONES ELEMENTALES TEMA I: FUNCIONES ELEMENTALES. Función Logarimo Todos conocemos la definición de logarimo en base b, siendo b un número enero posiivo disino de. u = log b x x = b u y la propiedad fundamenal log b (xy)

Más detalles

EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE)

EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE) EL METODO PERT (PROGRM EVLUTION ND REVIEW TECHNIQUE) METODO DE PROGRMCION Y CONTROL DE PROYECTOS Desarrollado en 1958, para coordnar y conrolar la consruccón de submarnos Polars. El méodo PERT se basa

Más detalles

Introducción a la Teoría de Inventarios

Introducción a la Teoría de Inventarios Clase # 4 Las organzacones esán consanemene vendo como camba el nvel de sus nvenaros en el empo. Inroduccón a la Teoría de Invenaros El ener un nvel bajo de nvenaros mplca resgos para no sasacer la demanda

Más detalles

TEMA 7 MODELO IS-LM EN ECONOMÍAS ABIERTAS

TEMA 7 MODELO IS-LM EN ECONOMÍAS ABIERTAS TMA 7 MODLO IS-LM N CONOMÍAS ABIRTAS l modelo IS-LM en economías aberas Concepos fundamenales n el ema aneror analzamos el po de cambo como s fuera un nsrumeno de políca económca. Sn embargo ése se deermna

Más detalles

ÁREA 4 y 9: ECONOMÍA INDUSTRIAL, DE SERVICIOS Y DE LA INFORMACIÓN Y EL CONOCIMIENTO. Departamento de Economía Aplicada

ÁREA 4 y 9: ECONOMÍA INDUSTRIAL, DE SERVICIOS Y DE LA INFORMACIÓN Y EL CONOCIMIENTO. Departamento de Economía Aplicada ÁREA 4 y 9: ECONOMÍA INDUSTRIAL, DE SERVICIOS Y DE LA INFORMACIÓN Y EL CONOCIMIENTO Deparameno de Economía Aplcada Faculad de Cencas Económcas y Empresarales e-mal: ecoapl@eco.uva.es Avda. del Valle de

Más detalles

Macroeconomic Effects of Fiscal Shocks in the European Union: A GVAR Model

Macroeconomic Effects of Fiscal Shocks in the European Union: A GVAR Model Unversy of Exremadura Deparmen of Economcs Macroeconomc Effecs of Fscal Shocks n he European Unon: A GVAR Model Ths verson: February 212 Alejandro RICCI RISQUETE Julán RAMAJO HERNÁNDEZ Unversdad de Exremadura

Más detalles

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo:

Examen Parcial de Econometría II. Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: Escuela Superior Poliécnica del Lioral Faculad de Economía y Negocios 30-11-2011 Examen Parcial de Economería II Nombre: RESOLUCION DEL EXAMEN PARCIAL Paralelo: REGLAMENTO DE EVALUACIONES Y CALIFICACIONES

Más detalles

METODOLOGÍA ENERGÍA ELECTRICA

METODOLOGÍA ENERGÍA ELECTRICA Insuo Naconal de Esadíscas SUBDIRECCIÓN TÉCNICA Depo. Invesgacón y Desarrollo Esadísco SUBDIRECCION DE OPERACIONES Subdeparameno. Esadíscas Secorales METODOLOGÍA ENERGÍA ELECTRICA Sanago, 26 Dcembre de

Más detalles

MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO

MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO Sabes cuáles son las caraceríscas del momeno reclíneo unormemene acelerado? INTRODUCCION Prmero debemos saber que denro de la cnemáca exsen derenes pos de

Más detalles

MEDICIÓN DE LA ACTIVIDAD MINERA EN LA REGIÓN DE ARICA Y PARINACOTA

MEDICIÓN DE LA ACTIVIDAD MINERA EN LA REGIÓN DE ARICA Y PARINACOTA esudos esudos MEDCÓN DE LA ACTVDAD MNERA EN LA REGÓN DE ARCA Y PARNACOTA Ocubre de 28 N Subdreccón Técnca Deparameno de Esudos Económcos Coyunurales Medcón de la Acvdad Mnera en la Regón de Arca y Parnacoa

Más detalles

7. CAPACITANCIA E INDUCTANCIA

7. CAPACITANCIA E INDUCTANCIA 7. APAITANIA E INDUTANIA 7.. INTRODUIÓN El elemeno paso e os ermnales que hemos so hasa el momeno, eso es la Ressenca, presena un comporameno lneal enre su olaje y correne. Eso prouce ecuacones algebracas

Más detalles

6. ALGEBRAS DE BOOLE

6. ALGEBRAS DE BOOLE 6.1. Relaciones de orden Relación de orden Se llama relación de orden sobre un conjuno A a cualquier relación R enre sus elemenos que verifica las siguienes res propiedades: 1. Refleiva: ara, para cualquier

Más detalles

CRÉDITO PESCA. Consideraciones del producto:

CRÉDITO PESCA. Consideraciones del producto: CRÉDITO PESCA Consderacones del produco: Los crédos se oorgan para el fnancameno de las acvdades de pesca: comerco, exraccón y/o ndusralzacón. Se basan en la capacdad de pago de los clenes y su hsoral

Más detalles

SEGURO DE VIDA INDIVIDUAL CON PLAN DE AHORRO PREVISIONAL VOLUNTARIO. Incorporada al Depósito de Pólizas bajo el código POL 2 09 032

SEGURO DE VIDA INDIVIDUAL CON PLAN DE AHORRO PREVISIONAL VOLUNTARIO. Incorporada al Depósito de Pólizas bajo el código POL 2 09 032 SEGURO DE VIDA INDIVIDUAL CON PLAN DE AHORRO PREVISIONAL VOLUNTARIO Incorporada al Depóso de Pólzas bajo el códgo POL 2 09 032 CONDICIONES GENERALES ARTÍCULO 1º: DEFINICIONES 1. POLIZA: Es el conrao de

Más detalles

METODOLOGÍA ENERGÍA ELÉCTRICA

METODOLOGÍA ENERGÍA ELÉCTRICA Insuo Naconal de Esadíscas SUBDIRECCIÓN TÉCNICA Depo. Invesgacón y Desarrollo Esadísco SUBDIRECCIÓN DE OPERACIONES Subdepo. Esadíscas Secorales METODOLOGÍA ENERGÍA ELÉCTRICA GGM/GMA Sanago, 26 Dcembre

Más detalles

NORMAS PARA LA CONSTITUCIÓN DE PREVISIONES PARA RIESGOS CREDITICIOS

NORMAS PARA LA CONSTITUCIÓN DE PREVISIONES PARA RIESGOS CREDITICIOS NORMA PARTIULAR 3.2 NORMAS PARA LA ONSTITUIÓN DE PREVISIONES PARA RIESGOS REDITIIOS a. Prevsones para resgos credcos ) Prevsón según caegoría de resgo ) Mono de resgo sujeo a prevsón ) Deduccón de garanías

Más detalles

Las derivadas de los instrumentos de renta fija

Las derivadas de los instrumentos de renta fija Las derivadas de los insrumenos de rena fija Esrella Peroi, MBA Ejecuivo a cargo Capaciación & Desarrollo Bolsa de Comercio de Rosario eperoi@bcr.com.ar Como viéramos en el arículo el dilema enre la asa

Más detalles

MODELO DE UN SISTEMA MRP CERRADO INTEGRANDO INCERTIDUMBRE EN LOS TIEMPOS DE ENTREGA, DISPONIBILIDAD DE LA CAPACIDAD DE FABRICACIÓN E INVENTARIOS

MODELO DE UN SISTEMA MRP CERRADO INTEGRANDO INCERTIDUMBRE EN LOS TIEMPOS DE ENTREGA, DISPONIBILIDAD DE LA CAPACIDAD DE FABRICACIÓN E INVENTARIOS MODELO DE UN SISTEMA MRP CERRADO INTEGRANDO INCERTIDUMBRE EN LOS TIEMPOS DE ENTREGA, DISPONIBILIDAD DE LA CAPACIDAD DE FABRICACIÓN E INVENTARIOS TESIS DE GRADO PARA OPTAR AL TITULO DE MAGISTER EN INGENIERÍA

Más detalles

Tema 2 Circuitos Dinámicos de Primer Orden

Tema 2 Circuitos Dinámicos de Primer Orden Tema 2: Crcuos Dnámcos de Prmer Orden Tema 2 Crcuos Dnámcos de Prmer Orden A nade en su sano juco se le habría ocurrdo preparar enonces odos esos componenes (ranssores, ressores y condensadores a parr

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAÍTULO 3 Aplicaciones de primer orden 3.2. Modelo logísico El modelo de Malhus iene muchas limiaciones. or ejemplo, predice que una población crecerá exponencialmene con el iempo, que no ocurre en la

Más detalles

ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL

ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL ANALISIS DE INDICADORES DE COMERCIO EXTERIOR Y POLÍTICA COMERCIAL José E. Durán Lma, Ofcal de Asunos Económcos Claudo Aravena, Analsa Esadísco Carlos Ludeña, Consulor Inernaconal Asesoría Técnca de la

Más detalles

EJERCICIOS: Análisis de circuitos en el dominio del tiempo

EJERCICIOS: Análisis de circuitos en el dominio del tiempo EJEIIOS: Análss de crcuos en el domno del empo. égmen ransoro y permanene. En cada uno de los sguenes crcuos el nerrupor ha esado abero largo empo. Se cerra en. Deermnar o I, dbujar la onda correspondene

Más detalles

Manual Metodológico Índice de Costos del Transporte Base 2009 = 100

Manual Metodológico Índice de Costos del Transporte Base 2009 = 100 Manual Meodológco Índce de Cosos del Transpore Base 2009 00 Insuo Naconal de Esadíscas Subdreccón de Operacones Deparameno de Esadíscas de Precos Febrero de 200 Índce. INTRODUCCIÓN...5 2. DEFINICIÓN DEL

Más detalles

APUNTES CLASES DE PRÁCTICAS ECONOMIA ESPAÑOLA (Y MUNDIAL) CURSO 2010/2011, 2º. CUATRIMESTRE DEPARTAMENTO DE ECONOMÍA UNIVERSIDAD CARLOS III DE MADRID

APUNTES CLASES DE PRÁCTICAS ECONOMIA ESPAÑOLA (Y MUNDIAL) CURSO 2010/2011, 2º. CUATRIMESTRE DEPARTAMENTO DE ECONOMÍA UNIVERSIDAD CARLOS III DE MADRID APUTES CLASES DE PRÁCTCAS ECOOMA ESPAÑOLA (Y MUDAL) CURSO 200/20, 2º. CUATRMESTRE DEPARTAMETO DE ECOOMÍA UVERSDAD CARLOS DE MADRD DCE DE PRÁCTCAS.- Conabldad aconal. 2.- ndces y Deflacores. 3.- Curvas

Más detalles

Ciencia en su PC ISSN: 1027-2887 cpc@megacen.ciges.inf.cu. Centro de Información y Gestión Tecnológica de Santiago de Cuba. Cuba

Ciencia en su PC ISSN: 1027-2887 cpc@megacen.ciges.inf.cu. Centro de Información y Gestión Tecnológica de Santiago de Cuba. Cuba Cenca en su PC ISSN: 107-887 cpc@megacen.cges.nf.cu Cenro de Informacón y Gesón Tecnológca de Sanago de Cuba Cuba Herold-García, Slena; Escobedo-Nco, Mrela SEGMENTACIÓN DE IMÁGENES MÉDICAS CON LA APLICACIÓN

Más detalles

El comportamiento del precio de las acciones

El comportamiento del precio de las acciones El comporamieno del precio de las acciones Esrella Peroi Invesigador enior Bolsa de Comercio de Rosario eperoi@bcr.com.ar Para comprender el funcionamieno de los modelos de valuación de opciones sobre

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

UNIDAD 4 SISTEMAS COMPLEJOS DE TUBERÍAS

UNIDAD 4 SISTEMAS COMPLEJOS DE TUBERÍAS UNI 4 SISTEMS COMPEJOS E TUERÍS Capíulo REES E ISTRIUCIÓN E GU SECCIÓN : TUERÍS EN SERIE Y EN PREO INTROUCCIÓN Hasa aoa se a esudado po lo eneal conduccones ceadas de un solo conduco y de seccón consane.

Más detalles

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A

= Δx 2. Escogiendo un sistema de referencia común para ambos móviles x A Ejemplos de solución a problemas de Cinemáica de la parícula Diseño en PDF MSc. Carlos Álvarez Marínez de Sanelices, Dpo. Física, Universidad de Camagüey. Carlos.alvarez@reduc.edu.cu Acividad # C1. Un

Más detalles

Ecuaciones diferenciales, conceptos básicos y aplicaciones

Ecuaciones diferenciales, conceptos básicos y aplicaciones GUIA 1 Ecuaciones diferenciales, concepos básicos y aplicaciones Las ecuaciones diferenciales ordinarias son una herramiena básica en las ciencias y las ingenierías para el esudio de sisemas dinámicos

Más detalles

CINEMATICA. que interpretemos erróneamente cuándo un cuerpo se acelera

CINEMATICA. que interpretemos erróneamente cuándo un cuerpo se acelera CINEMTIC Inroducción Cinemáica es la pare de la física que esudia el movimieno de los cuerpos, aunque sin ineresarse por las causas que originan dicho movimieno. Un esudio de las causas que lo originan

Más detalles

UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temístocles Montás

UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temístocles Montás UNA APROXIMACION A LA SOSTENIBILIDAD FISCAL EN REPUBLICA DOMINICANA Juan Temísocles Monás Puede el comporamieno acual de la políica fiscal sosenerse sin generar una deuda pública que crezca sin límie?

Más detalles

ANÁLISIS DE LOS CAMBIOS EN LA PARTICIPACIÓN LABORAL FEMENINA EN CHILE. Evelyn Benvin y Marcela Perticará ƒ. Resumen

ANÁLISIS DE LOS CAMBIOS EN LA PARTICIPACIÓN LABORAL FEMENINA EN CHILE. Evelyn Benvin y Marcela Perticará ƒ. Resumen ANÁLISIS DE LOS CAMBIOS EN LA PARTICIPACIÓN LABORAL EMENINA EN CHILE Evelyn Benvn y Marcela Percará ƒ Esa versón: Marzo 2007 Resumen En ese rabajo hemos aplcado écncas de descomposcón mcroeconomércas con

Más detalles

INDICE DE COSTES DE LA CONSTRUCCIÓN

INDICE DE COSTES DE LA CONSTRUCCIÓN INDICE DE COSTES DE LA CONSTRUCCIÓN. INTRODUCCION Y OBJETIVOS El índce de coses de la consruccón es un ndcador coyunural que elabora el Mnsero de Fomeno y que ene como objevo medr la evolucón, en érmnos

Más detalles

Estimación de una frontera de eficiencia técnica en el mercado de seguros uruguayo

Estimación de una frontera de eficiencia técnica en el mercado de seguros uruguayo Esmacón de una fronera de efcenca écnca en el mercado de seguros uruguao Faculad de Cencas Económcas de Admnsracón Unversdad de la Repúblca María Eugena Sann Fernando Zme Tel.: 598 709578 Tel.: 598 70008

Más detalles

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS

TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS TEMA 9: LA TASA NATURAL DE DESEMPLEO Y LA CURVA DE PHILLIPS 9.2 La asa naural de desempleo y la curva de Phillips La relación enre el desempleo y la inflación La curva de Phillips, basada en los daos aneriores

Más detalles

Cobertura de una cartera de bonos con forwards en tiempo continuo

Cobertura de una cartera de bonos con forwards en tiempo continuo Coberura de una carera de bonos con forwards en iempo coninuo Bàrbara Llacay Gilber Peffer Documeno de Trabajo IAFI No. 7/4 Marzo 23 Índice general Inroducción 2 Objeivos......................................

Más detalles

MATRICES. M(n) ó M nxn A =

MATRICES. M(n) ó M nxn A = MTRICES Definición de mari. Una mari de orden m n es un conjuno de m n elemenos perenecienes a un conjuno, que para nosoros endrá esrucura de cuerpo conmuaivo y lo denoaremos por K, dispuesos en m filas

Más detalles

Master en Economía Macroeconomía II. 1 Problema de Ahorro-Consumo en Horizonte Finito

Master en Economía Macroeconomía II. 1 Problema de Ahorro-Consumo en Horizonte Finito Maser en Economía Macroeconomía II Profesor: Danilo Trupkin Se de Problemas 1 - Soluciones 1 Problema de Ahorro-Consumo en Horizone Finio Considere un problema de ahorro-consumo sobre un horizone finio

Más detalles

CIRCUITOS CON DIODOS.

CIRCUITOS CON DIODOS. ema 3. Crcus cn dds. ema 3 CCUOS CON OOS. 1.- plcacón elemenal..- Crcus recradres (lmadres)..1.- eslucón de un crcu recradr ulzand las cuar aprxmacnes del dd..1.1.- eslucón ulzand la prmera aprxmacón..1..-

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

Figura 1. Coordenadas de un punto

Figura 1. Coordenadas de un punto 1 Tema 1. Sección 1. Diagramas espacio-iempo. Manuel Guiérrez. Deparameno de Álgebra, Geomería y Topología. Universidad de Málaga. 2971-Málaga. Spain. Marzo de 21. En la mecánica es usual incluir en los

Más detalles

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales.

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL. 1. Sistemas analógicos y digitales. T-1 Inroducción a la elecrónica digial 1 TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL El raamieno de la información en elecrónica se puede realizar de dos formas, mediane écnicas analógicas o mediane écnicas

Más detalles

MADRID / SEPTIEMBRE99. LOGSE / FÍSICA / ÓPTICA/OPCIÓN A/ CUESTIÓN 3

MADRID / SEPTIEMBRE99. LOGSE / FÍSICA / ÓPTICA/OPCIÓN A/ CUESTIÓN 3 MADRID / SEPTIEMBRE99. LOGSE / FÍSICA / ÓPTICA/OPCIÓN A/ CUESTIÓN 3 Una fuene lumnosa eme luz monocromáca de longud de onda en el vacío lo = 6 l0-7 m (luz roja) que se propaga en el agua de índce de refraccón

Más detalles

Flujo máximo: Redes de flujo y método de Ford-Fulkerson. Jose Aguilar

Flujo máximo: Redes de flujo y método de Ford-Fulkerson. Jose Aguilar Flujo máximo: Rede de flujo y méodo de Ford-Fulkeron Joe Aguilar b a d c 0 0 0 0 0 Flujo en Rede. Flujo máximo Algorimo de Flujo Lo algorimo de flujo reuelven el problema de enconrar el flujo máximo de

Más detalles

Distorsiones creadas por la regulación colombiana: El Asset Swap Spread como proxy del Credit Default Swap en el mercado local.

Distorsiones creadas por la regulación colombiana: El Asset Swap Spread como proxy del Credit Default Swap en el mercado local. Dsorsones creadas por la regulacón colombana: El Asse Swap Spread como proxy del Cred Defaul Swap en el mercado local. Andrés Gómez Caegoría Lbre Dsorsones creadas por la regulacón colombana: El Asse Swap

Más detalles

Análisis de la competencia en un mercado mayorista de electricidad: el caso de España

Análisis de la competencia en un mercado mayorista de electricidad: el caso de España Fac. CC. Económcas y Empresarales Unversdad de La Laguna Fac. CC. Económcas y Empresarales Unv. de Las Palmas de Gran Canara Análss de la compeenca en un mercado mayorsa de elecrcdad: el caso de España

Más detalles

Modelo de regresión lineal simple

Modelo de regresión lineal simple Modelo de regresión lineal simple Inroducción Con frecuencia, nos enconramos en economía con modelos en los que el comporamieno de una variable,, se puede explicar a ravés de una variable X; lo que represenamos

Más detalles

La transformada de Laplace

La transformada de Laplace Capíulo 8 La ransformada de Laplace 8.. Inroducción a las ransformadas inegrales En ese aparado aprenderemos un méodo alernaivo para resolver el problema de valores iniciales (4.5.) y (x) + py (x) + qy(x)

Más detalles

SOLUCIONARIO GUÍA. Ítem Alternativa Defensa

SOLUCIONARIO GUÍA. Ítem Alternativa Defensa SOLUCIONARIO GUÍA Íem Alernaa Deena 1 C En un gráco elocdad / empo, al realzar el cálculo de la pendene y área bajo la cura, obenemo la aceleracón y danca recorrda, repecamene. A Según la expreón para

Más detalles

Representación VEC. Planteamiento de un sistema de ecuaciones. Esquema de retroalimentación. , pero requiere

Representación VEC. Planteamiento de un sistema de ecuaciones. Esquema de retroalimentación. , pero requiere Represenacón VEC Dado que las relacones económcas enre varables no se presenan esrcamene en un sendo específco, es decr, puede exsr enre ellas esquemas de reroalmenacón o complejos mecansmos de rasmsón

Más detalles

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República.

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República. 9/05/03 ALN - VD CeCal In. Co. Facultad de Ingenería Unversdad de la Repúblca Índce Defncón Propedades de VD Ejemplo de VD Métodos para calcular VD Aplcacones de VD Repaso de matrces: Una matrz es Untara

Más detalles

LA VELOCIDAD DE CIRCULACION DE DINERO EN EL ECUADOR

LA VELOCIDAD DE CIRCULACION DE DINERO EN EL ECUADOR 1 LA VELOCIDAD DE CIRCULACION DE DINERO EN EL ECUADOR José Luis Moncayo Carrera 1 Ec. Manuel González 2 RESUMEN El presene documeno iene como objeivo, presenar la aplicación de écnicas economéricas en

Más detalles

PROBLEMAS RESUELTOS 1 (continuidad, derivabilidad y diferenciabilidad de funciones de varias variables)

PROBLEMAS RESUELTOS 1 (continuidad, derivabilidad y diferenciabilidad de funciones de varias variables) Funciones de varias variables. PROBLEMAS RESUELTOS 1 (coninuidad, derivabilidad y diferenciabilidad de funciones de varias variables) PROBLEMA 1 Esudiar la coninuidad de la función: xy ( xy, ) (,) x +

Más detalles

JUEGOS RESTRINGIDOS MULTICRITERIO. Amparo Mª Mármol Conde Luisa Monroy Berjillos Victoriana Rubiales Caballero 1

JUEGOS RESTRINGIDOS MULTICRITERIO. Amparo Mª Mármol Conde Luisa Monroy Berjillos Victoriana Rubiales Caballero 1 éodo aemáco para la Economía y la Emprea JUEGOS RESTRINGIDOS UTICRITERIO Amparo ª ármol Conde ua onroy Berllo Vcorana Rubale Caballero Deparameno Economía Aplcada III Unverdad de Sevlla Reumen: a eoría

Más detalles

Función Financiera 12/03/2012

Función Financiera 12/03/2012 Funcón Fnancera /03/0 Asgnaura: Admnsracón Fnancera Bblografía: Albero Macaro - Cr. Julo César Torres Profesor Tular Regular Faculad de Cencas Económcas y Jurídcas Unversdad Naconal de La Pampa Cr. Julo

Más detalles

LA INNOVACION EN LA LITERATURA RECIENTE DEL CRECIMIENTO ENDOGENO

LA INNOVACION EN LA LITERATURA RECIENTE DEL CRECIMIENTO ENDOGENO L INNOVCION EN L LITERTUR RECIENTE DEL CRECIMIENTO ENDOGENO Carlos Borondo rrbas Unversdad de Valladold Revsón: sepembre 28 Resumen Ese arículo presena un repaso de los prncpales modelos recenes que hacen

Más detalles

Cifrado de imágenes usando autómatas celulares con memoria

Cifrado de imágenes usando autómatas celulares con memoria Cfrado de mágenes usando autómatas celulares con memora L. Hernández Encnas 1, A. Hernández Encnas 2, S. Hoya Whte 2, A. Martín del Rey 3, G. Rodríguez Sánchez 4 1 Insttuto de Físca Aplcada, CSIC, C/Serrano

Más detalles

Funciones exponenciales y logarítmicas

Funciones exponenciales y logarítmicas 89566 _ 0363-00.qd 7/6/08 09:30 Página 363 Funciones eponenciales y logarímicas INTRODUCCIÓN En esa unidad se esudian dos funciones que se aplican a numerosas siuaciones coidianas y, sobre odo, a fenómenos

Más detalles

3. Matrices y álgebra matricial

3. Matrices y álgebra matricial Marices y álgebra maricial Repasaremos algunos concepos básicos de la eoría maricial Nos cenraremos en aspecos relacionados con el álgebra lineal, la inversión y la diagonalización de marices Veremos algunas

Más detalles

EFECTOS EN BIENESTAR DE LA REPRESIÓN FINANCIERA * Andrés Arias UCLA. Alberto Carrasquilla Universidad de los Andes

EFECTOS EN BIENESTAR DE LA REPRESIÓN FINANCIERA * Andrés Arias UCLA. Alberto Carrasquilla Universidad de los Andes DOCUMENTO CEDE 2002-02 ISSN 1657-7191 (Edcón elecrónca) ABRIL DE 2002 CEDE EFECTOS EN BIENESTAR DE LA REPRESIÓN FINANCIERA * Andrés Aras UCLA Albero Carrasqulla Unversdad de los Andes Aruro Galndo Banco

Más detalles

DOCUMENTO DE TRABAJO. www.economia.puc.cl

DOCUMENTO DE TRABAJO. www.economia.puc.cl Insuo I N S T Ide T Economía U T O D E E C O N O M Í A T E S I S d e M A G Í S T E R DOCUMENTO DE TRABAJO ¾¼¼ Ê Ð Ò ÒØÖ Ð ÈÖ Ó Ð È ØÖ Ð Ó Ý ÐÓ Ê ØÓÖÒÓ Ð ÓÒ ÐÓ Ø ÒØÓ Ë ØÓÖ ÓÒ Ñ Ó Ð ÒÓ Æ Ø Ð Á Ð ÐÐ Ö Ó Ë

Más detalles