Viga sobre Base Elastica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Viga sobre Base Elastica"

Transcripción

1 ees namentales e la mecánica el meio contino Viga sobre Base Elastica PRINCIPIO DE VAOR ESTACIONARIO DE A ENERGÍA POTENCIA TOTA a energía potencial total Π e n sistema elástico viene compesto por os partes: Energía potencial e los eseros internos energía e eormación U ; Energía potencial e las eras eternas Ω, one se cmple e: Π U Ω. Si la ecación. representa la conición e energía potencial total estacionaría el sistema, se pee emostrar e el valor e es n etremo e Π. Éste es el principio el valor estacionario e la energía potencial total. ego, bscamos los valores etremos mínimos máimos e la nción, es ecir, cano: Π Π. Π min Π Figra.: Mínimo e na nción.

2 VIGA SOBRE BASE EÁSTICA NOTA: Si estamos en el régimen elástico lineal, la energía e eormación U siempre será Π positiva como consecencia > se cmple. En este caso, la nción energía potencial total será cóncava el valor estacionario correspone a n mínimo. En ésta sitación principio el valor estacionario e la energía potencial total se conoce como principio e la energía potencial mínima. ENERGÍA DE DEFORMACIÓN - U a energía e eormación para n sistema elástico viene aa por: U σ ε V. o se tiliamos la notación ingenieril por: U σ ε σ ε σ ε τ γ τ γ τ γ V V V ij Para nestro ejemplo en particlar la energía e eormación pee ser epresaa a través el esero: ij. U Para la emostración e la epresión anterior ver Elementos D. ENERGÍA POTENCIA REAIZADA POR AS CARGAS EXTERNAS - Ω M. En general la energía potencial e las eras eternas viene representao por: Ω P. one P pee representar n sistema e eras /o momentos, pee representar n sistema e esplaamientos /o rotaciones. Para los sigientes tipos e cargas tenemos e: Carga Concentraa: Ω P p, one P - Carga concentraa p - esplaamiento según irección e P. p eleión e la línea netra P Figra. Universia Castilla- a Mancha Cia Real Drat Por: Earo Chaves

3 VIGA SOBRE BASE EÁSTICA Carga niormemente istribía: Ω - esplaamiento según irección e. p, one - Carga istribia, eleión e la línea netra Figra.: Carga niormemente istribia. En el caso e sea constante entro el ominio, es ecir no es na nción e, el potencial ea Ω v Momento concentrao: Ω A A M M A A M A A Figra.: Momento concentrao en el pnto A. EEMENTO FINITO VIGA Vamos consierar e a caa noo esté asociao a os esplaamientos : esplaamiento vertical na rotación. Universia Castilla- a Mancha Cia Real Drat Por: Earo Chaves

4 VIGA SOBRE BASE EÁSTICA Para la emostración vamos consierar los sigientes graos e liberta en el elemento e viga: e { a Desplaamientos F M F M e { F M F M b Eseros Figra.: elemento inito tipo viga. Vamos aoptar como nción aproimaa para la eleión e la viga n polinomio e tercer grao: a b c.7 a primera erivaa viene aa por: a b c ego, para los etremos e la viga eamos con:.8 c.9 a a b c b c. Universia Castilla- a Mancha Cia Real Drat Por: Earo Chaves

5 VIGA SOBRE BASE EÁSTICA Drat Por: Earo Chaves Universia Castilla- a Mancha Cia Real Resltano en el sistema e ecaciones: c b a c b a inversa. Con eso conclimos e: a. b. c.. Sstiteno los valores e a, b, c en la epresión e la eleión e la viga.7, obtenemos e:. Recorar e hemos aoptao como graos e liberta en los noos la rotación no la primera erivaa e la eleión '. Pero, ellas están relacionaas entre si a través e la epresión '. Con eso, la epresión e la eleión ea:.7 a primera erivaa viene aa por:.8 a segna erivaa ea:.9 Será e tilia obtener los sigientes valores.

6 VIGA SOBRE BASE EÁSTICA Drat Por: Earo Chaves Universia Castilla- a Mancha Cia Real EJEMPOS Ejemplo Consieremos n elemento e viga, con la rigie a leión constante, sometio a na carga niormemente istribía e intensia. Figra.: Viga sometia a na carga niorme. a energía potencial total el sistema viene aa por: Ω Π U. Si estamos consierano e es inepeniente e, la energía potencial e las eras eternas reslta:

7 VIGA SOBRE BASE EÁSTICA Drat Por: Earo Chaves 7 Universia Castilla- a Mancha Cia Real Ω. Sstiteno la ecación. en la ecación anterior obtenemos la epresión e Ω en nción e los parámetros noales,,, i.e.: Ω.7 Consierano e es constante entro el elemento, la energía potencial e las eras internas viene aa por: U.8 Utiliano la epresión obtenia en. la ecación anterior reslta: U.9 ego, la energía potencial. total ea: Π. Según el principio el valor estacionario e la energía potencial total ha e cmplir e: Π. 8 Π. Π. 8 Π. Reestrctrano las epresiones anteriores en orma e matri, obtenemos e:

8 8 VIGA SOBRE BASE EÁSTICA o an e orma más compacta: con: [ ] { { e e. Ke. Ke.7 [ ] e ; { one [ Ke ] e la matri [ ] es la matri e rigie el elemento inito propesto. Es interesante estacar Ke no tiene inversa et[ Ke ], a e estamos tratano con na estrctra hipoestática, en este caso la estrctra tiene ininitas solciones a e no hemos restringio ningno e ss movimientos. Para e. tenga solción única tenemos e aplicar las coniciones e contorno. Poemos llegar al mismo resltao. por meio el teorema e los trabajos virtales, ver Chaves & Mínge pg. 9. Consierano el mismo ejemplo, ver Figra. con las sigientes coniciones e contorno tal como se mestran en la Figra.7. eleión Noo : Noo : Figra.7: Viga empotraa sometia a na carga niorme. Aplicano las coniciones e contorno a la ecación. reslta e: Universia Castilla- a Mancha Cia Real Drat Por: Earo Chaves

9 VIGA SOBRE BASE EÁSTICA Drat Por: Earo Chaves 9 Universia Castilla- a Mancha Cia Real.8 Al resolver el sistema anterior obtenemos e: 8.9 El momento en el noo viene ao por M. Utiliano la ecación.9 obtenemos: 8 ego, el momento ea: M. Si comparamos con el valor eacto M eacto, veriicamos e ha n error e,%. Eseros en el Elemento Viga Una ve obtenio los esplaamientos.9 llega el momento e obtener los eseros en el elemento e viga. A través e los esplaamientos, calclamos las eras internas según la epresión., i.e.: { [ ] { e e Ke. resltano:

10 VIGA SOBRE BASE EÁSTICA 8. e { Si estviéramos tratano con elemento inito traicional, los eseros en el elemento e viga serían el proporcionao por { e, ver Figra.8a. A meia e reinamos el error ismine. A través el Análisis e Estrctras, la solción eacta e este ejemplo viene aa por la Figra.8c, veriiemos e las reacciones en las etremiaes el elemento viga vienen aos por: ~ { { { { { e e e e e R. a { e M F M F b { ~ { e e M F M F c Solción eacta M M F F El vector { ~ { e e Figra.8: Reacciones en el elemento viga., ver ecación.7, en el Análisis e Estrctras, recibe el nombre e acciones e etremia para miembros restringios. Es ecir, la solción proporcionaa por la Figra.8b son las reacciones e srgen si la viga estviera Universia Castilla- a Mancha Cia Real Drat Por: Earo Chaves

11 VIGA SOBRE BASE EÁSTICA Drat Por: Earo Chaves Universia Castilla- a Mancha Cia Real empotraa en las os etremiaes, Gere&Weaver 9, ver Figra.9. Y estas reacciones son las mismas obtenias para el vector e eras noales eivalentes, ver ecación.7. Figra.9: Reacciones en viga biempotraa. Ejemplo Figra.: Viga sometia a na carga trapeoial. Para la sitación e la Figra. tenemos e: [ ]{ { { { { e e e e e U ke Ω Ω. Como poemos ver la matri e rigie es la misma e para el ejemplo anterior a e no hemos cambiao la aproimación e la eleión. El único término e cambia es el vector e eras noales eivalentes a e la carga varía linealmente. Con eso tenemos e: Ω. Tenieno en centa las integrales.. obtenemos e: 7 7 Ω. Derivano con respecto a los valores noales, obtenemos e: M F M F

12 VIGA SOBRE BASE EÁSTICA Observar e cano aa por e { recperamos el vector e eras noales eivalentes EEMENTO FINITO DE VIGA SOBRE BASE EÁSTICA Consieremos ahora e la viga está sobre na base elástica, ver Figra.. < < K Figra.: Viga sobre base elástica. En esta sitación, la energía potencial total el sistema viene aa por: Π U Ω U viga U Ω.8 Según el principio el valor estacionario e la energía potencial total ha e cmplir e: Π e o aún U viga e one [ ke ] término por: U e melle viga U melle Ω U U Ω viga melle U e e e U melle [ ]{ { e ke e.9 U melle Ω. e e e es la misma matri e rigie aa en.7. ego, solo alta eterminar el melle e. Para n mele, ver Figra., la energía e eormación viene aa Universia Castilla- a Mancha Cia Real Drat Por: Earo Chaves

13 VIGA SOBRE BASE EÁSTICA U melle K. F K F F K energía almacenaa F K Figra.: Elemento tipo melle. Consierano e el coeiciente e melle epresión. ea: U melle K Aemás tiliano la ecación. obtenemos e: K es constante entro el elemento, la. U melle K 9 7. ego U K melle 9 U K melle 7 U K melle 9 U K melle 7 Reestrctrano las epresiones anteriores en orma e matri, obtenemos e:....7 Universia Castilla- a Mancha Cia Real Drat Por: Earo Chaves

14 VIGA SOBRE BASE EÁSTICA one U U melle e melle e K [ ] 9 7 e [ Ke ]{ Ke K REFERENCIA CHAVES, E.W.V. 7. Mecánica el meio contino: Conceptos básicos. Centro Internacional e Métoos Nméricos en Ingeniería - CIMNE - Barcelona. ISBN: ª Eición. GERE, J.M. & WEAVER JR., W. 9. Analsis o Frame Strctres. Van Nostran Reinhol, U.S. SECHER, E.E. 9. Elasticit in engineering. John Wile & Sons, Inc., Ne York. AIER, J.E.; BARRO, J.C., 98. Complemento e resistência os materiais. Pblicação 7/9 São Carlos - USP - EESC. UGURA, A.C.; FENSTER, S.K., 98. Avance strength an applie elasticit - The SI version. Elsevier Science Pblishing Co. Inc., Ne York. Universia Castilla- a Mancha Cia Real Drat Por: Earo Chaves

VECTORES. Copia en un papel cuadriculado los cuatro vectores siguientes:

VECTORES. Copia en un papel cuadriculado los cuatro vectores siguientes: a c VECTORES Página REFLEXIONA Y RESUELVE Mltiplica vectores por números Copia en n papel cadriclado los catro vectores sigientes: d Representa: a a c Expresa el vector d como prodcto de no de los vectores

Más detalles

TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS Matemáticas B 4º E.S.O. Tema : Polinomios y fracciones algebraicas. 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS 4º.1.1 COCIENTE DE MONOMIOS 4º El cociente de un monomio entre otro

Más detalles

LA DERIVADA POR FÓRMULAS

LA DERIVADA POR FÓRMULAS CAPÍTULO LA DERIVADA POR FÓRMULAS. FÓRMULAS Obtener la erivaa e cualquier función por alguno e los os métoos vistos anteriormente, el e tabulaciones y el e incrementos, resulta una tarea muy engorrosa,

Más detalles

Lección 3. Cálculo vectorial. 4. Integrales de superficie.

Lección 3. Cálculo vectorial. 4. Integrales de superficie. GRAO E INGENIERÍA AEROEPACIAL CURO 0 MATEMÁTICA II PTO E MATEMÁTICA APLICAA II 4 Integrales de sperficie Nestro último paso en la etensión del concepto de integral es el estdio de las integrales de sperficie,

Más detalles

1.2 TÉCNICAS DE LA DERIVACIÓN.

1.2 TÉCNICAS DE LA DERIVACIÓN. . TÉCNICAS DE LA DERIVACIÓN... DERIVACIÓN DE FUNCIONES ALGEBRAICAS Generalmente la derivación se lleva acabo aplicando fórmlas obtenidas mediante la regla general de la derivación y qe calclaremos a continación,

Más detalles

ADVERTENCIA: una respuesta sin fundamentación o explicación podrá ser calificada como insuficiente.

ADVERTENCIA: una respuesta sin fundamentación o explicación podrá ser calificada como insuficiente. Faclta e Ciencias Sociales, Universia e la República, Urgay Teoría e Jegos 24 Segno parcial. Es na preba con materiales a la vista ADVERTENCIA: na respesta sin fnamentación o explicación porá ser calificaa

Más detalles

Tema 3: Aplicaciones de la diagonalización

Tema 3: Aplicaciones de la diagonalización TEORÍA DE ÁLGEBRA II: Tema 3. DIPLOMATURA DE ESTADÍSTICA 1 Tema 3: Aplicaciones de la diagonalización 1 Ecuaciones en diferencias Estudiando la cría de conejos, Fibonacci llegó a las siguientes conclusiones:

Más detalles

AUTOVALORES DE OPERADORES DIFERENCIALES. Los problemas de autovalores tienen su origen en el álgebra de matrices.

AUTOVALORES DE OPERADORES DIFERENCIALES. Los problemas de autovalores tienen su origen en el álgebra de matrices. AUTOVALORES DE OPERADORES DIFERENCIALES Los problemas e atovalores tienen s origen en el álgebra e matrices. En el caso el álgebra se parte e na matriz A y esencialmente se trata e bscar atovalores y los

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD UNIDAD 5 LÍMITES Y CONTINUIDAD Páginas 0 y Describe las siguientes ramas: a) f () b) f () no eiste c) f () d) f () + e) f () f) f () + g) f () h) f () no eiste; f () 0 i) f () + f () + j) f () 5 4 f ()

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Cálculo Simbólico también es posible con GeoGebra

Cálculo Simbólico también es posible con GeoGebra www.fisem.org/web/union ISSN: 1815-0640 Número 34. Junio de 2013 páginas 151-167 Coordinado por Agustín Carrillo de Albornoz Cálculo Simbólico también es posible con GeoGebra Antes de exponer las posibilidades

Más detalles

Método de los Elementos Finitos para determinar las deflexiones en una viga tipo Euler-Bernoulli

Método de los Elementos Finitos para determinar las deflexiones en una viga tipo Euler-Bernoulli Preliminares Formlación del elemento inito para vigas Ejemplo Método de los Elementos Finitos para determinar las deleiones en na viga tipo Eler-Bernolli Lic. Mat. Carlos Felipe Piedra Cáceda. Estdiante

Más detalles

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( )

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( ) Derivaa e una Función Ínice.. Introucción.. Peniente e una recta tangente.. Derivaa e una función. 4. Derivaas laterales. 5. Derivaa e una función compuesta (Regla e la Caena). 6. Tabla e erivaas usuales.

Más detalles

PRACTICA No. 1 ENSAYO DE TRACCION UNIAXIAL PARA DIFERENTES TIPOS DE MATERIALES

PRACTICA No. 1 ENSAYO DE TRACCION UNIAXIAL PARA DIFERENTES TIPOS DE MATERIALES PRACTICA No. 1 ENSAYO DE TRACCION UNIAXIAL PARA DIFERENTES TIPOS DE MATERIALES -OBJETIVO Identificar la relación que existe entre el esfuerzo y la deformación del material, para su posterior relación con

Más detalles

2. Estabilidad Transitoria

2. Estabilidad Transitoria Anexo -. Etabilia Tranitoria. roblema # A n generaor incrónico e catro polo, 60 z poee na capacia nominal e 00 MVA, a actor e potencia 0.8 en atrao. El momento e inercia el rotor e e 45.00kg-m. Determine

Más detalles

SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA 1

SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA 1 MATEMÁTICAS:º BACHILLERATO SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA.- Calcular los etremos relativos de las siguientes funciones: a) f ( ) D(f) (Por ser polinómica) ; Posibles máimos o mínimos 6

Más detalles

Tema 6: Ecuaciones e inecuaciones.

Tema 6: Ecuaciones e inecuaciones. Tema 6: Ecuaciones e inecuaciones. Ejercicio 1. Encontrar, tanteando, alguna solución de cada una de las siguientes ecuaciones: 3 a) + 5 = 69 Probamos para =,3,4,... = = 3 3 = 4 4 3 3 3 + 5 = 13. + 5 =

Más detalles

DERIVADAS DE LAS FUNCIONES ELEMENTALES

DERIVADAS DE LAS FUNCIONES ELEMENTALES Universia Metropolitana Dpto. e Matemáticas Para Ingeniería Cálculo I (FBMI0) Proesora Aia Montezuma Revisión: Proesora Ana María Roríguez Semestre 08-09A DERIVADAS DE LAS FUNCIONES ELEMENTALES DERIVADAS

Más detalles

Interpolación polinómica

Interpolación polinómica 9 9. 5 9. Interpolación de Lagrange 54 9. Polinomio de Talor 57 9. Dados dos puntos del plano (, ), (, ), sabemos que ha una recta que pasa por ellos. Dicha recta es la gráfica de un polinomio de grado,

Más detalles

Cálculo de las Acciones Motoras en Mecánica Analítica

Cálculo de las Acciones Motoras en Mecánica Analítica Cálculo de las Acciones Motoras en Mecánica Analítica 1. Planteamiento general El diseño típico de la motorización de un sistema mecánico S es el que se muestra en la figura 1. Su posición viene definida

Más detalles

CPE (SEGUNDO CURSO) = P [T 1 ]P [T 2 ]... P [T 525,600 ] = (1 10 8 ) 525,600 = 0.9948

CPE (SEGUNDO CURSO) = P [T 1 ]P [T 2 ]... P [T 525,600 ] = (1 10 8 ) 525,600 = 0.9948 1/10 CPE (SEGUNDO CURSO PRÁCICA 1 SOLUCIONES (Curso 2015 2016 1. Suponiendo que los sucesos terremotos y huracanes son independientes y que en un determinado lugar la probabilidad de un terremoto durante

Más detalles

EL MÉTODO DE LA BISECCIÓN

EL MÉTODO DE LA BISECCIÓN EL MÉTODO DE LA BISECCIÓN Teorema de Bolzano Sea f : [a, b] IR IR una función continua en [a, b] tal que f(a) f(b) < 0, es decir, que tiene distinto signo en a y en b. Entonces, existe c (a, b) tal que

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. REPASO DE MATEMÁTICAS DISCRETA. CONGRUENCIAS. En el conjunto de los números enteros

AMPLIACIÓN DE MATEMÁTICAS. REPASO DE MATEMÁTICAS DISCRETA. CONGRUENCIAS. En el conjunto de los números enteros AMPLIACIÓN DE MATEMÁTICAS REPASO DE MATEMÁTICAS DISCRETA. CONGRUENCIAS. En el conjunto de los números enteros Z = {..., n,..., 2, 1, 0, 1, 2, 3,..., n, n + 1,...} tenemos definidos una suma y un producto

Más detalles

Tema 7. Límites y continuidad de funciones

Tema 7. Límites y continuidad de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está

Más detalles

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í Unidad. Límites de funciones. Continuidad y ramas infinitas Resuelve Página 7 A través de una lupa AUMENTO DISTANCIA (dm) El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A

Más detalles

Al consejero A no le gusta ninguno de sus colegas como presidente. Dos consejeros (C y E) están de acuerdo en los mismos candidatos (B, C y D).

Al consejero A no le gusta ninguno de sus colegas como presidente. Dos consejeros (C y E) están de acuerdo en los mismos candidatos (B, C y D). ÁLGEBRA DE MATRICE Página 48 Ayudándote de la tabla... De la tabla podemos deducir muchas cosas: Al consejero A no le gusta ninguno de sus colegas como presidente. B solo tiene un candidato el C. Dos consejeros

Más detalles

Inversión en el plano

Inversión en el plano Inversión en el plano Radio de la circunferencia x 2 + y 2 + Ax + By + D = 0 Circunferencia de centro (a, b) y radio r: (x a) 2 + (y b) 2 = r 2. Comparando: x 2 + y 2 2ax 2by + a 2 + b 2 r 2 = 0 con x

Más detalles

3 Polinomios y fracciones algebráicas

3 Polinomios y fracciones algebráicas Solucionario 3 Polinomios y fracciones algebráicas ACTIVIDADES INICIALES 3.I. Para cada uno de los siguientes monomios, indica las variables, el grado y el coeficiente, y calcula el valor numérico de los

Más detalles

Reglas de derivación

Reglas de derivación CAPÍTULO 6 Reglas e erivación 6. Regla e la caena En las reglas básicas e erivación se aplican fórmulas apropiaas para calcular las erivaas e las funciones f C g (suma), f g (iferencia), fg (proucto) y

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

TEMA 4: Transformaciones 3D

TEMA 4: Transformaciones 3D TEMA 4: Transformaciones D Ínice. Sistemas e Coorenaas. Transformaciones Básicas. Traslación. Escalao. Rotación lana 4. Afilamiento 5. Deformaciones. Composición e Transformaciones 4. Rotación General

Más detalles

Criterio de la segunda derivada para funciones de dos variables por Sergio Roberto Arzamendi Pérez

Criterio de la segunda derivada para funciones de dos variables por Sergio Roberto Arzamendi Pérez Criterio de la segnda derivada para fnciones de dos variables por Sergio Roberto Arzamendi Pérez Sea la fnción f de dos variables definida por f (, ) contina de primera segnda derivadas continas en s dominio,

Más detalles

Tema 4 : TRACCIÓN - COMPRESIÓN

Tema 4 : TRACCIÓN - COMPRESIÓN Tema 4 : TRCCIÓN - COMPRESIÓN F σ G O σ σ z N = F σ σ σ y Problemas Prof.: Jaime Santo Domingo Santillana E.P.S.-Zamora (U.SL.) - 008 4.1.-Calcular el incremento de longitud que tendrá un pilar de hormigón

Más detalles

Diseño o de Entradas. Autor: Dr. Juan Carlos Gómez ISIS 2

Diseño o de Entradas. Autor: Dr. Juan Carlos Gómez ISIS 2 Identificación n de SIStemas Diseño o de Entradas Ator: Dr. Jan Carlos Gómez Un reqisito fndamental de las entradas para n experimento de identificación es el de persistencia de excitación de las mismas.

Más detalles

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1

TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II 2º Bach. 1 TEMA 5 VECTORES EN EL ESPACIO MATEMÁTICAS II º Bach. TEMA 5 VECTORES EN EL ESPACIO 5. LOS VECTORES Y SUS OPERACIONES DEINICIÓN Un ector es n segmento orientado. Un ector extremo B. Elementos de n ector:

Más detalles

UNIDAD Nº4. Métodos matemáticos de optimización no restringida Búsqueda unidimensional

UNIDAD Nº4. Métodos matemáticos de optimización no restringida Búsqueda unidimensional UNIDAD Nº4 Métodos matemáticos de optimización no restringida Búsqueda unidimensional Muchos métodos de optimización de problemas con restricciones (univariables y multivariables) involucran la resolución

Más detalles

TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD

TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD TEMA 8: DE FUNCIONES. CONTINUIDAD 1. EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores de se hacen enormemente grandes ( ) o enormemente pequeños

Más detalles

Electromagnetismo Pedagogía en Física R. Lagos. PROBLEMAS RESUELTOS

Electromagnetismo Pedagogía en Física R. Lagos. PROBLEMAS RESUELTOS PROBLEMAS RESUELTOS. Un capacitor e lleno e aire está compuesto e os placas paralela, caa una con un área e 7 6 [ 2 ], separaas por una istancia e,8 [mm]. Si se aplica una iferencia e potencial e 20 [V]

Más detalles

Tipos de funciones. Clasificación de funciones

Tipos de funciones. Clasificación de funciones Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,

Más detalles

Juegos Cooperativos. Core

Juegos Cooperativos. Core Curso : Juegos Cooperativos Core J. Oviedo Universidad Nacional de San Luis 1. Juegos Cooperativos En estos juegos se permite la comunicación entre los jugadores, también pueden firmar contratos de cooperación.

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página REFLEXIONA Y RESUELVE Algunos ites elementales Utiliza tu sentido común para dar el valor de los siguientes ites: a,, b,, @ c,, 5 + d,, @ @ + e,, @ f,, 0 @ 0 @

Más detalles

Resolución de problemas. Temas: VOR e ILS

Resolución de problemas. Temas: VOR e ILS Resolución de problemas. Temas: VOR e ILS Autor: Mario E. Casado García 3er Curso ITT ST Índice 1. Problema tema 5: VOR......3 2. Problema tema 7: ILS.....7 3. Referencias..12 2 1. Problema tema 5: VOR

Más detalles

(f + g) (x) = f (x) + g (x) (α f) (x) = α f (x) (f g) (x) = f (x) g(x) + f(x) g (x) (x) = f (x) g(x) f(x) g (x) g. [g(x)] 2 (f g) (x) = f (g(x)) g (x)

(f + g) (x) = f (x) + g (x) (α f) (x) = α f (x) (f g) (x) = f (x) g(x) + f(x) g (x) (x) = f (x) g(x) f(x) g (x) g. [g(x)] 2 (f g) (x) = f (g(x)) g (x) Derivaa e una función en un punto: El concepto e erivaa e una función matemática se halla íntimamente relacionao con la noción e límite. Así, la erivaa se entiene como la variación que experimenta la función

Más detalles

Tercera Parte: Producto Vectorial y Producto Mixto entre vectores

Tercera Parte: Producto Vectorial y Producto Mixto entre vectores Tercera Parte: Prodcto Vectorial Prodcto Mito entre ectores Introdcción Retomemos el caso los dos pintores: Carlos Jan. Finaliada la tarea de moer el escritorio, el arqitecto qe coordina la obra, indica

Más detalles

Tema 8: Análisis Discriminante. Clasificación. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. Análisis discriminante

Tema 8: Análisis Discriminante. Clasificación. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. Análisis discriminante Aurea Grané. Máster en Estadística. Universidade Pedagógica. 1 Aurea Grané. Máster en Estadística. Universidade Pedagógica. 2 Análisis discriminante Tema 8: Análisis Discriminante y Clasificación Aurea

Más detalles

PREDIMENSIONADO DE VIGAS

PREDIMENSIONADO DE VIGAS PREDIENSIONADO DE VIGAS Introdcción La viga es el elemento estrctral tilizado para cbrir espacios, capaz de soportar el peso colocado de forma perpendiclar al elemento transportarlo lateralmente a lo largo

Más detalles

Nivelación de Matemática MTHA UNLP 1. Vectores

Nivelación de Matemática MTHA UNLP 1. Vectores Nivelación de Matemática MTHA UNLP 1 1. Definiciones básicas Vectores 1.1. Magnitudes escalares y vectoriales. Hay magnitudes que quedan determinadas dando un solo número real: su medida. Por ejemplo:

Más detalles

Concepto de función y funciones elementales

Concepto de función y funciones elementales Concepto de unción unciones elementales Matemáticas I - º Bachillerato Las unciones describen enómenos cotidianos, económicos, psicológicos, cientíicos Tales unciones se obtienen eperimentalmente, mediante

Más detalles

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN 4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN Bloque 2. POLINOMIOS. (En el libro Tema 3, página 47) 1. Definiciones. 2. Valor numérico de una expresión algebraica. 3. Operaciones con polinomios: 3.1. Suma,

Más detalles

3.1. DERIVADAS DE SEGUNDO ORDEN

3.1. DERIVADAS DE SEGUNDO ORDEN .. DERIVADAS DE SEGUNDO ORDEN La erivaa y ' f ' es la primera erivaa e y con respecto a, pero igualmente es posible realizar la erivaa e la erivaa, y y '' f ''. Lo que se conoce como la seguna erivaa e

Más detalles

Funciones elementales

Funciones elementales Funciones elementales 3.1. Función exponencial Ya hemos introducido la exponencial compleja definiéndola como e z = e x (cosy + i sen y) para todo z = x + iy C. Dicha definición fue propuesta por Euler

Más detalles

Ejercicios de Macroeconomía Avanzada

Ejercicios de Macroeconomía Avanzada Ejercicios de Macroeconomía Avanzada José L Torres Chacón Departamento de Teoría e Historia Económica Universidad de Málaga Septiembre 200 ii Indice I Sistemas dinámicos básicos 5 Introducción a la dinámica

Más detalles

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS PARA EMPEZAR Un cuadrado tiene 5 centímetros de lado. Escribe la epresión algebraica que da el área cuando el lado aumenta centímetros. A ( 5) Señala cuáles de las siguientes

Más detalles

Logaritmo Natural. Z x. 1 t dt = ln(x) = I 1 1. ln(x) < 0 para x 2 (0; 1) y ln(x) > 0 para x 2 (1; 1)

Logaritmo Natural. Z x. 1 t dt = ln(x) = I 1 1. ln(x) < 0 para x 2 (0; 1) y ln(x) > 0 para x 2 (1; 1) Logaritmo Natural Si n 6= ya sabemos que R x t n t = n+ xn+ + C, con C una constante. De nición. La regla e corresponencia ln(x) = Z x t t = Z x I e ne una función con ominio D ln = (0; ): A esta función

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

ESTRUCTURAS ARTICULADAS

ESTRUCTURAS ARTICULADAS ESTRUTURAS ARTIULADAS Prof. arlos Navarro Departamento de Mecánica de Medios ontinuos y Teoría de Estructuras uando necesitemos salvar luces importantes (> 10 ó 15 m), o necesitamos vigas de gran canto,

Más detalles

Macar lo que corresponda: Reglamentado Libre. Nombre C.I.

Macar lo que corresponda: Reglamentado Libre. Nombre C.I. Teoría e jegos Examen e iciembre e 06 Macar lo qe correspona: eglamentao Libre Nombre C.I. NOTA: Es na preba con materiales a la vista ADVETENCIA: na respesta sin fnamentación o explicación porá ser calificaa

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

Ejercicios de Análisis propuestos en Selectividad

Ejercicios de Análisis propuestos en Selectividad Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa

Más detalles

Examen Parcial de Sistemas de Potencia II 2007 Estabilidad Transitoria: Ecuación de Oscilación

Examen Parcial de Sistemas de Potencia II 2007 Estabilidad Transitoria: Ecuación de Oscilación Examen Parcial e Sistemas e Potencia II 7 Estabilia Transitoria: Ecación e Oscilación Problema. Un generaor sincrónico a 6 Hz, posee na constante e inercia e H = 5MJ/MVA y na reactancia transitoria e eje

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 7 transformaciones lineales Objetivos: Al inalizar la unidad, el alumno: Comprenderá los conceptos de dominio e imagen de una transformación. Distinguirá cuándo una transformación es lineal. Encontrará

Más detalles

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura

5.3 Esfuerzos y deformaciones producidos por flexión. Puente grúa. 5.3.1 Flexión pura 5.3 Esfuerzos y deformaciones producidos por flexión Puente grúa 5.3.1 Flexión pura Para cierta disposición de cargas, algunos tramos de los elementos que las soportan están sometidos exclusivamente a

Más detalles

Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada.

Contenido. 1 Definiciones y propiedades. 2. Método de la potencia. 3. Método de la potencia inversa. 4. Método de la potencia inversa desplazada. Métodos Numéricos: Resumen y ejemplos Tema 7: Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril 9 Versión 7 Contenido

Más detalles

Observaciones del profesor:

Observaciones del profesor: Calificación total máxima: 10 puntos. Tiempo: 60 minutos. OPCIÓN A Ejercicio 1. (Puntuación máxima: 4 puntos) Se considera la matriz: A=( ) a) Determina la matriz B= A 2-2A 1,5 PUNTOS b) Determina los

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves d Accés a la Universitat. Curs 2012-2013 Tecnología industrial Serie 4 La prueba consta de dos partes de dos ejercicios cada una. La primera parte es común y la segunda tiene dos opciones (A y B),

Más detalles

Examen de Estadística Ingeniería de Telecomunicación

Examen de Estadística Ingeniería de Telecomunicación Examen de Estadística Ingeniería de Telecomunicación 8 de Mayo de 3 Cuestiones solucion h C. (.5p) El equipo directivo de cierta empresa del sector de hostelería está constituido por 5 personas de las

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A SEPTIEMBRE 2009 Opción A 1.- Como cada año, el inicio del curso académico, una tienda de material escolar prepara una oferta de 600 cuadernos, 500 carpetas y 400 bolígrafos para los alumnos de un IES,

Más detalles

Opción A Ejercicio 1 opción A, modelo 4 Septiembre 2014

Opción A Ejercicio 1 opción A, modelo 4 Septiembre 2014 IES Fco Ayala de Granada Septiembre de 014 (Modelo 4) Soluciones Germán-Jesús Rubio Luna [ 5 puntos] Sabiendo que Sabiendo que 0 0 cos(3) - e + a sen() Opción A Ejercicio 1 opción A, modelo 4 Septiembre

Más detalles

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente. ÁLGEBRA DE MATRICES Página 49 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecaciones Diferenciales de Primer Orden Definición Clasificación de las Ecaciones Diferenciales Una ecación diferencial es aqélla qe contiene las derivadas o diferenciales de na o más variables

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

Prácticas de Algebra con Mathematica II (Ingeniería Industrial). Jose Salvador Cánovas Peña. Departamento de Matemática Aplicada y Estadística.

Prácticas de Algebra con Mathematica II (Ingeniería Industrial). Jose Salvador Cánovas Peña. Departamento de Matemática Aplicada y Estadística. Prácticas de Algebra con Mathematica II (Ingeniería Industrial). Jose Salvador Cánovas Peña. Departamento de Matemática Aplicada y Estadística. Índice General 1 PRACTICAS CON MATHEMATICA 2 1.1 Introducción...

Más detalles

1 Límites de funciones

1 Límites de funciones Héctor Palma Valenzuela. Dpto. de Matemática UdeC. 1 1 Límites de funciones En general, en la recta real R podemos considerar la noción de distancia entre dos puntos y a dada por la fórmula d (, a) = a

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

Hidrograma unitario de Clark

Hidrograma unitario de Clark Hidrograma unitario de Clark Este método fue expuesto por Clark (1945) y es recogido por casi todos los textos de hidrología (por ejemplo: Viessman, 003; Wanielista, 1997; Ragunath, 006); se implementa

Más detalles

ESTUDIO DE LOS EJEMPLOS RESUELTOS 7.1, 7.2 Y 7.8 DEL LIBRO DE FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA.

ESTUDIO DE LOS EJEMPLOS RESUELTOS 7.1, 7.2 Y 7.8 DEL LIBRO DE FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA. ESTUIO E LOS EJEMPLOS RESUELTOS.1,.2 Y.8 EL LIRO E FUNMENTOS FÍSIOS E L INFORMÁTI. Resolver un circuito implica conocer las intensidades que circula por cada una de sus ramas lo que permite conocer la

Más detalles

OBJETIVOS: Definir Límites. Realizar demostraciones formales de límites. Describir gráficamente los límites. Calcular límites.

OBJETIVOS: Definir Límites. Realizar demostraciones formales de límites. Describir gráficamente los límites. Calcular límites. Cap. Límites de Fnciones. LÍMITE EN UN PUNTO. LÍMITES LATERALES. TEOREMAS SOBRE LÍMITES.4 CÁLCULO DE LÍMITES.5 LÍMITES AL INFINITO.6 LÍMITES INFINITOS.7 OTROS LÍMITES OBJETIVOS: Definir Límites. Realizar

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento

Más detalles

9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES... 189 9.2. OPERACIONES CON MATRICES... 190 9.3. MATRICES CUADRADAS... 192 9.3.1.

9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES... 189 9.2. OPERACIONES CON MATRICES... 190 9.3. MATRICES CUADRADAS... 192 9.3.1. ÍNDICE 9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES....................... 189 9.2. OPERACIONES CON MATRICES..................... 190 9.3. MATRICES CUADRADAS.......................... 192 9.3.1. Matrices

Más detalles

Procesos Estacionarios. Francisco J. González Serrano. Universidad Carlos III de Madrid

Procesos Estacionarios. Francisco J. González Serrano. Universidad Carlos III de Madrid PREDICCIÓN DE SEÑALES Procesos Estacionarios Francisco J. González Serrano Universidad Carlos III de Madrid Procesos Estacionarios A la hora de hacer predicciones parece obvio suponer que algo debe permanecer

Más detalles

ESCUELA DE FÍSICA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN

ESCUELA DE FÍSICA UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN SCUL D FÍSIC UNIVRSIDD NCIONL D COLOMI SD MDLLÍN PRÁCTIC N LORTORIO D FÍSIC MCÁNIC TM : CONSRVCIÓN D L NRGÍ OJTIVO GNRL Determinar la cantidad de energía mecánica de n sistema aislado. OJTIVOS SPCÍFICOS

Más detalles

Funciones vectoriales de variable vectorial. Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m

Funciones vectoriales de variable vectorial. Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m Funciones vectoriales de variable vectorial Son aplicaciones entre espacios eucĺıdeos, IR n, f : X IR n Y IR m x y x = (x 1, x 2,, x n ), y = (y 1, y 2,, y m ) e y j = f j (x 1, x 2,, x n ), 1 j n n =

Más detalles

ENERGÍA DE DEFORMACIÓN DE UNA ESTRUCTURA

ENERGÍA DE DEFORMACIÓN DE UNA ESTRUCTURA ENERGÍA DE DEFORMACIÓN DE UNA ESTRUCTURA 1. Hipótesis empleadas Las hipótesis que supondremos en este capítulo son: Material elástico lineal. Estructura estable La estructura es cargada lentamente. La

Más detalles

1 Acondicionamiento de termopares

1 Acondicionamiento de termopares 1 Acondicionamiento de termopares El siguiente circuito es un amplificador para termopares. La unión de referencia está a temperatura ambiente (T A comprendida entre 5 C y 40 C) y se compensa mediante

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Sistemas de Ecuaciones Lineales y Matrices Oscar G Ibarra-Manzano, DSc Departamento de Area Básica - Tronco Común DES de Ingenierías Facultad de Ingeniería, Mecánica, Eléctrica y Electrónica Trimestre

Más detalles

EJERCICIOS RESUELTOS TEMA 3

EJERCICIOS RESUELTOS TEMA 3 EJERCICIOS RESUELTOS TEMA 3 Observación: En todos los ejercicios se ha puesto A, como notación de contrario de A. Ejercicio nº 1.- En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una bola al azar

Más detalles

Boletín audioprotésico número 35

Boletín audioprotésico número 35 Boletín auioprotésico número 35 Cómo asegurar la ganancia in-situ correcta Noveaes el epartamento e Investigación auioprotésica y comunicación 9 502 1041 004 / 06-07 Introucción Normalmente, los auífonos

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

Funciones polinomiales de grados 3 y 4

Funciones polinomiales de grados 3 y 4 Funciones polinomiales de grados 3 y 4 Ahora vamos a estudiar los casos de funciones polinomiales de grados tres y cuatro. Vamos a empezar con sus gráficas y después vamos a estudiar algunos resultados

Más detalles

1 Conceptos básicos. El ensayo de tracción y el comportamiento uniaxial de una barra, incluyendo acciones térmicas

1 Conceptos básicos. El ensayo de tracción y el comportamiento uniaxial de una barra, incluyendo acciones térmicas 1 Conceptos básicos El ensayo de tracción y el comportamiento uniaxial de una barra, incluyendo acciones térmicas Índice La mecánica de sólidos y sus componentes La resistencia de materiales El ensayo

Más detalles

CAPÍTULO III. 3. Solución manual para ejemplificar el análisis matricial de armaduras por el

CAPÍTULO III. 3. Solución manual para ejemplificar el análisis matricial de armaduras por el CAÍTUO III. Solción manal para ejemplificar el análisis matricial de armadras por el método de las rigideces.. Introdcción En este capítlo se describe la secela de cálclo para el análisis matricial de

Más detalles

-12-10 -8-6 -4-2 0 2 4 6 8 10 12. x [ 64, ] se tiene:

-12-10 -8-6 -4-2 0 2 4 6 8 10 12. x [ 64, ] se tiene: Concepto de valor absoluto: El Valor Absoluto se define como la distancia entre dos números reales en la recta numérica. Con el objeto de afianzar el concepto de valor absoluto, es necesario ligarlo a

Más detalles

Representación Gráfica de la Hipérbola y la Parábola

Representación Gráfica de la Hipérbola y la Parábola Representación Gráfica de la Hipérbola y la Parábola La Parábola Todas las funciones que tienen por epresión algebraica un polinomio de º grado, tienen por representación n gráfica una parábola. f = a

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 es en R n y producto punto Departamento de Matemáticas ITESM es en R n y producto punto Álgebra Lineal - p. 1/40 En este apartado se introduce el concepto de vectores en el espacio

Más detalles

Diseño y cálculo de uniones con tornillos pretensados

Diseño y cálculo de uniones con tornillos pretensados Diseño y cálclo de niones con tornillos pretensados Apellidos nombre Arianna Gardiola Víllora (agardio@mes.pv.es) Departamento Centro Mecánica del Medio Contino y Teoría de Estrctras Escela Técnica Sperior

Más detalles

12.2 Vectores Algunos de los factores que medimos están determinados simplemente por sus magnitudes. Por

12.2 Vectores Algunos de los factores que medimos están determinados simplemente por sus magnitudes. Por . Vectores 665. Vectores Algnos de los factores qe medimos están determinados simplemente por ss magnitdes. Por ejemplo, para registrar la masa, la longitd o el tiempo sólo necesitamos escribir n número

Más detalles

Hoja Problemas Espacio Vectorial { } { } del espacio vectorial R 3. Hallar las coordenadas de a en la base B' = { u 1,u 2,u.

Hoja Problemas Espacio Vectorial { } { } del espacio vectorial R 3. Hallar las coordenadas de a en la base B' = { u 1,u 2,u. EJERCICIO PARA ENTREGAR Sean los sbespacios vectoriales: Hoja Problemas Espacio Vectorial 6-7 {( ) } F {( ) R / } E αγ βγ αβ γ / α β γ R Se pide: a) ases de E F EF E F b) Ecaciones implícitas de E F Sea

Más detalles