DIAGRAMA DE TALLO Y HOJA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DIAGRAMA DE TALLO Y HOJA"

Transcripción

1 DIAGRAMA DE TALLO Y HOJA Es una técnica estadística para representar un conjunto de datos. Cada valor numérico se divide en dos partes. El o los dígitos principales forman el tallo y los dígitos secundarios las hojas. Los tallos están colocados a lo largo del eje vertical, y las hojas de cada observación a lo largo del eje horizontal. Ejemplo La siguiente distribución de frecuencia muestra el número de anuncios comerciales pagados por los 45 miembros de Greater Buffalo Automobile Dealer s Association en Observemos que 7 de los 45 comerciantes pagaron entre 90 y 99 anuncios (pero menos de 100). Sin embargo, El numero de comerciantes pagados en esta clase se agrupan en alrededor de 90, están dispersos a lo largo de toda clase, o se acumulan alrededor de 99? No podemos saberlo. # De anuncios comprados Frecuencia 80 a a a a a a a a sumatoria de la frecuencia= 45 Una técnica que se usa para presentar información cuantitativa en forma condensada es el diagrama de tallo y hoja. En el ejemplo anterior no se da la identidad de los valores de la clase de 90 a 100. Para ilustrar la construcción de un diagrama de tallo y hojas usando el número de comerciales comprados, supongamos que las 7 observaciones en la clase de 90 a 100 sean 96, 94, 93, 94, 95, 96, 97. EL valor de tallo es el digito o dígitos principales, en este caso el 9. Las hojas son los dígitos secundarios. EL tallo se coloca a la izquierda de una línea vertical y los valores de las hojas a la derecha. Los valores de las clases de 90 a 100, aparecerían como sigue:

2 Por ultimo, ordenamos los valores dentro de cada tallo de menor a mayor. El segundo renglón del diagrama de tallo y hojas aparecería como sigue: Con el diagrama de tallo y hojas podemos observar rápidamente que hubo 2 comerciantes que compraron 94 comerciales y que el número de anuncios comprados fue desde 93 hasta 97. Un diagrama de tallo y hojas es semejante a una distribución de frecuencia, pero con más información, esto es, valores de datos en lugar de marcas. Teoria Probabilidad probabilidades son muy útiles, ya que pueden servir para desarrollar estrategias. Por ejemplo, algunos automovilistas parecen mostrar una mayor tendencia a aumentar la velocidad si creen que existe un riesgo pequeño de ser multados; los inversionistas estarán mas interesados en invertirse dinero si las posibilidades de ganar son buenas. El punto central en todos estos casos es la capacidad de cuantificar cuan probable es determinado evento. En concreto decimos que las probabilidades se utilizan para expresar cuan probable es un determinado evento. Concepto clásico y como frecuencia relativa. 1 Definición Clásico. La probabilidad clásica: el enfoque clásico o a priori de la probabilidad se basa en la consideración de que los resultados de un experimento son igualmente posibles. Empleando el punto de vista clásico, la probabilidad de que suceda un evento se calcula dividiendo el numero de resultados favorables, entre el numero de resultados posibles. 2 La probabilidad clásica de un evento E, que denotaremos por P(E), se define como el número de eventos elementales que componen al evento E, entre el número de eventos elementales que componen el espacio muestral: Como frecuencia relativa 1 probabilística: se basa en las frecuencias relativas. La probabilidad de que un evento ocurra a largo plazo se determina observando en que fracción de tiempo sucedieron eventos semejantes en el psado. La probabilidad de que un evento suceda se calcula por medio de: P (E) numero de veces que el evento ocurrió en el pasado Numero total de observaciones 2 Definición Frecuencial. La definición frecuentista consiste en definir la probabilidad como el límite cuando n tiende a infinito de la proporción o frecuencia relativa del suceso. Sea un experimento aleatorio cuyo espacio muestral es E Sea A cualquier suceso perteneciente a E Si repetimos n veces el experimento en las mismas Condiciones, la frecuencia relativa del suceso A será: Cuando el número n de repeticiones se hace muy

3 grande la frecuencia relativa converge hacia un valor que llamaremos probabilidad del suceso A. Es imposible llegar a este límite, ya que no podemos repetir el experimento un número infinito de veces, pero si podemos repetirlo muchas veces y observar como las frecuencias relativas tienden a estabilizarse Esta definición frecuentista de la probabilidad se llama también probabilidad a posteriori ya que sólo podemos dar la probabilidad de un suceso después de repetir y observar un gran número de veces el experimento aleatorio correspondiente. Algunos autores las llaman probabilidades teóricas. PROBABILIDAD II probabilidad constituye un importante parámetro en la determinación de las diversas causalidades obtenidas tras una serie de eventos esperados dentro de un rango estadístico. Existen diversas formas como método abstracto, como la teoría Dempster-Shafer y la teoría de la relatividad numérica, esta última con un alto grado de aceptación si se toma en cuenta que disminuye considerablemente las posibilidades hasta un nivel mínimo ya que somete a todas las antiguas reglas a una simple ley de relatividad. Así mismo es la parte de ley Aplicaciones Dos aplicaciones principales de la teoría de la probabilidad en el día a día son en el análisis de riesgo y en el comercio de los mercados de materias primas. Los gobiernos normalmente aplican métodos probabilísticos en regulación ambiental donde se les llama "análisis de vías de dispersión", y a menudo miden el bienestar usando métodos que son estocásticos por naturaleza, y escogen qué proyectos emprender basándose en análisis estadísticos de su probable efecto en la población como un conjunto. No es correcto decir que la estadística está incluida en el propio modelado, ya que típicamente los análisis de riesgo son para una única vez y por lo tanto requieren más modelos de probabilidad fundamentales, por ej. "la probabilidad de otro 11-S". Una ley de números pequeños tiende a aplicarse a todas aquellas elecciones y percepciones del efecto de estas elecciones, lo que hace de las medidas probabilísticas un tema político. Un buen ejemplo es el efecto de la probabilidad percibida de cualquier conflicto generalizado sobre los precios del petróleo en Oriente Medio - que producen un efecto dominó en la economía en conjunto. Un cálculo por un mercado de materias primas en que la guerra es más probable en contra de menos probable probablemente envía los precios hacia arriba o hacia abajo e indica a otros comerciantes esa opinión. Por consiguiente, las probabilidades no se calculan independientemente y tampoco son necesariamente muy racionales. La teoría de las finanzas conductuales surgió para describir el efecto de este pensamiento de grupo en el precio, en la política, y en la paz y en los conflictos. Se puede decir razonablemente que el descubrimiento de métodos rigurosos para calcular y combinar los cálculos de probabilidad ha tenido un profundo efecto en la sociedad moderna. Por consiguiente, puede ser de alguna importancia para la mayoría de los ciudadanos entender cómo se calculan los pronósticos y las probabilidades, y cómo contribuyen a la reputación y a las decisiones, especialmente en una democracia.

4 Otra aplicación significativa de la teoría de la probabilidad en el día a día es en la fiabilidad. Muchos bienes de consumo, como los automóviles y la electrónica de consumo, utilizan la teoría de la fiabilidad en el diseño del producto para reducir la probabilidad de avería. La probabilidad de avería también está estrechamente relacionada con la garantía del producto. Se puede decir que no existe una cosa llamada probabilidad. También se puede decir que la probabilidad es la medida de nuestro grado de incertidumbre, o esto es, el grado de nuestra ignorancia dada una situación. Por consiguiente, puede haber una probabilidad de 1 entre 52 de que la primera carta en un baraja de cartas es la J de diamantes. Sin embargo, si uno mira la primera carta y la reemplaza, entonces la probabilidad es o bien 100% o 0%, y la elección correcta puede ser hecha con precisión por el que ve la carta. La física moderna proporciona ejemplos importantes de situaciones determinísticas donde sólo la descripción probabilística es factible debido a información incompleta y la complejidad de un sistema así como ejemplos de fenómenos realmente aleatorios. En un universo determinista, basado en los conceptos newtonianos, no hay probabilidad si se conocen todas las condiciones. En el caso de una ruleta, si la fuerza de la mano y el periodo de esta fuerza es conocido, entonces el número donde la bola parará será seguro. Naturalmente, esto también supone el conocimiento de la inercia y la fricción de la ruleta, el peso, lisura y redondez de la bola, las variaciones en la velocidad de la mano durante el movimiento y así sucesivamente. Una descripción probabilística puede entonces ser más práctica que la mecánica newtoniana para analizar el modelo de las salidas de lanzamientos repetidos de la ruleta. Los físicos se encuentran con la misma situación en la teoría cinética de los gases, donde el sistema determinístico en principio, es tan complejo (con el número de moléculas típicamente del orden de magnitud de la constante de Avogadro) que sólo la descripción estadística de sus propiedades es viable. La mecánica cuántica, debido al principio de indeterminación de Heisenberg, sólo puede ser descrita actualmente a través de distribuciones de probabilidad, lo que le da una gran importancia a las descripciones probabilísticas. Algunos científicos hablan de la expulsión del paraíso. [cita requerida] Otros no se conforman con la pérdida del determinismo. Albert Einsteincomentó estupendamente en una carta a Max Born: Jedenfalls bin ich überzeugt, daß der Alte nicht würfelt. (Estoy convencido de que Dios no tira el dado). No obstante hoy en día no existe un medio mejor para describir la física cuántica si no es a través de la teoría de la probabilidad. Mucha gente hoy en día confunde el hecho de que la mecánica cuántica se describe a través de distribuciones de probabilidad con la suposición de que es por ello un proceso aleatorio, cuando la mecánica cuántica es probabilística no por el hecho de que siga procesos aleatorios sino por el hecho de no poder determinar con precisión sus parámetros fundamentales, lo que imposibilita la creación de un sistema de ecuaciones determinista. La teoría de la probabilidad es la teoría matemática que modela los fenómenos aleatorios. Estos deben contraponerse a los fenómenos determinísticos, en los cuales el resultado de un experimento, realizado bajo condiciones determinadas, produce un resultado único o previsible: por ejemplo, el agua calentada a 100 grados Celsius, a nivel del mar, se transforma en vapor. Un fenómeno aleatorio es aquel que, a pesar de realizarse el

5 experimento bajo las mismas condiciones determinadas, tiene como resultados posibles un conjunto de alternativas, como el lanzamiento de un dado o de una moneda. Los procesos reales que se modelizan como procesos aleatorios pueden no serlo realmente; cómo tirar una moneda o un dado no son procesos aleación en sentido estricto, ya que no se reproducen exactamente las mismas condiciones iniciales que lo determinan, sino sólo unas pocas. En los procesos reales que se modelizan mediante distribuciones de probabilidad corresponden a modelos complejos donde no se conocen a priori todos los parámetros que intervienen; ésta es una de las razones por las cuales la estadística, que busca determinar estos parámetros, no se reduce inmediatamente a la teoría de la probabilidad en sí. En 1933, el matemático soviético Andréi Kolmogórov propuso un sistema de axiomas para la teoría de la probabilidad, basado en la teoría de conjuntos y en la teoría de la medida, desarrollada pocos años antes por Lebesgue, Borel y Frechet entre otros. Esta aproximación axiomática que generaliza el marco clásico de la probabilidad, la cual obedece a la regla de cálculo de casos favorables sobre casos posibles, permitió la rigorización de muchos argumentos ya utilizados, así como el estudio de problemas fuera de los marcos clásicos. Actualmente, la teoría de la probabilidad encuentra aplicación en las más variadas ramas del conocimiento, como puede ser la física (donde corresponde mencionar el desarrollo de las difusiones y el movimiento Browniano), o las finanzas (donde destaca el modelo de Black y Scholes para la valuación de acciones).

Introducción a la Teoría de Probabilidad

Introducción a la Teoría de Probabilidad Capítulo 1 Introducción a la Teoría de Probabilidad Para la mayoría de la gente, probabilidad es un término vago utilizado en el lenguaje cotidiano para indicar la posibilidad de ocurrencia de un evento

Más detalles

Tema 3. Concepto de Probabilidad

Tema 3. Concepto de Probabilidad Tema 3. Concepto de Probabilidad Presentación y Objetivos. El Cálculo de Probabilidades estudia el concepto de probabilidad como medida de incertidumbre. En situaciones donde se pueden obtener varios resultados

Más detalles

Escritura de ecuaciones de problemas de algebraicos

Escritura de ecuaciones de problemas de algebraicos 1 Escritura de ecuaciones de problemas de algebraicos Herbert Mendía A. 2011-10-12 www.cimacien.org.gt Conocimientos previos necesarios Operaciones básicas: suma, resta, multiplicación y división. Jerarquía

Más detalles

Tema 3 Probabilidades

Tema 3 Probabilidades Probabilidades 1 Introducción Tal vez estemos acostumbrados con algunas ideas de probabilidad, ya que esta forma parte de la cultura cotidiana. Con frecuencia escuchamos a personas que hacen afirmaciones

Más detalles

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES EXPERIMENTOS: EJEMPLOS Deterministas Calentar agua a 100ºC vapor Soltar objeto cae Aleatorios Lanzar un dado puntos Resultado fútbol quiniela

Más detalles

INTRODUCCIÓN A LAS FINANZAS (Informática)

INTRODUCCIÓN A LAS FINANZAS (Informática) INTRODUCCIÓN A LAS FINANZAS (Informática) SEGUNDO SEMESTRE 2011 Apunte N 2 Objetivos de la unidad Al finalizar la Unidad Nº2, debe ser capaz de: Entender el concepto de costo de oportunidad del dinero,

Más detalles

4. HERRAMIENTAS ESTADÍSTICAS

4. HERRAMIENTAS ESTADÍSTICAS 4. HERRAMIENTAS ESTADÍSTICAS 4.1 Definiciones La mayor parte de las decisiones se toman en función de la calidad, como en la mayoría de las demás áreas del moderno esfuerzo humano (por ejemplo, en la evaluación

Más detalles

Definición 2.1.1. Se llama suceso aleatorio a cualquier subconjunto del espacio muestral.

Definición 2.1.1. Se llama suceso aleatorio a cualquier subconjunto del espacio muestral. Capítulo 2 Probabilidades 2. Definición y propiedades Al realizar un experimento aleatorio nuestro interés es obtener información sobre las leyes que rigen el fenómeno sometido a estudio. El punto de partida

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

Manejo de la Información

Manejo de la Información Los juegos de azar Manejo de la Información Que las y los estudiantes deduzcan y argumenten que la probabilidad de que un evento suceda está relacionada con la frecuencia en que ocurre el resultado esperado

Más detalles

LA MEDIDA Y SUS ERRORES

LA MEDIDA Y SUS ERRORES LA MEDIDA Y SUS ERRORES Magnitud, unidad y medida. Magnitud es todo aquello que se puede medir y que se puede representar por un número. Para obtener el número que representa a la magnitud debemos escoger

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 7 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Introducción. Ciclo de vida de los Sistemas de Información. Diseño Conceptual

Introducción. Ciclo de vida de los Sistemas de Información. Diseño Conceptual Introducción Algunas de las personas que trabajan con SGBD relacionales parecen preguntarse porqué deberían preocuparse del diseño de las bases de datos que utilizan. Después de todo, la mayoría de los

Más detalles

SIMULACION. Modelos de. Julio A. Sarmiento S. http://www.javeriana.edu.co/decisiones/julio sarmien@javeriana.edu.co

SIMULACION. Modelos de. Julio A. Sarmiento S. http://www.javeriana.edu.co/decisiones/julio sarmien@javeriana.edu.co SIMULACION Modelos de http://www.javeriana.edu.co/decisiones/julio sarmien@javeriana.edu.co Julio A. Sarmiento S. Profesor - investigador Departamento de Administración Pontificia Universidad Javeriana

Más detalles

2. Probabilidad. Estadística. Curso 2009-2010. Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24

2. Probabilidad. Estadística. Curso 2009-2010. Ingeniería Informática. Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24 2. Probabilidad Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 2. Probabilidad Curso 2009-2010 1 / 24 Contenidos 1 Experimentos aleatorios 2 Algebra de sucesos 3 Espacios

Más detalles

El azar y la probabilidad. Un enfoque elemental

El azar y la probabilidad. Un enfoque elemental El azar y la probabilidad. Un enfoque elemental Experimentos al azar El azar puede percibirse fácilmente cuando se repite muchas veces una acción cuyo resultado no conocemos, como tirar dados, repartir

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II 2º BACHILLERATO (Modalidad: Humanidades y Ciencias Sociales) Desarrollado en Decreto 67/2008, de 19 de junio. B.O.C.M.: 27 de junio de 2008. PROGRAMACIÓN

Más detalles

Notas de Probabilidades

Notas de Probabilidades 1 Introducción Notas de Probabilidades En la vida cotidiana nos encontramos con frecuencia con situaciones que producen varios resultados conocidos, sin poder determinar con exactitud cual de ellos ocurrirá.

Más detalles

TEORIA DE LA PROBABILIDAD

TEORIA DE LA PROBABILIDAD TEORIA DE LA PROBABILIDAD 2.1. Un poco de historia de la teoría de la probabilidad. Parece evidente que la idea de probabilidad debe ser tan antigua como el hombre. La idea es muy probable que llueva mañana

Más detalles

Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1

Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 TEMA 11: MÉTODOS DINÁMICOS DE SELECCIÓN DE INVERSIONES ESQUEMA DEL TEMA: 11.1. Valor actualizado neto. 11.2. Tasa interna

Más detalles

CAPÍTULO 5 ANÁLISIS DE CONVERGENCIA DEL MÉTODO BINOMIAL AL MODELO DE BLACK & SCHOLES

CAPÍTULO 5 ANÁLISIS DE CONVERGENCIA DEL MÉTODO BINOMIAL AL MODELO DE BLACK & SCHOLES CAPÍTULO 5 ANÁLISIS DE CONVERGENCIA DEL MÉTODO BINOMIAL AL MODELO DE BLACK & SCHOLES Para la valuación de opciones hay dos modelos ampliamente reconocidos como son el modelo binomial y el modelo de Black

Más detalles

Probabilidad. Relación de problemas 5

Probabilidad. Relación de problemas 5 Relación de problemas 5 Probabilidad 1. Una asociación consta de 14 miembros, de los cuales 6 son varones y 8 son mujeres. Se desea seleccionar un comité de tres hombres y tres mujeres. Determinar de cuántas

Más detalles

Contabilidad Nacional

Contabilidad Nacional Contabilidad Nacional La mayoría de países calculan una serie de magnitudes que se recogen bajo el nombre de contabilidad nacional, la precisión de dichas magnitudes es un criterio muy fiable del grado

Más detalles

El Cambio Climático. Gráficas, tablas y esquemas del Cuarto Informe de Evaluación del IPCC (2007)

El Cambio Climático. Gráficas, tablas y esquemas del Cuarto Informe de Evaluación del IPCC (2007) El Cambio Climático Gráficas, tablas y esquemas del Cuarto Informe de Evaluación del IPCC (2007) QUÉ ES EL IPCC El Grupo Intergubernamental sobre Cambio Climático, más conocido por sus siglas en inglés

Más detalles

COMPOSICION DE LOS ESTADOS FINANCIEROS:

COMPOSICION DE LOS ESTADOS FINANCIEROS: COMPOSICION DE LOS ESTADOS FINANCIEROS: Los estados financieros son los documentos emitidos por una entidad, en los cuales se consigna información financiera cuantificable en unidades monetarias respecto

Más detalles

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Probabilidad de ntonio Francisco Roldán López de Hierro * Convocatoria de 2007 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

Soluciones de los ejercicios de la primera Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo

Soluciones de los ejercicios de la primera Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo Soluciones de los ejercicios de la primera Unidad Dr. Víctor Hernández Dr. Jorge Martín Dr. José Antonio Carrillo 5 de marzo de 0 Índice general Ejercicio.. Manejo del formalismo de los sucesos.............

Más detalles

EJ:LANZAMIENTO DE UNA MONEDA AL AIRE : S { } { } ESPACIO MUESTRAL:CONJUNTO DE TODOS LOS SUCESOS ELEMENTALES DE UN EXPERIMENTO ALEATORIO.

EJ:LANZAMIENTO DE UNA MONEDA AL AIRE : S { } { } ESPACIO MUESTRAL:CONJUNTO DE TODOS LOS SUCESOS ELEMENTALES DE UN EXPERIMENTO ALEATORIO. GUIA DE EJERCICIOS. TEMA: ESPACIO MUESTRAL-PROBABILIDADES-LEY DE LOS GRANDES NUMEROS. MONTOYA.- CONCEPTOS PREVIOS. EQUIPROBABILIDAD: CUANDO DOS O MAS EVENTOS TIENEN LA MISMA PROBABILIDAD DE OCURRIR. SUCESO

Más detalles

El concepto de asociación estadística. Tema 6 Estadística aplicada Por Tevni Grajales G.

El concepto de asociación estadística. Tema 6 Estadística aplicada Por Tevni Grajales G. El concepto de asociación estadística Tema 6 Estadística aplicada Por Tevni Grajales G. En gran medida la investigación científica asume como una de sus primera tareas, identificar las cosas (características

Más detalles

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Variables Aleatorias Una variable aleatoria es una función que asocia un número real con cada elemento del EM. Ejemplo 1: El EM que da una

Más detalles

Manual de Procedimientos

Manual de Procedimientos UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO DIRECCIÓN GENERAL DE PLANEACIÓN DIRECCIÓN DE GESTIÓN DE LA CALIDAD Manual de Procedimientos Contenido: 1. Procedimiento; 2. Objetivo de los procedimientos; 3.

Más detalles

MATEMÁTICAS 3º E.S.O

MATEMÁTICAS 3º E.S.O MATEMÁTICAS 3º E.S.O Desarrollado en DECRETO 48/2015, de 14 de mayo (B.O.C.M. Núm. 118; 20 de mayo de 2015) PROGRAMACIÓN DIDÁCTICA I.E.S. JOSÉ HIERRO (GETAFE) CURSO: 2015-16 Pág 1 de 11 1. CONTENIDOS Y

Más detalles

INTRODUCCIÓN A LA PROBABILIDAD.

INTRODUCCIÓN A LA PROBABILIDAD. INTRODUCCIÓN A LA ROBABILIDAD. Departamento de Matemáticas Se denomina experimento aleatorio a aquel en que jamás se puede predecir el resultado. El conjunto formado por todos los resultados posibles de

Más detalles

Un problema sobre repetidas apuestas al azar

Un problema sobre repetidas apuestas al azar Un problema sobre repetidas apuestas al azar Eleonora Catsigeras 1 10 de marzo de 2003. Resumen En estas notas se da el enunciado y una demostración de un conocido resultado sobre la probabilidad de éxito

Más detalles

Probabilidad y Simulación

Probabilidad y Simulación Probabilidad y Simulación Estímulo del Talento Matemático Real Academia de Ciencias 4 de febrero de 2006 Entendiendo el azar Queremos entender un fenómeno aleatorio (azar, incertidumbre). Entenderlo lo

Más detalles

Probabilidad Hoja de trabajo #1. Actividad: Buscando todos los resultados de un experimento

Probabilidad Hoja de trabajo #1. Actividad: Buscando todos los resultados de un experimento Probabilidad Hoja de trabajo #1 Actividad: Buscando todos los resultados de un experimento Instrucciones: En cada uno de los siguientes experimentos determina todos los posibles resultados al llevarlo

Más detalles

4 Teoría de diseño de Experimentos

4 Teoría de diseño de Experimentos 4 Teoría de diseño de Experimentos 4.1 Introducción En los capítulos anteriores se habló de PLC y de ruido, debido a la inquietud por saber si en una instalación eléctrica casera que cuente con el servicio

Más detalles

Los contenidos básicos exigibles a la finalización del curso serán:

Los contenidos básicos exigibles a la finalización del curso serán: 1. CONTENIDOS BÁSICOS. Los contenidos básicos exigibles a la finalización del curso serán: BLOQUE I: ESTADÍSTICA Y PROBABILIDAD Población y muestra. Tipos de caracteres estadísticos: cualitativos y cuantitativos.

Más detalles

SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas

SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA PROF. Esther González Sánchez Departamento de Informática y Sistemas Facultad de Informática Universidad de Las Palmas de Gran Canaria

Más detalles

Evaluación de Proyectos de Inversión

Evaluación de Proyectos de Inversión Evaluación de Proyectos de Inversión Sesión #9: Estudio financiero (6) Valor Presente, Valor Presente Neto e Índice de rentabilidad con respecto al costo de oportunidad Contextualización Con los estados

Más detalles

LECTURA 7.1. SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Mathur K. y Solow D. Prentice Hall México

LECTURA 7.1. SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Mathur K. y Solow D. Prentice Hall México LECTURA 7.1 SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Mathur K. y Solow D. Prentice Hall México SIMULACIÓN POR COMPUTADORA: APLICACIONES Y ANÁLISIS ESTADÍSTICO Hipoteca de tasa fija

Más detalles

AZAR, PROBABILIDAD Y ESTADÍSTICA EXPERIENCIAS DE AZAR

AZAR, PROBABILIDAD Y ESTADÍSTICA EXPERIENCIAS DE AZAR AZAR, PROBABILIDAD Y ESTADÍSTICA EXPERIENCIAS DE AZAR Hay situaciones en la vida diaria en las que no podemos saber qué resultado va a salir, pero sí sabemos los posibles resultados; son situaciones que

Más detalles

Probabilidad. La probabilidad de un suceso es un nombre que pertenece al intervalo [0, 1]

Probabilidad. La probabilidad de un suceso es un nombre que pertenece al intervalo [0, 1] Probabilidad Un fenómeno es aleatorio si conocemos todos sus posibles resultados pero no podemos predecir cual de ellos ocurrirá. Cada uno de estos posibles resultados es un suceso elemental del fenómeno

Más detalles

Grado polinomial y diferencias finitas

Grado polinomial y diferencias finitas LECCIÓN CONDENSADA 7.1 Grado polinomial y diferencias finitas En esta lección Aprenderás la terminología asociada con los polinomios Usarás el método de diferencias finitas para determinar el grado de

Más detalles

Anexo 4. Herramientas Estadísticas

Anexo 4. Herramientas Estadísticas Anexo 4 Herramientas Estadísticas La estadística descriptiva es utilizada como una herramienta para describir y analizar las características de un conjunto de datos, así como las relaciones que existen

Más detalles

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS 1) Reseña histórica Abrahan De Moivre (1733) fue el primero en obtener la ecuación matemática de la curva normal. Kart Friedrich Gauss y Márquez De Laplece (principios

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

Tema 2 Estadística Descriptiva

Tema 2 Estadística Descriptiva Estadística Descriptiva 1 Tipo de Variables 2 Tipo de variables La base de datos anterior contiene la información de 2700 individuos con 8 variables. Los datos provienen de una encuesta nacional realizada

Más detalles

Modelo estocástico. Un modelo estocástico para asignar el precio de bonos

Modelo estocástico. Un modelo estocástico para asignar el precio de bonos Introducción Puede el hombre conocer con certeza?. Según Carneades, el hombre por ser imperfecto no puede conocer todo con certeza, sino que sólo existen grados de certeza en el conocimiento asociándoles

Más detalles

Datos estadísticos. 1.3. PRESENTACIÓN DE DATOS INDIVIDUALES Y DATOS AGRUPADOS EN TABLAS Y GRÁFICOS

Datos estadísticos. 1.3. PRESENTACIÓN DE DATOS INDIVIDUALES Y DATOS AGRUPADOS EN TABLAS Y GRÁFICOS .. PRESENTACIÓN DE DATOS INDIVIDUALES Y DATOS AGRUPADOS EN TABLAS Y GRÁFICOS Ser: Describir el método de construcción del diagrama de tallo, tabla de frecuencias, histograma y polígono. Hacer: Construir

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A (3 puntos) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de tinta negra y dos de color. Si sólo

Más detalles

Para obtener la información requerida para realizar un DI, a menudo se usa la técnica de Lluvia de ideas.

Para obtener la información requerida para realizar un DI, a menudo se usa la técnica de Lluvia de ideas. 1.4.4. DIAGRAMA DE ISHIKAWA (O DE CAUSA EFECTO) Una vez que se ha localizado dónde, cuándo y bajo qué circunstancias ocurre un problema importante, entonces es el momento de localizar la causa fundamental

Más detalles

ANEXO AL TEMA 7 UN MERCADO SECUNDARIO: LA BOLSA. 1. LA ACCIÓN. Las acciones son títulos-valores, representan el derecho de propiedad sobre una

ANEXO AL TEMA 7 UN MERCADO SECUNDARIO: LA BOLSA. 1. LA ACCIÓN. Las acciones son títulos-valores, representan el derecho de propiedad sobre una ANEXO AL TEMA 7 UN MERCADO SECUNDARIO: LA BOLSA. 1. LA ACCIÓN. Las acciones son títulos-valores, representan el derecho de propiedad sobre una empresa para su tenedor, y la obligación para la empresa que

Más detalles

Universidad Diego Portales Facultad de Economía y Empresa

Universidad Diego Portales Facultad de Economía y Empresa Suponga que, conversando con su cuate, surge la idea de hacer una apuesta simple. Cada uno escoge decir cara ó sello. Se lanza una moneda al aire, y si sale cara, quien dijo sello le paga a quien dijo

Más detalles

REPRESENTACIÓN DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA

REPRESENTACIÓN DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA REPRESENTACIÓN DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA Similar a las distribuciones de frecuencia, una distribución de probabilidad discreta puede ser representada (descrita) tanto gráficamente como

Más detalles

MÓDULO PROFESIONAL PROYECTO EMPRESARIAL DAVID ESPINOSA SALAS - I.E.S. GREGORIO PRIETO (VALDEPEÑAS) LA ORGANIZACIÓN Y DIRECCIÓN DE LA EMPRESA

MÓDULO PROFESIONAL PROYECTO EMPRESARIAL DAVID ESPINOSA SALAS - I.E.S. GREGORIO PRIETO (VALDEPEÑAS) LA ORGANIZACIÓN Y DIRECCIÓN DE LA EMPRESA La O. ÍNDICE. 1. ORGANIZACIÓN DE LA EMPRESA. 2. EL ORGANIGRAMA Y SUS CLASES. 3. MODELOS DE ESTRUCTURA ORGANIZATIVA: LINEAL, EN LÍNEA Y STAFF, EN COMITÉ, MATRICIAL Y FUNCIONAL. 3.1. La estructura organizativa

Más detalles

Unidad 14 Probabilidad

Unidad 14 Probabilidad Unidad 4 robabilidad ÁGINA 50 SOLUCIONES Calcular variaciones.! 5! 4 a) V, 6 b) 5, 60 c),4 6 ( )! V (5 )! VR Calcular permutaciones. a)! 6 b) 5 5! 0 c) 0 0! 68 800! 9 96 800 palabras diferentes. Números

Más detalles

Tema 7: Juegos con información incompleta

Tema 7: Juegos con información incompleta Tema 7: Juegos con información incompleta Microeconomía Avanzada II Iñigo Iturbe-Ormaeche U. de Alicante 2008-09 Modelo de Spence Introducción y ejemplos Equilibrio Bayesiano de Nash Aplicaciones Señales

Más detalles

GESTIÓN DE INDICADORES

GESTIÓN DE INDICADORES GESTIÓN DE INDICADORES Objetivos Conocer los fundamentos del control de procesos necesarios para la formulación de indicadores que sean pertinentes. Establecer las pautas y parámetros, a través de los

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 008 _ 0-048.qxd 9/7/08 9:07 Página 405 4 Probabilidad INTRODUCCIÓN En la vida cotidiana tienen lugar acontecimientos cuya realización es incierta y en los que el grado de incertidumbre es mayor o menor

Más detalles

TEORÍA DE JUEGOS. 1 Definiciónes y Conceptos Básicos. 1.1 Definición: 1.2 Elementos de un juego. 1.3 Representación de un juego.

TEORÍA DE JUEGOS. 1 Definiciónes y Conceptos Básicos. 1.1 Definición: 1.2 Elementos de un juego. 1.3 Representación de un juego. TEORÍA DE JUEGOS 1 Definiciónes y Conceptos ásicos. 1.1 Definición: La teoría de juegos es una herramienta de análisis económico usada para estudiar problemas caracterizados por la interacción estratégica

Más detalles

Aplicación informática para la inscripción de alumnos en experimentos del área de Psicología Básica

Aplicación informática para la inscripción de alumnos en experimentos del área de Psicología Básica Aplicación informática para la inscripción de alumnos en experimentos del área de Psicología Básica Dpto. Psicología Experimental y Fisiología del Comportamiento Universidad de Granada ÍNDICE 1. INTRODUCCIÓN

Más detalles

Una fórmula para la pendiente

Una fórmula para la pendiente LECCIÓN CONDENSADA 5.1 Una fórmula para la pendiente En esta lección aprenderás cómo calcular la pendiente de una recta dados dos puntos de la recta determinarás si un punto se encuentra en la misma recta

Más detalles

HACIA LA CALIBRACIÓN DE SIMULADORES DE CAPACITANCIA PARA EL INTERVALO DE 100 µf A 100 mf EN EL CENAM

HACIA LA CALIBRACIÓN DE SIMULADORES DE CAPACITANCIA PARA EL INTERVALO DE 100 µf A 100 mf EN EL CENAM HACIA LA CALIBRACIÓN DE SIMULADORES DE CAPACITANCIA PARA EL INTERVALO DE 100 µf A 100 mf EN EL CENAM J. Angel Moreno, Felipe L. Hernández División de Mediciones Electromagnéticas km 4,5 Carr. a los Cués,

Más detalles

Diagramas de frecuencias relativas

Diagramas de frecuencias relativas LEIÓN ONENSAA 10.1 iagramas de frecuencias relativas En esta lección crearás diagramas de círculo calcularás frecuencias relativas crearás diagramas de barras de frecuencias relativas y diagramas de círculo

Más detalles

Los elementos que usualmente componen la identidad digital son:

Los elementos que usualmente componen la identidad digital son: Enero 2016 Programa Civismo Digital - Escolar Material Educativo Lección: TU IDENTIDAD EN INTERNET v. 1.0 Topico: Alfabetización Digital, Huella Digital Objetivo: Fomentar en los alumnos la importancia

Más detalles

PLANEACIÓN ESTRATÉGICA. Lo que Todo Director Debe Saber UNA GUÍA PASO A PASO

PLANEACIÓN ESTRATÉGICA. Lo que Todo Director Debe Saber UNA GUÍA PASO A PASO PLANEACIÓN ESTRATÉGICA Lo que Todo Director Debe Saber UNA GUÍA PASO A PASO Qué es la Planeación Estratégica pp. 19-30 George A. Steiner CECSA Tercera Reimpresión México 1998 Qué es la planeación estratégica?

Más detalles

Enseñar Matemáticas en el siglo XXI INDICADORES DE LAS COMPETENCIAS (PISA 2003)

Enseñar Matemáticas en el siglo XXI INDICADORES DE LAS COMPETENCIAS (PISA 2003) INDICADORES DE LAS COMPETENCIAS (PISA 2003) Pensar y razonar Plantear cuestiones propias de las matemáticas ( cuántos hay? Cómo encontrarlo? Si es así, entonces etc.) Conocer los tipos de respuestas que

Más detalles

MOOC UJI: La Probabilidad en las PAU

MOOC UJI: La Probabilidad en las PAU 3. Definición intuitiva de probabilidad: ley de Laplace La palabra probabilidad, que usamos habitualmente, mide el grado de creencia que tenemos de que ocurra un hecho que puede pasar o no pasar. Imposible,

Más detalles

FUNDAMENTOS DEL ANÁLISIS DE WEIBULL Por Robert B. Abernethy, FL, USA

FUNDAMENTOS DEL ANÁLISIS DE WEIBULL Por Robert B. Abernethy, FL, USA FUNDAMENTOS DEL ANÁLISIS DE WEIBULL Por Robert B. Abernethy, FL, USA El análisis de Weibull es la técnica mayormente elegida para estimar una probabilidad, basada en datos medidos o asumidos. La distribución

Más detalles

6. Gestión de proyectos

6. Gestión de proyectos 6. Gestión de proyectos Versión estudiante Introducción 1. El proceso de gestión de proyectos 2. Gestión del riesgo "La gestión de proyectos se basa en establecer objetivos claros, gestionar el tiempo,

Más detalles

T.1 CONVERGENCIA Y TEOREMAS LÍMITE

T.1 CONVERGENCIA Y TEOREMAS LÍMITE T.1 CONVERGENCIA Y TEOREMAS LÍMITE 1. CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIA CONVERGENCIA CASI-SEGURA CONVERGENCIA EN PROBABILIDAD CONVERGENCIA EN MEDIA CUADRÁTICA CONVERGENCIA EN LEY ( O DISTRIBUCIÓN)

Más detalles

SIMULACION. Formulación de modelos: solución obtenida de manera analítica

SIMULACION. Formulación de modelos: solución obtenida de manera analítica SIMULACION Formulación de modelos: solución obtenida de manera analítica Modelos analíticos: suposiciones simplificatorias, sus soluciones son inadecuadas para ponerlas en práctica. Simulación: Imitar

Más detalles

Clase 2: Estadística

Clase 2: Estadística Clase 2: Estadística Los datos Todo conjunto de datos tiene al menos dos características principales: CENTRO Y DISPERSIÓN Los gráficos de barra, histogramas, de puntos, entre otros, nos dan cierta idea

Más detalles

Lecturas previas Cuando llegue a su primera sesión de laboratorio debe haber estudiado el contenido de la lectura que aparece a continuación.

Lecturas previas Cuando llegue a su primera sesión de laboratorio debe haber estudiado el contenido de la lectura que aparece a continuación. Laboratorio 1 Medición e incertidumbre La descripción de los fenómenos naturales comienza con la observación; el siguiente paso consiste en asignar a cada cantidad observada un número, es decir en medir

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

Razonamiento inductivo

Razonamiento inductivo LECCIÓN CONDENSADA 2.1 Razonamiento inductivo En esta lección Aprenderás cómo se usa el razonamiento inductivo en la ciencia y en las matemáticas Usarás el razonamiento inductivo para hacer conjeturas

Más detalles

Problemas Resueltos del Tema 1

Problemas Resueltos del Tema 1 Tema 1. Probabilidad. 1 Problemas Resueltos del Tema 1 1- Un estudiante responde al azar a dos preguntas de verdadero o falso. Escriba el espacio muestral de este experimento aleatorio.. El espacio muestral

Más detalles

Métodos no paramétricos para la comparación de dos muestras

Métodos no paramétricos para la comparación de dos muestras Investigación Métodos no paramétricos para la comparación de dos muestras Métodos no paramétricos para la comparación de dos muestras Pértega Díaz, S. Unidad de Epidemiología Clínica y Bioestadística.

Más detalles

Ciudad de Guatemala, 2013

Ciudad de Guatemala, 2013 Ciudad de Guatemala, 2013 1 Clase 5 Muestreo y tamaño de muestra D i e g o A y c i n e n a diegoaa@ufm.edu Universidad Francisco Marroquín 2 Clases (Profesores) H o r a r i o Actividades en Grupo (Todos)

Más detalles

Análisis estadístico. Tema 1 de Biología NS Diploma BI Curso 2013-2015

Análisis estadístico. Tema 1 de Biología NS Diploma BI Curso 2013-2015 Análisis estadístico Tema 1 de Biología NS Diploma BI Curso 2013-2015 Antes de comenzar Sobre qué crees que trata esta unidad? - Escríbelo es un post-it amarillo. Pregunta guía Cómo podemos saber si dos

Más detalles

ANEXO I. MATERIAS DE BACHILLERATO

ANEXO I. MATERIAS DE BACHILLERATO El artículo 29 en su apartado 6 del R.D. 1892/2008, dice: El establecimiento de las líneas generales de la metodología, el desarrollo y los contenidos de los ejercicios que integran tanto la fase general

Más detalles

Ejercicios de Macroeconomía Avanzada

Ejercicios de Macroeconomía Avanzada Ejercicios de Macroeconomía Avanzada José L Torres Chacón Departamento de Teoría e Historia Económica Universidad de Málaga Septiembre 200 ii Indice I Sistemas dinámicos básicos 5 Introducción a la dinámica

Más detalles

QUÉ ES EL CAMBIO CLIMÁTICO?

QUÉ ES EL CAMBIO CLIMÁTICO? QUÉ ES EL CAMBIO CLIMÁTICO? ENTENDIENDO EL CAMBIO CLIMÁTICO Antes de explicar qué es el cambio climático es importante definir qué es el clima. El promedio del estado del tiempo durante un periodo largo

Más detalles

Operación Microsoft Access 97

Operación Microsoft Access 97 Trabajar con Informes Características de los informes Un informe es una forma efectiva de presentar los datos en formato impreso. Como se tiene control sobre el tamaño y el aspecto de todos los elementos

Más detalles

Patrones de cambio de tendencia y velas japonesas

Patrones de cambio de tendencia y velas japonesas Patrones de cambio de tendencia y velas japonesas VAmos a ver uno de los patrones de cambio de tendencia más conocido y estudiado. Este es el que incluye los martillos, un tipo de velas japonesas, y sus

Más detalles

Planeación y evaluación: desarrollo de Indicadores

Planeación y evaluación: desarrollo de Indicadores + + ESTADOS GOBIERNO ABIERTO CO CREACIÓN DESDE LO LOCAL Planeación y evaluación: desarrollo de Indicadores Índice Conceptos Generales Gestión para Resultados (GpR) Ciclo de GpR Planeación Estratégica Diferencias

Más detalles

CITAS SOBRE LA IMPORTANCIA DE LA COMUNICACIÓN EN INGENIERÍA

CITAS SOBRE LA IMPORTANCIA DE LA COMUNICACIÓN EN INGENIERÍA De Óscar José Mesa Sánchez: CITAS SOBRE LA IMPORTANCIA DE LA COMUNICACIÓN EN INGENIERÍA MI VISIÓN DE UNIVERSIDAD. Si no hubiera sido por la Universidad pública no hubiera podido estudiar. Esta frase llena

Más detalles

Contabilidad de costos

Contabilidad de costos Contabilidad de costos CAPITULO 6 CONCEPTO Y OBJETIVOS. En la actualidad, desde el punto de vista de la gerencia, una buena administración no puede prescindir de la aplicación de un sistema de costos adecuado

Más detalles

Diversificación Internacional: Literatura

Diversificación Internacional: Literatura Diversificación internacional de las carteras de los fondos de pensiones Marlies van Boom 1 1 Marlies van Boom se graduó de la Universidad Erasmus de Rotterdam con un título de Maestría en Econometría

Más detalles

Probabilidad Para Ingenieros Apuntes EII-346. Ricardo Gatica Escobar, Ph.D.

Probabilidad Para Ingenieros Apuntes EII-346. Ricardo Gatica Escobar, Ph.D. Probabilidad Para Ingenieros Apuntes EII-346 Ricardo Gatica Escobar, Ph.D. 5 de noviembre de 2003 Capítulo 1 Introducción 1.1. Definiciones y Conceptos Básicos Definiciones Fenómeno: Cualquier ocurrencia

Más detalles

CONTABILIDAD Y FINANZAS PARA LA TOMA DE DECISIONES SEMANA 1

CONTABILIDAD Y FINANZAS PARA LA TOMA DE DECISIONES SEMANA 1 CONTABILIDAD Y FINANZAS PARA LA TOMA DE DECISIONES SEMANA 1 ÍNDICE COSTEO DIRECTO Y ANÁLISIS DE COSTO-VOLUMEN-UTILIDAD... 3 APRENDIZAJES ESPERADOS... 3 INTRODUCCIÓN... 3 1. COSTEO DIRECTO Y COSTEO POR

Más detalles

Líneas de espera. Introducción.

Líneas de espera. Introducción. Líneas de espera. Introducción. En este capítulo se aplica la teoría de colas. Una Cola es una línea de espera y la teoría de colas es una colección de modelos matemáticos que describen sistemas de líneas

Más detalles

LOS INGRESOS DE LA EMPRESA EN LIBRE COMPETENCIA

LOS INGRESOS DE LA EMPRESA EN LIBRE COMPETENCIA LOS INGRESOS DE LA EMPRESA EN LIBRE COMPETENCIA 1 Los ingresos de la empresa en libre competencia http://www.eumed.net/cursecon/5/ingresos.htm Curva de Lorenz: Curva utilizada para ilustrar la distribución

Más detalles

PRESENTACIÓN GRÁFICA DE LOS DATOS

PRESENTACIÓN GRÁFICA DE LOS DATOS PRESENTACIÓN GRÁFICA DE LOS DATOS Una imagen dice más que mil palabras, esta frase explica la importancia de presentar los datos en forma gráfica. Existe una gran variedad de gráficos y la selección apropiada

Más detalles

Conceptos Básicos de Probabilidad

Conceptos Básicos de Probabilidad Conceptos Básicos de Probabilidad Debido a que el proceso de obtener toda la información relevante a una población particular es difícil y en muchos casos imposible de obtener, se utiliza una muestra para

Más detalles

APÉNDICE 2. Ejercicios para el aprendizaje perceptivo-discriminativo

APÉNDICE 2. Ejercicios para el aprendizaje perceptivo-discriminativo APÉNDICE 2. Ejercicios para el aprendizaje perceptivo-discriminativo Para realizar con material Como hemos afirmado anteriormente, muchas actividades perceptivodiscriminativas permiten integrar objetivos

Más detalles

Diagramas del UML. A continuación se describirán los diagramas más comunes del UML y los conceptos que representan: Diagrama de Clases

Diagramas del UML. A continuación se describirán los diagramas más comunes del UML y los conceptos que representan: Diagrama de Clases El UML está compuesto por diversos elementos gráficos que se combinan para conformar diagramas. Debido a que el UML es un lenguaje, cuenta con reglas para combinar tales elementos. La finalidad de los

Más detalles

Una nueva izquierda cosmopolita

Una nueva izquierda cosmopolita Una nueva izquierda cosmopolita ULRICH BECK EL PAÍS - Opinión - 17-11-2006 Quien deseaba, tras la caída del muro de Berlín, que la imaginación política de la izquierda -liberada del dogmatismo marxista-

Más detalles

Ambas componentes del sistema tienen costos asociados que deben de considerarse.

Ambas componentes del sistema tienen costos asociados que deben de considerarse. 1. Introducción. En este trabajo se aplica la teoría de colas. Una Cola es una línea de espera y la teoría de colas es una colección de modelos matemáticos que describen sistemas de líneas de espera particulares

Más detalles