Conservación del Momento Lineal y de la Energía

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Conservación del Momento Lineal y de la Energía"

Transcripción

1 Conservacón del Moento Lneal y de la Energía Conservacón del Moento Lneal y de la Energía Objetvos Coprobar experentalente la conservacón del oento lneal edante choques elástcos e nelástcos. Coprobar la conservacón de la energía potencal y cnétca. Materal Psta de deslzaento con topes Dos coches con ruedas Juego de pesos de 500 gr. Barra de adera con eltro eddor de ángulos barra etálca soporte jacón Pe etálco en A Esta práctca contene tres experentos: ) Conservacón del oento lneal en explosones. ) Conservacón del oento lneal en colsones. a) Choques elástcos. b) Choques nelástcos. 3) Conservacón de la energía. Deternacón de la constante elástca de un uelle. Experento : Conservacón del oento lneal en explosones Teoría Supongaos que teneos un sstea de asa M copuesto por dos asas, y, de odo que M = +. S el sstea está ncalente en reposo, su oento lneal ncal será nulo. Supongaos ahora que debdo sólo a uerzas nternas acontece una explosón de anera que el sstea se rope en sus asas y las cuales se overán con velocdades v y v, respectvaente. Debdo a que el sstea tenía ncalente un oento nulo, éste deberá segur sendo nulo tras la explosón debdo a que sólo han ntervendo uerzas nternas. Que el oento lneal sea nulo después de la explosón ndca que las asas y se deben over en la sa dreccón y en sentdos opuestos. Este hecho se deduce de la conservacón de las coponentes vertcales y horzontales del oento lneal:

2 Conservacón del Moento Lneal y de la Energía Antes de la explosón Stuacón hpotétca después de la explosón Según la stuacón hpotétca después del choque que se representa en la gura superor derecha, se debe cuplr: Conservacón cop. vertcales oento lneal v sen v sen v cos v cos Conservacón cop. horzontales oento lneal Dvdendo abas ecuacones obteneos: tg tg Es decr, abas partículas oran el so ángulo con la horzontal después de la explosón coo habíaos ndcado. Podeos toar el sstea de reerenca de odo que dcho ángulo sea nulo. Antes de la explosón Stuacón real después de la explosón Coo el oento lneal P antes de la explosón era nulo, veos que después de la explosón se debe cuplr: P v v 0 [] Esto es: v [] v En nuestro experento, el punto de explosón se elegrá de odo que cada uno de los coches alcancen los extreos opuestos de la psta sultáneaente. La relacón entre las velocdades de cada coche, se puede deternar sólo a partr de la edda de la dstanca vajada por cada coche hasta su extreo, ya que el tepo es coún para abos coches:

3 Conservacón del Moento Lneal y de la Energía 3 v v x t x [3] x x t y debdo a []: x x [4] Método experental ) Nvelar la psta deslzante edante los tornllos que se encuentran en sus extreos hasta consegur que un coche stuado en cualquer punto de la psta no se ueva. ) Uno de los coches tene un resorte con un uelle. Apretar dcho resorte hasta el nal y luego elevarlo lgeraente hasta que el resorte quede enganchado. Unr los dos coches edante el velcro de odo que el resorte quede entre los dos coches. 3) Golpear (con una de las barras etálcas negras o con la barra de adera con eltro) el pequeño pvote negro que se encuentra enca del resorte. Esto provocará que se suelte el resorte del uelle. Se debe ntentar que en el golpe, el tepo de percusón sea uy corto. Experentar con derentes puntos de coenzo en la psta hasta lograr que abos coches lleguen sultáneaente a sus extreos respectvos. Pesar abos coches y anotar la poscón de coenzo encontrada. Realzareos las sguentes varacones, encontrando para cada caso la dstanca de coenzo y coprobando que se cuple la ec. [4] [Atencón: la dstanca x vajada por cada coche se debe edr en un so punto del coche (desde el centro de la explosón hasta la parte trasera de cada coche cuando lleguen a los extreos del carrl)]: Caso : Coches sn asa añadda. Caso : Añadr una barra etálca a uno de los coches. Prevaente, pesar dcha barra. Caso 3: Repetr el caso pero cabando la asa añadda al otro coche. Caso 3: Añadr las dos barras etálcas a uno de los coches. Caso 4: Repetr el caso 3 pero cabando las dos asas al otro coche. Cuestones ) Se conserva el oento lneal en cada explosón? ) Cuando se utlzan coches de asas derentes, qué coche tene ayor oento lneal? Qué coche tene ayor energía cnétca? 3) Qué ocurre s nvertos los coches de poscón de odo que el coche que tene el uelle esté en la parte contrara?

4 Conservacón del Moento Lneal y de la Energía 4 Experento : Conservacón del oento lneal en colsones Teoría Independenteente del tpo de colsón, el oento lneal sepre se conserva. Una colsón elástca es aquella que se produce sn pérdda de energía cnétca en el choque. Por el contraro, en una colsón nelástca la energía cnétca no se conserva. Las colsones pueden o no ser rontales. En nuestro experento nos ltareos al estudo de las colsones rontales en las cuales las dos partículas se ueven en la sa línea de accón, sobre la psta. Colsón elástca rontal entre dos partículas de asas y : Sean v y v las velocdades ncal y nal para la partícula, y sean v y v las velocdades ncal y nal para la partícula. Se conserva la energía cnétca: que podeos reordenar coo: v v v v v v v v v v v v [5] De la conservacón del oento lneal: v v v v que poneos coo: v v v v Dvdendo [5] entre [6]: v v v o ben: v [6] v v v v [7] lo cual ndca que, en una colsón elástca, la velocdad relatva de retroceso es gual a la velocdad relatva de aproxacón. S = (es decr, las dos partículas tenen gual asa) suando y restando [6] y [7], es ácl obtener que después del choque (v = v ) y (v = v ), es decr, las partículas ntercaban sus velocdades. Colsón nelástca rontal entre dos partículas de asas y : Sólo estudareos colsones perectaente nelástcas (plástcas) en las cuales los dos objetos quedan pegados después del choque, (v = v = v CM ), sendo v CM la velocdad del centro de asas del conjunto. Se cuple la conservacón del oento lneal, según se desprende de la propa dencón de velocdad del centro de asas: v v v CM [8]

5 Conservacón del Moento Lneal y de la Energía 5 Método experental Colsones elástcas a) Coches de gual asa: ) Coprobar que la psta sgue nvelada observando que los coches en reposo no deslzan. ) Orentar los coches de odo que el coche que tene el resorte con el uelle tenga stuado éste en la parte en la que se produce el choque. 3) Stuar un coche en reposo en el centro de la psta y hacer chocar al otro coche contra aquél. Explcar lo que ocurre después del choque. 4) Epezar con cada coche desde los extreos opuestos de la psta y dar a abos la sa velocdad haca el centro de la psta. Explcar lo que ocurre después del choque. 5) Epezar con cada coche desde los extreos opuestos de la psta y dar a uno de ellos una velocdad ayor que al otro. Explcar lo que ocurre después del choque. b) Coches de dstnta asa: ) Cargar las dos barras etálcas sobre un coche y dejarlo en reposo en el centro de la psta. Dar al otro coche una velocdad ncal haca el coche en reposo. Explcar lo que ocurre después del choque. ) Stuar ahora el coche sn carga en el centro de la psta y en reposo, e pulsar el coche cargado. Explcar lo que ocurre después del choque. 3) Epezar con cada coche desde los extreos opuestos de la psta y dar a abos la sa velocdad haca el centro de la psta. Explcar lo que ocurre después del choque. 4) Epezar con abos coches en un lado de la psta y dar a uno de ellos una velocdad ayor que al otro de odo que abos choquen. Repetr esto dos veces, una con el coche con carga prero y otra con el coche sn carga prero. Explcar lo que ocurre después del choque en cada caso. Colsones nelástcas Orentar los coches de odo que los velcros de abos coches queden en contacto al chocar. Repetr los choques realzados en la parte elástca para tanto para coches de gual asa coo de dstnta asa. Cuestones ) En las colsones elástcas de gual asa se han ntercabado sepre las velocdades?. Explcar. ) Cuando dos coches con la sa asa y sa velocdad chocan elástcaente cuál es el oento lneal total nal del sstea? 3) Cuando dos coches con la sa asa y sa velocdad chocan nelástcaente cuál es el oento lneal total nal del sstea?, dónde ha do la energía cnétca del sstea?

6 Conservacón del Moento Lneal y de la Energía 6 Experento 3: Conservacón de la energía Teoría En este experento coprobareos la conservacón de la energía y obtendreos la constante elástca del uelle del resorte del coche. Sabeos que la energía potencal elástca de un uelle coprdo una dstanca x y con una constante elástca k, vene dada por kx. S elevaos la psta coo se ndca en la gura y stuaos el coche en el extreo neror con el uelle coprdo, al descoprr éste, el coche adqurrá una energía cnétca que le hará ascender por la psta y que nalente se transorará úncaente en energía potencal gravtatora en el punto ás alto alcanzado. Esta energía potencal gravtatora vendrá dada por: gd sen sendo d sen la altura vertcal alcanzada y el ángulo que la psta ora con la horzontal. Por la conservacón de la energía: kx gd sen de anera que: x d k [9] g sen Método experental ) Elevar la psta edante la barra vertcal con soporte en A. Con el eddor de ángulos de ploada, poner un desnvel ncal de 4º. ) Medr la longtud x del resorte del uelle extenddo en el coche correspondente. 3) Coprr el uelle y stuar el coche en la parte baja de la psta con el uelle coprdo en contacto con el tope neror de la psta. 4) Anotar la dstanca ncal de la parte superor de coche en la psta.

7 Conservacón del Moento Lneal y de la Energía 7 5) Percutr el pvote para descoprr el resorte. El coche subrá entonces por la psta. Anotar la dstanca alcanzada sobre la psta por la parte delantera del coche. Coprr nuevaente el resorte y repetr, al enos, tres veces este paso. Toar coo dstanca nal la ayor de las tres. 6) Elevar la psta º ás y repetr el paso 5. 7) Repetr el paso 6 hasta llegar a 0º de elevacón. 8) Debdo a la ec. [9], s representaos la dstanca total d vajada por el coche sobre la psta coo uncón de, obtendreos una recta cuya pendente será sen kx. Entonces, g hallar la constante elástca k. Al ternar esta práctca dejar la psta horzontal con los coches descargados sobre ella y con el resorte del uelle descoprdo.

Ondas y Rotaciones. Colisiones Inelásticas

Ondas y Rotaciones. Colisiones Inelásticas Hoja de Trabajo 8 Ondas y Rotacones Colsones Inelástcas Jae Felcano Hernández Unersdad Autónoa Metropoltana - Iztapalapa Méxco, D. F. 5 de agosto de 0 INTRODUCCIÓN. Para edr el grado de elastcdad de una

Más detalles

Disipación de energía mecánica

Disipación de energía mecánica Laboratoro de Mecáa. Expermento 13 Versón para el alumno Dspacón de energía mecáa Objetvo general El estudante medrá la energía que se perde por la accón de la uerza de rozamento. Objetvos partculares

Más detalles

ESCUELA DE INGENIERÍAS INDUSTRIALES. UNIVERSIDAD DE VALLADOLID FÍSICA I. CURSO TEMA 4. Dinámica de los sistemas de partículas

ESCUELA DE INGENIERÍAS INDUSTRIALES. UNIVERSIDAD DE VALLADOLID FÍSICA I. CURSO TEMA 4. Dinámica de los sistemas de partículas ESCUEL DE IGEIERÍS IDUSTRILES. UIVERSIDD DE VLLDOLID FÍSIC I. CURSO 03-04 TEM 4 Dnáca de los ssteas de partículas Introduccón: generalzacón de la ª ley de ewton.- Moento lneal de un sstea de partículas:

Más detalles

EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA

EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA JRCICIOS RSULTOS D TRABAJO Y NRGÍA. Un bloque de 40 kg que se encuentra ncalmente en reposo, se empuja con una uerza de 30 N, desplazándolo en línea recta una dstanca de 5m a lo largo de una superce horzontal

Más detalles

Gases ideales. Introducción a la Física Ambiental. Tema 3. Tema 3.- " Gases ideales ".

Gases ideales. Introducción a la Física Ambiental. Tema 3. Tema 3.-  Gases ideales . Gases deales. Introduccón a la Físca Abental. Tea 3. Tea 3. IFA (Prof. RAMOS) 1 Tea 3.- " Gases deales ". Ecuacón de estado: Gases deales. Energía nterna y Entalpía. Capacdades calorífcas: relacón de Mayer.

Más detalles

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE FISICA FISICA I FIS101M. Sección 03. José Mejía López. jmejia@puc.cl

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE FISICA FISICA I FIS101M. Sección 03. José Mejía López. jmejia@puc.cl PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE FISICA FISICA I FIS11M Seccón 3 José Mejía López jmeja@puc.cl http://www.s.puc.cl/~jmeja/docenca/s11m.html JML s11m-1 Capítulo Dnámca Trabajo y energía

Más detalles

Dasometría / Celedonio L

Dasometría / Celedonio L EJERCICIO Nº 6 Se ha realzado el nventaro forestal de una asa de Pnus pnaster no resnado, por uestreo estadístco, dseñado edante la toa de datos en parcelas rectangulares de 0 x 5 ts. El dáetro íno nventarable

Más detalles

Tema 2. DINÁMICA DE SISTEMAS DE PARTÍCULAS

Tema 2. DINÁMICA DE SISTEMAS DE PARTÍCULAS Tea. DIÁMICA DE SISTEMAS DE PARTÍCULAS. Intoduccón. Cento de asas.. Movento del cento de asas.. Masa educda..3 Consevacón del oento lneal..4 Consevacón del oento angula.3 Enegía de un sstea de patículas.3.

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

Trabajo y Energía Cinética

Trabajo y Energía Cinética Trabajo y Energía Cnétca Objetvo General Estudar el teorema de la varacón de la energía. Objetvos Partculares 1. Determnar el trabajo realzado por una fuerza constante sobre un objeto en movmento rectlíneo..

Más detalles

DETERMINACIÓN DE ERRORES Y TRATAMIENTO DE DATOS. II. Error en una medida: determinación y expresión de errores.

DETERMINACIÓN DE ERRORES Y TRATAMIENTO DE DATOS. II. Error en una medida: determinación y expresión de errores. Coportaento Mecánco de los Materales Antono Mguel Posadas Chnchlla Ingenería de Materales Departaento de Físca Aplcada Facultad de Cencas Eperentales Unversdad de Alería DETERMIACIÓ DE ERRORES Y TRATAMIETO

Más detalles

TEMA 4. TRABAJO Y ENERGIA.

TEMA 4. TRABAJO Y ENERGIA. TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero

Más detalles

Tema V: Trabajo, Potencia y Energía

Tema V: Trabajo, Potencia y Energía I.E. Juan Raón Jénez Tea V: Trabajo, Potenca y Energía La energía e una propedad que etá relaconada con lo cabo o proceo de tranforacón en la naturaleza. Sn energía nngún proceo fíco, quíco o bológco ería

Más detalles

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1

CÁLCULO VECTORIAL 1.- MAGNITUDES ESCALARES Y VECTORIALES. 2.- VECTORES. pág. 1 CÁLCL ECTRIAL 1. Magntudes escalares y vectorales.. ectores. Componentes vectorales. ectores untaros. Componentes escalares. Módulo de un vector. Cosenos drectores. 3. peracones con vectores. 3.1. Suma.

Más detalles

Deducción de parámetros y comportamiento

Deducción de parámetros y comportamiento Captulo 7. Deduccón de paráetros y coportaento presto por el odelo 287 Capítulo 7: presto por el odelo Deduccón de paráetros y coportaento S ben la utlzacón del odelo consttuto planteado requere la deternacón

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE 4 MOVIMIENO ARMÓNICO SIMPLE 4.. MOVIMIENOS PERIÓDICOS. Conocido el período de rotación de la Luna alrededor de la ierra, y sabiendo que la Luna no eite luz propia, sino que refleja la que recibe del Sol,

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

Aplicaciones de las leyes de conservación de la energía

Aplicaciones de las leyes de conservación de la energía Aplcacones de las leyes de conservacón de la energía Estratega para resolver problemas El sguente procedmento debe aplcarse cuando se resuelven problemas relaconados con la conservacón de la energía: Dena

Más detalles

8 MECANICA Y FLUIDOS: Calorimetría

8 MECANICA Y FLUIDOS: Calorimetría 8 MECANICA Y FLUIDOS: Calormetría CONTENIDOS Dencones. Capacdad caloríca. Calor especíco. Equlbro térmco. Calormetría. Calorímetro de las mezclas. Marcha del calorímetro. Propagacón de Errores. OBJETIVOS

Más detalles

Guía complementaria / PTL Guía de Ejercicios Vectores y algunas Aplicaciones.

Guía complementaria / PTL Guía de Ejercicios Vectores y algunas Aplicaciones. Guía de Ejercicios Vectores y algunas plicaciones. 1 Notabene : Todas las agnitudes vectoriales se presentan en esta guía con negrita y cursiva. Por distracción, puede haberse oitido tal cosa en algún

Más detalles

Capítulo 6 Momentum lineal y colisiones

Capítulo 6 Momentum lineal y colisiones Capítulo 6 Moentu lineal y colisiones 10 Probleas de selección - página 87 (soluciones en la página 124) 9 Probleas de desarrollo - página 92 (soluciones en la página 125) 85 6.A PROBLEMAS DE SELECCIÓN

Más detalles

Tema 3. Trabajo, energía y conservación de la energía

Tema 3. Trabajo, energía y conservación de la energía Físca I. Curso 2010/11 Departamento de Físca Aplcada. ETSII de Béjar. Unversdad de Salamanca Profs. Alejandro Medna Domínguez y Jesús Ovejero Sánchez Tema 3. Trabajo, energía y conservacón de la energía

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

OBJETIVOS. Comprender cualitativamente los cambios de dirección que se producen en choques no frontales.

OBJETIVOS. Comprender cualitativamente los cambios de dirección que se producen en choques no frontales. OBJETIVOS Corender el sgncado ísco de oento lneal o cantdad de oento coo edda de la caacdad de un cuero de actuar sobre otros en choques. (oentos undensonales) Corender la relacón entre ulso (de una uerza

Más detalles

CAPÍTULO V ANUALIDADES

CAPÍTULO V ANUALIDADES CAPÍTULO V ANUALIDADES 193 5.1.- ANUALIDADES Defncón: Se refere a una sere de flujos noralente de un so onto y períodos guales. Pueden ser abonos o pagos y lo ás portante, no necesaraente deben ser de

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

Tema 4 : TRACCIÓN - COMPRESIÓN

Tema 4 : TRACCIÓN - COMPRESIÓN Tea 4 : TRCCIÓ - COMPRESIÓ G O z Probleas resueltos Pro.: Jae Santo Dongo Santllana E.P.S.-Zaora (U.SL.) - 008 4..-Ccular el ncreento de longtud que tendrá un plar de horgón de 50 50 c de seccón de de

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Para abrirla tirando de un punto intermedio entre el eje y la manecilla habrá que realizar el mismo momentode fuerzas: Mg 50 F ʹ = 2F =

Para abrirla tirando de un punto intermedio entre el eje y la manecilla habrá que realizar el mismo momentode fuerzas: Mg 50 F ʹ = 2F = ESTTIC La fuerza necesara para abrr una puerta trando de su maneclla es la centésma parte de su peso. S la puerta pesa 10 kg y la dstanca de la maneclla al eje de gro es 1 m, calcular la fuerza F ʹ necesara

Más detalles

PRÁCTICAS DE FÍSICA I

PRÁCTICAS DE FÍSICA I GRADOS E IGEIERÍA DE TECOLOGÍAS IDUSTRIALES E IGEIERÍA QUÍMICA CURSO 04-05 PRÁCTICAS DE FÍSICA I. Estátca y dnámca: prncpo de Arquímedes y ley de Stokes.. Leyes de la dnámca: ª ley de ewton. 3. Osclacones

Más detalles

CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO

CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO 1 ÍNDICE 1. INTRODUCCIÓN 2. EL CAMPO MAGNÉTICO 3. PRODUCCIÓN DE UN CAMPO MAGNÉTICO 4. LEY DE FARADAY 5. PRODUCCIÓN DE UNA FUERZA EN UN CONDUCTOR 6. MOVIMIENTO DE

Más detalles

LA RELACIÓN ENTRE LA VOLATILIDAD DEL PRECIO DE UN TÍTULO Y SU RENDIMIENTO: UNA REVISIÓN Josefina Martínez Barbeito 1 Universidade A Coruña

LA RELACIÓN ENTRE LA VOLATILIDAD DEL PRECIO DE UN TÍTULO Y SU RENDIMIENTO: UNA REVISIÓN Josefina Martínez Barbeito 1 Universidade A Coruña REVISTA INVESTIGACIÓN OPERACIONAL Vol., 8 No3. 45-61 007 LA RELACIÓN ENTRE LA VOLATILIDAD DEL PRECIO DE UN TÍTULO Y SU RENDIMIENTO: UNA REVISIÓN Josena Martínez Barbeto 1 Unversdade A Coruña RESUMEN: Este

Más detalles

ENERGÍA (II) FUERZAS CONSERVATIVAS

ENERGÍA (II) FUERZAS CONSERVATIVAS NRGÍA (II) URZAS CONSRVATIVAS IS La Magdalena. Avilés. Asturias Cuando elevaos un cuerpo una altura h, la fuerza realiza trabajo positivo (counica energía cinética al cuerpo). No podríaos aplicar la definición

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO LINEAL Y CHOQUES CAPITULO 9 FISICA TOMO 1. Cuarta, quinta y sexta edición. Raymond A. Serway

PROBLEMAS RESUELTOS MOVIMIENTO LINEAL Y CHOQUES CAPITULO 9 FISICA TOMO 1. Cuarta, quinta y sexta edición. Raymond A. Serway PROBLEMAS RESUELTOS MOVIMIENTO LINEAL Y CHOQUES CAPITULO 9 FISICA TOMO Cuarta, quinta y sexta edición Rayond A. Serway MOVIMIENTO LINEAL Y CHOQUES 9. Moento lineal y su conservación 9. Ipulso y oento 9.3

Más detalles

Una Reformulación de la Mecánica Clásica

Una Reformulación de la Mecánica Clásica Una Reformulacón de la Mecánca Clásca Antono A Blatter Lcenca Creatve Commons Atrbucón 30 (2015) Buenos Ares Argentna Este trabajo presenta una reformulacón de la mecánca clásca que es nvarante bajo transformacones

Más detalles

TERMÓMETROS Y ESCALAS DE TEMPERATURA

TERMÓMETROS Y ESCALAS DE TEMPERATURA Ayudantía Académca de Físca B EMPERAURA El concepto de temperatura se basa en las deas cualtatvas de calente (temperatura alta) y río (temperatura baja) basados en el sentdo del tacto. Contacto térmco.-

Más detalles

CAPITULO 9 FISICA TOMO 1. Cuarta, quinta y sexta edición. Raymond A. Serway

CAPITULO 9 FISICA TOMO 1. Cuarta, quinta y sexta edición. Raymond A. Serway PROBLEMAS RESUELTOS MOVIMIENTO LINEAL Y CHOQUES CAPITULO 9 FISICA TOMO Cuarta, quinta y sexta edición Rayond A. Serway MOVIMIENTO LINEAL Y CHOQUES 9. Moento lineal y su conservación 9. Ipulso y oento 9.3

Más detalles

CONTENIDO SISTEMA DE PARTÍCULAS. Definición y cálculo del centro de masas. Movimiento del centro de masas. Fuerzas internas y fuerzas externas

CONTENIDO SISTEMA DE PARTÍCULAS. Definición y cálculo del centro de masas. Movimiento del centro de masas. Fuerzas internas y fuerzas externas COTEIDO Defncón y cálculo del cento de masas ovmento del cento de masas Fuezas ntenas y fuezas enas Enegía cnétca de un sstema de patículas Teoemas de consevacón paa un sstema de patículas B. Savon /.A.

Más detalles

Distancias e Indices Parciales de Medidas Difusas

Distancias e Indices Parciales de Medidas Difusas Dstancas e Indces Parcales de Meddas Dfusas Lus Danel Hernández Molnero Dpto. Inforátca y Ssteas Unversdad de Murca e-al: ldanel@df.u.es Antono Salerón Cerdán Dpto. Estadístca y Mateátca Aplcada Unversdad

Más detalles

CANTIDADES VECTORIALES: VECTORES

CANTIDADES VECTORIALES: VECTORES INSTITUION EDUTIV L PRESENTION NOMRE LUMN: RE : MTEMÁTIS SIGNTUR: GEOMETRÍ DOENTE: JOSÉ IGNIO DE JESÚS FRNO RESTREPO TIPO DE GUI: ONEPTUL - EJERITION PERIODO GRDO FEH DURION 3 11 JUNIO 3 DE 2012 7 UNIDDES

Más detalles

Física, magnitudes físicas y mediciones

Física, magnitudes físicas y mediciones FÍSIC DEL MOVIMIENTO PLICD ENERO 8 Gonzalo Gález Coyt CPITULO I Fíca, agntude íca y edcone Concepto de Fíca y u dono de aplcacón La Fíca e una cenca epírca. Todo lo que abeo del undo íco y de lo prncpo

Más detalles

MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Primer Semestre - Otoño 2014. Omar De la Peña-Seaman. Instituto de Física (IFUAP)

MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Primer Semestre - Otoño 2014. Omar De la Peña-Seaman. Instituto de Física (IFUAP) MECÁNICA CLÁSICA MAESTRÍA EN CIENCIAS (FÍSICA) Curso de Prmer Semestre - Otoño 2014 Omar De la Peña-Seaman Insttuto de Físca (IFUAP) Benemérta Unversdad Autónoma de Puebla (BUAP) 1 / Omar De la Peña-Seaman

Más detalles

GUÍA DE PROBLEMAS F 10º

GUÍA DE PROBLEMAS F 10º Unidad 3: Dináica de la partícula GUÍ DE PROBLEMS 1)-Una partícula de asa igual a kg esta tirada hacia arriba por una plano inclinado liso ediante una fuerza de 14,7 N. Deterinar la fuerza de reacción

Más detalles

Es un sistema de dos vectores deslizables de la misma magnitud que están en distintas rectas sostén con la misma dirección pero sentido contrario

Es un sistema de dos vectores deslizables de la misma magnitud que están en distintas rectas sostén con la misma dirección pero sentido contrario MECANICA TEORÍA Moento Entonces Sistea Par o Cupla de Vectores Es un sistea de dos vectores deslizables de la isa agnitud que están en distintas rectas sostén con la isa dirección pero sentido contrario

Más detalles

-.GEOMETRÍA.- a) 37 cm y 45 cm. b) 16 cm y 30 cm. En estos dos, se dan la hipotenusa y un cateto, y se pide el otro cateto:

-.GEOMETRÍA.- a) 37 cm y 45 cm. b) 16 cm y 30 cm. En estos dos, se dan la hipotenusa y un cateto, y se pide el otro cateto: -.GEOMETRÍA.- Ejercco nº 1.- Calcula el lado que falta en este trángulo rectángulo: Ejercco nº 2.- En los sguentes rectángulos, se dan dos catetos y se pde la hpotenusa (s su medda no es exacta, con una

Más detalles

EL MUELLE. LAS FUERZAS ELÁSTICAS

EL MUELLE. LAS FUERZAS ELÁSTICAS EL MUELLE. LAS FUERZAS ELÁSTICAS En una pista horizontal copletaente lisa, se encuentra un uelle de 30 c de longitud y de constante elástica 100 N/. Se coprie 0 c y se sitúa una asa de 500 g frente a él.

Más detalles

Espectroscopia UV-Visible

Espectroscopia UV-Visible Espectroscopa UV-Vsbe 2. ESPECTROSCOPIA ULTRAVIOLETA-VISIBLE. 2.1 Generadades 2.1.1 Breve hstora de a técnca. Aunque e descubrento de a dspersón de a uz por Newton data de 1704 e desarroo de as técncas

Más detalles

Fisicoquímica CIBEX Guía de Trabajos Prácticos 2010. Trabajo Práctico N 7. - Medida de la Fuerza Electromotriz por el Método de Oposición-

Fisicoquímica CIBEX Guía de Trabajos Prácticos 2010. Trabajo Práctico N 7. - Medida de la Fuerza Electromotriz por el Método de Oposición- Fscoquímca CIBX Guía de Trabajos Práctcos 2010 Trabajo Práctco N 7 - Medda de la Fuerza lectromotrz por el Método de Oposcón- Objetvo: Medr la fuerza electromotrz (FM) de la pla medante el método de oposcón

Más detalles

Problemas. 1. Un barco se balancea arriba y abajo y su desplazamiento vertical viene dado por la ecuación y = 1,2 cos

Problemas. 1. Un barco se balancea arriba y abajo y su desplazamiento vertical viene dado por la ecuación y = 1,2 cos Probleas. Un barco se balancea arriba y abajo y su desplazaiento vertical viene dado por t π la ecuación y, cos +. Deterinar la aplitud, frecuencia angular, 6 constante de fase, frecuencia y periodo del

Más detalles

Pruebas Estadísticas de Números Pseudoaleatorios

Pruebas Estadísticas de Números Pseudoaleatorios Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =

Más detalles

Cinemática del Brazo articulado PUMA

Cinemática del Brazo articulado PUMA Cnemátca del Brazo artculado PUMA José Cortés Parejo. Enero 8. Estructura del brazo robótco El robot PUMA de la sere es un brazo artculado con artculacones rotatoras que le proporconan grados de lbertad

Más detalles

ANEXO 4.1: Centro de masa y de gravedad

ANEXO 4.1: Centro de masa y de gravedad Cuso l Físca I Auto l Loenzo Ipaague ANEXO 4.: Cento de asa de gavedad El punto que poeda la ubcacón de la asa se denona cento de asa (), dado que la accón de la gavedad es popoconal a la asa, es natual

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

www.fisicaeingenieria.es

www.fisicaeingenieria.es 2.- PRIMER PRINCIPIO DE LA TERMODINÁMICA. 2.1.- Experencas de Joule. Las experencas de Joule, conssteron en colocar una determnada cantdad de agua en un calorímetro y realzar un trabajo, medante paletas

Más detalles

Electricidad y calor

Electricidad y calor Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles 2 Undad I.. Defncón de reaccón de combustón La reaccón de combustón se basa en la reaccón químca exotérmca de una sustanca (o una mezcla de ellas) denomnada combustble, con el oxígeno. Como consecuenca

Más detalles

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage: Algunas definiciones

Electricidad y calor. Un repaso... Temas. 4. Primera ley de la Termodinámica. Webpage:  Algunas definiciones Electrcdad y calor Webpage: http://pagnas.sca.uson.mx/qb 2007 Departamento de Físca Unversdad de Sonora Temas 4. Prmera ley de la Termodnámca.. Concepto de Trabajo aplcado a gases.. Trabajo hecho por un

Más detalles

Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas. INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA

Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas. INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA Universidad Nacional de La Plata Facultad de Ciencias Astronóicas y Geofísicas INTRODUCCIÓN a las CIENCIAS de la ATMÓSFERA Práctica 3 : TEMPERATURA y HUMEDAD. Definiciones, ecuaciones y leyes básicas a)

Más detalles

Suponga que trata de calcular la rapidez de una flecha disparada con un arco.

Suponga que trata de calcular la rapidez de una flecha disparada con un arco. TRABAJO Y ENERGÍA CINÉTICA 6?Cuando una ara de fuego se dispara, los gases que se expanden en el cañón epujan el proyectil hacia afuera, de acuerdo con la tercera ley de Newton, el proyectil ejerce tanta

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Mecánica Clásica ( Partículas y Bipartículas )

Mecánica Clásica ( Partículas y Bipartículas ) Mecánca lásca ( Partículas y Bpartículas ) Alejandro A. Torassa Lcenca reatve ommons Atrbucón 3.0 (0) Buenos Ares, Argentna atorassa@gmal.com Resumen Este trabajo consdera la exstenca de bpartículas y

Más detalles

II Evaluación. Física 11. Sección 01. Semestre A-2004.

II Evaluación. Física 11. Sección 01. Semestre A-2004. II Ealuación. Física. Sección. Seestre A-4..- Un náurago de 7 [N] que lota en el ar, es rescatado por edio de una guaya, desde un helicóptero que se encuentra estacionario a 5 [] sobre el agua. Toando

Más detalles

PRACTICA 4: CÁLCULOS DE ACTUADORES NEUMÁTICOS

PRACTICA 4: CÁLCULOS DE ACTUADORES NEUMÁTICOS PRACTCA : CÁLCULOS DE ACTUADORES NEUMÁTCOS Se trata de seleccionar los actuadores adecuados para un anipulador de un proceso de epaquetado de latas de atún. Coo se puede apreciar en el dibujo, en prier

Más detalles

LABORATORIOS Y PROBLEMAS DE FÍSICA PARA AGRONOMIA

LABORATORIOS Y PROBLEMAS DE FÍSICA PARA AGRONOMIA LAORATORIOS Y PROLEMAS DE FÍSICA PARA AGRONOMIA CARRERAS: INGENIERIA AGRONOMICA PROFESORES: Mg. CARLOS A. CATTANEO AUXILIARES: LIC. ENRIQUE M. IASONI ING. ANGEL ROSSI CONTENIDOS: Medcones Laboratoros Medcones

Más detalles

Tablas de vida de decrementos múltiples

Tablas de vida de decrementos múltiples Docuentos de Trabajo 1 2012 Francsco J. Goerlch Gsbert Tablas de vda de decreentos últples Mortaldad por causas en España (1975-2008) Tablas de vda de decreentos últples Mortaldad por causas en España

Más detalles

CAPITULO 7. MOMENTO LINEAL Y CHOQUES.

CAPITULO 7. MOMENTO LINEAL Y CHOQUES. Ca.7 Moento lneal y choques CAPITULO 7. MOMENTO LINEAL Y CHOQUES. Cóo uede un kaateca at un ontón de ladllos?, o qué un oazo es as dolooso sobe el ceento que sobe el asto?, o qué cuando se salta desde

Más detalles

UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA

UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA FORMULACIÓN DE UN PROGRAMA BÁSICO DE NORMALIZACIÓN PARA APLICACIONES DE ENERGÍAS ALTERNATIVAS Y DIFUSIÓN Documento ANC-0603-10-01 ANTEPROYECTO DE NORMA AEROGENERADORES

Más detalles

Física y Mecánica de las Construcciones ETS Arquitectura/ Curso 2008-09

Física y Mecánica de las Construcciones ETS Arquitectura/ Curso 2008-09 Física y Mecánica de las Construcciones ETS Arquitectura/ Curso 8-9 C) VIBRACIONES Y ONDAS 1. VIBRACIONES MECÁNICAS 1. 1. INTRODUCCIÓN Una vibración ecánica es la oscilación repetida de un punto aterial

Más detalles

Capítulo 3: Leyes de la conservación. Trabajo de una fuerza constante

Capítulo 3: Leyes de la conservación. Trabajo de una fuerza constante Capítulo 3: Leyes de la conseración En este capítulo, tratareos arias agnitudes nueas coo el trabajo, la energía, el ipulso y la cantidad de oiiento, y undaentalente las leyes de la conseración que tienen

Más detalles

Una fuerza es una magnitud vectorial que representa la interacción entre dos cuerpos.

Una fuerza es una magnitud vectorial que representa la interacción entre dos cuerpos. 1 Concepto de fuerza Una fuerza es una agnitud vectorial que representa la interacción entre dos cuerpos. La interacción entre dos cuerpos se puede producir a distancia o por contacto. or tanto las fuerzas

Más detalles

Es el movimiento periódico de un punto material a un lado y a otro de su posición en equilibrio.

Es el movimiento periódico de un punto material a un lado y a otro de su posición en equilibrio. 1 Movmento Vbratoro Tema 8.- Ondas, Sondo y Luz Movmento Peródco Un móvl posee un movmento peródco cuando en ntervalos de tempo guales pasa por el msmo punto del espaco sempre con las msmas característcas

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 21 de enero de 2009 UNIVERSIDAD CARLOS III DE MADRID Ingenería Informátca Examen de Investgacón Operatva 2 de enero de 2009 PROBLEMA. (3 puntos) En Murca, junto al río Segura, exsten tres plantas ndustrales: P, P2 y P3. Todas

Más detalles

ANÁLISIS DE ACCESIBILIDAD E INTERACCIÓN ESPECIAL:

ANÁLISIS DE ACCESIBILIDAD E INTERACCIÓN ESPECIAL: Geografía y Sstemas de Informacón Geográfca (GEOSIG). Revsta dgtal del Grupo de Estudos sobre Geografía y Análss Espacal con Sstemas de Informacón Geográfca (GESIG). Programa de Estudos Geográfcos (PROEG).

Más detalles

DEFINICIÓN DE INDICADORES

DEFINICIÓN DE INDICADORES DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.

Más detalles

V1 = A1 = V2 = A2 = V3 = L e) Construir el diagrama fasorial de voltajes. V. Nombre: Lecturas amperímetros (en ma) Lecturas voltímetros (en V)

V1 = A1 = V2 = A2 = V3 = L e) Construir el diagrama fasorial de voltajes. V. Nombre: Lecturas amperímetros (en ma) Lecturas voltímetros (en V) FÍSICA APICADA. EXAMEN ODINAIO MAYO 013. MODEO A Nombre: TEOÍA (.5 p) A) Una carga puntual postva que sgue una trayectora rectlínea entra en un campo magnétco perpendcularmente a las líneas del campo.

Más detalles

Hidrología superficial

Hidrología superficial Laboratoro de Hdráulca Ing. Davd Hernández Huéramo Manual de práctcas Hdrología superfcal 7o semestre Autores: Héctor Rvas Hernández Juan Pablo Molna Agular Rukmn Espnosa Díaz alatel Castllo Contreras

Más detalles

SI SE DESEA OBTENER LOS MEJORES RESULTADOS, ES ESENCIAL QUE SIGA LAS INSTRUCCIONES AL PIE DE LA LETRA.

SI SE DESEA OBTENER LOS MEJORES RESULTADOS, ES ESENCIAL QUE SIGA LAS INSTRUCCIONES AL PIE DE LA LETRA. SI SE DESEA OBTENER LOS MEJORES RESULTADOS, ES ESENCIAL QUE SIGA LAS INSTRUCCIONES AL PIE DE LA LETRA. - 8h -% RH www.quck-step.com www.quck-step.com Cement

Más detalles

CAPITULO 9 FISICA TOMO 1. Cuarta quinta y sexta edición. Raymond A. Serway

CAPITULO 9 FISICA TOMO 1. Cuarta quinta y sexta edición. Raymond A. Serway PROBLEMAS RESUELTOS MOVIMIENTO LINEAL Y CHOQUES CAPITULO 9 FISICA TOMO Cuarta quinta y sexta edición Rayond A. Serway MOVIMIENTO LINEAL Y CHOQUES 9. Moento lineal y su conservación 9. Ipulso y oento 9.3

Más detalles

INTRODUCCIÓN A LA TEORÍA DE COLISIONES VEHICULARES

INTRODUCCIÓN A LA TEORÍA DE COLISIONES VEHICULARES INTRODUCCIÓN A LA TEORÍA DE COLISIONES EHICULARES I.C. Lus Gonzalo Mejía C. U.N U. de Karlsruhe Aleana Dseño Dagraacón Carlos Federco Mejía. Medellín, Octubre del 003 Revsón Octubre 003 Revsón Octubre

Más detalles

UNIVERSIDAD DE SONORA

UNIVERSIDAD DE SONORA UNIVERSIDAD DE SONORA Dvsón de Cencas Exactas y Naturales Departamento de Matemátcas Estadístca Aplcada a las Lcencaturas: Admnstracón, Contaduría e Inormátca Admnstratva. Fascículo II: Estadístca Descrptva

Más detalles

LABORATORIOS Y PROBLEMAS DE FÍSICA I

LABORATORIOS Y PROBLEMAS DE FÍSICA I LORTORIOS Y PROLEMS DE FÍSIC I CRRERS: INGENIERI EN LIMENTOS LICENCITUR EN QUÍMIC PROFESORDO EN QUÍMIC PROFESORES: Mg. CRLOS. CTTNEO ING. NGEL MONTENEGRO UXILIRES: ING. NGEL ROSSI LIC. ENRIQUE M. ISONI

Más detalles

APENDICE A. El Robot autónomo móvil RAM-1.

APENDICE A. El Robot autónomo móvil RAM-1. Planfcacón de Trayectoras para Robots Móvles APENDICE A. El Robot autónomo móvl RAM-1. A.1. Introduccón. El robot autónomo móvl RAM-1 fue dseñado y desarrollado en el Departamento de Ingenería de Sstemas

Más detalles

III OLIMPIADA DE FÍSICA CHECOSLOVAQUIA, 1969

III OLIMPIADA DE FÍSICA CHECOSLOVAQUIA, 1969 OLIMPID INTERNCIONL DE FÍSIC Probleas resueltos y coentados por: José Luis Hernández Pérez y gustín Lozano Pradillo III OLIMPID DE FÍSIC CHECOSLOVQUI, 1969 1.- El sistea ecánico de la figura inferior consta

Más detalles

CAPÍTULO 7. Cuerpo rígido

CAPÍTULO 7. Cuerpo rígido CAPÍTUO 7. Cuerpo rígdo NTODUCCON En el captulo anteror estudamos el movmento de un sstema de partículas. Un caso especal mportante de estos sstemas es aquel en que la dstanca entre dos partículas cualesquera

Más detalles

rsums Aproxima la integral de f mediante sumas de Riemann y realiza una representación gráfica de los rectángulos.

rsums Aproxima la integral de f mediante sumas de Riemann y realiza una representación gráfica de los rectángulos. PRÁCTICA INTEGRACIÓN Práctcas Matlab Práctca : Integracón Objetvos o Calcular ntegrales defndas de forma aproxmada, utlzando sumas de Remann. o o o Profundzar en la comprensón del concepto de ntegracón.

Más detalles

FUNDAMENTOS QUIMICOS DE LA INGENIERIA

FUNDAMENTOS QUIMICOS DE LA INGENIERIA FUNDAMENTOS QUIMICOS DE LA INGENIERIA (BLOQUE DE INGENIERIA QUIMICA) GUION DE PRACTICAS DE LABORATORIO ANTONIO DURÁN SEGOVIA JOSÉ MARÍA MONTEAGUDO MARTÍNEZ INDICE PRACTICA PAGINA BALANCE MACROSCÓPICO DE

Más detalles

Explicación de las tecnologías - PowerShot SX500 IS y PowerShot SX160 IS

Explicación de las tecnologías - PowerShot SX500 IS y PowerShot SX160 IS Explcacón de las tecnologías - PowerShot SX500 IS y PowerShot SX160 IS EMBARGO: 21 de agosto de 2012, 15:00 (CEST) Objetvo angular de 24 mm, con zoom óptco 30x (PowerShot SX500 IS) Desarrollado usando

Más detalles

SISTEMAS ELÉCTRICOS Ecuación de equilibrio Ley de corrientes de Kirchhoff (LCK) m

SISTEMAS ELÉCTRICOS Ecuación de equilibrio Ley de corrientes de Kirchhoff (LCK) m UAB ODEADO DE SSEAS DAOS SSEAS EÉOS Ecuacón de eulbro ey de correntes de rchho () a 0 ; k,,, n k j j j ey de voltajes de rchho (V) j b k j v j 0 ; k,,, l Varables, síbolo y undad V Voltaje a través del

Más detalles

CONSEJERÍA DE EDUCACIÓN, CULTURA Y DEPORTE

CONSEJERÍA DE EDUCACIÓN, CULTURA Y DEPORTE CONSEJERÍA DE EDUCACIÓN, CULTURA Y DEPORTE Resolucón 11 juno 2013 que convoca a los centros docentes sostendos con fondos públcos la Comundad Autónoma Cantabra para su acredtacón como Escuelas Promotoras

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

GUIA DE ALCANCE FINANCIERO CAE OPERACIONES DE CRÉDITO HIPOTECARIO

GUIA DE ALCANCE FINANCIERO CAE OPERACIONES DE CRÉDITO HIPOTECARIO INTRODUCCIÓN La ley 2.555 publcada el día 5 de dcembre de 211 y que entró en vgenca el día 4 de marzo de 212, que modca la ley 19.496 Sobre Proteccón de los Derechos de los Consumdores (LPC, regula desde

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

2.5 Especialidades en la facturación eléctrica

2.5 Especialidades en la facturación eléctrica 2.5 Especaldades en la facturacón eléctrca Es necesaro destacar a contnuacón algunos aspectos peculares de la facturacón eléctrca según Tarfas, que tendrán su mportanca a la hora de establecer los crteros

Más detalles

Física I. TRABAJO y ENERGÍA MECÁNICA. Apuntes complementarios al libro de texto. Autor : Dr. Jorge O. Ratto

Física I. TRABAJO y ENERGÍA MECÁNICA. Apuntes complementarios al libro de texto. Autor : Dr. Jorge O. Ratto ísca I Apuntes complementaros al lbro de teto TRABAJO y ENERGÍA MECÁNICA Autor : Dr. Jorge O. Ratto Estudaremos el trabajo mecánco de la sguente manera : undmensonal constante Tpo de movmento varable bdmensonal

Más detalles

GESTION FINANCIERA. TEMA 4º. El INTERES COMPUESTO. 1.- Capitalización compuesta.

GESTION FINANCIERA. TEMA 4º. El INTERES COMPUESTO. 1.- Capitalización compuesta. GESTION FINANCIERA. TEMA 4º. El INTERES COMPUESTO. 1.- Capitalización copuesta. Concepto de capitalización copuesta. Térinos a utilizar en la capitalización copuesta. Cálculo del capital final o ontante.

Más detalles

La Energía Mecánica. E = m v

La Energía Mecánica. E = m v Energía La Energía Mecánica Direos que la energía de un cuerpo o sistea de cuerpos es la capacidad que tienen para realizar trabajo. Esta definición es iperfecta pero nos alcanza para hacer una priera

Más detalles

III. <> <>

III. <<Insertar Cita>> <<Autor>> Capítulo III Vsón III 3.1 Procesamento de Imágenes Se entende por procesamento de mágenes a la alteracón y análss de la normacón gráca. 3.1.1 Sstema de vsón humano El sstema

Más detalles

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID

DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID DELTA MATE OMAÓN UNETAA / Gral. Ampuda, 6 8003 MADD EXÁMEN NTODUÓN A LA ELETÓNA UM JUNO 008 El examen consta de ses preguntas. Lea detendamente los enuncados. tene cualquer duda consulte al profesor. Todas

Más detalles

9. Mantenimiento de sistemas de dirección y suspensión

9. Mantenimiento de sistemas de dirección y suspensión 9. Mantenmento de sstemas de dreccón y suspensón INTRODUCCIÓN Este módulo de 190 horas pedagógcas tene como propósto que los y las estudantes de cuarto medo desarrollen competencas relatvas a los sstemas

Más detalles