EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN"

Transcripción

1 EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN Una de las aplicaciones más comunes de los conceptos relacionados con la derivada de una función son los problemas de optimización. En este tipo de problemas se presenta un enunciado que describe, verbalmente, una situación en la que se pide maimizar o minimizar una cantidad (función) que depende de otras cantidades (variables). En general, la función no se epresa directamente y se debe deducir del enunciado. Para realizar con éito este tipo de ejercicios debemos entender perfectamente el conteto del problema, localizar las variables dependientes y la magnitud que vendrá epresada por la función. No eiste un método general que sirva para todos los problemas, pero podemos seguir el siguiente esquema de resolución: 1. Identidficar y nombrar la magnitud que queremos maimizar/minimizar en el conteto del problema. En este paso debemos tener claro que magnitud es el objetivo del problema. Normalmente suele aparecer en la pregunta del ejercicio. En este paso no se debe proporcionar la epresión matemática, sólo localizar la magnitud. 2. Identidficar y nombrar las variables independientes en el conteto del problema. La magnitud que vayamos a optimizar dependerá de otras magnitudes del problema, en este paso se localizan dichas magnitudes y las nombramos con letras que nos resulten significativas. 3. Planteamos la epresión de la función a optimizar en función a las relaciones del problema. El enunciado del ejercicio nos proporciona la forma en que se relacionan las variables independientes con la función que queremos optimizar. Algunas de estas relaciones pueden estar en forma implícita, por lo que deberemos refleionar sobre el enunciado para obtener la epresión correcta. 4. Identificar el dominio de la función en el conteto del problema. El dominio representa el conjunto de valores donde vamos a buscar el optimo de nuestra función, por lo tanto es de vital importancia su identificación. 5. Aplicar los métodos de optimización utilizando el concepto de derivada. En este paso realizamos los cálculos pertinentes asociados a la optimización de funciones. 6. Responder verbalmente a la pregunta formulada. En los problemas de aplicación siempre hay un conteto y por lo tanto tendremos que proporcionar la solución del problema inmersa en dicho conteto. En algunos problemas de optimización, sobre todo en aquéllos que tienen una componente geométrica, resulta útil apoyarse en una representación gráfica que 1

2 2 EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN nos ayude a encontrar las relaciones entre las variables independientes y la función objetivo. Ejercicio 1: En este ejercicio vamos a aplicar los pasos anteriores a una serie de problemas de optimización. Fíjate en el los ejemplos propuestos y, sigue el esquema propuesto, para resolver el resto. 1. Se desea enmarcar una ventana rectangular de 2 m 2 de superficie. Si cada metro de marco vertical cuesta 50 euros, y cada metro de marco horizontal cuesta 64 euros, qué dimensiones habrá que dar a la ventana para que el coste total sea mínimo? SOLUCIÓN: Identificamos y nombramos la magnitud a minimizar: En este problema se nos pide que minimicemos el coste total de enmarcar la ventana, por lo tanto nuestra función objetivo será la que representa a la magnitud Coste. Identificamos y nombramos las variables independientes: El coste de la ventana depende de las dimensiones de la misma por lo tanto tendremos que manejar dos variables: = longitud horizontal, en metros, de la ventana y = longitud vertical, en metros, de la ventana Planteamos la epresión de la función: El enunciado del problema nos informa del precio por metro de los segmentos de marco horizontales y verticales. Utilizaremos el siguiente gráfico como apoyo a nuestro razonamiento: Como se puede observar en la imagen, la ventana tiene dos segmentos horizontales y dos segmentos verticales. El enunciado nos indica que el precio por metro horizontal es de 64 euros y de 50 euros para el vertical. Así tenemos que el coste total de la ventana será: Coste(, y) = y Coste(, y) = y El enunciado nos indica que la superficie de la ventana tiene que ser de 2 m 2, por lo tanto las variables independientes e y están relacionadas por la restricción: y = 2. de esta última igualdad deducimos que y = 2 e introduciendo esta relación en la función de coste obtendremos que: Coste() = = 128 +

3 EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN 3 Así, la función que debemos minimizar es: Coste() = Identificamos el dominio de la función: Claramente la variable no puede ser negativa, ya que representa la longitud de los segmentos horizontales de nuestra ventana. Por otra parte, de la definición de la función Coste() observamos que no puede ser igual a 0, de lo que concluimos que el dominio de nuestra función será: Dom(Coste()) = (0, + ) Aplicamos el método de obtimización: Los mínimos relativos de una función se localizan en aquellos puntos donde la primera derivada se anula y la segunda derivada es positiva. Comenzaremos calculando las dos primeras derivadas: Coste () = Coste () = Ahora veamos dónde se anula la primera derivada: Coste () = = = = = = = ± 16 = ± 5 4 de las dos soluciones obtenidas sólo la positiva se encuentra en nuestro dominio, por lo tanto el candidato a mínimo será = 5 4. Para comprobar que se trata efectivamente de un mínimo vamos a evaluar la segunda derivada en dicho punto y observar el signo. Coste ( 5 4 ) = 400 ( 5 4) 3 > 0

4 4 EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN al ser positiva podemos afirmar que en = 5 se localiza un mínimo 4 relativo de la función coste, pero además como no hay otro mínimo ni máimo en nuestro dominio debe ser el mínimo absoluto. Respondemos a la pregunta: El ejercicio nos pide las dimensiones de la ventana para que el coste sea mínimo y, para que el coste sea mínimo, hemos obtenido que la longitud de los segmentos horizontales tiene que ser igual a 5. La longitud de los segmentos verticales 4 se obtiene de la relación: y = 2 = Así, la ventana que proporciona menor coste tendrá 5 m de ancho 4 y 8 m de alto. 5 Ejercicio 2: En este ejercicio vamos a utilizar el concepto de derivada para estudiar la monotonía y curvatura de funciones. Recuerda que una función derivable es creciente en aquellos puntos donde su derivada es positiva y es decreciente donde ésta sea negativa. Además la segunda derivada nos proporciona información sobre la curvatura de una función (donde la segunda derivada sea positiva la función será convea, siendo cóncava en los puntos donde la segunda derivada sea negativa). Debes tener presente los conceptos para poder etraer la información adecuada. Fíjate en el ejemplo y aplica argumentos similares en el resto de casos. 1. Dada la función: = 8 5 f() = SOLUCIÓN: a) Para estudiar la monotonía de una función, en primer lugar, necesitamos conocer el dominio de definición de dicha función y estudiar, en dicho dominio, el signo de la primera derivada. Determinamos el dominio: En este caso se trata de una función polinómica por lo tanto su dominio es el conjunto de todos los números reales. Así Dom(f) = { R f()} = R

5 EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN 5 Estudiamos el signo de la primera derivada: En primer lugar determinaremos la derivada, calcularemos los puntos donde dicha derivada se anula y, por último, estudiaremos el signo. Calculamos la derivada: f () = Determinamos los puntos donde se anula la derivada: f () = = 0 3 ( ) = 0 3 ( + 3) ( + 1) = 0 de donde se deduce que los puntos donde se anula la derivada son = 3 y = 1. Estudiamos el signo: Para estudiar el signo nos ayudaremos de una gráfico: f ( 4) = 9 > 0 f ( 2) = 3 < 0 f (0) = 9 > 0 A la vista del gráfico observamos que f () tiene signo positivo en el conjunto (, 3) ( 1, + ) y que tiene signo negativo en el intervalo ( 3, 1). Conclusión del estudio: La función será creciente en aquellos puntos donde su derivada tenga signo positivo y decreciente donde el signo sea negativo. A la vista del estudio del signo de la derivada podemos concluir que: f es creciente en el conjunto: (, 3) ( 1, + ) f es decreciente en el conjunto: ( 3, 1) b) Los máimos y mínimos relativos de una función derivable se localizan en aquellos puntos del dominio donde se anula la derivada y, o bien se produce un cambio en la monotonía de la función o la función es constante en un entorno de dicho punto. En este caso, sabemos que la derivada se anula en los puntos = 3 y = 1, ambos del dominio, y que, según el estudio anterior, se tiene que: En = 3: la función pasa de ser creciente a decreciente, por lo tanto = 3 es la abscisa de un máimo relativo. Dicho máimo relativo se localizará en el punto M( 3, f( 3)) = M( 3, 0) En = 1: la función pasa de ser decreciente a ser creciente, por lo tanto = 1 es la abscisa de un mínimo relativo. Dicho mínimo relativo se localiza en el punto m( 1, f( 1)) = m( 1, 4)

6 6 EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN c) Para estudiar la curvatura de una función, en primer lugar, necesitamos conocer el dominio de definición de dicha función y estudiar, en dicho dominio, el signo de la segunda derivada. Determinamos el dominio: Conocido del apartado a): Dom(f) = { R f()} = R Estudiamos el signo de la segunda derivada: En primer lugar determinaremos la segunda derivada, calcularemos los puntos donde dicha derivada se anula y, por último, estudiaremos el signo. Calculamos la derivada: f () = Determinamos los puntos donde se anula la derivada: f () = = 0 6 ( + 2) = 0 de donde se deduce que el punto donde se anula la segunda derivada es = 2. Estudiamos el signo: Para estudiar el signo nos ayudaremos de una gráfico: f ( 3) = 6 < 0 f ( 1) = 6 > 0 A la vista del gráfico observamos que f () tiene signo positivo en el conjunto ( 2, + ) y que tiene signo negativo en el intervalo (, 2). Conclusión del estudio: La función será convea en aquellos puntos donde su segunda derivada tenga signo positivo y cóncava donde el signo sea negativo. A la vista del estudio del signo de la derivada podemos concluir que: f es convea en el conjunto: ( 2, + ) f es cóncava en el conjunto: (, 2) d) Los puntos de infleión de una función derivable se localizan en aquellos puntos del dominio donde se anula la segunda derivada y se produce un cambio de curvatura. En este caso, sabemos que la segunda derivada se anula en en el punto = 2 y que, según el estudio anterior, se tiene que, la función pasa de ser cóncava a ser convea en dicho punto, por lo tanto = 2 es la abscisa de

7 EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN 7 una punto de infleión. Dicho punto de infleión se localizará en el punto P I( 2, f( 2)) = P I( 2, 2). 2. Dada la función: f() = Adapta los comentarios del ejemplo a este ejercicio. 3. Dada la función: f() = Adapta los comentarios del ejemplo a este ejercicio. 4. Dada la función: f() = Adapta los comentarios del ejemplo a este ejercicio. 5. Dada la función: f() =

8 8 EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN Adapta los comentarios del ejemplo a este ejercicio. 6. Dada la función: f() = 3 4 Adapta los comentarios del ejemplo a este ejercicio. Ejercicio 3: En el ejercicio anterior hemos repasado el estudio de la monotonía y la curvatura de funciones polinómicas, en este ejercicio vamos a realizar el mismo estudio pero con funciones racionales. Debes recordar que para estudiar el signo de las derivadas tienes que apoyarte en los puntos que no estén en el dominio, porque en estos puntos se puede presentar un cambio de signo. Ten presente que aunque se produzca un cambio de signo en un punto que no está en el dominio nunca podemos considerar a dicho punto como un máimo, mínimo o punto de infleión ya que la función NO está definida para dicho punto. Utiliza el mismo esquema que has aprendido en el ejercicio anterior para resolver los siguientes casos: 1. Dada la función: f() = Dada la función: f() = 1 2

9 EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN 9 3. Dada la función: f() = Dada la función: f() = Dada la función: f() =

10 10EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN 6. Dada la función: f() = Dada la función: ( 3)2 f() = Dada la función: f() = Ejercicio 4: Ahora vamos a aplicar el concepto de derivada y la información que se obtiene de la misma para resolver problemas de aplicación. En esta entrega se presenta un enunciado donde se proporciona una función en un conteto y tendremos que responder a las preguntas que se realizan. Al terminar el ejercicio comprueba que has contestado verbalmente a las preguntas que se hacen.

11 EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN11 1. En una empresa los ingresos brutos y los costes producidos en la venta de un producto vienen dados por las siguientes epresiones: Ingresos brutos: I() = Costes: C() = donde ambas funciones epresan sus cantidades en miles de euros y representa el número de unidades vendidas. Se pide: a) Qué número de unidades habría que vender para obtener un beneficio máimo, teniendo en cuenta que Beneficio = Ingresos b rutos Costes? b) Cuál sería ese beneficio? 2. Un fabricante de electrodomésticos ha comprobado que el beneficio neto que le produce cada día la fabricación de un determinado producto se comporta según la función: B() = donde B() es el beneficio neto diario en euros y el número de unidades fabricadas cada día. Se pide: a) Determinar cuántas unidades diarias deben fabricarse para obtener el máimo beneficio posible b) Calcular dicho beneficio máimo. Justifica tus respuestas. 3. Un comerciante ha comprobado que el coste anual que le produce la compra y el mantenimiento de un producto se comporta de acuerdo con la función: F () = donde es el número de unidades adquiridas y F () el valor del coste en miles de euros. Se pide: a) Cuál es la cantidad de compra que le produce un coste mínimo anual? b) Cuál es ese coste? Justifica tus respuestas. 4. La cantidad de agua recogida en cierto pantano (en millones de litros) durante el año 1997 viene dada, en función del tiempo transcurrido (en meses) a través de la epresión: f(t) = t 2 + 5t t 12 a) En que período de tiempo la cantidad de agua disminuyó? b) Para qué valor de t se obtuvo la cantidad máima de agua recogida? c) Cuál fue dicha cantidad máima? 5. Una compañía de venta a domicilio ha determinado que sus beneficios anuales dependen del número de vendedores según la epresión: B() =

12 12EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN donde B() es el beneficio en miles de euros y el número de vendedores. Determinar, justificando la respuesta: a) Qué número de vendedores ha de tener la empresa para que sus beneficios sean máimos? b) Cuál será el valor de dichos beneficios máimos? 6. Un fondee de inversión genera una rentabilidad que depende de la cantidad de dinero invertido según la epresión: R() = 0, ,8 5 donde R() representa la rentabilidad generada cuando se invierte la cantidad (en miles de euros). Determinar, justificando las respuestas: a) Cuánto dinero (en euros) debemos invertir para obtener la máima rentabilidad posible? b) Cuál será el valor de dicha rentabilidad máima? 7. Una empresa estima que el beneficio que obtiene por cada unidad de producto que vende, depende del precio de venta según la función: B() = siendo B() el beneficio y el precio por unidad de producto, ambos epresados en euros. a) En qué precios la función B() es creciente? b) En qué precio se alcanza el beneficio máimo? c) En qué precio el beneficio es 3?

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA 7 APLICACIONES DE LA DERIVADA Página 68 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f decrece

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA 1. MONOTONÍA (CRECIMIENTO O DECRECIMIENTO) Si una función es derivable en un punto = a, podemos determinar su crecimiento o decrecimiento en ese punto a partir del signo de

Más detalles

7 Aplicaciones de las derivadas

7 Aplicaciones de las derivadas Solucionario 7 Aplicaciones de las derivadas ACTIVIDADES INICIALES 7.I. Calcula el volumen del cilindro que está inscrito en el cono de la figura: cm 8 cm Aplicando el Teorema de Pitágoras, se calcula

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0700. (1) Considere la función h : R R definida por. h(x) = x2 3

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0700. (1) Considere la función h : R R definida por. h(x) = x2 3 CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0700 (1) Considere la función h : R R definida por h() = 3 3 Halle el dominio y las raíces de la función Las asíntotas verticales y las horizontales

Más detalles

representación gráfica de funciones

representación gráfica de funciones representación gráfica de funciones Esta Unidad pretende ser una aplicación práctica de todo lo aprendido hasta ahora en el bloque de Análisis. En ella nos centraremos en las funciones polinómicas y racionales.

Más detalles

Capítulo 3: APLICACIONES DE LAS DERIVADAS

Capítulo 3: APLICACIONES DE LAS DERIVADAS Capítulo : Aplicaciones de la derivada 1 Capítulo : APLICACIONES DE LAS DERIVADAS Dentro de las aplicaciones de las derivadas quizás una de las más importantes es la de conseguir los valores máimos y mínimos

Más detalles

www.aulamatematica.com

www.aulamatematica.com www.aulamatematica.com APLIICACIIÓN DE DERIIVADAS:: PROBLEMAS DE OPTIIMIIZACIIÓN CON 1 VARIIABLE.. 004 Los costes de fabricación C(x) en euros de cierta variedad de galletas dependen de la cantidad elaborada

Más detalles

BLOQUE III Funciones

BLOQUE III Funciones BLOQUE III Funciones 8. Funciones 9. Continuidad, límites y asíntotas 0. Cálculo de derivadas. Aplicaciones de las derivadas. Integrales 8 Funciones. Estudio gráfico de una función Piensa y calcula Indica

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim DERIVADAS. CONTENIDOS. Recta tangente a una curva en un punto. Idea intuitiva del concepto de derivada de una función en un punto. Función derivada. sucesivas. Reglas de derivación Aplicación de la derivada

Más detalles

a) (1.7 puntos) Halle las coordenadas de sus extremos relativos y de su punto de inflexión, si existen.

a) (1.7 puntos) Halle las coordenadas de sus extremos relativos y de su punto de inflexión, si existen. Puntos de corte - Monotonía y Curvatura funciones simples Septiembre 2015 - Opción B Sea la función f() = 3 9 2 + 8 a) (1.7 puntos) Halle las coordenadas de sus etremos relativos y de su punto de infleión,

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Marzo 2013) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Marzo 2013) Selectividad-Opción A Tiempo: 90 minutos Eamen de Matemáticas Aplicadas a las CC. Sociales II (Marzo 2013) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos)dado el sistema a+ y+ 3z = 0 + ay+ 2z = 1 + ay+ 3z = 1 a) (2 puntos). Discutir

Más detalles

, o más abreviadamente: f ( x)

, o más abreviadamente: f ( x) TEMA 5: 1. CONCEPTO DE FUNCIÓN Observa los siguientes ejemplos: El precio de una llamada telefónica depende de su duración. El consumo de gasolina de un coche depende de la velocidad del mismo. La factura

Más detalles

x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas.

x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas. f ( ) + +. Dominio D (f ) R 4. Recorrido Im( f ) [, ). Puntos de corte - Con el eje y, donde 0 y + + y P (0,) - Con el eje, donde y 0 No hay punto de corte con el eje 4. Asíntotas - Horizontales lim +

Más detalles

Ejercicios de Análisis propuestos en Selectividad

Ejercicios de Análisis propuestos en Selectividad Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa

Más detalles

Ejercicios para aprender a derivar

Ejercicios para aprender a derivar Ejercicios para aprender a derivar Derivación de polinomios y series de potencias Reglas de derivación: f ( ) k f '( ) 0 f ( ) a f '( ) a n n f ( ) a f '( ) an f ( ) u( ) + v( ) f '( ) u' + v' Ejemplos:

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

TEMA 5. REPRESENTACIÓN DE FUNCIONES

TEMA 5. REPRESENTACIÓN DE FUNCIONES 94 TEMA 5. REPRESENTACIÓN DE FUNCIONES 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con el eje 1... Con el eje y 1.. Signo de la función 1.4. Periodicidad y simetría

Más detalles

Análisis de funciones y representación de curvas

Análisis de funciones y representación de curvas 12 Análisis de funciones y representación de curvas 1. Análisis gráfico de una función Aplica la teoría 1. Dada la siguiente gráfica, analiza todas sus características, es decir, completa el formulario

Más detalles

ACTIVIDADES UNIDAD 6: Funciones

ACTIVIDADES UNIDAD 6: Funciones ACTIVIDADES UNIDAD 6: Funciones 1. Indica las características de la siguiente función: Dominio:, 1 1,1 1, 1,1 Imagen o recorrido:,0 1, Monotonía: - Creciente:, 1 1,0 - Decreciente: 0,11, - Máimos relativos:

Más detalles

APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 1 VARIABLE.

APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 1 VARIABLE. 001 00 00 004 005 006 APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 1 VARIABLE. Una granja se dedica a la cría de faisanes. El beneficio que puede obtener semanalmente está relacionado con el

Más detalles

Unidad 6 Cálculo de máximos y mínimos

Unidad 6 Cálculo de máximos y mínimos Unidad 6 Cálculo de máimos y mínimos Objetivos Al terminar la unidad, el alumno: Utilizará la derivada para decidir cuándo una función es creciente o decreciente. Usará la derivada para calcular los etremos

Más detalles

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f) MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en

Más detalles

UNIDAD 2: DERIVADAS Y APLICACIONES

UNIDAD 2: DERIVADAS Y APLICACIONES UNIDAD : DERIVADAS Y APLICACIONES UNIDAD : DERIVADAS Y APLICACIONES ÍNDICE DE LA UNIDAD - INTRODUCCIÓN 6 - DERIVADA DE UNA FUNCIÓN EN UN PUNTO 7 - INTERPRETACIÓN GEOMÉTRICA DE LA DERIVADA 8 4- CONTINUIDAD

Más detalles

11 Aplicaciones. de las derivadas. 1. Máximos, mínimos y monotonía. Piensa y calcula. Aplica la teoría

11 Aplicaciones. de las derivadas. 1. Máximos, mínimos y monotonía. Piensa y calcula. Aplica la teoría Aplicaciones de las derivadas. Máimos, mínimos y monotonía Piensa y calcula Dada la gráfica de la función f representada en el margen, halla los máimos y los mínimos relativos y los intervalos de crecimiento

Más detalles

11 FUNCIONES POLINÓMICAS Y RACIONALES

11 FUNCIONES POLINÓMICAS Y RACIONALES FUNCINES PLINÓMICAS RACINALES EJERCICIS PRPUESTS. Estudia y representa la siguiente función cuadrática: f(). Es una parábola con las ramas hacia arriba, pues a 0. El vértice es el punto V, 5 8. El eje

Más detalles

Máximo o mínimo de una función

Máximo o mínimo de una función Análisis: Máimos, mínimos, optimización 1 MAJ00 Máimo o mínimo de una función 1. Dados tres números reales cualesquiera r 1, r y r, hallar el número real que minimiza la función D( ) ( r ) ( r ) ( r 1

Más detalles

EJERCICIOS Y PROBLEMAS PROPUESTOS (ANÁLISIS) x +

EJERCICIOS Y PROBLEMAS PROPUESTOS (ANÁLISIS) x + EJERCICIOS Y PROBLEMAS PROPUESTOS (ANÁLISIS).- La temperatura T, en grados centígrados, que adquiere una pieza sometida a un proceso viene dada en función del tiempo t, en horas, por la epresión: Tt t

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS OPCIÓN A

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS OPCIÓN A Eamen Parcial. Anális. Matemáticas II. Curso 009-010 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 009-010 1-XI-009 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

EJERCICIOS DE FUNCIONES REALES

EJERCICIOS DE FUNCIONES REALES EJERCICIOS DE FUNCIONES REALES.- La ley que relaciona el valor del área de un cuadrado con la longitud de su lado es una función. Sabemos que la epresión que nos relacionas ambas variables es. Observa

Más detalles

Hoja de Actividades. Nombre: Fecha:

Hoja de Actividades. Nombre: Fecha: Hoja de Actividades Nombre: Fecha: PASO A PASO 1. Dada la función: y = cos () Es continua? Es periódica? Es simétrica respecto del eje Y? Solución: a) Haz clic en Ventana D b) Selecciona en la barra de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

CAPITULO 4: OPTIMIZACIÓN

CAPITULO 4: OPTIMIZACIÓN CAPITULO 4: OPTIMIZACIÓN Optimización es el proceso de hallar el máimo o mínimo relativo de una función, generalmente sin la auda de gráficos. 4.1 Conceptos claves A continuación se describirá brevemente

Más detalles

Selectividad Septiembre 2006 SEPTIEMBRE 2006

Selectividad Septiembre 2006 SEPTIEMBRE 2006 Bloque A SEPTIEMBRE 2006 1.- En una fábrica trabajan 22 personas entre electricistas, administrativos y directivos. El doble del número de administrativos más el triple del número de directivos, es igual

Más detalles

8 Representación de funciones

8 Representación de funciones 8 Representación de unciones ACTIVIDADES INICIALES 8I Escribe los siguientes cocientes menor que el grado de Q(): a) + + a) + + P() ( + ) P( ) Por tanto: + Q( ) + P ( ) Q ( ) como R ( ) C ( ) + con C()

Más detalles

12. f(x) = 1 x-1 2 13. f(x) = x+2. x 15. f(x) = 2x+1. x 24. f(x) = x 2 +x+1 2 25. f(x) = x 2 -x-2. 1 21. f(x) = x 2 +x. x-1 27.

12. f(x) = 1 x-1 2 13. f(x) = x+2. x 15. f(x) = 2x+1. x 24. f(x) = x 2 +x+1 2 25. f(x) = x 2 -x-2. 1 21. f(x) = x 2 +x. x-1 27. . Determina el dominio de la función:. f() = -. f() =. f() = 4. f() = -6. f() = 6. f() = + 7. f() = - 8. f() = e 9. f() = + 0. f() = -. f() = -. f() = -. f() = + 4. f() = +. f() = + 6. f() = - + 7. f()

Más detalles

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES Tema 4 Funciones. Características - Matemáticas B 4º E.S.O. 1 TEMA 4 FUNCIONES. CARACTERÍSTICAS 4.1 CONCEPTOS BÁSICOS 3º 4.1.1 DEFINICIONES 3º Una función liga dos variables numéricas a las que, habitualmente,

Más detalles

1. Funciones y sus gráficas

1. Funciones y sus gráficas FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada

Más detalles

Calculadora ClassPad

Calculadora ClassPad Calculadora ClassPad Tema: Ejercicios varios sobre Análisis de funciones y optimización. Nivel: 1º y º de Bachiller Comentario: La siguiente actividad que propongo es para la evaluación de los conceptos

Más detalles

BALEARES JUNIO 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Contesta de manera clara y razonada una de las dos opciones propuestas.

BALEARES JUNIO 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. Contesta de manera clara y razonada una de las dos opciones propuestas. BALEARES JUNIO 004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Contesta de manera clara y razonada una de las dos opciones propuestas. OPCIÓN A ) Tres familias van a una pizzería. La primera familia

Más detalles

b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. dx x 2 1 x 1 si x >1 x 1 x < 0

b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. dx x 2 1 x 1 si x >1 x 1 x < 0 ANÁLISIS. (Junio 994) a) Encontrar las asíntotas de la curva f () = 2 3 2 4 b) Cuántas asíntotas oblicuas y cuántas asíntotas verticales puede tener una función racional cualquiera?. Razónalo. 2. (Junio

Más detalles

MURCIA JUNIO 2004. + = 95, y lo transformamos 2

MURCIA JUNIO 2004. + = 95, y lo transformamos 2 MURCIA JUNIO 4 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OBSERVACIONES IMPORTANTES: El alumno deberá responder a una sola de las dos cuestiones de cada uno de los bloques. La puntuación de las dos

Más detalles

f(x) f(x 0 ) = L IR h 0 = 0 = f (x 0 ); con lo que f (x) = 0 para todo x IR. (x x = lím x + x 0 = 2x 0 = f (x 0 ), y f (x) = 2x en IR.

f(x) f(x 0 ) = L IR h 0 = 0 = f (x 0 ); con lo que f (x) = 0 para todo x IR. (x x = lím x + x 0 = 2x 0 = f (x 0 ), y f (x) = 2x en IR. Matemáticas I : Cálculo diferencial en IR Tema Funciones derivables. Derivada de una función en un punto Definición 4.- Se dice que f: (a, b IR es derivable en el punto (a, b si f( f( = L IR es decir,

Más detalles

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas BLOQUE IV Funciones 0. Funciones. Rectas y parábolas. Funciones racionales, irracionales, exponenciales y logarítmicas. Límites y derivadas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo

Más detalles

BLOQUE III Funciones y gráficas

BLOQUE III Funciones y gráficas BLOQUE III Funciones y gráficas. Características globales de las funciones 9. Rectas e hipérbolas 0. Función cuadrática Características globales de las funciones. Funciones Considera los rectángulos con

Más detalles

Unidad 7 Aplicación de máximos y mínimos

Unidad 7 Aplicación de máximos y mínimos Unidad 7 Aplicación de máimos y mínimos Objetivos Al terminar la unidad, el alumno: Interpretará el concepto de ingreso y costos marginal. Aplicará la función de ingresos en problemas de maimización. Aplicará

Más detalles

Aplicaciones de las derivadas

Aplicaciones de las derivadas I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas Matemáticas de º de Bachillerato Aplicaciones de las derivadas (estudio de funciones) Por Javier Carroquino CaZas Catedrático de matemáticas del

Más detalles

Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009

Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Estudio Gráfico de Funciones Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Índice 1. Función 2 1.1. Definición............................. 2 1.2. Clasificación............................

Más detalles

- MAPA CONCEPTUAL DE LA UNIDAD. 2 1.- INTRODUCCIÓN HISTÓRICA. 2 2.- TASA DE VARIACIÓN. 3 3. DERIVADAS LATERALES.

- MAPA CONCEPTUAL DE LA UNIDAD. 2 1.- INTRODUCCIÓN HISTÓRICA. 2 2.- TASA DE VARIACIÓN. 3 3. DERIVADAS LATERALES. . CONTENIDOS.- MAPA CONCEPTUAL DE LA UNIDAD....- INTRODUCCIÓN HISTÓRICA....- TASA DE VARIACIÓN....- CONCEPTO DE DERIVADA DE UNA FUNCIÓN EN UN PUNTO Y DE FUNCIÓN DERIVADA. DERIVADAS LATERALES... 4.. DERIVABILIDAD

Más detalles

Examen funciones 4º ESO 12/04/13

Examen funciones 4º ESO 12/04/13 Examen funciones 4º ESO 12/04/13 1) Calcula el dominio de las siguientes funciones: a. b. c. d. Calculamos las raíces del numerador y del denominador: Construimos la tabla para ver los signos: - - 0 +

Más detalles

58 EJERCICIOS DE FUNCIONES. La función que a cada número le asocia su doble La función que a cada número le asocia su triple más 5

58 EJERCICIOS DE FUNCIONES. La función que a cada número le asocia su doble La función que a cada número le asocia su triple más 5 58 EJERCICIOS DE FUNCIONES FUNCIONES y GRÁFICAS. Construir una tabla de valores para cada una de las siguientes funciones: a) y=3+ b) f()= c) y= -4 d) f(). Completar la siguiente tabla (obsérvese el primer

Más detalles

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS INTRODUCCIÓN La noción actual de función comienza a gestarse en el siglo XIV, cuando empiezan a preocuparse de medir y representar las variaciones de ciertas

Más detalles

1. JUNIO 2014. OPCIÓN A. La función de beneficios f, en miles de euros, de una empresa depende de la cantidad invertida x, en miles de euros, en un

1. JUNIO 2014. OPCIÓN A. La función de beneficios f, en miles de euros, de una empresa depende de la cantidad invertida x, en miles de euros, en un Selectividad Andalucía Matemáticas Aplicadas a las Ciencias Sociales Bloque Funciones EJERCICIOS DE EXÁMENES DE SELECTIVIDAD ANDALUCÍABLOQUE FUNCIONES 1 JUNIO 014 OPCIÓN A La función de beneficios f en

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página 7 REFLEXIONA Y RESUELVE Visión gráfica de los ites Describe análogamente las siguientes ramas: a) f() b) f() no eiste c) f() d) f() +@ e) f() @ f) f() +@ g) f()

Más detalles

El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A. 2 1 1 y C 4 2 2 1 0 0

El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A. 2 1 1 y C 4 2 2 1 0 0 Prueba de Acceso a la Universidad. JUNIO 0. El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máima. OPCIÓN A. Considerar las matrices 0 A 0,

Más detalles

Repaso Final. Funciones (Dominios) En las funciones siguientes encuentra el dominio de f(x) Rectas (Problemas)

Repaso Final. Funciones (Dominios) En las funciones siguientes encuentra el dominio de f(x) Rectas (Problemas) Repaso Final Funciones (Dominios) En las funciones siguientes encuentra el dominio de f() 1) f() = 1 )f() = ln (5 ) Rectas (Problemas) 1) Supóngase que el valor de cierta maquinaria disminuye el 10% anual

Más detalles

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente.

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente. 3 Ecuaciones 17 3 Ecuaciones Una ecuación es una igualdad en la que aparecen ligados, mediante operaciones algebraicas, números y letras Las letras que aparecen en una ecuación se llaman incógnitas Existen

Más detalles

1.5.- FUNCIONES Y SUS GRAFICAS. OBJETIVO.- Que el alumno conozca el concepto de función, su representación gráfica así como su uso en el Cálculo.

1.5.- FUNCIONES Y SUS GRAFICAS. OBJETIVO.- Que el alumno conozca el concepto de función, su representación gráfica así como su uso en el Cálculo. 1.5.- FUNCIONES Y SUS GRAFICAS OBJETIVO.- Que el alumno conozca el concepto de función, su representación gráfica así como su uso en el Cálculo. 1.5.1.- Introducción. Como ya mencionamos al inicio de estas

Más detalles

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado.

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado. ECUACIONES Y DESIGUALDADES UNIDAD VII VII. CONCEPTO DE ECUACIÓN Una igualdad es una relación de equivalencia entre dos epresiones, numéricas o literales, que se cumple para algún, algunos o todos los valores

Más detalles

Ejercicios y problemas

Ejercicios y problemas Ejercicios problemas Problemas 28. Un granjero desea crear una granja de pollos de dos razas,a B. Dispone de 9 000 para invertir de un espacio con una capacidad limitada para 7 000 pollos. Cada pollo de

Más detalles

APLICACIONES DEL CÁLCULO DIFERENCIAL-II

APLICACIONES DEL CÁLCULO DIFERENCIAL-II APLICACIONES DEL CÁLCULO DIFERENCIAL-II. Estudia si crecen o decrecen las siguientes funciones en los puntos indicados: π a) f() cos en 0 b) f() ln ( arc tg ) en 0 π c) f() arc sen en 0 d) f() ln en 0

Más detalles

Funciones racionales, irracionales, exponenciales y logarítmicas

Funciones racionales, irracionales, exponenciales y logarítmicas Funciones racionales, irracionales, eponenciales y logarítmicas. Funciones racionales Despeja y de la epresión y = 6. Qué tipo de función es? P I E N S A C A L C U L A 6 y = Es una función racional que

Más detalles

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción

Más detalles

Funciones. El Diario. La gripe española. LA VERDAD Muertes anuales por gripe

Funciones. El Diario. La gripe española. LA VERDAD Muertes anuales por gripe Funciones La gripe española Salamanca, 98. Dos enfermeras, una de ellas con evidentes signos de agotamiento, realizaban el cambio de turno en el hospital. La enfermera saliente, Carmen, le daba unas pautas

Más detalles

8Soluciones a los ejercicios y problemas PÁGINA 170

8Soluciones a los ejercicios y problemas PÁGINA 170 PÁGINA 70 Pág. P RACTICA Representación de rectas Representa las rectas siguientes: a) y b) y c) y d) y c) b) a) d) Representa estas rectas: c) a) y 0,6 b) y c) y, d) y d) a) b) Representa las rectas siguientes,

Más detalles

11 LÍMITES DE FUNCIONES. CONTINUIDAD

11 LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD EJERCICIOS PROPUESTOS. A qué valor tiende la función f ()? 5 a) Cuando se acerca a. c) Cuando se acerca a. b) Cuando se aproima a 5. d) Cuando se aproima a. a) se aproima

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD UNIDAD 5 LÍMITES Y CONTINUIDAD Páginas 0 y Describe las siguientes ramas: a) f () b) f () no eiste c) f () d) f () + e) f () f) f () + g) f () h) f () no eiste; f () 0 i) f () + f () + j) f () 5 4 f ()

Más detalles

UNIDAD 2: Funciones racionales y con radicales 2.5.1 SITUACIONES QUE DAN LUGAR A FUNCIONES CON RADICALES

UNIDAD 2: Funciones racionales y con radicales 2.5.1 SITUACIONES QUE DAN LUGAR A FUNCIONES CON RADICALES .5 FUNCIONES CON RADICALES UNIDAD : Funciones racionales y con radicales.5.1 SITUACIONES QUE DAN LUGAR A FUNCIONES CON RADICALES Aprendizajes: - Eplora en una situación o problema que da lugar a una función

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES 0 FUNCIONES ELEMENTALES Página 5 REFLEIONA RESUELVE Asocia a cada una de las siguientes gráficas una ecuación de las de abajo: A B C D 80 (, π) 50 0 5 E F G H 0 (5, ) 50 0 50 0 (, ) 5 I J K L LINEALES

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 3: Lunes 25 - Jueves 28 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 3: Lunes 25 - Jueves 28 de Marzo. Contenidos Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 3: Lunes 25 - Jueves 28 de Marzo Cálculo Contenidos Clase 1: Funciones: Dominio, recorrido, gráfico. Ejemplos. Clase 2: Igualdad de funciones.

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de cceso a las Universidades de Castilla y León MTEMÁTICS PLICDS LS CIENCIS SOCILES EJERCICIO Nº páginas 2 Tablas OPTTIVIDD: EL LUMNO DEBERÁ ESCOGER UN DE LS DOS OPCIONES Y DESRROLLR LS PREGUNTS

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones

Más detalles

Problemas de optimización

Problemas de optimización Problemas de optimización 1º) La producción de cierta hortaliza en un invernadero (Q(x) en Kg) depende de la temperatura x (ºC) según la expresión. a) Calcula razonadamente cuál es la temperatura óptima

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Tema 4: Representación de funciones Índice:. Información obtenida de la función... Dominio de la función.. Simetrías..3. Periodicidad.4. Puntos de corte con los ejes..5. Ramas

Más detalles

4. FUNCION LINEAL Y ECUACIÓN DE LA RECTA

4. FUNCION LINEAL Y ECUACIÓN DE LA RECTA Función Lineal Ecuación de la Recta 4. FUNCION LINEAL Y ECUACIÓN DE LA RECTA El concepto de función es el mejor objeto que los matemáticos han podido inventar para epresar el cambio que se produce en las

Más detalles

Funciones lineales. Año Hombres Mujeres 2008 40.3% 35.2% 2009 42.9% 37.6% 2010 45.1% 40.6%

Funciones lineales. Año Hombres Mujeres 2008 40.3% 35.2% 2009 42.9% 37.6% 2010 45.1% 40.6% Capítulo Funciones lineales Todos los días leemos, en los medios de comunicación, información basada en datos recopilados de fuentes estadísticas. En el Ecuador, el organismo encargado de recopilar datos

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

Estudio Gráfico de Funciones

Estudio Gráfico de Funciones Esquema 1 2 Esquema 1 2 Definición es una correspondencia entre dos conjuntos A B tal que a cada elemento del conjunto A le corresponde un único valor solo uno del conjunto B. La gráfica de la función

Más detalles

Resolución del examen de Selectividad de Matemáticas Aplicadas a las Ciencias Sociales II Andalucía Junio de 2009

Resolución del examen de Selectividad de Matemáticas Aplicadas a las Ciencias Sociales II Andalucía Junio de 2009 Resolución del eamen de Selectividad de Matemáticas Aplicadas a las Ciencias Sociales II Andalucía Junio de 2009 Antonio Francisco Roldán López de Hierro * de junio de 2009 Opción A Ejercicio Sea la igualdad

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 200 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN AUTOR: M. F. ALBERTO DE LA ROSA ELIZALDE MATEMÁTICAS II (CÁLCULO DIFERENCIAL) Clave: 66 Plan: 005 Créditos: 8 Licenciatura:

Más detalles

Sistemas de dos ecuaciones lineales con dos incógnitas

Sistemas de dos ecuaciones lineales con dos incógnitas Sistemas de dos ecuaciones lineales con dos incógnitas Una ecuación lineal con dos incógnitas es una epresión de la forma a b c donde a, b c son los coeficientes (números) e son las incógnitas. Gráficamente

Más detalles

Matemática I Extremos de una Función. Definiciones-Teoremas

Matemática I Extremos de una Función. Definiciones-Teoremas Universidad Centroccidental Lisandro Alvarado Decanato de Agronomía Programa Ingeniería Agroindustrial Departamento de Gerencia Estudios Generales Matemática I Etremos de una Función. Definiciones-Teoremas

Más detalles

EJERCICIOS PROPUESTOS. a) En efecto, ya que a cada medida en centímetros le corresponde otra en pulgadas.

EJERCICIOS PROPUESTOS. a) En efecto, ya que a cada medida en centímetros le corresponde otra en pulgadas. 0 FUNCINES EJERCICIS PRPUESTS 0. Para pasar de centímetros a pulgadas se multiplica por y se divide por 5. a) Es una función? Escribe su epresión algebraica. c) Confecciona una tabla y representa la gráfica

Más detalles

n la presente Unidad estudiamos los fundamentos de las funciones. Veremos las dos

n la presente Unidad estudiamos los fundamentos de las funciones. Veremos las dos UNIDAD Funciones n la presente Unidad estudiamos los fundamentos de las funciones. Veremos las dos E notaciones eistentes para familiarizarnos con los términos usados en Matemáticas, y así poder introducir

Más detalles

10Soluciones a los ejercicios y problemas

10Soluciones a los ejercicios y problemas 0Soluciones a los ejercicios y problemas PÁGINA 6 Pág. P RACTICA Funciones cuadráticas Representa las siguientes funciones haciendo, en cada caso, una tabla de valores como esta, y di cuál es el vértice

Más detalles

9 Estudio de funciones

9 Estudio de funciones Solucionario 9 Estudio de funciones ACTIVIDADES INICIALES 9.I. Resuelve las siguientes inecuaciones. a) 0 0 b) 4 0 c) 0 d) 0 7 9 a) (, ) b) (, 4] c) (, ] [0, ] d) (, ) (4, ) 9.II. Halla el valor en radianes

Más detalles

a) PAR: Una función es simétrica con respecto al eje Y cuando se verifica:

a) PAR: Una función es simétrica con respecto al eje Y cuando se verifica: TEMA 10: REPRESENTACIÓN DE FUNCIONES. 10.1. DOMINIO. El dominio de definición de una función y = f{) (valores para los cuales eiste la función) es, en principio, todo ir, salvo que haya operaciones imposibles

Más detalles

Concepto de función y funciones elementales

Concepto de función y funciones elementales Concepto de unción unciones elementales Matemáticas I - º Bachillerato Las unciones describen enómenos cotidianos, económicos, psicológicos, cientíicos Tales unciones se obtienen eperimentalmente, mediante

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 0 Polinomios y fracciones algebraicas En esta Unidad aprenderás a: d Trabajar con epresiones polinómicas. d Factorizar polinomios. d Operar con fracciones algebraicas. d Descomponer una fracción algebraica

Más detalles

ÁLGEBRA LINEAL - Año 2012

ÁLGEBRA LINEAL - Año 2012 UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS ECONÓMICAS ÁLGEBRA LINEAL - Año 0 Notas de Cátedra correspondientes a la UNIDAD SIETE PROGRAMACIÓN LINEAL * INECUACIONES Se denomina inecuación a

Más detalles

UNIDAD 1: LÍMITES DE FUNCIONES. CONTINUIDAD

UNIDAD 1: LÍMITES DE FUNCIONES. CONTINUIDAD UNIDAD : LÍMITES Y CONTINUIDAD UNIDAD : LÍMITES DE FUNCIONES CONTINUIDAD ÍNDICE DE LA UNIDAD - INTRODUCCIÓN - LÍMITE DE UNA FUNCIÓN EN UN PUNTO LÍMITES LATERALES - LÍMITES EN EL INFINITO 5 4- ÁLGEBRA DE

Más detalles

Unidad 6 Estudio gráfico de funciones

Unidad 6 Estudio gráfico de funciones Unidad 6 Estudio gráfico de funciones PÁGINA 96 SOLUCIONES Representar puntos en un eje de coordenadas. 178 Evaluar un polinomio. a) b) c) d) e) Escribir intervalos. a) b) c) 179 PÁGINA 98 SOLUCIONES 1.a)

Más detalles

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la

Más detalles

Problemas Tema 1 Enunciados de problemas de Repaso 4ºESO

Problemas Tema 1 Enunciados de problemas de Repaso 4ºESO página / Problemas Tema Enunciados de problemas de Repaso 4ºESO Hoja. Calcula las medidas de un rectángulo cuya superficie es de 40 metros cuadrados, sabiendo que el largo es 6 metros mayor que el triple

Más detalles