Tamaño: px
Comenzar la demostración a partir de la página:

Download "www.aulamatematica.com"

Transcripción

1 APLIICACIIÓN DE DERIIVADAS:: PROBLEMAS DE OPTIIMIIZACIIÓN CON 1 VARIIABLE Los costes de fabricación C(x) en euros de cierta variedad de galletas dependen de la cantidad elaborada (x en Kg) de acuerdo con la siguiente expresión: C(x) x El fabricante estima que el precio de venta de cada Kg. de galletas viene dado por: 5x P(x) en euros (a) El precio de venta disminuye con la cantidad? (b) Suponiendo que vende todo lo que fabrica, obtén la función que recoge todas sus ganancias. (c) Qué cantidad de galletas le interesa producir para maximizar las ganancias? (d) En la situación óptima, cuál es el precio de venta? Qué ganancia se obtiene? MÉTODO 1: RESOLUCIÓN MEDIANTE EL ESTUDIO LOCAL DE FUNCIONES A TRAVÉS DE DERIVADAS RESOLUCIÓN apartado (a) Para comprobar cómo se comporta el crecimiento de la función "Precio de venta" con respecto a la cantidad de Kg. estudiamos dicho crecimiento: Para que P(x) sea estrictamente creciente P'(x) > 0 Para que P(x) sea estrictamente decreciente P'(x) < 0 P(x) 00 5x P' (x) 0 5 x P' (x) 50x x Estudiamos el signo de la derivada primera de la función: x x 0 Estudiamos el signo de la función en cada uno de estos intervalos que determina este valor R Creciente Decreciente Como el dominio de la función es para x 0 podemos determinar que la función es estrictamente decreciente en todo su dominio. RESOLUCIÓN apartado (b) Suponiendo que vende todo lo que fabrica, obtén la función que recoge todas sus ganancias. Ganancias G(x) Ingresos I(x) x P (x) Costes C(x) Ganancia Ingresos Costes G(x) x P (x) C (x) Abel Martín 1

2 Derivadas. Aplicaciones. RESOLUCIÓN apartado (c) G(x) x (00 G(x) 00x 5x G(x) 30x 5x 3 ) ( x) 5x x 10 Qué cantidad de galletas le interesa producir para maximizar las ganancias? x 1 x 40 Máximo o mínimo? 40 Máximo o mínimo? 75 G''( ) Para que G(x) alcance un máximo G'(x) 0 G' (x) x 75x 75x x 3000 x 40 x 40 ± Estudiamos la derivada segunda: x G''(x) < 0 MÁXIMO 75 ( 40) G''( ) > 0 MÍNIMO La ganancia máxima se alcanzará cuando se produzcan 6.3 Kg. de galletas. RESOLUCIÓN apartado (d) En la situación óptima, cuál es el precio de venta? Qué ganancia se obtiene? P(x) 00 5x Para x P( 40 ) 00 P( 40 ) 190 Su ganancia correspondiente será: 3 5 ( 40) G(x) G(x) euros Aplicación de derivadas: Problemas de optimización con 1 variable.

3 El precio de venta para la obtener una ganancia máxima será de 190 euros/kg, ascendiendo dicha ganancia a euros COMPROBACIÓN MEDIANTE EL ANÁLISIS GRÁFICO DE LA FUNCIÓN CON CALCULADORA GRÁFICA 05. PAU Universidad de Oviedo Junio 1994 Cierta entidad financiera lanza al mercado un plan de inversión cuya rentabilidad R(x) en cientos de euros viene dada en función de la cantidad que se invierta, x en cientos de euros, por medio de la expresión siguiente: R(x) x x +.5 (a) Deducir razonadamente qué cantidad de dinero le conviene invertir a un cliente en dicho plan. (b) Qué rentabilidad obtendría en ese momento? MÉTODO 1: RESOLUCIÓN MEDIANTE EL ESTUDIO LOCAL DE FUNCIONES A TRAVÉS DE DERIVADAS RESOLUCIÓN apartado (a) x "cientos de euros invertidos" R(x) "Rentabilidad en cientos de euros" R(x) x x +.5 Para buscar qué cantidad de dinero le conviene invertir a un cliente en dicho plan habrá que observar cuándo la función R(x) alcanza un máximo. Matemáticamente, esto sucede cuando R '(x) 0 R'(x) 0.00x R'(x) 0.00x x 0.5 x 50 Máximo o mínimo? OJO! Son cientos Estudiamos la derivada segunda para conocer dónde se encuentra el máximo y el mínimo: R''(x) 0.00 < 0 MÁXIMO Abel Martín 3

4 Derivadas. Aplicaciones. Para obtener la máxima rentabilidad han de invertirse euros RESOLUCIÓN apartado (b) Qué rentabilidad obtendría en ese momento? Rentabilidad para x 50 R(x) x x +.5 R(50) R(50) 65 (Son cientos de euros) Para obtener la máxima rentabilidad han de invertirse euros, momento en el que dicha rentabilidad asciende a euros. COMPROBACIÓN MEDIANTE EL ANÁLISIS GRÁFICO DE LA FUNCIÓN CON CALCULADORA GRÁFICA Si representamos gráficamente la función se pueden ratificar y comprobar visualmente, de forma fácil y rápida, las conclusiones obtenidas a través del estudio analítico de la función mediante derivadas: 07. PAU Universidad de Oviedo Septiembre 1998 Se ha construido una presa de almacenamiento de agua cuyos costes de mantenimiento diarios son una función de la cantidad de agua que la misma tiene almacenada. Tales costes (en euros) vienen dados por la siguiente expresión [C(x) representa el coste si el volumen de agua (en millones de metros cúbicos) es x]: C(x) x 3 + x 8x + 73 (a) Encontrar el volumen diario de agua óptimo que debe mantenerse para minimizar costes. (b) Calcular el coste mínimo diario que supone el mantenimiento de la instalación. Si un día la presa tiene almacenados 3 millones de metros cúbicos de agua, cuánto se ha gastado de más respecto del coste mínimo? MÉTODO 1: RESOLUCIÓN MEDIANTE EL ESTUDIO LOCAL DE FUNCIONES A TRAVÉS DE DERIVADAS RESOLUCIÓN apartado (a) Encontrar el volumen diario de agua óptimo que debe mantenerse para minimizar costes. 4 Aplicación de derivadas: Problemas de optimización con 1 variable.

5 x "Volumen de agua en millones de metros cúbicos" C(x) "euros gastados diariamente en mantenimiento" C(x) x 3 + x 8x + 73 Para minimizar los costes buscaremos cuándo C(x) alcanza un mínimo: x C'(x) 0 C'(x) + x 8 + x 8 0 ± ( 8) 3 ± 10 6 x 1 ; x 4/ x 1 Máximo o mínimo? x 4/3 Máximo o mínimo? Estudiamos la derivada segunda para conocer dónde se encuentra el máximo y el mínimo: C''( ) 6 ( ) + 10 < 0 MÁXIMO C''(4/3) 6 (4/3) + 10 > 0 MÍNIMO C''(x) 6x + x 4/ millones de m m 3 El volumen diario de agua óptimo que ha de mantenerse para que los costes sean mínimos ha de ser de aproximadamente m 3 RESOLUCIÓN apartado (b) Calcular el coste mínimo diario que supone el mantenimiento de la instalación. Si un día la presa tiene almacenados 3 millones de metros cúbicos de agua, cuánto se ha gastado de más respecto del coste mínimo? El Coste para x 4/3 C(x) x 3 + x 8x + 73 C(4/3) (4/3) 3 + (4/3) 8(4/3) + 73 C(x) euros El volumen diario de agua óptimo que ha de mantenerse para que los costes sean mínimos ha de ser de aproximadamente m 3, momento en el que los costes ascienden a 66 euros. El coste diario de mantenimiento para 3 millones de metros cúbicos de agua almacenados se verificará para x 3: C(3) C(3) C(1.33) Se han gastado 19 euros de más, respecto al coste mínimo COMPROBACIÓN MEDIANTE EL ANÁLISIS GRÁFICO DE LA FUNCIÓN CON CALCULADORA GRÁFICA Si representamos gráficamente la función se pueden ratificar y comprobar visualmente las conclusiones obtenidas a través del estudio analítico de la función mediante derivadas: Abel Martín 5

6 Derivadas. Aplicaciones. NOTA: Los resultados son un poco extraños, no muy acordes con el contexto del problema. 08. PAU Universidad de Oviedo Septiembre 1999 Un individuo ha invertido en acciones de cierta compañía durante los últimos 10 años. El valor de su cartera a lo largo del tiempo (dinero invertido más beneficios obtenidos, en miles) viene dado por la siguiente expresión (x en años): F(x) (x ) (1 x) + 5x x 10 (a) Determinar los intervalos de tiempo en que el valor de la cartera creció y aquellos en que decreció. (b) El individuo retira sus ingresos transcurridos los 10 años. Cuál hubiera sido realmente el mejor momento para haberlo hecho? Cuánto pierde por no haberlo retirado en el momento óptimo? MÉTODO 1: RESOLUCIÓN MEDIANTE EL ESTUDIO LOCAL DE FUNCIONES A TRAVÉS DE DERIVADAS RESOLUCIÓN apartado (a) F(x) "Valor de la cartera (Inversión + beneficios) en miles" x "Tiempo, en años, que el individuo tiene invertido su dinero" F(x) (x ) (1 x) + 5x Simplificamos la expresión: F(x) (x + 4 4x) (1 x) + 5x F(x) x + 4 4x x 3 8x + 8x + 5x F(x) x 3 + 9x + 40x + 10 (0 x 10) Si al aumentar el número de años que permanece invertida la cartera, aumenta el valor de dicha cartera, diremos que la función es creciente; así pues, vamos a comprobar el crecimiento en todo su dominio. Para que F(x) sea estrictamente creciente F'(x) > 0 Para que F(x) sea estrictamente decreciente F'(x) < 0 F'(x) 6x + 18x + 40 Estudiamos el signo de esta nueva función, para lo que, previamente, factorizamos la expresión: 6 Aplicación de derivadas: Problemas de optimización con 1 variable.

7 18 ± 18 4 ( 6) ± ± 78 x ( 6) 1 1 x 1 5 x 8 Estos valores determinan 3 intervalos en la recta real: 6 (x + 5) (x 8) Estudiamos el signo de la función en cada uno de estos 3 intervalos que determinan estos dos valores R Decreciente Creciente Decreciente Del análisis de la función mediante derivadas, y a la vista de su dominio, vemos que el valor de la cartera crece hasta el año 8, momento a partir del cual el valor empieza a decrecer hasta llegado el décimo año. NOTA: No se consideran los valores de x < 0 ni los valores x > 10 ya que no pertenecen al dominio de la función. RESOLUCIÓN apartado (b) El individuo retira sus ingresos transcurridos los 10 años. Cuál hubiera sido realmente el mejor momento para haberlo hecho? Cuánto pierde por no haberlo retirado en el momento óptimo? Basándonos en el estudio del crecimiento de la función podemos decir que hay un máximo relativo en x 8 A los 10 años el valor de la cartera es: F(10) F(10) 140 A los 8 años el valor de la cartera es: F(8) F(8) 159 F(8) F(10) F(8) F(10) 17 El mejor momento para retirar el dinero hubiese sido a los 8 años, momento en el cual la cartera tiene un valor de unidades monetarias mientras que a los 10 años se produce una pérdida de unidades ya que la cartera alcanza un valor de NOTA: Omitimos las unidades en las que viene expresado el valor de la cartera, ya que el enunciado no nos lo aclara. COMPROBACIÓN MEDIANTE EL ANÁLISIS GRÁFICO DE LA FUNCIÓN CON CALCULADORA GRÁFICA Si representamos gráficamente la función se pueden ratificar y comprobar visualmente, de forma fácil y rápida, las conclusiones obtenidas a través del estudio analítico de la función mediante derivadas: Abel Martín 7

8 Derivadas. Aplicaciones. 016 PAU Universidad de Oviedo Junio 001 El rendimiento (medido de 0 a 10) de cierto producto en función del tiempo de uso (x, en años) viene dado por la siguiente expresión: f(x) para x x (a) Hay intervalos de tiempo en los que el rendimiento crece? y en que decrece? cuáles son? (b) En qué punto se alcanza el rendimiento máximo? cuánto vale? (c) Por mucho que pase el tiempo, puede llegar a ser el rendimiento inferior al que el producto tenía cuando era nuevo? MÉTODO 1: RESOLUCIÓN MEDIANTE EL ESTUDIO LOCAL DE FUNCIONES A TRAVÉS DE DERIVADAS RESOLUCIÓN apartado (a) Si al aumentar el tiempo aumenta el rendimiento diremos que la función es creciente; así pues, para justificar la respuesta vamos a estudiar los intervalos de crecimiento en todo su dominio: Para que f(x) sea estrictamente creciente f'(x) > 0 Para que f(x) sea estrictamente decreciente f'(x) < 0 f(x) x 3( 1 + x ) ( 0 + x) f'(x) 0 + ( 1 + x ) 3 + ( 1 + x 6x ) 3 ( 1 + x Como el denominador va a ser siempre positivo, el signo de la fracción dependerá del numerador (3 ), por lo que estudiaremos el signo de dicha expresión: ) 8 Aplicación de derivadas: Problemas de optimización con 1 variable.

9 3 x 1 x ± 1 Estudiamos el signo de la función en cada uno de estos 3 intervalos que determinan estos dos valores R Decreciente Creciente Decreciente Como la función tiene su dominio x R / x 0 El rendimiento será creciente para 0 x < 1 y decreciente para x > 1, siendo x el número de años de uso. RESOLUCIÓN apartado (b) En qué punto se alcanza el rendimiento máximo? cuánto vale? Del estudio del crecimiento de la función a través de la derivada primera se concluye que: Mínimo relativo en x 1 Máximo relativo en x 1 f(x) x 3 1 f(1) Se alcanza un máximo rendimiento para x 1, momento en el que dicho rendimiento alcanza las 10 unidades. RESOLUCIÓN apartado (c) Por mucho que pase el tiempo, puede llegar a ser el rendimiento inferior al que el producto tenía cuando era nuevo? f(x) x 3 0 f(0) Para determinar si el rendimiento, por mucho que pase el tiempo, puede llegar a ser inferior a 8.5 unidades [valor de f(0)], al ser la función estrictamente creciente para 0 < x 1 y estrictamente decreciente para x > 1, bastará con comprobar cuál es su límite cuando el tiempo de uso tienda a infinito: Lím f(x) x + Lím x + Lím (8.5 + x + Lím x x 1 + x Lím f(x) x + El rendimiento tenderá a 8.5 unidades, pero nunca llegará a ser inferior a dicho valor, que es su límite cuando el tiempo tiende a infinito. COMPROBACIÓN MEDIANTE EL ANÁLISIS GRÁFICO DE LA FUNCIÓN CON CALCULADORA GRÁFICA Previamente prepararemos la calculadora para que nos dé el valor de la derivada de la función en cada punto, para lo cual hay que activar la utilidad Derivative, que se mostrará en la pantalla bajo la forma dy/dx ) Abel Martín 9

10 Derivadas. Aplicaciones. SETUP SHIFT MENU On F1 Podemos ratificar todos estos resultados con la calculadora gráfica, mediante la función TRACE, moviéndonos por la gráfica y comprobando los valores que toma la derivada primera de la función en cada punto: Función creciente x R / 0 x < 1 y ' > 0 dy/dx > 0 dy/dx > 0 Función decreciente x R / x > 1 dy/dx < 0 dy/dx < 0 Ratificamos el máximo relativo mediante la potente función gráfica G SOLVE: G-Solve MAX EXE EXE F5 F 10 Aplicación de derivadas: Problemas de optimización con 1 variable.

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en . [204] [ET-A] Dada la función f(x) = x2-8x+6 x 2-8x+5 a) Su dominio y puntos de corte con los ejes. -x+5, 0 x 2. [204] [JUN-A] En una sesión, el valor de cierta acción, en euros, vino dado por la función:

Más detalles

APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 1 VARIABLE.

APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 1 VARIABLE. 001 00 00 004 005 006 APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 1 VARIABLE. Una granja se dedica a la cría de faisanes. El beneficio que puede obtener semanalmente está relacionado con el

Más detalles

EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN

EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN Una de las aplicaciones más comunes de los conceptos relacionados con la derivada de una función son los problemas de optimización.

Más detalles

Examen funciones 4º ESO 12/04/13

Examen funciones 4º ESO 12/04/13 Examen funciones 4º ESO 12/04/13 1) Calcula el dominio de las siguientes funciones: a. b. c. d. Calculamos las raíces del numerador y del denominador: Construimos la tabla para ver los signos: - - 0 +

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD 1 PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumno debe elegir sólo una de las pruebas (A o

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura Índice Dada una función f : D R R y un intervalo I D

Más detalles

Capítulo 3: APLICACIONES DE LAS DERIVADAS

Capítulo 3: APLICACIONES DE LAS DERIVADAS Capítulo : Aplicaciones de la derivada 1 Capítulo : APLICACIONES DE LAS DERIVADAS Dentro de las aplicaciones de las derivadas quizás una de las más importantes es la de conseguir los valores máimos y mínimos

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA 1. MONOTONÍA (CRECIMIENTO O DECRECIMIENTO) Si una función es derivable en un punto = a, podemos determinar su crecimiento o decrecimiento en ese punto a partir del signo de

Más detalles

Calculadora ClassPad

Calculadora ClassPad Calculadora ClassPad Tema: Ejercicios varios sobre Análisis de funciones y optimización. Nivel: 1º y º de Bachiller Comentario: La siguiente actividad que propongo es para la evaluación de los conceptos

Más detalles

Solemne I Profesor: Marcelo Leseigneur P. Ayudante: Renzo Lüttges C.

Solemne I Profesor: Marcelo Leseigneur P. Ayudante: Renzo Lüttges C. Solemne I Profesor: Marcelo Leseigneur P. Ayudante: Renzo Lüttges C. Pregunta 1 Hallar el dominio y recorrido de las siguientes funciones, dibújelas, y estudie su paridad, imparidad, crecimiento y decrecimiento,

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes:

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes: UNIDAD 3 Programación lineal a programación lineal es parte L de una rama de las matemáticas relativamente joven llamada investigación operativa. La idea básica de la programación lineal es la de optimizar,

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

IES La Serna Matemáticas Aplicadas a las Ciencias Sociales II. Comunidad de Madrid. Año 08. Septiembre. Opción B. Ejercicio 1.

IES La Serna Matemáticas Aplicadas a las Ciencias Sociales II. Comunidad de Madrid. Año 08. Septiembre. Opción B. Ejercicio 1. IES La Serna Matemáticas Aplicadas a las Ciencias Sociales II. Comunidad de Madrid. Año 08. Septiembre. Opción B. Ejercicio. ( puntos) Se desea invertir una cantidad de dinero menor o igual que 000 euros,

Más detalles

FUNCIÓN POLINÓMICA DE GRADO TRES. FUNCIÓN CÚBICA.

FUNCIÓN POLINÓMICA DE GRADO TRES. FUNCIÓN CÚBICA. FUNCIÓN POLINÓMICA DE GRADO TRES. FUNCIÓN CÚBICA. La ecuación de dichas funciones es de la forma f(x) = y = ax 3 +bx 2 +cx +d, donde a,b,c y d PRIMERAS CARACTERÍSTICAS: 1.- DOMINIO: por ser polinómicas

Más detalles

Guía de Ejercicios. Matemática 11

Guía de Ejercicios. Matemática 11 Guía de Ejercicios Matemática 11 Matemática 11 Resolver: 1) 5 + 3x 31 3x 5) 3(2x 1) > 4+5(x 1) 6) x + 4 3 > 2x 3 +1 4 1 7) 4 (2x 1) x

Más detalles

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1 Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4 Representando las

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA 7 APLICACIONES DE LA DERIVADA Página 68 Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0 f crece f' > 0 f decrece

Más detalles

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3 CONTENIDOS Límite y asíntotas Cálculo de límites Continuidad Derivadas Estudio de funciones Problemas de optimización Varias de las características de diferentes tipos de funciones ya han sido estudiadas

Más detalles

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA UNIVERSIDAD DE VALLADOLID DEPARTAMENTO DE ECONOMÍA APLICADA SUBSECCIÓN DE MATEMÁTICAS MÉTODOS MATEMÁTICOS DE LA ECONOMÍA Economía Derecho Administración y Dirección de Empresas RELACIÓN DE PROBLEMAS DE

Más detalles

7 Aplicaciones de las derivadas

7 Aplicaciones de las derivadas Solucionario 7 Aplicaciones de las derivadas ACTIVIDADES INICIALES 7.I. Calcula el volumen del cilindro que está inscrito en el cono de la figura: cm 8 cm Aplicando el Teorema de Pitágoras, se calcula

Más detalles

Contenido Orientativo Matemáticas 21 EE-EA-EC, Libre Escolaridad FACES-ULA

Contenido Orientativo Matemáticas 21 EE-EA-EC, Libre Escolaridad FACES-ULA Contenido Orientativo Matemáticas 1 EE-EA-EC, Libre Escolaridad FACES-ULA El siguiente documento tiene como objetivo proporcionar a los alumnos del curso de matemáticas 1, por la modalidad de libre escolaridad,

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

b1ct Propuesta Actividades Recuperación Matemáticas

b1ct Propuesta Actividades Recuperación Matemáticas b1ct Propuesta Actividades Recuperación Matemáticas Bloque Números 1 Resuelve: a. Si tomas como valor de 11. 1 la aproximación. 1, qué errores absoluto y relativo has cometido?. Solución: 0. 000; 0. 0%

Más detalles

Máximo o mínimo de una función

Máximo o mínimo de una función Análisis: Máimos, mínimos, optimización 1 MAJ00 Máimo o mínimo de una función 1. Dados tres números reales cualesquiera r 1, r y r, hallar el número real que minimiza la función D( ) ( r ) ( r ) ( r 1

Más detalles

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0 PRUEBAS DE ACCESO A LA UNIVERSIDAD PROBLEMAS DE PROGRAMACIÓN LINEAL JUNIO 2000. OPCIÓN B. Una empresa especializada en la fabricación de mobiliario para casas de muñecas, produce cierto tipo de mesas y

Más detalles

Formas de expresar la relación entre dos variables.

Formas de expresar la relación entre dos variables. 866 _ 00-06.qxd 7/6/08 : Página Funciones INTRDUCCIÓN RESUMEN DE LA UNIDAD La representación gráfica de las funciones es la forma más adecuada de entender la relación entre las variables. Estas gráficas

Más detalles

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE . (Jun. 205 Opción A) Dadas las matrices A = ( a 2 + 2 2 ), B = ( ) y C = (c 0 0 b 0 c ) Calcula las matrices A B y B C. Calcula los valores de a, b y c que cumplen A B B C. Sol.- 2. (Jun. 205 Opción B)

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

Límite de una función

Límite de una función Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

Unidad 6 Estudio gráfico de funciones

Unidad 6 Estudio gráfico de funciones Unidad 6 Estudio gráfico de funciones PÁGINA 96 SOLUCIONES Representar puntos en un eje de coordenadas. 178 Evaluar un polinomio. a) b) c) d) e) Escribir intervalos. a) b) c) 179 PÁGINA 98 SOLUCIONES 1.a)

Más detalles

Unidad 6 Cálculo de máximos y mínimos

Unidad 6 Cálculo de máximos y mínimos Unidad 6 Cálculo de máimos y mínimos Objetivos Al terminar la unidad, el alumno: Utilizará la derivada para decidir cuándo una función es creciente o decreciente. Usará la derivada para calcular los etremos

Más detalles

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A BLOQUE 1 OPCIÓN A Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo

Más detalles

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Una de las primeras necesidades que surgen en las Ciencias Experimentales es la de poder expresar los valores

Más detalles

Resolución CON LÁPIZ Y PAPEL apartado (a)

Resolución CON LÁPIZ Y PAPEL apartado (a) DP. - S - 5119 2007 Matemáticas ISSN: 1988-379X 007 Diego desea repartir su tiempo de vacaciones entre dos lugares ( y ). El día de estancia en le cuesta 100 mientras que en 200. Su presupuesto global

Más detalles

Modelizando la realidad con una calculadora gráfica en colores

Modelizando la realidad con una calculadora gráfica en colores Modelizando la realidad con una calculadora gráfica en colores Abel Martín - IES Pérez de Ayala de Oviedo, Asturias, aulamatematica@gmail.com Marta Martín Sierra - Facultad de Matemáticas, Universidad

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Programación Lineal Entera

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Programación Lineal Entera Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 11 de septiembre de 2003 1. Introducción Un LP donde se requiere que todas las variables sean enteras se denomina un problema

Más detalles

2FUNCIONES CUADRÁTICAS

2FUNCIONES CUADRÁTICAS CONTENIDOS El modelo cuadrático La función cuadrática Desplazamientos de la gráfica Máximos, mínimos, ceros, crecimiento y decrecimiento Ecuaciones cuadráticas Sistemas mixtos En este capítulo se analizan

Más detalles

UNIDAD 5: PROGRAMACIÓN LINEAL

UNIDAD 5: PROGRAMACIÓN LINEAL UNIDAD 5: PROGRAMACIÓN LINEAL ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN.... 1 2.- INECUACIONES LINEALES CON DOS INCÓGNITAS... 2 3.- SISTEMAS DE INECUACIONES LINEALES... 3 4.- PROGRAMACIÓN LINEAL. FORMULACIÓN

Más detalles

Tasa de reinversión 40%. Porcentaje de repartición de dividendos 60%. Porcentaje que se reinvierte 40%.

Tasa de reinversión 40%. Porcentaje de repartición de dividendos 60%. Porcentaje que se reinvierte 40%. 6. Relaciones con accionistas y acreedores Una de las funciones básicas del gerente Financiero es determinar y proponer la política de dividendos de la firma y la estructura de capital de la misma. Estas

Más detalles

MATEMÁTICAS III. RESTRICCIONES DE IGUALDAD

MATEMÁTICAS III. RESTRICCIONES DE IGUALDAD MATEMÁTICAS III. PROBLEMAS Y CUESTIONES TEMA 4: RESTRICCIONES DE IGUALDAD OPTIMIZACIÓN CON Problema 1: Una empresa calcula que puede alcanzar unos beneficios anuales (en miles de euros) dados por la función:

Más detalles

Expresa, de forma algebraica y mediante una tabla de valores, la función que asigna a cada número su cubo menos dos veces su cuadrado.

Expresa, de forma algebraica y mediante una tabla de valores, la función que asigna a cada número su cubo menos dos veces su cuadrado. Funciones EJERCICIOS 00 Expresa, de forma algebraica y mediante una tabla de valores, la función que asigna a cada número su cubo menos dos veces su cuadrado. Expresión algebraica: y = x 3 x o f(x) = x

Más detalles

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1 Página 3 EJERCICIOS PROBLEMAS PROPUESTOS PARA PRACTICAR Dominio de definición Halla el dominio de definición de estas funciones: 3 x a) y = y = x + x (x ) c) y = d) y = e) y = x + x + 3 5x x f) y = x x

Más detalles

PROPIEDADES FUNCIONES PRINCIPALES

PROPIEDADES FUNCIONES PRINCIPALES PROPIEDADES FUNCIONES PRINCIPALES 1.- FUNCIÓN EXPONENCIAL Sea a un número real positivo no nulo distinto de 1. Se llama función exponencial real de base a, a la función: a) a 0 = 1 b) a 1 = a f: R R x

Más detalles

Unidad 1 Modelos de programación lineal

Unidad 1 Modelos de programación lineal Unidad 1 Modelos de programación lineal La programación lineal comenzó a utilizarse prácticamente en 1950 para resolver problemas en los que había que optimizar el uso de recursos escasos. Fueron de los

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES HOJA 5: Optimización 5-1. Hallar los puntos críticos de las siguiente funciones y clasificarlos: a fx, y = x y + xy.

Más detalles

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11 1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el

Más detalles

Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim

Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim ) Sea la función: f(x) = ln( x ): a) Dar su Dominio y encontrar sus asíntotas verticales, horizontales y oblicuas. b) Determinar los intervalos de crecimiento y decrecimiento, los máximos y mínimos, los

Más detalles

El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A. 2 1 1 y C 4 2 2 1 0 0

El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A. 2 1 1 y C 4 2 2 1 0 0 Prueba de Acceso a la Universidad. JUNIO 0. El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máima. OPCIÓN A. Considerar las matrices 0 A 0,

Más detalles

Guía 4 Del estudiante Modalidad a distancia. Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE

Guía 4 Del estudiante Modalidad a distancia. Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE Guía 4 Del estudiante Modalidad a distancia Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE DATOS DE IDENTIFICACION TUTOR Luis Enrique Alvarado Vargas Teléfono 435 29 52 CEL. 310 768 90 67

Más detalles

FICHERO MUESTRA Pág. 1

FICHERO MUESTRA Pág. 1 FICHERO MUESTRA Pág. 1 Fichero muestra que comprende parte del Tema 3 del libro Gestión Financiera, Teoría y 800 ejercicios, y algunas de sus actividades propuestas. TEMA 3 - CAPITALIZACIÓN COMPUESTA 3.15.

Más detalles

Unidad 5 Estudio gráfico de funciones

Unidad 5 Estudio gráfico de funciones Unidad 5 Estudio gráfico de funciones PÁGINA 84 SOLUCIONES Representar puntos en un eje de coordenadas. 43 Evaluar un polinomio. a) P(-1) = 1 + + 1 1 = 3 b) P(0) = -1 c) P(-) = 8 + 8 + 1 = 17 d) P(1) =

Más detalles

Función Cuadrática *

Función Cuadrática * Función Cuadrática * Edward Parra Salazar Colegio Madre del Divino Pastor 10-1 Una función f : A B, f(x) = ax 2 + bx + c, donde A y B son subconjuntos de R, a, b, c R, a 0, se llama una función cuadrática.

Más detalles

Tipo de interés nominal (TIN)

Tipo de interés nominal (TIN) Tipo de interés nominal (TIN) Se llama Tipo de Interés Nominal (TIN), abreviado también como interés nominal, al porcentaje aplicado cuando se ejecuta el pago de intereses. Por ejemplo: Si se tiene un

Más detalles

EJERCICIOS DE FUNCIONES REALES

EJERCICIOS DE FUNCIONES REALES EJERCICIOS DE FUNCIONES REALES.- La ley que relaciona el valor del área de un cuadrado con la longitud de su lado es una función. Sabemos que la epresión que nos relacionas ambas variables es. Observa

Más detalles

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2004

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2004 Problema 1. Dadas las matrices: 4 A = 1 0 1 1 B = 2 2 0 y 2 C = 1 0 2 Calcular la matriz X que verifica la ecuación AXB =2C Problema 2. Un banco

Más detalles

BLOQUE III Funciones y gráficas

BLOQUE III Funciones y gráficas BLOQUE III Funciones y gráficas. Características globales de las funciones 9. Rectas e hipérbolas 0. Función cuadrática Características globales de las funciones. Funciones Considera los rectángulos con

Más detalles

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función TEMA 3 FUNCIONES 3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función Una función es una relación establecida entre dos variables que asocia a cada valor de la primera variable

Más detalles

4 INECUACIONES Y SISTEMAS

4 INECUACIONES Y SISTEMAS 4 INECUACINES SISTEMAS EJERCICIS PRPUESTS 4. Escribe las siguientes informaciones utilizando desigualdades. a) He sacado, por lo menos, un 7 en el examen. b) Tengo tarifa plana de ADSL de ocho de la mañana

Más detalles

MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13. Carlos Ivorra

MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13. Carlos Ivorra MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13 Carlos Ivorra Índice 1 Introducción a la optimización 1 2 Programación entera 18 3 Introducción a la programación lineal 24 4 El método símplex

Más detalles

Polinomios de Taylor.

Polinomios de Taylor. Tema 7 Polinomios de Taylor. 7.1 Polinomios de Taylor. Definición 7.1 Recibe el nombre de polinomio de Taylor de grado n para la función f en el punto a, denotado por P n,a, el polinomio: P n,a (x) = f(a)

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS . FUNCINES EJERCICIS PRPUESTS. Un kilogramo de azúcar cuesta,0 euros. Completa la siguiente tabla que relaciona las magnitudes número de kilogramos y precio en euros. N.º de kilogramos 5 0 0 Precio,0 5,50..3

Más detalles

Unidad 4 Programación lineal

Unidad 4 Programación lineal Unidad 4 Programación lineal PÁGINA 79 SOLUCIONES 1. Las regiones quedan: a) b) 2. El sistema pedido es: x y > 1 2x + y < 7 y > 1 1 PÁGINA 91 SOLUCIONES 1. Sumando los kilos de todos los sacos, obtenemos

Más detalles

L A P R O G R A M A C I O N

L A P R O G R A M A C I O N L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer

Más detalles

ELIJA CUATRO DE LOS SEIS BLOQUES PROPUESTOS.

ELIJA CUATRO DE LOS SEIS BLOQUES PROPUESTOS. PRUEBAS DE ACCESO A LA UNIVERSIDAD Curso 008-009 MATEMÁTICAS II ELIJA CUATRO DE LOS SEIS BLOQUES PROPUESTOS. Bloque 1. Dado el número real a, se considera el sistema a) Discuta el sistema según los valores

Más detalles

Función exponencial y Logaritmos

Función exponencial y Logaritmos Eje temático: Álgebra y funciones Contenidos: Función exponencial y Logaritmos Nivel: 4 Medio Función exponencial y Logaritmos 1. Funciones exponenciales Existen numerosos fenómenos que se rigen por leyes

Más detalles

Ejercicios de Funciones, límites y continuidad.

Ejercicios de Funciones, límites y continuidad. Matemáticas 1ºBach CNyT. Ejercicios Funciones. Pág 1/12 Ejercicios de Funciones, límites y continuidad. 1. Estudia el dominio de las siguientes funciones 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

Más detalles

LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6

LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6 Curso ON LINE "Tema 06" Tema LA PROGRAMACIÓN LINEAL. SÓLO ENUNCIADOS 6 001 002 003 Una fábrica de vidrio reciclado va a producir 2 tipos de copas: unas sencillas que vende a 450 cada caja y otras talladas

Más detalles

Programación Lineal Entera

Programación Lineal Entera Programación Lineal Entera P.M. Mateo y David Lahoz 2 de julio de 2009 En este tema se presenta un tipo de problemas formalmente similares a los problemas de programación lineal, ya que en su descripción

Más detalles

UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN

UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN UNIVERSIDAD DE BELGRANO FACULTAD DE CIENCIAS ECONÓMICAS ANÁLISIS MATEMÁTICO I TALLER DE PROFUNDIZACIÓN GUÍA DE CONTENIDOS Y CASOS PRÁCTICOS Dra. Silvia Izzo Prof. Silvia Mamone 1 2 CONTENIDOS 1.- Desigualdades:

Más detalles

a) (1.7 puntos) Halle las coordenadas de sus extremos relativos y de su punto de inflexión, si existen.

a) (1.7 puntos) Halle las coordenadas de sus extremos relativos y de su punto de inflexión, si existen. Puntos de corte - Monotonía y Curvatura funciones simples Septiembre 2015 - Opción B Sea la función f() = 3 9 2 + 8 a) (1.7 puntos) Halle las coordenadas de sus etremos relativos y de su punto de infleión,

Más detalles

CAPÍTULO 2 APLICACIONES DE LA DERIVADA

CAPÍTULO 2 APLICACIONES DE LA DERIVADA CAPÍTULO 2 APLICACIONES DE LA DERIVADA 2.1 ANÁLISIS Y TRAZO DE CURVAS 2.1.1 Estudio de la Variación de una Función a) Tabulación y Graficación de una Función b) Dominio y Rango de una Función 2.1.2 Intersecciones

Más detalles

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES Tema 4 Funciones. Características - Matemáticas B 4º E.S.O. 1 TEMA 4 FUNCIONES. CARACTERÍSTICAS 4.1 CONCEPTOS BÁSICOS 3º 4.1.1 DEFINICIONES 3º Una función liga dos variables numéricas a las que, habitualmente,

Más detalles

ANÁLISIS MATEMÁTICO I TEMA I : FUNCIONES Hoja 1

ANÁLISIS MATEMÁTICO I TEMA I : FUNCIONES Hoja 1 ANÁLISIS MATEMÁTICO I TEMA I : FUNCIONES Hoja 1 A) Enunciar el conjunto solución de las ecuaciones e inecuaciones dadas. Representar gráficamente. 1) x + 3 + 1 = x ) x 5 = - 3 x + 15 3) 3 x < 1 4) -. 3

Más detalles

Descripción: dos. función. decreciente. Figura 1. Figura 2

Descripción: dos. función. decreciente. Figura 1. Figura 2 Descripción: En éste tema se utiliza la primera derivada para encontrar los valores máximo y mínimo de una función, así como para determinar los intervalos en donde la función es creciente o decreciente,

Más detalles

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2.

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2. PROBLEMA. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica en Diseño Industrial Fundamentos Matemáticos de la Ingeniería Soluciones correspondientes a los problemas del Primer Parcial 7/8.

Más detalles

PROBLEMAS RESUELTOS DE OPTIMIZACIÓN

PROBLEMAS RESUELTOS DE OPTIMIZACIÓN Problemas de optimiación Ejercicio PROBLEMAS RESUELTOS DE OPTIMIZACIÓN Un banco lana al mercado un plan de inversión cua rentabilidad R(, en euros, viene dada en función de la cantidad invertida, en euros,

Más detalles

17.- PARABRISAS RESOLUCIÓN

17.- PARABRISAS RESOLUCIÓN 17.- PARABRISAS La sección de control de calidad de una fábrica de parabrisas elige, aleatoriamente, una muestra de 100 parabrisas producidos por una determinada máquina y registra la longitud de los parabrisas

Más detalles

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS.

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN. Es toda aplicación entre dos conjuntos A y B formados ambos por números. f A --------> B Al conjunto A se le llama campo de existencia de la función

Más detalles

1. Definición 2. Operaciones con funciones

1. Definición 2. Operaciones con funciones 1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo

Más detalles

Teoría Tema 1 Inecuaciones

Teoría Tema 1 Inecuaciones página 1/7 Teoría Tema 1 Inecuaciones Índice de contenido Qué es una inecuación?...2 Inecuaciones de primer grado...3 Sistemas de inecuaciones con una incógnita...4 Inecuaciones de segundo grado...5 Inecuaciones

Más detalles

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

1. Ecuaciones no lineales

1. Ecuaciones no lineales 1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar

Más detalles

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior.

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior. PROGRAMACIÓN LINEAL 1. La región factible de un problema de programación lineal es la intersección de primer cuadrante con los tres semiplanos definidos por las siguientes inecuaciones: x y x y x y + 1

Más detalles

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos.

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos. EJERCICIO 1 Un estudiante dedica parte de su tiempo al reparto de propaganda publicitaria. La empresa A le paga 5 Bs.. por cada impreso repartido y la empresa B, con folletos más grandes, le paga 7 Bs.

Más detalles

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E700 1) x 5 > 1. A) Primer parcial ) Sean las funciones ft) t +,gy) y 4&hw) w. Encontrar f/h, g f, f g y sus dominios. ) Graficar la función x + six

Más detalles

Capítulo 1 Interés Simple

Capítulo 1 Interés Simple Capítulo 1 Interés Simple 1.1 Tanto por ciento En matemáticas el tanto por ciento es una forma de expresar un número en proporción cien (de ahí el nombre por ciento ), y se denota con el símbolo %. El

Más detalles

12. f(x) = 1 x-1 2 13. f(x) = x+2. x 15. f(x) = 2x+1. x 24. f(x) = x 2 +x+1 2 25. f(x) = x 2 -x-2. 1 21. f(x) = x 2 +x. x-1 27.

12. f(x) = 1 x-1 2 13. f(x) = x+2. x 15. f(x) = 2x+1. x 24. f(x) = x 2 +x+1 2 25. f(x) = x 2 -x-2. 1 21. f(x) = x 2 +x. x-1 27. . Determina el dominio de la función:. f() = -. f() =. f() = 4. f() = -6. f() = 6. f() = + 7. f() = - 8. f() = e 9. f() = + 0. f() = -. f() = -. f() = -. f() = + 4. f() = +. f() = + 6. f() = - + 7. f()

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

Gráficas de funciones

Gráficas de funciones Apuntes Tema 1 Gráficas de funciones 1.1 Gráficas de funciones a) Función constante: f(x) = k b) Recta vertical: x = k c) Función lineal: f(x) = mx Todas pasan por el origen O(0, 0). 2 d) Función afín:

Más detalles

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20.

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20. PROGRAMACIÓN LINEAL Página 99 REFLEXIONA Y RESUELVE Resolución de inecuaciones lineales Para representar y x Ì 2, representa la recta y x = 2. Después, para decidir a cuál de los dos semiplanos corresponde

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles