DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL"

Transcripción

1 DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 4 METROLOGÍA Y CALIDAD. CALIBRACIÓN DE UN PIE DE REY

2 Metrología y Caldad. Calbracón de n pe de rey. INDICE 1. OBJETIVOS DE LA PRÁCTICA CONOCIMIENTOS PREVIOS IMPORTANCIA DE LA REALIZACIÓN DE MEDIDAS EN LOS PROCESOS DE FABRICACIÓN RELACIÓN ENTRE LAS TOLERANCIAS DE FABRICACIÓN Y LA INCERTIDUMBRE DE MEDIDA LA CALIBRACIÓN DE LOS INSTRUMENTOS DE MEDIDA EVALUACIÓN DE LA INCERTIDUMBRE DETERMINACIÓN DE LA INCERTIDUMBRE TÍPICA COMBINADA DETERMINACIÓN DE LA INCERTIDUMBRE EXPANDIDA TRABAJO DESARROLLADO EN EL LABORATORIO DESCRIPCIÓN DEL PIE DE REY PATRONES A UTILIZAR PREPARACIÓN DEL INSTRUMENTO: CALIBRACIÓN CÁLCULO DE LA INCERTIDUMBRE... 9

3 Unversdad Carlos III 1. OBJETIVOS DE LA PRÁCTICA El objetvo de esta práctca es profndzar en los conocmentos teórcos proporconados prevamente al almno acerca de metrología y calbracón de eqpos. Para ello se realzará el desarrollo del procedmento y la posteror calbracón de n pe de rey.. CONOCIMIENTOS PREVIOS A parte de la base proporconada en clase de teoría se nclye en este apartado nformacón de nterés para la realzacón de la práctca..1. Importanca de la realzacón de meddas en los procesos de fabrcacón En calqer proceso de fabrcacón es habtal la realzacón de medcones. Como ejemplo peden ctarse los sgentes casos: - Fabrcacón de pezas y tllajes. - -Montaje de conjntos. - -Inspeccón de prodctos. Todo proceso de medda reslta mperfecto. Por tanto, la medda realzada debe ser corregda, con mayor o menor mncosdad según la caldad qe se pretenda conferr a la msma y qe va a depender del nvel de exgenca de la especfcacón a comprobar con dcha medda. Cando se mde el valor de na magntd M con el aparato de medda correspondente, el resltado de la msma se expresa de la forma: M = X ± U donde X es el valor más probable de la medda y U es la ncertdmbre con la qe conocemos la medda. El valor de la ncertdmbre es el prmer índce de la bondad de na medda, qe es tanto mayor canto menor es aqella... Relacón entre las tolerancas de fabrcacón y la ncertdmbre de medda. Las magntdes sgnfcatvas de los prodctos ndstrales se especfcan habtalmente medante tolerancas qe son los ntervalos de valores admsbles para la magntd en cestón. Las tolerancas srgen en el proceso de dseño de calqer elemento de certa responsabldad y determnan el rechazo de los prodctos con valores fera del ntervalo de toleranca. 3

4 Metrología y Caldad. Calbracón de n pe de rey. La toleranca T es la semampltd de n ntervalo dentro del cal debe encontrarse el verdadero valor de la magntd para qe sea aceptada como válda. Se peden dar los sgentes casos, según la relacón exstente entre toleranca e ncertdmbre: - Caso 1: Cando el ntervalo de ncertdmbre está contendo dentro del ntervalo de toleranca. Lego, se pede afrmar, cas con segrdad, qe el valor verdadero del mesrando es admsble. - Caso : Cando los ntervalos de ncertdmbre y de toleranca son dsjntos, por tanto, hay segrdad cas total de qe se debe rechazar el mesrando. - Caso 3: Cando los ntervalos de ncertdmbre se solapan en parte, por tanto, la determnacón de aceptacón o rechazo es ddosa. En la práctca sele optarse por n crtero de segrdad qe consste en rechazar calqer mesrando en stacón ddosa. El ntervalo de ncertdmbre debe ser varas veces nferor al de toleranca. En meddas dmensonales se sele consderar como admsble la relacón: 3 T U LA CALIBRACIÓN DE LOS INSTRUMENTOS DE MEDIDA. Es la determnacón del valor del ntervalo de ncertdmbre de n nstrmento o eqpo de medda. Calbrar es comparar el resltado qe proporcona n nstrmento de medda con n patrón, qe materalza la magntd qe se pretende calbrar con my alta caldad. La calbracón se realza reterando meddas sobre n patrón conocdo, en la forma en qe el nstrmento trabaja habtalmente. Para obtener el valor nmérco de la ncertdmbre, se ha de realzar n balance de todas las fentes parcales de ncertdmbre. En el caso de la calbracón del pe de rey serán fentes de ncertdmbre: la repetbldad de las meddas, la ncertdmbre del patrón tlzado, la componente debda a la escala y la varacón de temperatra entre el pe de rey y los bloqes patrón. 4

5 Unversdad Carlos III 3.1. Evalacón de la ncertdmbre Tpo A) Medante el análss estadístco de na sere de observacones Inttvamente se percbe qe el verdadero valor bscado en la medda debe encontrarse haca el centro de esas flctacones, por lo qe se aceptará como mejor valor X del mesrando n índce de la tendenca central del conjnto de las ndcacones. Ese parámetro será la meda qe se calcla con la expresón sgente: 1 m x n n x 1 Es necesaro establecer tambén algún ndcador de la dspersón de los resltados. Canto menor sea la dspersón, más cercanos estarán los valores meddo y real de la magntd. El valor elegdo como ndcador de la dspersón es la desvacón típca o s cadrado qe es la varanza qe vene dada por la expresón sgente: n s 1 n 1 1 x x donde n es el número total de meddas realzadas y x es cada na de las meddas realzadas, con varando entre 1 y n. El valor de la desvacón típca no se emplea drectamente como ncertdmbre, sno qe se tlza la desvacón típca de la meda mestral, relaconada con la anteror medante la expresón: s x Se debe determnar s a partr de n número de meddas lo más grande posble (normalmente >10). El valor de la ncertdmbre típca de na magntd X, evalada por medo de meddas repettvas es: s n s x Tpo B) Medante otro tpo de nformacón Para la estmacón x de na magntd de entrada X qe no ha sdo obtenda a partr de observacones repetdas, la ncertdmbre típca estmada asocada (x ), se establece medante decsón centífca basada en toda la nformacón dsponble acerca de la varabldad posble de X. 5

6 Metrología y Caldad. Calbracón de n pe de rey. S la estmacón se obtene a partr de la especfcacón de n fabrcante, de n certfcado de calbracón o de otra fente y s estmacón vene dada como n múltplo de na desvacón típca, la ncertdmbre (x ) es gal al cocente del valor ndcado y el factor mltplcador. S la ncertdmbre dada defne n ntervalo correspondente a n nvel de confanza determnado, pede sponerse qe se ha tlzado na dstrbcón normal para calclar la ncertdmbre típca. Por tanto, se dvde el valor dado de ncertdmbre por el factor apropado de la dstrbcón normal. En otros casos, úncamente peden estmarse límtes (nferor y speror) para X, en partclar para poder decr qe la probabldad de qe el valor de X esté stado en el ntervalo comprenddo entre a - y a + a todos los efectos práctcos es gal a 1, e gal a cero fera del ntervalo. S no se conoce los valores posbles de X en el nteror del ntervalo, pede sponerse qe se stúa de forma eqprobable en calqer pnto del msmo. Entonces x, esperanza matemátca de X, es el centro del ntervalo: x a a con la desvacón típca asocada: x a a 3 S a es la dferenca entre los dos límtes, a - y a +, la expresón anteror de la desvacón típca se converte en: x x a Determnacón de la ncertdmbre típca combnada En la mayor parte de los casos, el mesrando Y no se mde drectamente sno qe se determna a partr de otras magntdes X 1, X,...X N, medante na relacón fnconal f: Y= f(x 1, X,...X N ) La ncertdmbre típca de y, sendo y la estmacón del mesrando Y, es decr, el resltado de la medda, se obtene componendo apropadamente las ncertdmbre típcas delas magntdes de entrada x 1, x,...x N, denotándose como c (y). S se admte qe la relacón fnconal antes expresada, se pede lnealzar en el entorno del pnto de trabajo: Y f ( x 1, x,...x N ) N 1 f X x X x 6

7 Unversdad Carlos III y además las magntdes de entrada son ndependentes, se obtene la de propagacón de varanzas qe permte estmar la varanza de y en la forma: c N y x 1 f X Cada na de las (x ) es na ncertdmbre típca evalada tal y como se ndcó anterormente. La ncertdmbre combnada c (y) es na desvacón típca estmada y caracterza la dspersón de los valores qe podrían razonablemente ser atrbdos al mesrando Y. La relacón anteror podría expresarse como: c N y c x donde c es el coefcente de sensbldad asocado al estmador de entrada x, es decr, la dervada de la fncón modelo f respecto a x, partclarzada para el estmador de entrada x. Los coefcentes de sensbldad representan la forma en qe el estmador de salda y es nflencado por las varacones de los estmadores de entrada x Determnacón de la ncertdmbre expandda En el campo de la calbracón hay na necesdad de declarar el nvel de confanza qe pede asocarse con la ncertdmbre expandda. El térmno de ncertdmbre expandda, U, se obtene de mltplcar la ncertdmbre típca combnada por n factor k de recbrmento U k c Este factor de recbrmento se obtene en base al número de grados efectvos de lbertad ט eff. Este valor es na combnacón de los grados de lbertad asocados con la estmacón de cada na de las dferentes contrbcones a la ncertdmbre expandda. 7

8 Metrología y Caldad. Calbracón de n pe de rey. 4. TRABAJO DESARROLLADO EN EL LABORATORIO Para lstrar lo qe se ha expesto se realza la calbracón de los palpadores exterores de n pe de rey Descrpcón del pe de rey Este nstrmento nos permte realzar meddas exterores, nterores y profnddades de na manera drecta. La lectra qe se obtene pede ser analógca o dgtal. En los de tpo analógco además de la lectra en mlímetros se peden leer fraccones de mlímetro. Para la lectra de las fraccones dspone de n nons, el cál se dvde en n partes. Sobre la regla con la dvsón prncpal se leen los mlímetros y sobre la del nons las fraccones. Los pes de rey dgtales presentan la lectra sobre na pantalla por lo qe no es necesaro qe el operaro realce la lectra en las dstntas escalas del nstrmento. 4.. Patrones a tlzar Todos los patrones y tenslos qe ntervengan en la calbracón de n eqpo deberán estar debdamente calbrados y etqetados. Para la calbracón de exterores se tlzará como patrones bloqes patrón longtdnales, prevamente lmpados con alcohol Preparacón del nstrmento: Antes del comenzo de na calbracón se realza n lmpeza del eqpo así como na nspeccón vsal del msmo. En esta nspeccón se debe verfcar el ben estado del eqpo, para ello se compreba el ben fnconamento mecánco del eqpo, así como qe ss escalas sean perfectamente legbles y ss contactos no presentan anomalías Calbracón Para la calbracón de esta posbldad de medda, se materalzan con bloqes patrón longtdnales tres pntos de la escala, qe nclyan el valor mínmo y pntos ntermedos de la escala. En cada no de esos tres pntos se realzan dez reteracones o medcones (x), procrando tomar la medda en zonas dferentes de los contactos a fn de comprobar el paralelsmo de los msmos. Las meddas deben ser tomadas en los valores qe marca el nono, evtando en lo posble el error de paralaje. 8

9 Unversdad Carlos III Para evtar n error debdo a na excesva presón se tendrá la precacón de no ejercer presón en el momento de la lectra. Una vez concldas las medcones, es decr, realzadas las dez reteracones en cada no de los tres pntos de medda se procede a efectar los cálclos para hallar la ncertdmbre, según ndca el apartado Cálclo de la ncertdmbre La asgnacón y expresón de ncertdmbres se realzará sgendo los crteros de la gía EA-4/0. En prmer lgar se determnará la expresón de la magntd de salda en fncón de las dstntas magntdes de entrada, modelando na ecacón para las correccones de calbracón. El cálclo se realza en n pnto genérco. La ecacón modelo para la correccón de calbracón será la sgente: C x o x E L t donde C es... x o es... x es E es... L es... es el promedo de los coefcentes de dlatacón térmca de los bloqes patrón y del pe de rey. En el caso del acero se consdera α = 11, ºC -1. Δt es... Aplcando la ley de propagacón de varanzas (sobre los estmadores) tendremos la expresón para la ncertdmbre típca combnada: C x ( x ) ( ) L t o E 9

10 Metrología y Caldad. Calbracón de n pe de rey. Componentes de la ncertdmbre ( ), debda x c s c rep n donde: x j es... x x o, debda... Se calcla a partr del certfcado de calbracón del tllaje de calbracón 0, debda... E Pede descrbrse por na dstrbcón... S valor es: U 0 k E representa... E t, debda a la varacón de temperatra tanto del pe de rey y los bloqes patrón no será speror a ± 1ºC. Se tlza na dstrbcón rectanglar para caracterzar la fncón de varacón de temperatra de semampltd 1ºC, con lo qe al fnal se tene: 1 ( t) L (L en mm) 3 Debdo al tpo de termómetro tlzado para la lectra de la temperatra s ncertdmbre, resltado de la calbracón, reslta desprecable frente a la componente de 10

11 Unversdad Carlos III dferenca de temperatra entre los bloqes patrón y el pe de rey, con lo cal se despreca y no se tene en centa como n térmno más de la componente de temperatra. A partr de aqí se pede constrr na tabla con las dstntas contrbcones a la ncertdmbre combnada para la calbracón de pes de rey. Magntd de entrada X Estmacón x Incertdmbre típca (x ) Dstrbcón de Probabldad Coefcente de sensbldad c Contrbcón a la ncertdmbre (y) x x X o X o δ E 0 Δt 0 Cálclo de la ncertdmbre expandda (con factor de cobertra k) Consderando qe todas las varables de entrada son ndependentes se tene la expresón: U C k C k Para determnar la ncertdmbre expandda se debe estmar los grados de lbertad efectvos. En este tpo de calbracones los valores de las contrbcones a la ncertdmbre nos dan n valor de los grados efectvos de lbertad: ט eff alto, lo qe orgna n factor de cobertra próxmo a k = para aproxmadamente 95% de probabldad. El crtero totalzador consste en asgnar como ncertdmbre asocada al nstrmento, el valor máxmo de las ncertdmbres calcladas en cada no de los pntos de calbracón. Se comparan entre sí la ncertdmbre hallada en cada no de los pntos de calbracón tomando como ncertdmbre. U max( U ( C )) 11

12 Unversdad Carlos III de Madrd Área de Ingenería Mecánca Certfcado de calbracón MOD.: UC3M-DM Nº: 1 Elemento calbrado: PIE DE REY Códgo: Nº de sere: Fabrcante: Modelo: Campo de medda: Dvsón de escala: mm. Datos generales de la calbracón Procedmento: Cond. Ambentales: Temperatra: Hmedad: Patrón tlzado: Calbracón del patrón: Incertdmbre patrón: k= Operacones prevas a la calbracón El estado general es correcto: SI / NO Pntas de exterores correctas: SI / NO Pntas de nterores correctas: SI / NO Estado de sonda de profnddad correcto: SI / NO Resltado de la calbracón Incertdmbre total del nstrmento: El nstrmento es: Observacones y/o actacones: Fecha y hora calb.: Fecha: Hora: Próxma calbracón Fecha: Calbrado por: Frma: 1

13 Palpadores de exterores: Ptos. de calb. Pnto 1 Pnto Pnto 3 Valor Nomnal Lectra 1 Lectra Lectra 3 Lectra 4 Lectra 5 Lectra 6 Lectra 7 Lectra 8 Lectra 9 Lectra 10 x s c 0 t rep L U0 k s E 1 3 t c n U k x ( x ) ( ) L t o E C xo x UC U max( U ( C )) = 13

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

CARACTERIZACIÓN DE UNA BOBINA DE FIBRA ÓPTICA PARA SER UTILIZADA COMO PATRÓN DE REFERENCIA EN LA CALIBRACIÓN DE

CARACTERIZACIÓN DE UNA BOBINA DE FIBRA ÓPTICA PARA SER UTILIZADA COMO PATRÓN DE REFERENCIA EN LA CALIBRACIÓN DE CARACTERIZACIÓN DE UNA BOBINA DE FIBRA ÓPTICA PARA SER UTILIZADA COMO PATRÓN DE REFERENCIA EN LA CALIBRACIÓN DE OTDRs EN LA ESCALA DE LONGITUD A 550 nm J. C. Bermúdez, M. A. López, W. Schmd Centro Naconal

Más detalles

Incertidumbre de la Medición: Teoría y Práctica

Incertidumbre de la Medición: Teoría y Práctica CAPACIDAD, GESTION Y MEJORA Incertdumbre de la Medcón: Teoría y Práctca (1 ra Edcón) Autores: Sfredo J. Sáez Ruz Lus Font Avla Maracay - Estado Aragua - Febrero 001 Copyrght 001 L&S CONSULTORES C.A. Calle

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

Procedimiento de Calibración. Metrología PROCEDIMIENTO DI-004 PARA LA CALIBRACIÓN DE MEDIDORAS DE UNA COORDENADA VERTICAL

Procedimiento de Calibración. Metrología PROCEDIMIENTO DI-004 PARA LA CALIBRACIÓN DE MEDIDORAS DE UNA COORDENADA VERTICAL Procedmento de Calbracón Metrología PROCEDIMIENTO DI-004 PARA LA CALIBRACIÓN DE MEDIDORAS DE UNA COORDENADA VERTICAL La presente edcón de este procedmento se emte exclusvamente en formato dgtal y puede

Más detalles

Análisis de la eficiencia técnica y asignativa a través de las fronteras estocásticas de costes: una aplicación a los hospitales del INSALUD

Análisis de la eficiencia técnica y asignativa a través de las fronteras estocásticas de costes: una aplicación a los hospitales del INSALUD Unversdad de Valladold Análss de la efcenca técnca y asgnatva a través de las fronteras estocástcas de costes: na aplcacón a los hosptales del INSALUD Carmen García Preto Tess de Doctorado Facltad: Drector:

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS

METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS METODOLOGÍAS SISTEMA INTEGRAL DE ADMINISTRACIÓN DE RIESGOS SIARGAF 4.0 FEBRERO 008 CONTENIDO..... Valor en Resgo aramétrco... A) Meddas de Sensbldad... B) Meddas Estadístcas... 6 C) Volatldad... 7 D) Valor

Más detalles

Mª Dolores del Campo Maldonado. Tel: :

Mª Dolores del Campo Maldonado. Tel: : Mª Dolores del Campo Maldonado Tel: : 918 074 714 e-mal: ddelcampo@cem.mtyc.es Documentacón de referenca nternaconalmente aceptada ISO/IEC GUIDE 98-3:008 Uncertanty of measurement Part 3: Gude to the n

Más detalles

Capacidad de Procesos según ISO 9000 Ing o. Angel Francisco Arvelo

Capacidad de Procesos según ISO 9000 Ing o. Angel Francisco Arvelo EVALUACION DE LA CAPACIDAD DE CALIDAD DE UN PROCESO INDUSTRIAL METODOS ESTADISTICOS SUGERIDOS POR LA NORMA ISO 9000 ANGEL FRANCISCO ARVELO L. Ingenero Industral Master en Estadístca Matemátca CARACAS,

Más detalles

Procedimiento de Calibración. Metrología PROCEDIMIENTO DI-010 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS

Procedimiento de Calibración. Metrología PROCEDIMIENTO DI-010 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS Procedmento de Calbracón Metrología PROCEDIMIENTO DI-00 PARA LA CALIBRACIÓN DE COMPARADORES MECÁNICOS La presente edcón de este procedmento se emte exclusvamente en formato dgtal y puede descargarse gratutamente

Más detalles

2.5 Especialidades en la facturación eléctrica

2.5 Especialidades en la facturación eléctrica 2.5 Especaldades en la facturacón eléctrca Es necesaro destacar a contnuacón algunos aspectos peculares de la facturacón eléctrca según Tarfas, que tendrán su mportanca a la hora de establecer los crteros

Más detalles

APENDICE A. El Robot autónomo móvil RAM-1.

APENDICE A. El Robot autónomo móvil RAM-1. Planfcacón de Trayectoras para Robots Móvles APENDICE A. El Robot autónomo móvl RAM-1. A.1. Introduccón. El robot autónomo móvl RAM-1 fue dseñado y desarrollado en el Departamento de Ingenería de Sstemas

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

Pruebas Estadísticas de Números Pseudoaleatorios

Pruebas Estadísticas de Números Pseudoaleatorios Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =

Más detalles

LA MEDIA GEOMÉTRICA, COMO PRINCIPIO DE CÁLCULO DE PRIMAS

LA MEDIA GEOMÉTRICA, COMO PRINCIPIO DE CÁLCULO DE PRIMAS LA MEDIA GEOMÉTRICA, COMO PRINCIPIO DE CÁLCULO DE PRIMAS Crstna Lozano-Colomer Departamento de Métodos Canttatvos Unversdad Pontfca de Comllas (ICADE). clozano@cee.pcomllas.es José L. Vlar-Zanón Departamento

Más detalles

PROCEDIMIENTO DI-005 PARA LA CALIBRACIÓN DE MICRÓMETROS DE EXTERIORES DE DOS CONTACTOS

PROCEDIMIENTO DI-005 PARA LA CALIBRACIÓN DE MICRÓMETROS DE EXTERIORES DE DOS CONTACTOS PROCEDIMIENTO DI-005 PARA LA CALIBRACIÓN DE MICRÓMETROS DE EXTERIORES DE DOS CONTACTOS 10 Edcón dgtal 1 Este procedmento ha sdo revsado, corregdo y actualzado, s ha sdo necesaro. La presente edcón se emte

Más detalles

6. ANALISIS DE COLUMNAS DE DESTILACION

6. ANALISIS DE COLUMNAS DE DESTILACION 69 6. AALISIS DE COLUMAS DE DESTILACIO 6.1. ITRODUCCIO Una colmna de destlacón smple es na ndad compesta de n conjnto de etapas de eqlbro con n solo almento y dos prodctos, denomnados destlado y fondo.

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II PRACTICA 11: Crcutos no lneales elementales con el amplfcador operaconal OBJETIVO: El alumno se famlarzará con

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

Parte I: Propagación de ondas

Parte I: Propagación de ondas desarrollo de experencas ddáctcas 5 Anmando la Físca Parte I: Propagacón de ondas Oleg V. Nagornov, Roberto E. Calgars, Georgna B. Rodrígez y Marta G. Calgars Calqer profesor qe trate de enseñar físca

Más detalles

DEFINICIÓN DE INDICADORES

DEFINICIÓN DE INDICADORES DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.

Más detalles

Análisis de error y tratamiento de datos obtenidos en el laboratorio

Análisis de error y tratamiento de datos obtenidos en el laboratorio Análss de error tratamento de datos obtendos en el laboratoro ITRODUCCIÓ Todas las meddas epermentales venen afectadas de una certa mprecsón nevtable debda a las mperfeccones del aparato de medda, o a

Más detalles

GANTT, PERT y CPM INDICE

GANTT, PERT y CPM INDICE GANTT, PERT y CPM INDICE 1 Antecedentes hstórcos...2 2 Conceptos báscos: actvdad y suceso...2 3 Prelacones entre actvdades...3 4 Cuadro de prelacones y matrz de encadenamento...3 5 Construccón del grafo...4

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Maestría en Economía Facultad de Ciencias Económicas Universidad Nacional de La Plata TESIS DE MAESTRIA. ALUMNO Laura Carella. DIRECTOR Alberto Porto

Maestría en Economía Facultad de Ciencias Económicas Universidad Nacional de La Plata TESIS DE MAESTRIA. ALUMNO Laura Carella. DIRECTOR Alberto Porto Maestría en Economía Facultad de Cencas Económcas Unversdad Naconal de La Plata TESIS DE MAESTRIA ALUMNO Laura Carella TITULO Educacón unverstara: medcón del rendmento académco a través de fronteras de

Más detalles

Glosario básico. de términos estadísticos

Glosario básico. de términos estadísticos Glosaro básco de térmnos estadístcos Lma, mayo de 2006 CREDITOS Dreccón y Supervsón Lupe Berrocal de Montestruque Drectora Técnca del Centro de Investgacón y Desarrollo Responsable del documento Hermna

Más detalles

ANÁLISIS DE ACCESIBILIDAD E INTERACCIÓN ESPECIAL:

ANÁLISIS DE ACCESIBILIDAD E INTERACCIÓN ESPECIAL: Geografía y Sstemas de Informacón Geográfca (GEOSIG). Revsta dgtal del Grupo de Estudos sobre Geografía y Análss Espacal con Sstemas de Informacón Geográfca (GESIG). Programa de Estudos Geográfcos (PROEG).

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

Economía de la Empresa: Financiación

Economía de la Empresa: Financiación Economía de la Empresa: Fnancacón Francsco Pérez Hernández Departamento de Fnancacón e Investgacón de la Unversdad Autónoma de Madrd Objetvo del curso: Dentro del contexto de Economía de la Empresa, se

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA

UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA FORMULACIÓN DE UN PROGRAMA BÁSICO DE NORMALIZACIÓN PARA APLICACIONES DE ENERGÍAS ALTERNATIVAS Y DIFUSIÓN Documento ANC-0603-10-01 ANTEPROYECTO DE NORMA AEROGENERADORES

Más detalles

ADENDA 008 LICITACIÓN L-CEEC-001-12

ADENDA 008 LICITACIÓN L-CEEC-001-12 ADENDA 008 LICITACIÓN L-CEEC-001-12 OBJETO: CONTRATACIÓN DE LA CONSTRUCCIÓN DE LA FASE I DEL RECINTO FERIAL, DEL CENTRO DE EVENTOS Y EXPOSICIONES DEL CARIBE PUERTA DE ORO POR EL SISTEMA DE ECIOS UNITARIOS

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

1.- Una empresa se plantea una inversión cuyas características financieras son:

1.- Una empresa se plantea una inversión cuyas características financieras son: ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES. Departamento de Economía Aplcada (Matemátcas). Matemátcas Fnanceras. Relacón de Problemas. Rentas. 1.- Una empresa se plantea una nversón cuyas característcas

Más detalles

Índice de contribución de la estructura a la sostenibilidad

Índice de contribución de la estructura a la sostenibilidad ANEJO 13º Índce de contrbucón de la estructura a la sostenbldad 1. Consderacones generales El proyecto, la ejecucón y el mantenmento de las estructuras de hormgón consttuyen actvdades, enmarcadas en el

Más detalles

Diseño de una metodología sistémica de evaluación de impacto territorial de intervenciones urbanísticas

Diseño de una metodología sistémica de evaluación de impacto territorial de intervenciones urbanísticas Dseño de una metodología sstémca de evaluacón de mpacto terrtoral de ntervencones urbanístcas Report de recerca Nº 1 Jorge Cerda Troncoso Enero 2009 Problema de nvestgacón: el problema que se enfrenta

Más detalles

Desigualdad de oportunidades y el rol del sistema educativo en los logros de los jóvenes uruguayos

Desigualdad de oportunidades y el rol del sistema educativo en los logros de los jóvenes uruguayos Desgualdad de oportundades y el rol del sstema educatvo en los logros de los jóvenes uruguayos Cecla Llambí Marcelo Perera Pablo Messna Febrero de 2009 Esta nvestgacón fue fnancada por el Fondo Carlos

Más detalles

CONSEJERÍA DE EDUCACIÓN, CULTURA Y DEPORTE

CONSEJERÍA DE EDUCACIÓN, CULTURA Y DEPORTE BOLETÍN OFICIAL DE CONSEJERÍA DE EDUCACIÓN, CULTURA Y DEPORTE SECRETARÍA GENERAL Correccón errores al anunco publcado en el Boletín Ofcal Cantabra número 72 17 abrl 2015, aprobacón la Orn ECD/48/2015,

Más detalles

Unidad II: Análisis de la combustión completa e incompleta. 2. 1. Aire

Unidad II: Análisis de la combustión completa e incompleta. 2. 1. Aire 4 Undad II: Análss de la combustón completa e ncompleta. 1. Are El are que se usa en las reaccones de combustón es el are atmosférco. Ya se djo en la Undad I que, debdo a que n el N n los gases nertes

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Francsco Álvarez González http://www.uca.es/serv/fag/fct/ francsco.alvarez@uca.es Bajo el térmno Estadístca Descrptva

Más detalles

Valoración de Instrumentos del Vector de Precios

Valoración de Instrumentos del Vector de Precios Valoracón de Instrumentos del Vector de Precos VERSIÓN DICIEMBRE VERSIÓN DICIEMBRE CONTENIDO INTRODUCCIÓN.... INSTRUMENTOS FINANCIEROS.... Títulos de Deuda de Emsores Públcos... A) Bonos de Establzacón

Más detalles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles 2 Undad I.. Defncón de reaccón de combustón La reaccón de combustón se basa en la reaccón químca exotérmca de una sustanca (o una mezcla de ellas) denomnada combustble, con el oxígeno. Como consecuenca

Más detalles

EXPRESIÓN DE INCERTIDUMBRE EN LA CALIBRACIÓN DE EQUIPOS DE MEDICIÓN DE ENERGÍA ELÉCTRICA

EXPRESIÓN DE INCERTIDUMBRE EN LA CALIBRACIÓN DE EQUIPOS DE MEDICIÓN DE ENERGÍA ELÉCTRICA Ig. Álvaro Zpaqrá Traa Ig. Gerardo Porras Reda Laboratoro de Poteca y Eergía Spertedeca de Idstra y Comerco 0. INTRODUCCIÓN Cado se expresa el resltado de medcó e a magtd, es coveete y a veces oblgatoro,

Más detalles

PRECIOS MEDIOS ANUALES DE LAS TIERRAS DE USO AGRARIO (METODOLOGÍA)

PRECIOS MEDIOS ANUALES DE LAS TIERRAS DE USO AGRARIO (METODOLOGÍA) SECREARÍA ENERAL ÉCNICA MINISERIO DE ARICULURA, ALIMENACIÓN Y MEDIO AMBIENE SUBDIRECCIÓN ENERAL DE ESADÍSICA PRECIOS MEDIOS ANUALES DE LAS IERRAS DE USO ARARIO (MEODOLOÍA) OBJEIVO: Desde 1983 el Mnstero

Más detalles

Consideraciones empíricas del consumo de los hogares: el caso del gasto en electricidad y alimentos

Consideraciones empíricas del consumo de los hogares: el caso del gasto en electricidad y alimentos Consderacones empírcas del consumo de los hogares: el caso del gasto en electrcdad y almentos Emprcal Consderatons of the Famles Consumpton: the Case uf the Expense n Electrcty and Food Maro Andrés Ramón

Más detalles

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros.

XII. Uso de la Estimación de la Distribución de Probabilidad para Muestras Pequeñas y de la Simulación en la Inferencia de Carteras de Seguros. Uso de la Estmacón de la Dstrbucón de Probabldad para Muestras Pequeñas y de la Smulacón en la Inferenca de Carteras de Seguros. Trabajo presentado para el XII Premo de Investgacón sobre Seguros y Fanzas

Más detalles

Estimación del consumo del consumo diario de gas a partir de lecturas periódicas de medidores

Estimación del consumo del consumo diario de gas a partir de lecturas periódicas de medidores Estmacón del consumo del consumo daro de gas a partr de lecturas peródcas de meddores S.Gl, 1, A. Fazzn, 3 y R. Preto 1 1 Gerenca de Dstrbucón del ENARGAS, Supacha 636- (18) CABA- Argentna Escuela de Cenca

Más detalles

MATERIAL Y MÉTODOS. Se utilizó el listado de códigos que Caminal estableció para España, a los cuales se

MATERIAL Y MÉTODOS. Se utilizó el listado de códigos que Caminal estableció para España, a los cuales se MATERIAL Y MÉTODOS Fuentes de nformacón Los datos de hosptalzacón se obtenen del Conjunto Mínmo de Datos de Egresos Hosptalaros del Seguro Públco de Salud Costarrcense (SPSC) y las proyeccones de poblacón

Más detalles

2 Criterios generales aplicados a las estructuras de hormigón

2 Criterios generales aplicados a las estructuras de hormigón ANEJO 7 ÍNDICE DE CONTRIBUCIÓN DE LA ESTRUCTURA A LA SOSTENIBILIDAD Consderacones generales El proyecto, la ejecucón y el mantenmento de las estructuras de hormgón consttuyen actvdades, enmarcadas en el

Más detalles

Explicación de las tecnologías - PowerShot SX500 IS y PowerShot SX160 IS

Explicación de las tecnologías - PowerShot SX500 IS y PowerShot SX160 IS Explcacón de las tecnologías - PowerShot SX500 IS y PowerShot SX160 IS EMBARGO: 21 de agosto de 2012, 15:00 (CEST) Objetvo angular de 24 mm, con zoom óptco 30x (PowerShot SX500 IS) Desarrollado usando

Más detalles

Equilibrio termodinámico entre fases fluidas

Equilibrio termodinámico entre fases fluidas CAPÍTULO I Equlbro termodnámco entre fases fludas El conocmento frme de los conceptos de la termodnámca se consdera esencal para el dseño, operacón y optmzacón de proyectos en la ngenería químca, debdo

Más detalles

Modelos de elección simple y múltiple. Regresión logit y probit. Modelos multilogit y multiprobit.

Modelos de elección simple y múltiple. Regresión logit y probit. Modelos multilogit y multiprobit. Modelos de eleccón smple y múltple. Regresón logt y probt. Modelos multlogt y multprobt. Sga J.Muro(14/4/2004) 2 Modelos de eleccón dscreta. Modelos de eleccón smple. Modelos de eleccón múltple. Fnal J.Muro(14/4/2004)

Más detalles

Incentivos económicos de las empresas a participar en acuerdos ambientales voluntarios: análisis del Programa de Industria Limpia

Incentivos económicos de las empresas a participar en acuerdos ambientales voluntarios: análisis del Programa de Industria Limpia Gaceta de Economía Año 16, Número Especal, Tomo I Incentvos económcos de las empresas a partcpar en acuerdos ambentales voluntaros: análss del Programa de Industra Lmpa Vcente Ruíz 1, Marsol Rvera-Planter

Más detalles

CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS

CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS CAPÍTULO 7 ESTIMACIÓN DE PARÁMETROS En los capítulos anterores se han analzado varos modelos usados en la evaluacón de stocks, defnéndose los respectvos parámetros. En las correspondentes fchas de ejerccos

Más detalles

La Huella Hídrica en España The Water Footprint in Spain

La Huella Hídrica en España The Water Footprint in Spain Cenca y Técnca de la Ingenería Cvl La Huella Hídrca en España The Water Footprnt n Span Revsta de Obras Públcas nº 3.514. Año 157 Octubre 2010 ISSN: 0034-8619 ISSN electrónco: 1695-4408 Fernando Esteban

Más detalles

Una viga se encuentra sometida a Flexión Pura cuando el momento Flector es la única fuerza al interior de la sección.

Una viga se encuentra sometida a Flexión Pura cuando el momento Flector es la única fuerza al interior de la sección. 3. FLEXÓ E VGS RECTS 3.1.- Conceptos Báscos Una ga se encentra sometda a Fleón Pra cando el momento Flector es la únca fera al nteror de la seccón. Ejemplo: Una ga smplemente apoada de l L solctada por

Más detalles

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso. CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de

Más detalles

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta.

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta. Rentas Fnanceras. Renta fracconada 6. RETA FRACCIOADA Una renta fracconada se caracterza porque su frecuenca no concde con la frecuenca de varacón del térmno de dcha renta. Las característcas de la renta

Más detalles

MODELOS DE ELECCIÓN BINARIA

MODELOS DE ELECCIÓN BINARIA MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos

Más detalles

C I R C U L A R N 2.133

C I R C U L A R N 2.133 Montevdeo, 17 de Enero de 2013 C I R C U L A R N 2.133 Ref: Insttucones de Intermedacón Fnancera - Responsabldad patrmonal neta mínma - Susttucón de la Dsposcón Transtora del art. 154 y de los arts. 158,

Más detalles

UN ANÁLISIS DE LAS DECISIONES DE FORMACIÓN DE HOGAR, TENENCIA Y DEMANDA DE SERVICIOS DE VIVIENDA DE LOS JÓVENES ESPAÑOLES *

UN ANÁLISIS DE LAS DECISIONES DE FORMACIÓN DE HOGAR, TENENCIA Y DEMANDA DE SERVICIOS DE VIVIENDA DE LOS JÓVENES ESPAÑOLES * UN ANÁLISIS DE LAS DECISIONES DE FORMACIÓN DE HOGAR, TENENCIA Y DEMANDA DE SERVICIOS DE VIVIENDA DE LOS JÓVENES ESPAÑOLES * Mª Consuelo Colom, Rosaro Martínez y Mª Cruz Molés WP-EC 2000-02 Correspondenca:

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

Trabajo y Energía Cinética

Trabajo y Energía Cinética Trabajo y Energía Cnétca Objetvo General Estudar el teorema de la varacón de la energía. Objetvos Partculares 1. Determnar el trabajo realzado por una fuerza constante sobre un objeto en movmento rectlíneo..

Más detalles

ESTUDIOS LONGITUDINALES DE MEDIDAS REPETIDAS. MODELOS DE DISEÑO Y DE ANÁLISIS

ESTUDIOS LONGITUDINALES DE MEDIDAS REPETIDAS. MODELOS DE DISEÑO Y DE ANÁLISIS Avances en Medcón, 5, 9 26 2007 ESTUDIOS LONGITUDINALES DE MEDIDAS REPETIDAS. MODELOS DE DISEÑO Y DE ANÁLISIS Resumen Jame Arnau Gras ** Unverstat de Barcelona, España Las estructuras de dseño, así como

Más detalles

Focalización Geográfica del Gasto Social: Mapas de Pobreza. Javier Escobal Máximo Torero * Carmen Ponce ** RED CIES DE POBREZA GRADE-APOYO

Focalización Geográfica del Gasto Social: Mapas de Pobreza. Javier Escobal Máximo Torero * Carmen Ponce ** RED CIES DE POBREZA GRADE-APOYO Focalzacón Geográfca del Gasto Socal: Mapas de Pobreza Javer Escobal Máxmo Torero * Carmen Ponce ** RED CIES DE POBREZA GRADE-APOYO INFORME FINAL Juno, 2001 Investgador Prncpal, GRADE ** Investgadora Asstente,

Más detalles

Diseño y Análisis de Experimentos en el SPSS 1

Diseño y Análisis de Experimentos en el SPSS 1 Dseño y Análss de Expermentos en el SPSS EJEMPLO. Los sguentes datos muestran las meddas de hemoglobna (gramos por 00 ml) en la sangre de 40 ejemplares de una espece de truchas marrones. Las truchas se

Más detalles

MÉTODOS PARA PROBAR NUMEROS

MÉTODOS PARA PROBAR NUMEROS Capítulo 3 ALEATORIOS MÉTODOS PARA PROBAR NUMEROS III.1 Introduccón Exsten algunos métodos dsponbles para verfcar varos aspectos de la caldad de los números pseudoaleatoros. S no exstera un generador partcular

Más detalles

Medidas de acuerdo entre indicadores de pobreza en Venezuela*

Medidas de acuerdo entre indicadores de pobreza en Venezuela* Actualdad Contable FACES Año 14 Nº 23, Julo - Dcembre 2011. Mérda. Venezuela (20-38) Meddas de acuerdo entre ndcadores de pobreza en Venezuela Barllas, Francsco; Nava P., Lus; Snha, Surendra P. Recbdo:

Más detalles

PORTAL MAYORES. Métodos de cálculo de la gravedad de la discapacidad. Palabras clave Discapacidad; Estadísticas; Encuestas; Evaluación; Metodología.

PORTAL MAYORES. Métodos de cálculo de la gravedad de la discapacidad. Palabras clave Discapacidad; Estadísticas; Encuestas; Evaluación; Metodología. INFORMES PORTAL MAYORES ISSN: 15-67 Juno 21 Métodos de cálculo de la gravedad de la dscapacdad Cecla Esparza Catalán Consejo Superor de Investgacones Centífcas (CSIC). Centro de Cencas Humanas y Socales

Más detalles

LAS TRANSMISIONES EI escalo nam iento de las marchas

LAS TRANSMISIONES EI escalo nam iento de las marchas sobre el papel UIS IÁRQUEZ Dr. Ing. Agrónornc LAS TRANSMISIONES EI escalo nam ento de las marchas Aunque muchos usuaros consderan que los motores de los tractores son la referenca para cualquer comparacón

Más detalles

Estimación del consumo diario de gas a partir de lecturas periódicas de medidores

Estimación del consumo diario de gas a partir de lecturas periódicas de medidores Nota técnca Estmacón del consumo daro de gas a partr de lecturas peródcas de meddores Por Salvador Gl, Gerenca de Dstrbucón del Enargas, A. azzn, Gas Natural Ban y R. Preto, Gerenca de Dstrbucón del Enargas

Más detalles

DOCUMENTOS DE TRABAJO Serie Economía

DOCUMENTOS DE TRABAJO Serie Economía Nº 233 SUSTITUCIÓN ENTRE TELEFONÍA FIJA Y MÓVIL EN CHILE M. SOLEDAD ARELLANO - JOSÉ MIGUEL BENAVENTE DOCUMENTOS DE TRABAJO Sere Economía M. Soledad Arellano 2 José Mguel Benavente 3 Abrl 2007 Resumen Susttucón

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departamento Admnstratvo Naconal de Estadístca Dreccón de Censos Demografía METODOLOGIA ESTIMACIONES Y PROYECCIONES DE POBLACIÓN, POR ÁREA, SEXO Y EDAD PARA LOS DOMINIOS DE LA GRAN ENCUESTA INTEGRADA DE

Más detalles

Rentas financieras. Unidad 5

Rentas financieras. Unidad 5 Undad 5 Rentas fnanceras 5.. Concepto de renta 5.2. Clasfcacón de las rentas 5.3. Valor captal o fnancero de una renta 5.4. Renta constante, nmedata, pospagable y temporal 5.4.. Valor actual 5.4.2. Valor

Más detalles

Gonio espectrofotómetro para medir la función de distribución bidireccional de dispersión (BSDF)

Gonio espectrofotómetro para medir la función de distribución bidireccional de dispersión (BSDF) ÓPTICA PURA Y APLICADA. www.sedoptca.es Gono espectrofotómetro para medr la funcón de dstrbucón bdrecconal de dspersón (BSDF) Gono spectrophotometer for bdrectonal scatterng dstrbuton functon (BSDF) measurements

Más detalles

MANUAL DE INDICADORES

MANUAL DE INDICADORES REPUBLICA DE HONDURAS INSTITUTO HONDUREÑO DE LA NIÑEZ Y LA FAMILIA (IHNFA) OBSERVATORIO DE DERECHOS DE LA NIÑEZ (ODN) MANUAL DE INDICADORES Tegucgalpa M.D.C. MAYO - 2009 Honduras C.A. CONTENIDO CONTENIDO...1

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

Tasas de Caducidad. - Guía de Apoyo para la Construcción y Aplicación - Por: Act. Pedro Aguilar Beltrán. paguilar@cnsf.gob.mx

Tasas de Caducidad. - Guía de Apoyo para la Construcción y Aplicación - Por: Act. Pedro Aguilar Beltrán. paguilar@cnsf.gob.mx Tasas de Caducdad - Guía de Apoyo para la Construccón y Aplcacón - Por: Act. Pedro Agular Beltrán pagular@cnsf.gob.m 1. Introduccón La construccón y aplcacón de tasas de caducdad en el cálculo de utldades

Más detalles

INCERTIDUMBRE EN LA CALIBRACIÓN DE CALIBRADORES TIPO VERNIER

INCERTIDUMBRE EN LA CALIBRACIÓN DE CALIBRADORES TIPO VERNIER CENTRO NACIONAL DE METROLOGÍA INCERTIDUMBRE EN LA CALIBRACIÓN DE CALIBRADORES TIPO VERNIER Héctor González Mñoz Nota: El presente ejercicio ha sido desarrollado bajo aspectos didácticos y llea por esto

Más detalles

EL METODO DE LA PERTURBACIÓN Y EL MÉTODO DE LOS ELEMENTOS FINITOS EXTENDIDO. APLICACIÓN A PROBLEMAS DE MECÁNICA DE LA FRACTURA.

EL METODO DE LA PERTURBACIÓN Y EL MÉTODO DE LOS ELEMENTOS FINITOS EXTENDIDO. APLICACIÓN A PROBLEMAS DE MECÁNICA DE LA FRACTURA. AALES DE MECÁCA DE LA FRACTURA Vol. (5 59 EL METODO DE LA PERTURBACÓ Y EL MÉTODO DE LOS ELEMETOS FTOS EXTEDDO. APLCACÓ A PROBLEMAS DE MECÁCA DE LA FRACTURA. J. Grasa, J. J. Lagarda, E. Ceto, J. A. Bea

Más detalles

PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES

PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES PRÁCTICA 1. IDENTIFICACIÓN Y MANEJO DE MATERIAL DE LABORATORIO: PREPARACIÓN DE DISOLUCIONES Y MEDIDA DE DENSIDADES OBJETIVOS ESPECÍFICOS 1) Identfcar y manejar el materal básco de laboratoro. ) Preparar

Más detalles

PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA

PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL MEWMA Est. María. I. Flury Est. Crstna A. Barbero Est. Marta Rugger Insttuto de Investgacones Teórcas y Aplcadas. Escuela de Estadístca. PROPUESTAS PARA LA DETERMINACIÓN DE LOS PARÁMETROS DEL GRÁFICO DE CONTROL

Más detalles

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general. 3. En el modelo lneal general Y =X β + ε, explcar la forma que

Más detalles

Fisicoquímica CIBEX Guía de Trabajos Prácticos 2010. Trabajo Práctico N 7. - Medida de la Fuerza Electromotriz por el Método de Oposición-

Fisicoquímica CIBEX Guía de Trabajos Prácticos 2010. Trabajo Práctico N 7. - Medida de la Fuerza Electromotriz por el Método de Oposición- Fscoquímca CIBX Guía de Trabajos Práctcos 2010 Trabajo Práctco N 7 - Medda de la Fuerza lectromotrz por el Método de Oposcón- Objetvo: Medr la fuerza electromotrz (FM) de la pla medante el método de oposcón

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente

Más detalles

CAPÍTULO 7 VALORACIONES INMOBILIARIAS 1

CAPÍTULO 7 VALORACIONES INMOBILIARIAS 1 CAPÍTULO 7 UNA METODOLOGÍA OBJETIVA PARA LAS VALORACIONES INMOBILIARIAS 1 RAFAEL ARTURO CANO GUERVÓS JORGE MIGUEL CHICA OLMO Departamento de Métodos Cuanttatvos para la Economía y la Empresa Unversdad

Más detalles

EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL

EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL OBJETIVO El alumno obtendrá el punto azeotrópco para el sstema acetona-cloroformo, calculará los coefcentes de actvdad de cada componente a las composcones

Más detalles

F.Ares (2003) Business plan de una empresa de transporte de mercancías 48 CAPÍTULO 5 : MODELO DE LOCALIZACIÓN. LOCALIZACIÓ FINAL

F.Ares (2003) Business plan de una empresa de transporte de mercancías 48 CAPÍTULO 5 : MODELO DE LOCALIZACIÓN. LOCALIZACIÓ FINAL F.Ares (00) Busness plan de una empresa de transporte de mercancías 48 CAPÍTULO 5 : MODELO DE LOCALIZACIÓN. LOCALIZACIÓ FINAL F.Ares (00) Busness plan de una empresa de transporte de mercancías 49 MODELO

Más detalles

Cifrado de imágenes usando autómatas celulares con memoria

Cifrado de imágenes usando autómatas celulares con memoria Cfrado de mágenes usando autómatas celulares con memora L. Hernández Encnas 1, A. Hernández Encnas 2, S. Hoya Whte 2, A. Martín del Rey 3, G. Rodríguez Sánchez 4 1 Insttuto de Físca Aplcada, CSIC, C/Serrano

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles