2. Aumentar y disminuir

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2. Aumentar y disminuir"

Transcripción

1 2. Aumentar y disminuir

2 Taller de Matemáticas 3º ESO 1. Porcentajes 2. Interés 3. Potencias y notación científica 2

3 Aumentar y disminuir 1. Porcentajes TANTOS POR UNO, POR CIENTO Y POR MIL Las fracciones que tienen por denominador 100 se llaman porcentajes Fracción Decimal Porcentaje ,15 0,03 0,45 15% 15 por ciento 3% 3 por ciento 45% 45 por ciento a) El premio del concurso de fotografía matemática del Instituto se ha incrementado este año un 15%. Cuánto lo han subido por cada euro?. Si el premio del año pasado era de 1000 euros, cuántos euros lo han subido este año? b) El 3% del peso de una tarta es chocolate. Si la tarta es de 1 kg, qué cantidad de chocolate habrà? Cuántos kilos de chocolate necesitamos para hacer 1000 kg de tarta? c) El 45% del peso de una planta es agua. Si la planta pesa 1 kg, qué cantidad de agua tiene? Qué cantidad de agua habrá en 1000 kg de la misma planta? Cuando nos referimos a cantidades relacionadas con una unidad, decimos que son el tanto por uno. Por ejemplo, 0,15 por uno quiere decir que por cada 1, hay 0,15. Cuando nos referimos a cantidades relacionadas con 1000 unidades, decimos que son el tanto por Por ejemplo, el 120 por mil quiere decir que por cada 1000 hay 120. d) En las ofertas de los supermercados encontramos a menudo la expresión 2 por 1. Explica qué quiere decir. Expresa el mismo mensaje en tanto por ciento. e) A menudo salen en los periódicos noticias como ésta: 20 de cada 1000 habitantes tiene una determinada enfermedad. Explica qué quiere decir. Expresa la situación en tanto por ciento. REBAJAS En unos grandes almacenes hacen un 20% de descuento en época de rebajas, pero, además, ha de pagarse el IVA, que supone un 16%. Al comprar un artículo, prefieres que el vendedor te haga primero el descuento y después aplique el IVA o, al contrario, que primero aplique el IVA y después el descuento? 3

4 Taller de Matemáticas 3º ESO CALCULAR PORCENTAJES 1) Hoy han fallado al ensayo de la banda 6 personas, lo que supone el 20% del total. Cuántos miembros tiene la banda? 2) En las últimas elecciones municipales, de un censo de 2500 personas, el alcalde actual recibió el voto de 1500 ciudadanos. Qué porcentaje de votantes apoyó al alcalde? 3) En una clase de 30 estudiantes, hoy han faltado 6. Cuál ha sido el tanto por ciento de ausencias? 4) Un hospital tiene 210 camas ocupadas, lo que supone el 84% del total. De cuántas camas dispone el hospital? CÁLCULO MENTAL Recuerda que el 25% significa de cada 100, 25. Así, el 25% de 1000 será 250, ya que en 1000 hay 10 grupos de 100 y por cada grupo de 100 tomamos 25, así: 25% de 1000 = = 1000 = 250. Por tanto, se cumple que: 25% de 1 = = 0, El a % de un número N es igual a 1) Calcula mentalmente el 30% de las siguientes cantidades: a N 100 a) 200, b) 500, c) 1000, d) 1200, e) 50, f) 10, g) 80. 2) Calcula mentalmente: a) 20% de 400 b) 20% de 450 c) 15% de 300 d) 80% de 450 e) 60% de 10 f) 75% de 200 g) 40% de 25 h) 20% de 240 3) Calcula mentalmente: a) 35% de 2580 b) 12% de c) 80% de 3575 d) 63% de 4200 e) 5% de 640 f) 2% de 280 g) 150% de 500 h) 120% de 400 Para calcular un porcentaje se multiplica el total por el tanto por ciento expresado en forma 30 decimal. Así, 30% de 250 = 250 = 250 0,3 = Algunas calculadoras permiten hallar porcentajes mediante la tecla %. Así, para calcular el 8% de 300: 1) introduce el total, 2) pulsa la tecla x, 3) introduce el porcentaje, 4) pulsa la tecla %. El resultado es 24. 4) Expresa en forma de fracción y en forma decimal los siguientes porcentajes: a) 50% b) 25% c) 20% d) 40% e) 4% f) 9% g) 110% h) 120% 4

5 Aumentar y disminuir 5) Calcula los siguientes porcentajes multiplicando por un número decimal. Comprueba después el resultado con tu calculadora: a) 50% de 248 b) 25% de 460 c) 20% de 520 d) 40% de 520 e) 4% de 600 f) 9% de 800 g) 11% de 300 h) 12% de 420 i) 18% de 650 j) 45% de 936 k) 3% de 65 l) 112% de 60 TRES EN RAYA Se necesita un tablero, una calculadora y tres fichas de un color para cada jugador. Por turno cada jugador elige un porcentaje y un número. Averigua su valor con la calculadora y coloca una ficha en la casilla donde se encuentra el resultado si no está ocupada. Gana el que consiga colocar sus tres fichas en raya. 10% 30% 5% 40% EQUIVALENCIA Se necesita una baraja para cada equipo de cuatro alumnos (está en el ANEXO I). Se trata de completar familias de 4 cartas que tengan el mismo valor. Una vez repartidas las cartas, los alumnos que tengan alguna familia completa la muestran y depositan en el centro de la mesa. A continuación, por orden, cada alumno pide a otro la carta que necesite, para completar alguna de sus familias. Si la consigue vuelve a pedir. Si no pasa el turno. Cuando un alumno completa una familia se descarta. Gana el primero que consiga quedarse sin cartas. 5

6 Taller de Matemáticas 3º ESO AUMENTOS PORCENTUALES Aumentar una cantidad en un a% equivale a calcular el (100+a)% de dicha cantidad. Así, si las reservas de agua de una comarca hace un mes eran de 260 hectómetros cúbicos y con las últimas lluvias han aumentado un 15%, las reservas actuales son: % de 260 = , = (1+0,15) 260 =1, = 299 hectómetros cúbicos. Observa que aumentar 260 en un 15% equivale a multiplicar 260 por 1,15. En general, aumentar una cantidad A en un a% equivale a multiplicar A por 1+ a/100 1) Un artículo que costaba 67 euros ha subido un 12%. Cuánto cuesta ahora? 2) Cierto artículo, tras sufrir una subida del 12%, cuesta 75,04 euros. Cuánto costaba antes de la subida? 3) La paga semanal de Andrea es de 340 euros y le han prometido un aumento del 20% para la próxima semana. Cuál será su nuevo salario la semana que viene? 4) He pagado 55 céntimos por una barra de pan, lo que supone un aumento del 10% sobre el precio que tenía ayer. Cuánto costaba la barra ayer? DISMINUCIONES PORCENTUALES Disminuir una cantidad en un a% equivale a calcular el (100 a)% de dicha cantidad. Así, si en unos grandes almacenes hacen una rebaja del 15% y unos guantes tienen un precio inicial de 20 euros, como rebajan un 15% del precio, conservarán el =85% del precio inicial. Por tanto, el precio rebajado es: 85% de 20 = 0,85 20 = 17 euros. Observa que disminuir 20 en un 15% equivale a multiplicar 20 por 0,85. En general, disminuir una cantidad A en un a% equivale a multiplicar A por (100 a)/100. 1) Calcula los precios rebajados (un 15%) del abrigo, de la falda y de la chaqueta que aparecen en el escaparate de una tienda, si los precios que se marcan en el escaparate son, respectivamente, 389 euros, 69 euros y 89 euros. 2) La camisa del escaparate de la tienda anterior, una vez rebajada (un 15%), cuesta 55,25 euros. Cuál era su precio original? 3) He ido a comprar un balón que costaba 45 euros, pero me han hecho una rebaja del 12%. Cuánto me ha costado el balón? 4) He pagado 17 euros por unos guantes que estaban rebajados un 15%. Cuál era el precio antes de ser rebajados? 6

7 Aumentar y disminuir 2. Interés INTERÉS SIMPLE Si un préstamo se efectúa con un interés del 8% anual, quiere decir que: 100 euros en 1 año producen 8 euros, 500 euros en 1 año producen 8 5 = 40 euros, 100 euros en 6 meses producen 8 (1/2) = 4 euros 200 euros en 6 meses producen 8 5 0,5 = 20 euros Si un banco ofrece un beneficio del 8% durante un año, qué beneficio obtendremos si depositamos euros durante tres meses? Para averiguarlo, hacemos el siguiente razonamiento: 100 euros en 1 año producen 8 euros; por tanto, euros en 1 año producen Entonces, euros en 3 meses (=1/4 de año) producen (1/4) = 400 euros. En general, llamaremos: CAPITAL a la cantidad prestada. Se representa por C. TIEMPO al tiempo que dura el préstamo. Se representa por t. RÉDITO al beneficio por 100 euros en 1 año. Se representa por r. INTERÉS al beneficio obtenido por el préstamo. Se representa por I. Un capital C colocado al r% anual, produce en un tiempo t un beneficio I, de forma que C r t I = 100 C r t Si el tiempo está dado en meses, entonces I = C r t Si el tiempo está dado en días, entonces I = (el año financiero consta de 360 días) ) Calcula el interés que rinden euros, colocados al 9% anual, durante un período de 7 meses. 2) Si pido un préstamo de 5000 euros, me cobran un 10% anual y devuelvo el dinero al cabo de tres meses, a cuánto ascienden los intereses que debo pagar? 3) Cuánto dinero tengo que meter en un banco, que da el 6% anual, para que en dos meses me produzca un beneficio de 300 euros? 4) Qué capital producen 8000 euros colocados al 9% durante 80 días? 5) Si meto en el banco 500 euros al 7% anual, cuánto tendré en la cuenta dentro de 100 días? 7

8 Taller de Matemáticas 3º ESO 3. Potencias y notación científica LAS AMEBAS Las amebas son organismos formados por una sola célula. Cada segundo, una ameba se divide en otras dos. Si al principio tenemos una ameba, cuántas habrá al cabo de 3 segundos? Y en 10 segundos? Y en 20 segundos? Cuánto tiempo tardará en haber más de de amebas? Observa que 2 2= 2 2, 2 2 2= 2 3. Estos números son potencias de 2. Por ejemplo, = 5 es una potencia de 5. Cómo escribirías con esta notación el número de amebas que habrá al cabo de 30 segundos? Y al cabo de 40 segundos? Y al cabo de 50 segundos? Y al cabo de un minuto? 12 Observa que el número 1, x 10 indica que la coma decimal debe desplazarse hacia la derecha 12 lugares; es decir, se trata de un número de cifras! Esta manera de expresar el resultado se conoce como notación científica RÁPIDOS Y LENTOS La rapidez con que ocurren los fenómenos de la naturaleza es muy variada. Observa la tabla siguiente: SONIDO SATÉLITE LA TIERRA LUZ ESPACIO RECORRIDO EN 1 SEGUNDO 331 m 8 Km 30 Km Km Calcula, en cada caso, el tiempo necesario para recorrer un metro. Y para recorrer 1 cm? Los números que has obtenido son pequeños para expresarlos en segundos. Puedes utilizar unidades más apropiadas, como estas: 3 1 milisegundo = 10 segundos 1 microsegundo = 10 6 segundos. 9 1 nanosegundo = 10 segundos. 1 picosegundo = segundos Utiliza estas unidades para expresar los resultados anteriores. El número 3, x 10 5 indica que debe desplazarse la coma decimal cinco lugares hacia la izquierda; es decir, se trata del número 0, Esta forma de expresión se llama notación científica. 8

9 Aumentar y disminuir POBLACIÓN a) Una población de personas crece en un año el 14 por mil. Cuál será la población una vez transcurrido ese año? Cuál será la población dentro de 2 años? Y dentro de 3 años? b) En cuánto se transforma una población de personas que crece al 14 por mil anual, al cabo de 6 años? c) Una población crece regularmente al 14 por mil anual y ahora es de personas. Qué población había hace un año? Y hace cincos años? Y hace siete? Una población actual A se transforma al R por mil anual en T años en: A 1 + T R 1000 Una población actual A que crece al R por mil anual era, hace T años, igual a T R A Para determinar valores de cualquier potencia con la calculadora debes utilizar la tecla [ X Y ]. Por ejemplo, para hallar 2 8, debes pulsar [2] [ X Y ] [8] [=]. Si el exponente es negativo deberás usar la tecla de cambio de signo [( )]. Así, para hallar 2-8, debes pulsar [2] [ X Y ] [( )] [8] [=]. 9

10 Taller de Matemáticas 3º ESO POTENCIAS Y RAÍCES El siguiente es un juego para 4 jugadores. Se necesita una baraja de potencias y raíces para cada equipo (ANEXO II). Las reglas del juego son las siguientes: Se reparten todas las cartas y cada jugador coloca las suyas tapadas en un montón. Todos los jugadores, a la vez, destapan la carta superior. El que levante la carta más alta, las recoge todas. En caso de empate, los jugadores afectados destapan la siguiente carta de su montón para desempatar. Gana el que acumule más cartas. DOMINÓ NUMÉRICO 10

11 Aumentar y disminuir (Fuente: Construir las matemáticas, Ed. Proyecto Sur. Granada) 11

12 Taller de Matemáticas 3º ESO ANEXO I: BARAJA DE EQUIVALENCIA 12

13 Aumentar y disminuir 13

14 Taller de Matemáticas 3º ESO 14

15 Aumentar y disminuir 15

16 Taller de Matemáticas 3º ESO 16

17 Aumentar y disminuir 17

18 Taller de Matemáticas 3º ESO ANEXO II: BARAJA DE POTENCIAS Y RAÍCES 18

19 Aumentar y disminuir 19

20 Taller de Matemáticas 3º ESO 20

21 Aumentar y disminuir 21

22 Taller de Matemáticas 3º ESO 22

Departamento de Matemáticas Actividades de recuperación 3º ESO (Pendientes 2º)

Departamento de Matemáticas Actividades de recuperación 3º ESO (Pendientes 2º) FICHA 1 NÚMEROS I Fecha límite de entrega: 3 de noviembre 1. Calcula el resultado de las siguientes sumas de enteros positivos y negativos: a) 5+(-)= b) 5+(-7)= c) (-)+5= d) (-7)+5= e) (-5)+(-7)=. Calcula

Más detalles

Actividades para preparar el examen de Proporcionalidad.

Actividades para preparar el examen de Proporcionalidad. Actividades para preparar el examen de Proporcionalidad. Departamento de Matemáticas del I.E.S. Salvador Serrano Segundo de ESO - Curso.0 -.0.- Contesta si son ciertas las siguientes afirmaciones:. a n

Más detalles

Para calcular un porcentaje de una cantidad se multiplica dicha cantidad por el tanto por uno. Tanto por uno TOTAL > PARTE

Para calcular un porcentaje de una cantidad se multiplica dicha cantidad por el tanto por uno. Tanto por uno TOTAL > PARTE PORCENTAJES CÁLCULO DE PORCENTAJES Calcular el 12% de 50 a) El porcentaje como razón Un tanto por ciento es una razón, es decir, un cociente entre dos cantidades. (Si el porcentaje viene dado por un número

Más detalles

UNIDAD 5. PROBLEMAS ARITMÉTICOS.

UNIDAD 5. PROBLEMAS ARITMÉTICOS. UNIDAD 5. PROBLEMAS ARITMÉTICOS. Al final deberás haber aprendido... Interpretación de porcentajes y cálculo de los mismos. Resolución de problemas en los que aparezcan porcentajes. Conocer el concepto

Más detalles

NOMBRE FECHA. 3 x C 1 2 3 D 5 G 1 2 3 H 9

NOMBRE FECHA. 3 x C 1 2 3 D 5 G 1 2 3 H 9 MATEMÁTICAS 2º ESO EJERCICIOS/PROBLEMAS: PROPORCIONALIDAD NOMBRE FECHA 1.- Escribe = o entre cada par de razones según formen o no proporción 1 3 5 15 9 3 2 4 9 9 4 2 2.- Calcula el término desconocido

Más detalles

IES CINCO VILLAS TEMA 2 NUMEROS Y UTILIDADES 2 Página 1

IES CINCO VILLAS TEMA 2 NUMEROS Y UTILIDADES 2 Página 1 EJERCICIOS RESUELTOS MÍNIMOS TEMA 2 Ejercicio nº 1.- a) Ordena de menor a mayor los números: 12,51 ; 12,51 ; 12,5 ; 12,511 b) Representa en la recta los siguientes números: 0, ; 1,6 ; 1,5 ; 2,25 a) 12,51

Más detalles

TRABAJO DE MATEMÁTICAS (1º parte) PENDIENTES DE 3º E.S.O.

TRABAJO DE MATEMÁTICAS (1º parte) PENDIENTES DE 3º E.S.O. TRABAJO DE MATEMÁTICAS (1º parte) PENDIENTES DE 3º E.S.O. OPERACIONES CON FRACCIONES 1.-) Calcula: a) = b) = c) = d) = 2.-) Calcula: a) b) [ = c) = d) = 3.-) Calcula: a) = b) = 4.-) Calcula: d) e) f) 5.-)

Más detalles

UNIDAD 1 Fracciones y decimales

UNIDAD 1 Fracciones y decimales UNIDAD Fracciones y decimales Algunos conceptos y procedimientos de divisibilidad. Cálculo del mínimo común múltiplo de dos números. Página DIVISORES Escribe todos los divisores de cada uno de estos números:

Más detalles

UNIDAD 2. a Ordenar de menor a mayor estos números. b Representa, de manera aproximada, los siguientes. Solución: a)

UNIDAD 2. a Ordenar de menor a mayor estos números. b Representa, de manera aproximada, los siguientes. Solución: a) UNIDAD 2 a Ordenar de menor a mayor estos números 1,6 ; 1,6 ; 1,6 ; 1, b Representa, de manera aproximada, los siguientes números 1, ; 2,5 ;,75 ; 1,26 b Representa sobre la recta los números,45 y,46. Escribe

Más detalles

Tema 4: Problemas aritméticos.

Tema 4: Problemas aritméticos. Tema 4: Problemas aritméticos. Ejercicio 1. Cómo se pueden repartir 2.310 entre tres hermanos de forma que al mayor le corresponda la mitad que al menor y a este el triple que al mediano? El reparto ha

Más detalles

Nº Clavos : ; t 12.5h Tiempo 5 t

Nº Clavos : ; t 12.5h Tiempo 5 t MAGNITUDES DIRECTAMENTE PROPORCIONALES 1 de 14 DESCRIPCIÓN MATEMÁTICA: Dos magnitudes son directamente proporcionales cuando: Magnitud A a a a... Magnitud B b b b... El cociente o razón de las cantidades

Más detalles

5 2,7; ; ; 3; 3,2

5 2,7; ; ; 3; 3,2 Actividades de recuperación para septiembre 3º ESO, MATEMÁTICAS La recuperación de la asignatura consta de dos partes: Entregar los siguientes ejercicios resueltos correctamente. Aprobar el examen de recuperación.

Más detalles

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-)

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) CÁLCULO MATEMÁTICO BÁSICO LOS NUMEROS ENTEROS Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) Si un número aparece entre barras /5/, significa que su

Más detalles

Magnitudes directamente proporcionales

Magnitudes directamente proporcionales TEMA PROPORCIONALIDAD. 1º E.S.O. Magnitud Una magnitud es cualquier propiedad o cualidad de los objetos que se puede medir numéricamente. Entre las magnitudes se dan relaciones de proporcionalidad. Magnitudes

Más detalles

(Tomado de: http://descartes.cnice.mecd.es/materiales_didacticos/porcentajes_e_indices/porcentaje.htm)

(Tomado de: http://descartes.cnice.mecd.es/materiales_didacticos/porcentajes_e_indices/porcentaje.htm) PORCENTAJES (Tomado de: http://descartes.cnice.mecd.es/materiales_didacticos/porcentajes_e_indices/porcentaje.htm) Para hacer los ejercicios en forma interactiva tiene que estar conectado a la página arriba

Más detalles

I. Números y operaciones

I. Números y operaciones 1. Escribe con cifras: I. Números y operaciones Tres millones doscientos mil tres 3.200.003 Veinte millones y medio 20.500.000 Setecientos millones 700.000.000 Dos millones setecientos mil cuatrocientos

Más detalles

UNIDAD 4 Proporcionalidad y porcentajes

UNIDAD 4 Proporcionalidad y porcentajes Pág. 1 de 5 Diferencias magnitudes directa e inversamente proporcionales? 1 Indica, para cada par de magnitudes, si son directamente proporcionales (D), inversamente proporcionales (I), o no proporcionales

Más detalles

IDENTIFICAR LA RELACIÓN DE PROPORCIONALIDAD ENTRE MAGNITUDES

IDENTIFICAR LA RELACIÓN DE PROPORCIONALIDAD ENTRE MAGNITUDES OBJETIVO IDENTIICAR LA RELACIÓN DE PROPORCIONALIDAD ENTRE MAGNITUDES NOMBRE: CURSO: ECHA: Para multiplicar un número por 0, 00,.000... se desplaza la coma a la derecha tantos lugares como ceros tenga la

Más detalles

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes Matemáticas. Tercero ESO. Curso 0-03. Exámenes . 9 de octubre de 0 Ejercicio. Calcular: 3 5 4 + 3 0 3 7 8 5 3 5 4 + 3 0 5 + 6 0 3 0 3 7 8 5 3 56 0 3 8 0 84 74 5 5 5 Ejercicio. Calcular: 5 6 [ ( 3 3 3 )]

Más detalles

2.- Completa la siguiente tabla sabiendo que la proporcionalidad entre las magnitudes es directa A 4 2 7 B 20 60 100

2.- Completa la siguiente tabla sabiendo que la proporcionalidad entre las magnitudes es directa A 4 2 7 B 20 60 100 1.- Es cribe D en los pares de magnitudes directamente proporcionales, I en las inversamente proporcionales y X en las que no sean ni una cosa ni otra.. El número de personas que van en el autobús y la

Más detalles

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía. Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero

Más detalles

Para calcular el valor desconocido, bastará con multiplicar el peso de una caja por el número de cajas que tenemos, luego

Para calcular el valor desconocido, bastará con multiplicar el peso de una caja por el número de cajas que tenemos, luego Apuntes de Matemáticas Proporcionalidad y porcentajes Fecha: MAGNITUD: Llamaremos magnitud a todo aquello que se puede pesar, contar o medir de alguna manera. Por tanto, son magnitudes el tiempo, el peso,

Más detalles

Tema 3: Índices de variación

Tema 3: Índices de variación Tema 3: Índices de variación 1.1. Índice de variación Quiero comprar en unos grandes almacenes una plancha que cuesta 92. Como están de rebajas me la dejan en 68. a) Cuánto me han rebajado? b) Qué índice

Más detalles

5.- De un trozo que pesaba 2,5 kilos, se han vendido un trozo de 0,6 kg y otro de 0,35 kg. Cuánto pesa el trozo que queda?

5.- De un trozo que pesaba 2,5 kilos, se han vendido un trozo de 0,6 kg y otro de 0,35 kg. Cuánto pesa el trozo que queda? Para sumar y restar con números decimales, seguimos estos pasos: 1º Se colocan los números en columna, haciendo coincidir las unidades con las unidades, las décimas con las décimas 2º Se realiza la suma

Más detalles

2 Forma fraccionaria y decimal de los números racionales

2 Forma fraccionaria y decimal de los números racionales a las Enseñanzas Aplicadas Forma fraccionaria y decimal de los números racionales Página. Pasa estas fracciones a forma decimal: b) c) d) 0 :, b) : 0, c)! : 0, d)! : 0 0, 0. Pasa a forma fraccionaria.

Más detalles

TEMA 3: PROPORCIONALIDAD DIRECTA E INVERSA. Matemáticas 3º eso

TEMA 3: PROPORCIONALIDAD DIRECTA E INVERSA. Matemáticas 3º eso TEMA 3: PROPORCIONALIDAD DIRECTA E INVERSA Matemáticas 3º eso La proporcionalidad es herramienta que se usa p contar número de individ en grandes poblacione Se elige una parte de l superficie, se realiza

Más detalles

Tema 1 Fracciones y decimales

Tema 1 Fracciones y decimales Código 80986 Curso 016-17 MATEMÁTICAS ACADÉMICAS º ESO (EJERCICIOS DE REPASO) Tema 1 Fracciones y decimales 1. que sean mayores que 1 o menores que 1 en parte entera y parte fraccionaria. fracciones que

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 52 EJERCICIOS Sistema de numeración decimal 1 Escribe con cifras: a) Trece unidades y ocho milésimas 13,008 b) Cuarenta y dos cienmilésimas 0,00042 c) Trece millonésimas 0,000013 2 Expresa

Más detalles

5 4 = Potencias de uno y de cero Una potencia, de cualquier base distinta de cero, elevada a cero es igual a 1. exponente. base.

5 4 = Potencias de uno y de cero Una potencia, de cualquier base distinta de cero, elevada a cero es igual a 1. exponente. base. CAPÍTULO 3: POTENCIAS Y RAÍCES 1. POTENCIAS 1.1. Concepto de potencia. Base y exponente María guarda 5 collares en una bolsa, cada 5 bolsas en una caja y cada 5 cajas en un cajón. Tiene 5 cajones con collares,

Más detalles

NOMBRE: 1. Redondea a las centenas de mil los siguientes números:

NOMBRE: 1. Redondea a las centenas de mil los siguientes números: NOMBRE: 1. Redondea a las centenas de mil los siguientes números: a) 6 342 567 b) 12 535 000 c) 542 657 000 d) 67 584 000 2. Si a = 2 3 3 5 7; b = 2 4 3 2 5 7 y c = 2 3 5 7, averigua: a) Si b es múltiplo

Más detalles

Ficha de Repaso: Proporcionalidad

Ficha de Repaso: Proporcionalidad Ficha de Repaso: Proporcionalidad 1. Indica en las siguientes afirmaciones, cuales son las magnitudes que se relacionan. Escribe esa relación en forma de razón: a) Una paella para 4 personas necesita medio

Más detalles

TEMA 7: MAGNITUDES PROPORCIONALES. PORCENTAJES. Primer Curso de Educación Secundaria Obligatoria. I.e.s de Fuentesaúco.

TEMA 7: MAGNITUDES PROPORCIONALES. PORCENTAJES. Primer Curso de Educación Secundaria Obligatoria. I.e.s de Fuentesaúco. 2009 TEMA 7: MAGNITUDES PROPORCIONALES. PORCENTAJES. Primer Curso de Educación Secundaria Obligatoria. I.e.s de Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 07: MAGNITUDES PROPORCIONALES.

Más detalles

Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño

Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño 1. Razón. Proporción numérica La razón de los números a y b es la fracción b a Una proporción numérica es una igualdad entre dos razones numéricas. En cualquier proporción el producto de los etremos es

Más detalles

UNIDAD 4 Problemas aritméticos

UNIDAD 4 Problemas aritméticos Pág. 1 de 3 1 Se invierten 18 000 al 3,36% anual durante 3 años y medio. Calcula el capital que se obtendrá al final de ese periodo sabiendo que los periodos de capitalización son mensuales. 2 Se funde

Más detalles

1) Qué fracción de año representan 7 meses? Y 3 meses? Y 6 meses? 3) Cuántas manzanas son 2/5 de una caja que contiene 50 manzanas?

1) Qué fracción de año representan 7 meses? Y 3 meses? Y 6 meses? 3) Cuántas manzanas son 2/5 de una caja que contiene 50 manzanas? FRACCIONES Y DECIMALES ) Qué fracción de año representan meses? Y meses? Y meses? ) Un grifo llena un depósito en horas. Qué parte del depósito llenará: primero, en horas; segundo, en horas, y tercero,

Más detalles

MATEMÁTICAS PENDIENTES 3º ESO EJERCICIOS PRUEBA I

MATEMÁTICAS PENDIENTES 3º ESO EJERCICIOS PRUEBA I Ejercicio nº 1.- MATEMÁTICAS PENDIENTES º ESO EJERCICIOS PRUEBA I a) Clasifica como naturales, enteros, racionales o irracionales los siguientes números: ) 1 1, 1, b) Representa sobre la recta los números:

Más detalles

7 4 = Actividades propuestas 1. Calcula mentalmente las siguientes potencias y escribe el resultado en tu cuaderno: exponente. base.

7 4 = Actividades propuestas 1. Calcula mentalmente las siguientes potencias y escribe el resultado en tu cuaderno: exponente. base. 21 21 CAPÍTULO : Potencias y raíces. Matemáticas 2º de ESO 1. POTENCIAS Ya conoces las potencias. En este aparato vamos a revisar la forma de trabajar con ellas. 1.1. Concepto de potencia. Base y exponente

Más detalles

100% - (12% + 13%) = 75% de alumnos pasan con todo aprobado 75% de 524 = 0,75 524 = 393 alumnos han pasado con todas las materias aprobadas.

100% - (12% + 13%) = 75% de alumnos pasan con todo aprobado 75% de 524 = 0,75 524 = 393 alumnos han pasado con todas las materias aprobadas. Números racionales 1 PORCENTAJES o Un porcentaje es equivalente a una fracción con denominador y al número decimal correspondiente a la fracción. 65 65 % = = 0,65 o Para calcular el porcentaje de una cantidad

Más detalles

Curso º ESO. UNIDAD 6: APLICACIONES DE LA PROPORCIONALIDAD Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón

Curso º ESO. UNIDAD 6: APLICACIONES DE LA PROPORCIONALIDAD Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón Curso 2º ESO UNIDAD 6: APLICACIONES DE LA PROPORCIONALIDAD Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón OBJETIVOS CONTENIDOS PROCEDIMIENTOS 1. Interpretar y aplicar el tanto por

Más detalles

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE AMPLIACIÓN

ACTIVIDADES INCLUIDAS EN LA PROPUESTA DIDÁCTICA: DE AMPLIACIÓN Pág. 1 ENUNCIADOS 1 Una tienda local, en su afán de captar clientes, ha puesto el siguiente anuncio: Si usted compra dos prendas, le dejamos elegir la forma del descuento. El descuento de esta temporada

Más detalles

I. Números y operaciones

I. Números y operaciones 1. Escribe con cifras: I. Números y operaciones Tres millones doscientos mil tres Veinte millones y medio Setecientos millones Dos millones setecientos mil cuatrocientos dos Ciento veinticinco mil doscientos

Más detalles

PÁGINA 8. Entrénate. 1 Simplifica estas fracciones: 2 4 = = = = = = = = 2 3

PÁGINA 8. Entrénate. 1 Simplifica estas fracciones: 2 4 = = = = = = = = 2 3 Soluciones a las actividades de cada epígrafe PÁGINA 8 Entrénate 1 Simplifica estas fracciones: 2 4 = 1 2 20 0 = 2 2 6 = 1 0 40 = 4 10 = 1 2 0 4 = 2 10 1 = 2 40 60 = 2 1 Clasifica estos números en enteros

Más detalles

Matemáticas 3º E.S.O. 2015/16

Matemáticas 3º E.S.O. 2015/16 Matemáticas 3º E.S.O. 201/16 TEMA 1: Los números reales Ficha número 2 7 9 1.- Una mezcla de cereales está compuesta por de trigo, de avena y el resto de arroz. 1 2 13 a) Qué parte de arroz tiene la mezcla?

Más detalles

PROPORCIONALIDAD NUMÉRICA

PROPORCIONALIDAD NUMÉRICA Veremos PROPORCIONALIDAD NUMÉRICA TEMA 9. GRUPO: 2 A La razón de dos números. La proporción. Que es una magnitud y estudiaremos: Magnitudes Dependientes Relación directa: -Directamente proporcional Relación

Más detalles

Tema 3 POTENCIAS Y NOTACIÓN CIENTÍFICA 1. Notación científica. Mr: Gonzalo Flores C

Tema 3 POTENCIAS Y NOTACIÓN CIENTÍFICA 1. Notación científica. Mr: Gonzalo Flores C POTENCIAS Y NOTACIÓN CIENTÍFICA 1 Notación científica Mr: Gonzalo Flores C POTENCIAS Y NOTACIÓN CIENTÍFICA 2 ESQUEMA DE LA UNIDAD 0. Potencias de exponente natural. Propiedades. 1. Potencias de exponente

Más detalles

Números fraccionarios y decimales

Números fraccionarios y decimales Unidad didáctica Números fraccionarios y decimales 1.- Las fracciones. a Una fracción es un número racional, escrito en la forma, tal que b 0 y representa una parte b de un total. El denominador (el número

Más detalles

Natural: 5 1 ; entero: 10 2 ; racionales: 6 8, 1 2. a) c) e) a) = 3 3 = 1

Natural: 5 1 ; entero: 10 2 ; racionales: 6 8, 1 2. a) c) e) a) = 3 3 = 1 NÚMEROS RACIONALES EJERCICIOS Escribe cuatro fracciones equivalentes a cada una de las siguientes y halla también las fracciones irreducibles en cada caso:, 9,,,, 0,, 9 0 0 9 0 9 0 0 9 Ordena de mayor

Más detalles

5. Iteración y. Recursión

5. Iteración y. Recursión 5. Iteración y Recursión Matemáticas 3º ESO. Algoritmos 2. Operaciones con fracciones 3. Aumentar y disminuir 4. Iteración 5. Fractales 6. Recursión 44 Iteración y recursión. Álgoritmos CIRCUITOS POLIGONALES

Más detalles

1. Descompón cada uno de estos números. 2. Escribe cómo se leen estos números. 3. Compara y escribe el signo < o > según corresponda. 4. Calcula.

1. Descompón cada uno de estos números. 2. Escribe cómo se leen estos números. 3. Compara y escribe el signo < o > según corresponda. 4. Calcula. Trabajo de recuperación del área de matemáticas de 6º de primaria. 1. Descompón cada uno de estos números. 8.603.058 39.090.001 410.901.100 639.000.072 2. Escribe cómo se leen estos números. 10.196.364

Más detalles

1.- Observa la recta y rodea los números que se indican. Después contesta.

1.- Observa la recta y rodea los números que se indican. Después contesta. TEMA 1 Grafía de números de más de 6 cifras http://www.rinconmaestro.es/matematicas/actividades/actividades435.pdf http://www.rinconmaestro.es/matematicas/actividades/actividades438.pdf http://www.rinconmaestro.es/matematicas/actividades/actividades436.pdf

Más detalles

6º. El Quinzet 11.17

6º. El Quinzet 11.17 6º. El Quinzet 11.1 (1) Tres manzanas cuestan 1. Cuántas manzanas puedo comprar con 5? (2) Cuál es la décima parte de 30? (3) Cuántos cuartos de hora hay en 5 horas? (4) Diez cuartos de hora, cuántas horas

Más detalles

6, ,8 0, ,09 12, 037

6, ,8 0, ,09 12, 037 Nombre: Fecha : MAT 6º - T 2 -Página 1 de 12 1.- Completa la tabla en tu cuaderno. Número Parte entera Parte decimal Se lee 35,024 35 024 35 unidades y veinticuatro milésimas 6,25 38 013 2. Copia los números

Más detalles

Números decimales. 1.1. Lectura de las fracciones decimales

Números decimales. 1.1. Lectura de las fracciones decimales Números decimales 1. Fracción decimal Son de uno muy frecuente y se las representa con la notación particular, que consiste en escribir sólo el numerador y recordar el número de ceros que siguen a la unidad

Más detalles

5 ( 7) = 35. Restar dos números enteros es lo mismo que sumar al primero el opuesto del segundo. El opuesto de 5 es 5, 8 es el opuesto de 8.

5 ( 7) = 35. Restar dos números enteros es lo mismo que sumar al primero el opuesto del segundo. El opuesto de 5 es 5, 8 es el opuesto de 8. Unidad didáctica NÚMEROS RACIONALES. INTRODUCCIÓN: NÚMEROS ENTEROS Y OPERACIONES Al principio, las cantidades sólo se expresaban con palabras, se contaban cosas concretas. El símbolo para los números aparece

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 7 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica a) En qué punto se cortan la gráfica roja la azul del dibujo de la izquierda? b) Tienen algún punto en común las rectas de la

Más detalles

5 ( 7) = 35. Restar dos números enteros es lo mismo que sumar al primero el opuesto del segundo. El opuesto de 5 es 5, 8 es el opuesto de 8.

5 ( 7) = 35. Restar dos números enteros es lo mismo que sumar al primero el opuesto del segundo. El opuesto de 5 es 5, 8 es el opuesto de 8. Unidad didáctica NÚMEROS RACIONALES. INTRODUCCIÓN: NÚMEROS ENTEROS Y OPERACIONES Al principio, las cantidades sólo se expresaban con palabras, se contaban cosas concretas. El símbolo para los números aparece

Más detalles

La unidad fraccionaria es cada una de las partes que se. Una fracción es el cociente de dos números enteros a y b,

La unidad fraccionaria es cada una de las partes que se. Una fracción es el cociente de dos números enteros a y b, Unidad fraccionaria La unidad fraccionaria es cada una de las partes que se obtienen al dividir la unidad en n partes iguales. Definición de fracción Una fracción es el cociente de dos números enteros

Más detalles

PROPORCIONALIDAD - teoría

PROPORCIONALIDAD - teoría PROPORCIONALIDAD RAZÓN: razón de dos números es el cociente indicado de ambos. Es decir, la razón de los dos números a y b es a:b, o lo que es lo mismo, la fracción b a. PROPORCIÓN: es la igualdad de dos

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental Recuerda lo fundamental PROPORCIONALIDAD MAGNITUDES DIRECTAMENTE PROPORCIONALES Al aumentar una doble (doble, triple), la otra aumenta de igual manera (doble, triple). EJEMPLO. En la compra: kg 2 4 6 7

Más detalles

La proporcionalidad directa se expresa a menudo en porcentajes o tantos por ciento. Veamos algunos ejemplos:

La proporcionalidad directa se expresa a menudo en porcentajes o tantos por ciento. Veamos algunos ejemplos: PORCENTAJES Y PROPORCIONALIDAD 1 de 6 La proporcionalidad directa se expresa a menudo en porcentajes o tantos por ciento. Veamos algunos ejemplos: Ejemplo 1: De los 250 alumnos y alumnas que tiene un colegio,

Más detalles

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS

COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS GRADO:7 O DOCENTE: Nubia E. Niño C. FECHA: 29 / 09 / 15 Guía Didáctica 4-4 Desempeños: * Plantea una regla de tres simple

Más detalles

POTENCIACIÓN Y RADICACIÓN

POTENCIACIÓN Y RADICACIÓN LECCIÓN 3: POTENCIACIÓN Y RADICACIÓN 3.1.- POTENCIAS La potenciación es la operación que permite obtener el valor de una potencia. Una potencia es un producto de factores iguales. TÉRMINOS DE UNA POTENCIA

Más detalles

EJERCICIOS DE LOGARITMOS Y EXPONENCIALES. 1. Calcula, sin utilizar la calculadora, los logaritmos que se indican: a) b) c) d) e) f) g) h) i) j) k) l)

EJERCICIOS DE LOGARITMOS Y EXPONENCIALES. 1. Calcula, sin utilizar la calculadora, los logaritmos que se indican: a) b) c) d) e) f) g) h) i) j) k) l) EJERCICIOS DE LOGARITMOS Y EXPONENCIALES 1º BACH CC.SS. 1. Calcula, sin utilizar la calculadora, los logaritmos que se indican: a) b) c) d) e) f) g) h) i) j) k) l) m) n) ñ) o) p) 2. Sabiendo que y que

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 9 Proporcionalidad y porcentajes Recuerda lo fundamental Curso:... Fecha:... PROPORCIONALIDAD MAGNITUDES DIRECTAMENTE PROPORCIONALES Al aumentar una doble (doble, triple), la otra aumenta de igual manera

Más detalles

Enteros. Fracciones. Ecuaciones y sistemas de primer grado. Problemas

Enteros. Fracciones. Ecuaciones y sistemas de primer grado. Problemas I.E.S. Fernando de Mena Matemáticas º ESO (Opción B) Enteros. Fracciones. Ecuaciones y sistemas de primer grado. Problemas Ejercicios. Hallar el máximo común divisor y el mínimo común múltiplo de las siguientes

Más detalles

PORCENTAJES. Porcentaje: es una razón en la que se indica la cantidad correspondiente a un total de 100. 2 5 = 0 4 2 5% = 100 100 = 0 025

PORCENTAJES. Porcentaje: es una razón en la que se indica la cantidad correspondiente a un total de 100. 2 5 = 0 4 2 5% = 100 100 = 0 025 PORCENTAJES 93 Porcentaje: es una razón en la que se indica la cantidad correspondiente a un total de 100. Ejemplos: 40% = 40 2 5 = 0 4 2 5% = 100 100 = 0 025 1 Escribe cada porcentaje como fracción y

Más detalles

1Calculadora USO DE LA CALCULADORA

1Calculadora USO DE LA CALCULADORA USO DE LA CALCULADORA Pág. 1 Se ofrece aquí un material didáctico preparado para ser empleado directamente por los alumnos y las alumnas, que comprende explicaciones y actividades dirigidas al aprendizaje

Más detalles

2. Si doy un billete de 200 para pagar un paquete de libros valen 87., Cuánto me han de devolver?

2. Si doy un billete de 200 para pagar un paquete de libros valen 87., Cuánto me han de devolver? Primera parte: BREVE RECORRIDO POR LAS ESTRATEGIAS DEL CÁLCULO MENTAL METODOLOGIA Y MATERIALES: LOS QUE SE EXPONEN A CONTINUACIÓN ALUMNOS DEL PRIMER AÑO DE ESTALMAT SESIÓN DE 75 MINUTOS HOJA ALUMNO 1 ALUMNO

Más detalles

7. Sistemas de ecuaciones lineales

7. Sistemas de ecuaciones lineales 76 SOLUCIONARIO 7. Sistemas de ecuaciones lineales 1. SISTEMAS LINEALES. RESOLUCIÓN GRÁFICA PIENSA CALCULA a) En qué punto se cortan la gráfica roja la azul del dibujo? s r 3. Aplica el criterio que relaciona

Más detalles

c) Es 91 múltiplo de 7? y 7 divisor de 91?

c) Es 91 múltiplo de 7? y 7 divisor de 91? UNIDAD 1: NÚMEROS NATURALES (1 pto) Ejercicio nº 1.- a) Escribe los diez primeros múltiplos de 15: IES EL CORONIL b) Todos los divisores del 60 c) Es 91 múltiplo de 7? y 7 divisor de 91? (1 pto) Ejercicio

Más detalles

Nombre y apellidos:... Curso:... Fecha:...

Nombre y apellidos:... Curso:... Fecha:... UNIDAD AR Expresa con números positivos o negativos estas situaciones: a) La ciudad se encuentra a 0 m sobre el nivel del mar.... b) El buceador está nadando a m de profundidad.... c) Rosa tiene unos ahorros

Más detalles

TEMA 2.- ECUACIONES E INECUACIONES

TEMA 2.- ECUACIONES E INECUACIONES TEMA.- ECUACIONES E INECUACIONES 1.- INECUACIONES 1.1.- Repaso De Ecuaciones De Primer Y Segundo Grado Ecuaciones de primer grado x 3 4x 4x 3 x 6 4x 4x 1 x 4 x 5x 7 x 7 3x 14 35x 7 x 7 6 3x 14 3 15x 1

Más detalles

3. Un automóvil viaja a P km/h. Cuántos kilómetros recorre en 8 horas a la misma rapidez?

3. Un automóvil viaja a P km/h. Cuántos kilómetros recorre en 8 horas a la misma rapidez? GUÍA DE EJERCICIOS Nº 8 Parte 1 Contenidos: Proporcionalidad: proporciones directas; resolución de problemas 1. A y B son magnitudes directamente proporcionales. Respecto a la siguiente tabla, determine

Más detalles

IES LA ASUNCIÓN w w.ieslaasuncion.org. Bloque I. Números y medidas. Tema 4: Potencias y raíces. Uso de la calculadora TEORÍA

IES LA ASUNCIÓN  w w.ieslaasuncion.org. Bloque I. Números y medidas. Tema 4: Potencias y raíces. Uso de la calculadora TEORÍA MATEMÁTICAS º ESO Bloque I. Números y medidas. Tema : Potencias y raíces. Uso de la calculadora TEORÍA 1. POTENCIAS * Una potencia es una multiplicación de factores iguales. Se escribe a n e indica que

Más detalles

EJERCICIOS PARA NAVIDAD (RECUPERACIÓN PRIMERA EVALUACIÓN). CURSO: Fecha de entrega: Viernes. 14 de enero. Fecha de examen: Viernes, 21 de enero.

EJERCICIOS PARA NAVIDAD (RECUPERACIÓN PRIMERA EVALUACIÓN). CURSO: Fecha de entrega: Viernes. 14 de enero. Fecha de examen: Viernes, 21 de enero. º E.S.O. MATEMÁTICAS I.E.S. LOSADA EJERCICIOS PARA NAVIDAD (RECUPERACIÓN PRIMERA EVALUACIÓN). CURSO: 10-11 Fecha de entrega: Viernes. 1 de enero. Fecha de examen: Viernes 1 de enero. Alumno/a:. Grupo:

Más detalles

Ejercicios. 1. Clasifica los siguientes números: 2. Sitúa cada número en su lugar correspondiente.

Ejercicios. 1. Clasifica los siguientes números: 2. Sitúa cada número en su lugar correspondiente. TEMA 1: FRACCIONES Y DECIMALES NÚMEROS RACIONALES Números naturales. Son los números 0, 1, 2,,. Y se designan por N Números enteros. Son los naturales con signo + o -, es decir,..-2, -1, 0, 1, 2,,.. Se

Más detalles

PROBLEMAS ORIENTATIVOS PARA EL EXAMEN DE INGRESO AL CICLO FORMATIVO DE GRADO MEDIO

PROBLEMAS ORIENTATIVOS PARA EL EXAMEN DE INGRESO AL CICLO FORMATIVO DE GRADO MEDIO OPERACIONES BÁSICAS CON NÚMEROS NATURALES, ENTEROS, DECIMALES Y FRACCIONES (SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN) Y OPERACIONES COMBINADAS DE LAS ANTERIORES. 1. Realizar las siguientes operaciones con

Más detalles

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 } LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden

Más detalles

Razón y proporción (I)

Razón y proporción (I) Matemáticas 2.º ESO Unidad 5 Ficha 1 Razón y proporción (I) Una razón es la división entre dos cantidades comparables. Se representa a b y se lee «a es a b». 1. Calcula mentalmente las razones entre las

Más detalles

I.E.S. HAYGÓN CURSO 2011/20121 NOMBRE Y APELLIDOS FECHA REPASO EXAMEN DE RECUPERACIÓN

I.E.S. HAYGÓN CURSO 2011/20121 NOMBRE Y APELLIDOS FECHA REPASO EXAMEN DE RECUPERACIÓN NOMBRE Y APELLIDOS FECHA REPASO EXAMEN DE RECUPERACIÓN 1. Calcula y simplifica el resultado. 3 4 1 9 1 2 a) 6 45 9 10 5 15 2 2 1 3 1 b) : 4 2 2 3 2 2. Calcula 3. a) El 28% de 375. b) Halla el tanto por

Más detalles

6Soluciones a los ejercicios y problemas PÁGINA 141

6Soluciones a los ejercicios y problemas PÁGINA 141 PÁGINA Pág. E cuaciones sencillas Resuelve mentalmente. a) b) 6 c) 0 d) e) f) 9 g) h)9 i) 9 a) b) 9 c) d) e) 6 f) g) h) 6 i) Resuelve. a) b) 0 c) 9 9 d) e) 6 f) 8 g) 6 0 h) 8 i) 6 j) 9 6 k) l) 8 m) 6 n)

Más detalles

1. Clasifica en identidades o ecuaciones las siguientes igualdades: 3. Escribe en lenguaje algebraico:

1. Clasifica en identidades o ecuaciones las siguientes igualdades: 3. Escribe en lenguaje algebraico: 1. Clasifica en identidades o ecuaciones las siguientes igualdades: (a) 7(4 2x) 4(5 3x) =2(5 x) 2 (b) (x 1)$(x +1) x$(x +2) =3x (c) 5(x 1) 4(x +2) =3(x 1) 2(x +5) (d) x+1 2 x 2 3 =5 2. Resuelve las siguientes

Más detalles

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva

NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL Mate 3041 Profa. Milena R. Salcedo Villanueva 1 FRACCIONES Una fracción tiene dos términos: numerador y denominador Denominador indica las veces que se divide

Más detalles

PROPORCIONALIDAD. Los números a, b, c y d forman una proporción si la razón entre a y b es la misma que entre c y d.

PROPORCIONALIDAD. Los números a, b, c y d forman una proporción si la razón entre a y b es la misma que entre c y d. PROPORCIONALIDAD RAZÓN: Siempre que hablemos de Razón entre dos números nos estaremos refiriendo al cociente (el resultado de dividirlos) entre ellos. Entonces: Razón entre dos números a y b es el cociente

Más detalles

Números enteros y racionales

Números enteros y racionales Números enteros y racionales. Operaciones con enteros El día de enero la temperatura máxima en un determinado lugar fue de C, y la temperatura mínima, de 8 C. Cuál ha sido la variación de temperaturas?

Más detalles

TEMA 8: MAGNITUDES PROPORCIONALES. PORCENTAJES

TEMA 8: MAGNITUDES PROPORCIONALES. PORCENTAJES TEMA 8: MAGNITUDES PROPORCIONALES. PORCENTAJES 1. Magnitudes Directamente Proporcionales Kg de café Precio ( ) 1 4 2 8 3 12 4 16 5 20 8 32 Estas dos magnitudes, peso en kg de café y su precio en, se dice

Más detalles

2 Fracciones y. números decimales. 1. Operaciones con fracciones. Realiza mentalmente las siguientes operaciones: Solución: a) b) c) Carné calculista

2 Fracciones y. números decimales. 1. Operaciones con fracciones. Realiza mentalmente las siguientes operaciones: Solución: a) b) c) Carné calculista Fracciones y números decimales. Operaciones con fracciones Realiza mentalmente las siguientes operaciones: + b c 0 b c P I E N S A Y C A L C U L A Carné calculista : C = ; R = Calcula mentalmente: + b

Más detalles

Romina Cardo y Eda Cesaratto con la colaboración de Patricia Barreiro, Víctor González y Mercedes Pereyra Rocha Matemática del CAU

Romina Cardo y Eda Cesaratto con la colaboración de Patricia Barreiro, Víctor González y Mercedes Pereyra Rocha Matemática del CAU Guía de trabajo en clase sobre el IPC 1. PORCENTAJES Y PROPORCIONES Ejercicio 1: Supongamos que entrás a un negocio con la intención de comprar un teléfono celular cuyo precio, expuesto en la vidriera,

Más detalles

Operaciones con números enteros. Calculadora

Operaciones con números enteros. Calculadora P RACTICA Operaciones con números enteros Calculadora Calcula paso a paso y comprueba el resultado con la calculadora utilizando las teclas de paréntesis ) ) ) : ) : e) [ )] : f) [ ) ] ) ) : : ) : : e)

Más detalles

Revisora: María Molero

Revisora: María Molero 57 Capítulo 5: INECUACIONES. Matemáticas 4ºB ESO 1. INTERVALOS 1.1. Tipos de intervalos Intervalo abierto: I = (a, b) = {x a < x < b}. Intervalo cerrado: I = [a, b] = {x a x b}. Intervalo semiabierto por

Más detalles

Relaciones de fracciones, decimales y porcentaje

Relaciones de fracciones, decimales y porcentaje Slide 1 / 130 New Jersey Center for Teaching and Learning Inciativa de Matemática Progresiva Este material está disponible gratuitamente en www.njctl.org y está pensado para el uso no comercial de estudiantes

Más detalles

OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL

OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL COMPRENDER OBJETIVO 1 EL CONCEPTO DE NÚMERO DECIMAL NOMBRE: CURSO: ECHA: SIGNIICADO DE LOS NÚMEROS DECIMALES En nuestra vida diaria medimos, calculamos, comparamos, etc. Hablamos de cantidades que no son

Más detalles

5Soluciones a los ejercicios y problemas PÁGINA 109

5Soluciones a los ejercicios y problemas PÁGINA 109 PÁGINA 109 Pág. 1 E l sistema de numeración decimal 1 Escribe cómo se leen. a) 13,4 b) 0,23 c) 0,145 d) 0,0017 e) 0,0006 f) 0,000148 a) Trece unidades y cuatro décimas. b) Veintitrés centésimas. c) Ciento

Más detalles

7º Grado Matemática. Porcentaje. Slide 1 / 130. Slide 2 / 130. Slide 3 / 130. Tabla de Contenidos. Click para ir a nuestro sitio web:

7º Grado Matemática. Porcentaje. Slide 1 / 130. Slide 2 / 130. Slide 3 / 130. Tabla de Contenidos. Click para ir a nuestro sitio web: New Jersey Center for Teaching and Learning Slide 1 / 130 Inciativa de Matemática Progresiva Este material está disponible gratuitamente en www.njctl.org y está pensado para el uso no comercial de estudiantes

Más detalles

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.

Más detalles

La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación.

La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación. La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación. Los contenidos mínimos de la materia son los que aparecen con un * UNIDAD 1: LOS NÚMEROS NATURALES

Más detalles

NOMBRE FECHA. 2.- Las alas de los aviones se construyen uniendo planchas de aluminio de 6, 234 kilogramos.

NOMBRE FECHA. 2.- Las alas de los aviones se construyen uniendo planchas de aluminio de 6, 234 kilogramos. MATEMÁTICAS 1º ESO PROBLEMAS: DECIMALES NOMBRE FECHA 1.- La distancia de las casas de cuatro amigos a su instituto son: 1,295 1,234 1,874 y 1,527 metros respectivamente. a) Ordena las distancias de las

Más detalles

LOGRO: Reconoce distintas representaciones de los números reales y usa sus propiedades para resolver Problemas.

LOGRO: Reconoce distintas representaciones de los números reales y usa sus propiedades para resolver Problemas. ESTANDARES Utilizo números reales en sus diferentes representaciones y en diversos contextos. Resuelvo problemas y simplifico cálculos usando propiedades y relaciones de los números reales y de las relaciones

Más detalles

PRUEBA DE ENSAYO SEGUNDO NIVEL DE EDUCACIÓN BÁSICA CÁLCULO Y REPRESENTACIÓN DEL ESPACIO 2013

PRUEBA DE ENSAYO SEGUNDO NIVEL DE EDUCACIÓN BÁSICA CÁLCULO Y REPRESENTACIÓN DEL ESPACIO 2013 Coordinación Nacional de Normalización de Estudios / División de Educación General PRUEBA DE ENSAYO SEGUNDO NIVEL DE EDUCACIÓN BÁSICA CÁLCULO Y REPRESENTACIÓN DEL ESPACIO 2013 El siguiente material ha

Más detalles

1 Descomponer en factores

1 Descomponer en factores Divisibilidad (T 1 ) SOLUCIONES 1 Descomponer en factores 1 216 216 = 2 3 3 3 2 360 360 = 2 3 3 2 5 3 432 432 = 2 4 3 3 2 Descomponer en factores 12250 2250 = 2 3 2 5 3 23500 3500 = 2 2 5 3 7 32520 2 520

Más detalles