MEDIDAS DE TENDENCIA CENTRAL

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MEDIDAS DE TENDENCIA CENTRAL"

Transcripción

1 Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes estamos teresados e terpretar que ta dspersos está los datos, ecotrar u valor represetatvo que represete a toda la ormacó. E los sguetes regloes costruremos meddas que permta determar que parámetros utlzar para represetar a u cojuto caremos por ua de las meddas más comues detro de uestra cotdadad como lo es la meda o també coocdo como meda artmétca o valor promedo. DATOS NO AGRUPADOS Aalzaremos ahora las meddas de tedeca cetral más comues, como so la meda, la medaa y la moda, cosderado u cojuto de datos s agrupar Meda. Icaremos por ua de las meddas más coocdas como lo es la meda o també coocdo como meda artmétca o valor promedo. Este parámetro lo usamos co tata cotdadad que os será muy amlar, auque també aprederemos alguas propedades y mostraremos u teorema sumamete mportate. 1 S teemos el sguete cojuto de datos y deseamos ecotrar u valor que represete a todo el cojuto, seguramete lo prmero que vedrá a uestra mete es sumar todos los valores y dvdrlos etre el úmero total de datos. 10, 9, 8, 10, 9, 9, 10, 9, 10, 9 es decr, u valor represetatvo del cojuto de valores es Este valor, promedo artmétco, es coocdo como la meda y es ua de las meddas de tedeca cetral ya que represeta u valor co respecto a toda la ormacó. José Toleto Guevara Pérez

2 Probabldad y Estadístca Meddas de tedeca Cetral Para deotar la meda de ua poblacó utlzaremos y cuado se trate de la meda de ua muestra. Geeralzado sobre el ejemplo podemos decr que la meda de ua muestra es gual a E ocasoes, e alguas áreas es comú deotar la meda por e lugar. Para u cojuto de datos la meda artmétca os muestra ua geometría teresate como lo podemos observar e el sguete teorema: Teorema. La suma de las derecas de los datos y la meda os represeta u promedo smétrco de la ormacó, es decr, se cumple la sguete relacó: La demostracó es la sguete 0 Como la meda es ua costate y además la suma se supoe co respecto valores etoces Empleado la decó de la meda tedremos: José Toleto Guevara Pérez

3 Probabldad y Estadístca Meddas de tedeca Cetral 0 Es además obvo pesar que també la relacó 0 se cumple. Esta propedad lmta el hecho de poder obteer promedo sobre las desvacoes por lo que las costruccoes de los térmos deberá de hacerse a través de otro tpo de aálss. S perder de vsta algua relacó sobre algú promedo de las desvacoes podemos cosderar dos posbldades, ua prmera posbldad es cosderar el promedo de la suma de los cuadrados de las desvacoes, ua seguda posbldad es cosderar el promedo de la suma del valor absoluto de las desvacoes. A la prmera la llamaremos varaza y a la seguda desvacó absoluta meda. Las cuales será cosderadas como meddas de dspersó, debdas precsamete a su aturaleza y que será a bordadas e la seccó de meddas de dspersó. Ejemplo 1. Sea los sguetes valores las calcacoes de la probabldad y Estadístca de estudates del prmer parcal: Sumado los valores de las 30 calcacoes y dvdédolas etre los 30 datos obtedremos: Por lo que la meda de calcacoes obteda por el grupo cosderado es gual a 8. Podemos comprobar el teorema co las calcacoes presetadas, a cotuacó se preseta la tabla de derecas José Toleto Guevara Pérez

4 Probabldad y Estadístca Meddas de tedeca Cetral 8-10=- 8-8=0 8-6= 8-7.5= = = = = =- 8-10=- 8-8=0 8-6= 8-9= = = = 8-9.5= = = =0 8-6= 8-6= 8-9= =- 8-7=1 8-8= = =3 8-8= =0.5 Observamos que eectvamete se puede ver de maera medata que demostrado e el teorema. 0 como ue Otro teorema a cosderar es el sguete, el cual os dca como camba la meda cuado a cada varable la trasladamos ua costate, es decr, para cada medcó y c. le sumamos ua catdad, Teorema. La meda de al ser trasladada o remplazada por ua catdad costate para cada ua de las meddas se modca de la orma y c Demostracó. Sea ua muestra de medcoes 1,, 3,, a las que se les remplaza sumádoles ua catdad c, es decr, y1 1 c, y c, y3 3 c,, y c, por lo que al obteer la meda para c teemos 4 y c c c c Lo que demuestra el teorema. Moda La moda es la medda que se relacoa co la recueca co que se preseta el dato o los datos co mayor cdeca, co lo que se cosdera la posbldad de que esta más de ua moda para u cojuto de datos. La otacó más recuete es la sguete: Mo y ˆ. Esta medda se puede aparecer tato para datos cualtatvos como cuattatvos. Se dce que cuado u cojuto de datos tee ua moda la muestra es umodal, cuado tee José Toleto Guevara Pérez

5 Probabldad y Estadístca Meddas de tedeca Cetral dos modas bmodal, cuado la muestra cotee más de u dato repetdo se dce que es multmodal y u últmo caso es cuado gú dato tee ua recueca, e dcho caso se dce que la muestra es amodal. Ejemplos : Determar la moda de los sguetes cojutos de datos: a).- 1,, 3, 3, 4, 5, 6, 7, 7, 3, 1, 9, 3 La moda de este cojuto de datos es gual a 3 y se cosdera umodal b).- 1,, 3, 4, 4, 5,, 1, 3, 4,, -3, 4, 6, 3, 3 Las modas de este cojuto de datos so 3 y 4 ya que ambas tee la más alta recueca, por lo que la muestra es bmodal c).- 1,, 3, 4, 5, 6, 7, 8, 9 La muestra o cotee gú dato repetdo por lo que se cosdera que la muestra es amodal. Grácamete eso se puede relejar medate el aálss de u polígoo de recuecas. 5 José Toleto Guevara Pérez

6 Probabldad y Estadístca Meddas de tedeca Cetral Medaa La medaa de u cojuto to de valores es aquel valor que dvde al cojuto e dos partes guales, de orma que el úmero de valores mayor o gual a la medaa es gual al úmero de valores meores o gual a estos. Su aplcacó se ve lmtada ya que solo cosdera el orde jerárquco de los datos y o algua propedad propa de los datos, como e el caso de la meda. A cotuacó se muestra los crteros para costrur la medaa. Se puede costrur los sguetes crteros: Lo prmero que se requere es ordear los datos e orma ascedete o descedete, cualquera de los dos crteros coduce al msmo resultado. Sea ordeados lo datos e orde ascedete,,, 1, 3 S el úmero de valores es mpar, la medaa es el valor medo, el cual correspode al dato. Cuado el úmero de valores e el cojuto es par, o este u solo valor medo, s o que este dos valores medos, e tal caso, la medaa es el promedo de los valores, es decr, la medaa es umércamete gual a 6 Md 1 Podemos descrbr alguas propedades para la medaa: 1.- Es úca..- Es smple. 3.- Los valores etremos o tee eectos mportates sobre la medaa, lo que s ocurre co la meda. La otacó más usual que se utlza para represetar a la medaa es ~, Md o Me Ejemplo 3: Dados los sguetes datos: 1,, 3, 4, 0, 1, 4, 3, 1, 1, 1, 1,, 1, 3 para la obtecó de la medaa se deberá de ordear. Tomemos el crtero de orde ascedete co lo que, tedremos: José Toleto Guevara Pérez

7 Probabldad y Estadístca Meddas de tedeca Cetral 0, 1, 1, 1, 1, 1, 1, 1,,, 3, 3, 3 4, 4, Por otro lado el úmero de datos es gual a 15 datos, sedo el úmero de datos mpar se elge el dato que se ecuetra a la mtad, ua vez ordeados los datos, e este caso es 1. DATOS AGRUPADOS Ya vmos que es relatvamete ácl calcular la meda, la moda y la medaa para u cojuto de datos o agrupados, veremos ahora como se calcula estas tres meddas cosderado ua dstrbucó de recuecas Meda La meda para datos agrupados se calcula medate la sguete epresó: 1 m 1 dode es el total de datos, m el úmero total de clase y es la recueca de datos. 7 La decó es claramete etedda como ua etesó de la decó que dmos para datos o agrupados, ya que es lógco supoer que datos que se repte co ua recueca m puede smplcar la suma 1 por 1, por supuesto que los ídces de la seguda suma co respecto a la prmera corre co respecto a meor úmero, es decr, co respecto al úmero de agrupametos m. Ejemplo 4: Sea los sguetes datos 1, 1,,, 4, 4, 5,, 3,, 3, 4, 1,, 1. La meda para dchos datos es apromadamete gual a.4666, es decr, José Toleto Guevara Pérez

8 Probabldad y Estadístca Meddas de tedeca Cetral S embargo, el msmo resultado podemos obteer s tomamos la recueca co que aparece los datos, e este caso: Dato Frecueca Producto de recuecas y datos La obtecó de la meda almete se coverte e Para la obtecó de la meda cuado las recuecas está sujetas a la eleccó de clase bajo los métodos mostrados, se realza de gual maera, la úca dereca este e determar el valor sguete ejemplo. como el puto medo de cada clase (marca de clase), veamos el Ejemplo 5. Supogamos que ua clíca de salud, obtee ua tabla de edades de las persoas que so ateddas e u de semaa, para los que preseta la sguete tabla. Cuál será el promedo de edades de los eermos que acudero a recbr atecó médca? Tabla de recuecas reportadas por la clíca Clases (Datos e años) Marca de clase Frecueca José Toleto Guevara Pérez

9 Probabldad y Estadístca Meddas de tedeca Cetral Total de eermos ateddos 55 Por lo que el promedo de persoas a las que se les do servco es de: años 53 El valor de la meda obteda de la recueca agrupada es sucetemete apromado para trabajos estadístcos, ya que al trabajar co datos agrupados, se perde la ormacó prmara y o hay otro recurso que trabajar co marcas de clase e lugar de los datos orgales. S embargo, s la dstrbucó de recuecas es muy rregular, el valor de la meda o dará la sucete apromacó 1. Moda La moda para datos agrupados es el puto medo (marca de clase) del tervalo de clase que cotee la mayor recueca. La moda varará segú la orma de agrupar los datos 9 Ejemplo 6 Señale le moda de los sguetes datos Valores s agrupar Valores Agrupados e 6 clases Clases Frecueca Total 46 E 4 clases Clases Frecueca Total 46 1 Probabldad y Estadístca.- Samuel Fuelabrada José Toleto Guevara Pérez

10 Probabldad y Estadístca Meddas de tedeca Cetral total 46 Solucó: La moda e los datos s agrupar es 3, ya que su recueca es la más alta (6) E el agrupameto de 6 clases la moda es, que es la marca de clase de , que cotee la mayor recueca (14) E el agrupameto de 4 clases, la moda es 19, que es la marca de clase de tervalo que cotee la mayor recueca (0). Medaa El cálculo de la medaa para datos agrupados se realza medate la sguete epresó: Md L acum 1 medaa A Dode: Md = Medaa. L = Lmte eror o rotera eror de dode se ecuetra la medaa, la orma de calcularlo es a través de ecotrar la poscó /. E ocasoes e el tervalo dode se ecuetra la medaa se cooce como tervalo medao. = Número de observacoes o recueca total. acum 1 medaa = recueca acumulada ateror al tervalo medao. = Frecueca del tervalo medao. A = Ampltud del tervalo e el que se ecuetra la medaa. 10 Geométrcamete la medaa se ecuetra e el valor X que dvde al polígoo de recuecas e dos partes de áreas guales. José Toleto Guevara Pérez

11 Probabldad y Estadístca Meddas de tedeca Cetral Ejemplo 7. Retomemos la tabla del ejemplo 5 mostrado para determar la meda de atecoes médcas brdadas por el hosptal, adcoado la columa de la recueca acumulada Tabla de recuecas reportadas por la clíca Clases (Datos e años) Puto medo de cada clase Frecuecas de cada clase Frecuecas acumulada acumulada eermos ateddos Determemos el valor medo de los datos. Como = 55, etoces / 6.5 José Toleto Guevara Pérez

12 Probabldad y Estadístca Meddas de tedeca Cetral El tervalo medao o la clase dode se ecuetra la medaa se ecuetra e la seguda clase, ya que este tervalo es el prmero e rebasar el valor de / que e este ejemplo es 6.5 La clase medaa es pues Notemos que el acho de clase es 10, ya que o se está cosderado detro del tervalo al límte eror L 0; 1 A acum 8; medaa 0; 10 Susttuyedo e la ecuacó tedremos Md L acum 1 medaa A Por lo que se puede coclur que el 50% de las persoas ateddas e u de semaa por el hosptal tee ua edad eror a los 0.96 años. 1 José Toleto Guevara Pérez

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple 1 Curso de Estadístca Udad de Meddas Descrptvas Leccó 2: Meddas de Tedeca Cetral para Datos Agrupados por Valor Smple Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor 2 Objetvos 1. Calcular

Más detalles

PARÁMETROS ESTADÍSTICOS ... N

PARÁMETROS ESTADÍSTICOS ... N el blog de mate de ada: ESTADÍSTICA pág. 6 PARÁMETROS ESTADÍSTICOS MEDIDAS DE CENTRALIZACIÓN Las tablas estadístcas y las represetacoes grácas da ua dea del comportameto de ua dstrbucó, pero ese cojuto

Más detalles

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética Objetvos Itroduccó a las meddas de poscó (tedeca cetral o tpsmo): Moda y Medaa Meda artmétca tca Cuartles,, decles y percetles Meddas de poscó Defcó: : refereca a u lugar específco de ua dstrbucó, epresado

Más detalles

Los Histogramas. Histograma simple

Los Histogramas. Histograma simple Los Hstogramas El Hstograma es ua forma de represetacó de datos que permte aalzar fáclmete el comportameto de ua poblacó, ya sea per se, o por medo de ua muestra. U Hstograma se defe como u cojuto de barras

Más detalles

MEDIDAS DE CENTRALIZACIÓN

MEDIDAS DE CENTRALIZACIÓN Educagua.com MEDIDAS DE CETRALIZACIÓ Las meddas de cetralzacó so estadístcos que releja algú valor global de la sere estadístca. Las prcpales meddas de cetralzacó so: Meda artmétca smple. Meda artmétca

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases Curso de Estadístca Udad de Meddas Descrptvas Leccó 3: Meddas de Tedeca Cetral para Datos Agrupados por Clases Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor Objetvos 1. Der el cocepto

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Poblacoes y muestras Varables. Tablas de frecuecas Meddas de: tedeca cetral-dspersó ESTADÍSTICA DESCRIPTIVA: Tee por objetvo recoplar, orgazar y aalzar formacó referda a datos de u

Más detalles

5.3 Estadísticas de una distribución frecuencial

5.3 Estadísticas de una distribución frecuencial 5.3 Estadístcas de ua dstrbucó frecuecal 5.3. Meddas de tedeca cetral Meddas de tedeca cetral Las meddas de tedeca cetral so descrptores umércos que proporcoa ua dea de los valores de la varable, alrededor

Más detalles

Estadística aplicada al Periodismo

Estadística aplicada al Periodismo Estadístca aplcada al Perodsmo Temaro de la asgatura Itroduccó. Aálss de datos uvarates. Aálss de datos bvarates. Seres temporales y úmeros ídce. Probabldad y Modelos probablístcos. Itroduccó a la fereca

Más detalles

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD 1. CONCEPTO DE ESTADÍSTICA : Es la ceca que estuda la terpretacó de datos umércos. a) Proceso estadístco : Es aquél que a partr de uos datos umércos, obteemos

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central Meddas de Tedeca Cetral Ua edda de tedeca cetral es u valor que se calcula a partr de u cojuto de datos y que se utlza para descrbr los datos e algua fora. Geeralete quereos que el valor sea represetatvo

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Poblacó: Es u cojuto de elemetos co ua determada característca. Muestra: Es u subcojuto de la poblacó. Muestreo: Es el proceso para elegr ua muestra que sea represetatva de la poblacó.

Más detalles

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la

Más detalles

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos 4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato

Más detalles

4º MEDIO: MEDIDAS DE POSICIÓN

4º MEDIO: MEDIDAS DE POSICIÓN 4º MEDIO: MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

Estadística Contenidos NM 4

Estadística Contenidos NM 4 Cetro Educacoal Sa Carlos de Aragó. Sector: Matemátca. Prof.: Xmea Gallegos H. 1 Estadístca Cotedos NM 4 Udad: Estadístca y Probabldades. Apredzajes Esperados: * Recooce dferetes formas de orgazar formacó:

Más detalles

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS Sugerecas para que mparte el curso Ha llegado el mometo e que es coveete resolver ejerccos aplcado

Más detalles

GENERALIDADES ESTADISTICA DESCRIPTIVA

GENERALIDADES ESTADISTICA DESCRIPTIVA MOD MEDIDS DE TEDECI CETRL MEDI MEDI RITMETIC MOD MEDIDS DE TEDECI CETRL MEDI MEDI RITMETIC MEDIDS DE TEDECI CETRL MEDI RITMETIC Defcó: Es la suma de todos los datos de ua sere dvdda por su úmero Cálculo:

Más detalles

NOMBRE. para los nuevos datos, incrementando 5 unidades cada calificación. entonces la media sumando 5 unidades a cada calificación es

NOMBRE. para los nuevos datos, incrementando 5 unidades cada calificación. entonces la media sumando 5 unidades a cada calificación es UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN INTRODUCCIÓN CONTENIDO DEFINICIÓN DE ESTADÍSTICA ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS POBLACIÓN VARIABLE: Cualtatvas o Categórcas y Cuattatvas (Dscretas y Cotuas) MUESTRA TAMAÑO MUESTRAL DATO DISTRIBUCIONES

Más detalles

La inferencia estadística es primordialmente de naturaleza

La inferencia estadística es primordialmente de naturaleza VI. Ifereca estadístca Ifereca Estadístca La fereca estadístca es prmordalmete de aturaleza ductva y llega a geeralzar respecto de las característcas de ua poblacó valédose de observacoes empírcas de la

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Estadístca Estadístca Descrptva. ESTADÍSTICA DESCRIPTIVA. Itroduccó.. Coceptos geerales. 3. Frecuecas y tablas. 4. Grácos estadístcos. 4. Dagrama de barras. 4. Hstograma. 4.3 Polgoal de recuecas. 4.4 Dagrama

Más detalles

LECTURA 02: DISTRIBUCIONES DE FRECUENCIAS (PARTE I) DISTRIBUCIONES DE FRECUENCIAS EN PUNTOS AISLADOS

LECTURA 02: DISTRIBUCIONES DE FRECUENCIAS (PARTE I) DISTRIBUCIONES DE FRECUENCIAS EN PUNTOS AISLADOS Uversdad Católca Los Ágeles de Cmbote LECTURA 0: DISTRIBUCIONES DE FRECUENCIAS (PARTE I) DISTRIBUCIONES DE FRECUENCIAS EN PUNTOS AISLADOS TEMA : DISTRIBUCIONES DE FRECUENCIAS: DEFINICIÓN Y CLASIFICACIÓN

Más detalles

PyE_ EF1_TIPO2_

PyE_ EF1_TIPO2_ SEMESTRE 9- TIPO DURACIÓN MÁIMA.5 HORAS JUNIO DE 9 NOMBRE. "Scram" es el térmo que utlza los geeros ucleares para descrbr u rápdo cerre de emergeca de u reactor uclear. La dustra uclear ha hecho esuerzos

Más detalles

UNIDAD DIDÁCTICA 13: Estadística Descriptiva

UNIDAD DIDÁCTICA 13: Estadística Descriptiva Utat d accés accés a la uverstat dels majors de 5 ays Udad de acceso acceso a la uversdad de los mayores de 5 años UNIDAD DIDÁCTICA 13: Estadístca Descrptva ÍNDICE: DESARROLLO DE LOS CONTENIDOS 1 Itroduccó

Más detalles

Inferencia Estadística

Inferencia Estadística Ifereca Estadístca Poblacó y muestra Coceptos y defcoes Muestra Aleatora Smple (MAS) Cosderemos ua poblacó, cuya fucó de dstrbucó esta dada por F(), la cual está costtuda por u úmero fto de posbles valores,

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

CÁLCULO NUMÉRICO (0258)

CÁLCULO NUMÉRICO (0258) CÁLCULO NUÉRICO (58) Tema 4. Apromacó de Fucoes Juo. Ecuetre los polomos de meor grado que terpola a los sguetes cojutos de datos plateado y resolvedo u sstema de ecuacoes leales: 7 y 5-4 7 y 4 9 6.5.7.

Más detalles

Colegio Sagrada Familia Matemáticas 4º ESO ESTADÍSTICA DESCRIPTIVA

Colegio Sagrada Familia Matemáticas 4º ESO ESTADÍSTICA DESCRIPTIVA Colego Sagrada Famla Matemátcas 4º ESO 011-01 1.- TERMIOLOGÍA. TABLAS Y GRÁFICOS ESTADÍSTICOS ESTADÍSTICA DESCRIPTIVA La poblacó es el cojuto de de todos los elemetos, que cumpledo ua codcó, deseamos estudar.

Más detalles

Colegio Sagrada Familia Matemáticas 4º ESO

Colegio Sagrada Familia Matemáticas 4º ESO Colego Sagrada Famla Matemátcas 4º ESO 00-0 ESTADÍSTICA DESCRIPTIVA.- TERMIOLOGÍA. TABLAS Y GRÁFICOS ESTADÍSTICOS La poblacó es el cojuto de de todos los elemetos, que cumpledo ua codcó, deseamos estudar.

Más detalles

GUÍA DE EJERCICIOS ESTADÍSTICA DESCRIPTIVA

GUÍA DE EJERCICIOS ESTADÍSTICA DESCRIPTIVA GUÍA DE EJERCICIOS ESTADÍSTICA DESCRIPTIVA Área Matemátcas- Aálss Estadístco Módulo Básco de Igeería (MBI) Resultados de apredzaje Apreder el correcto uso de la calculadora cetífca e modo estadístco, además

Más detalles

Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto:

Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto: Curso: Estadístca Iferecal (ICO 8306) Profesores: Esteba Calvo, Pablo Huechapa y Omar Ramos Ayudates: José T. Meda, Fabo Salas y Daela Vlches PROBLEMA Cosdere que Ud. es dueño de u campo que produce mazaas,

Más detalles

Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGNIFICADO.

Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGNIFICADO. Tema 60.Parámetros estadístcos. Calculo propedades y sgfcado Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGIFICADO.. Itroduccó. Defcó de estadístca. Estadístca descrptva y estadístca ferecal.

Más detalles

Estadística Contenidos NM 4

Estadística Contenidos NM 4 Cetro Educacoal Sa Carlos de Aragó. Sector: Matemátca. Prof.: mea Gallegos H. 1 Estadístca Cotedos NM 4 Udad: Estadístca y Probabldades. Apredzajes Esperados: * Recoocer dferetes formas de orgazar formacó:

Más detalles

Probabilidad y estadística

Probabilidad y estadística Probabldad y estadístca Grupo PM4 Trabajado gráfcas,meddas de tedeca cetral, meddas de dspersó e terpretado resultados Prof. Mguel Hesquo Garduño. Depto. De Igeería Químca Petrolera ESIQIE-IPN hesquogm@yahoo.com.m

Más detalles

Apuntes preparados por el profesor Sr. Rosamel Sáez Espinoza con fines de docencia

Apuntes preparados por el profesor Sr. Rosamel Sáez Espinoza con fines de docencia Aputes preparados por el profesor Sr. Rosamel Sáez Espoza co fes de doceca La meda Sea u cojuto de observacoes x 1,..., x, o agrupados. Se defe la meda o promedo, medate: x 1 La meda utlza todas las observacoes,

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

Intensificación en Estadística

Intensificación en Estadística GRADO EN VETERINARIA DEPARTAMENTO DE ESTADÍSTICA E IO 0-0 IV Curso Cero Itesfcacó e Estadístca Itroduccó a la fucó Sumatoro Itroduccó Cocepto de fucó sumatoro Aplcacoes Itroduccó Cocepto de fucó sumatoro

Más detalles

Análisis Numérico y Programación. Unidad III. -Interpolación mediante trazadores: Lineales, cuadráticos y cúbicos

Análisis Numérico y Programación. Unidad III. -Interpolación mediante trazadores: Lineales, cuadráticos y cúbicos Aálss Numérco y Programacó Udad III -Iterpolacó medate trazadores: Leales, cuadrátcos y cúbcos Prmavera 9 Aálss Numérco y Programacó Coceptos geerales Problema geeral: Se tee u cojuto dscreto de valores

Más detalles

x x x x x Y se seguía operando

x x x x x Y se seguía operando . INTRODUCCIÓN. DEFINICIONES UNIDAD : Números complejos Cuado se teta resolver ecuacoes de segudo grado como por ejemplo x 4x 0, se observa que o 4 6 5 4 6 tee solucoes reales x x, pues o exste raíces

Más detalles

7. Muestreo con probabilidades desiguales.

7. Muestreo con probabilidades desiguales. 7. Muestreo co probabldades desguales. 7. Itroduccó. 7.. Probabldades de clusó. 7.. Pesos del dseño muestral. 7.. Alguos métodos co probabldades desguales. 7. Estmacó de la meda, proporcó total poblacoales.

Más detalles

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS Estadístca Tema. Seres Estadístcas. Dstrbucoes de frecuecas. Pág. I. ANÁLISIS DESCIPTIVO DE UN CONJUNTO DE DATOS Seres Estadístcas. Dstrbucoes de frecuecas.. Defcó de Estadístca... Coceptos geerales...2

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Parcalmete facado a través del PIE-04 (UMA). Promedos y meddas de poscó. Meddas de dspersó. Meddas de asmetría. Valores atípcos..4 Meddas de desgualdad..5 Valores atípcos: Dagrama

Más detalles

Introducción a la Inferencia Estadística. Dept. of Marine Science and Applied Biology Jose Jacobo Zubcoff

Introducción a la Inferencia Estadística. Dept. of Marine Science and Applied Biology Jose Jacobo Zubcoff Itroduccó a la Ifereca Estadístca Dept. of Mare cece ad Appled Bology Jose Jacobo Zubcoff Modelos de Regresó mple Que tpo de relacó exste etre varables Predccó de valores a partr de ua de ellas Varable

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Capítulo 9 MEDIDAS DE TENDENCIA CENTRAL Ua medda de tedeca cetral, es u resume estadístco que muestra el cetro de ua dstrbucó; es decr, por lo geeral, busca el cetro de esa dstrbucó. Exste dferetes tpos

Más detalles

EJERCICIOS RESUELTOS TEMA 3.

EJERCICIOS RESUELTOS TEMA 3. INTRODUCCIÓN AL ANÁLII DE DATO EJERCICIO REUELTO TEMA 3. 3.1. La ampltud total de la dstrbucó de frecuecas de la tabla 1. es: A) 11; B) 1; C). Tabla 1. Estatura e cetímetros de ños de 1 meses de edad.

Más detalles

CAPITULO TRES MEDIDAS DE TENDENCIA CENTRAL

CAPITULO TRES MEDIDAS DE TENDENCIA CENTRAL CAPITULO TRES MEDIDAS DE TENDENCIA CENTRAL 3. CARACTERISTICAS NUMERICAS DE UNA VARIABLE S tratamos de represetar uestras edades medate u polígoo de frecuecas, y os ubcamos e el tempo: hace 0 años, hoy

Más detalles

Definición. Número obtenido a partir del análisis de una variable estadística. Procedimiento de cálculo bien definido:

Definición. Número obtenido a partir del análisis de una variable estadística. Procedimiento de cálculo bien definido: Defcó Número obtedo a partr del aálss de ua varable estadístca. Procedmeto de cálculo be defdo: aplcacó de fórmula artmétca Cuatfca uo o varos aspectos de la formacó (cofrmacó de tabla o gráfco) S calculados

Más detalles

Experimento: TEORÍA DE ERRORES. UNIVERSIDAD DE ATACAMA Facultad de Ciencias Naturales Departamento de Física I. OBJETIVOS

Experimento: TEORÍA DE ERRORES. UNIVERSIDAD DE ATACAMA Facultad de Ciencias Naturales Departamento de Física I. OBJETIVOS Epermeto: I. OJETIVOS UNIVERSIDD DE TM Facultad de ecas Naturales Departameto de Físca TEORÍ DE ERRORES Idetfcar errores sstemátcos y accdetales e u proceso de medcó. ompreder los coceptos de eacttud y

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

CALCULO DIFERENCIAL E INTEGRAL II. Figura 1

CALCULO DIFERENCIAL E INTEGRAL II. Figura 1 TEMA (Últma modcacó 8-7-5 CALCULO DIFERENCIAL E INTEGRAL II DERIVABILIDAD Recordemos el cocepto de dervadas para ucoes de ua varable depedete = (. Para lo cual ormamos el cremeto de la ucó = ( + - ( El

Más detalles

MEDIDAS DE CENTRALIZACIÓN. i = N Cuando los datos vienen dados por una tabla de frecuencias:

MEDIDAS DE CENTRALIZACIÓN. i = N Cuando los datos vienen dados por una tabla de frecuencias: PARÁMETROS ESTADÍSTICOS Puesto que las represetacoes grácas o sempre cosgue orecer ua ormacó completa de ua sere de datos, es ecesaro aalzar procedmetos umércos que permta resumr toda la ormacó del eómeo

Más detalles

Métodos indirectos de estimación: razón, regresión y diferencia

Métodos indirectos de estimación: razón, regresión y diferencia Métodos drectos de estmacó: razó, regresó dfereca Cotedo. Itroduccó, defcó de estmadores drectos. Estmador de razó, propedades varazas. Límtes de cofaza. 3. Tamaño de la muestra e los estmadores de razó

Más detalles

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción Parte Estadístca Descrptva Prof. María B. Ptarell PARTE - ESTADISTICA 7- Estadístca Descrptva 7. Itroduccó El campo de la estadístca tee que ver co la recoplacó, orgazacó, aálss y uso de datos para tomar

Más detalles

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A Febrero 20 EAMEN MODELO A Pág. 1 GRADO EN PICOLOGIA INTRODUCCIÓN AL ANÁLII DE DATO Códgo Asgatura: 620137 FEBRERO 20 EAMEN MODELO A Tabla 1: Para estudar la relacó etre las putuacoes e u test () y el redmeto

Más detalles

Esta t d a í d s í titcos o TEMA 3.3

Esta t d a í d s í titcos o TEMA 3.3 TEMA 3.3 Defcó úmero obtedo a partr del aálss de ua varable estadístca. Procedmeto de cálculo be defdo: aplcacó de fórmula artmétca Cuatfca uo o varos aspectos de la formacó (cofrmacó de tabla o gráfco)

Más detalles

Estadística Espacial. José Antonio Rivera Colmenero

Estadística Espacial. José Antonio Rivera Colmenero Estadístca Espacal José Atoo Rvera Colmeero 1 Descrptores del patró putual Tedeca cetral 1. Meda cetral (Meda espacal). Meda cetral poderada 3. Medaa cetral (medaa espacal) o se utlza amplamete por su

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado e Geomátca y Topografía Escuela Técca Superor de Igeeros e Topografía, Geodesa y Cartografía. Uversdad Poltécca de Madrd Capítulo

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

Modelos de Regresión Simple

Modelos de Regresión Simple Itroduccó a la Ifereca Estadístca Dept. of Mare cece ad Appled Bology Jose Jacobo Zubcoff Modelos de Regresó mple Que tpo de relacó exste etre varables Predccó de valores a partr de ua de ellas Varable

Más detalles

Probabilidad y estadística

Probabilidad y estadística Probabldad y estadístca Grupo Lues Jueves PM4 :00-:00 :00-3:00 Trabajado gráfcas,meddas de tedeca cetral, meddas de dspersó e terpretado resultados. Depto. De Igeería Químca Petrolera ESIQIE-IPN hesquogm@yahoo.com.m

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN. Maestría en Administración. Formulario e Interpretaciones

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN. Maestría en Administración. Formulario e Interpretaciones UNIVERIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINITRACIÓN Maestría e Admstracó Formularo e Iterpretacoes F A C U L T A D D E C O N T A D U R Í A Y A D M I N I T R A C I Ó N Formularo

Más detalles

ESTADÍSTICA 4º E.S.O. TERMINOLOGÍA ESTADÍSTICA TERMINOLOGÍA ESTADÍSTICA TERMINOLOGÍA ESTADÍSTICA. Tipos de caracteres.

ESTADÍSTICA 4º E.S.O. TERMINOLOGÍA ESTADÍSTICA TERMINOLOGÍA ESTADÍSTICA TERMINOLOGÍA ESTADÍSTICA. Tipos de caracteres. ESTADÍSTICA UNIDIMENSIONAL 4º E.S.O. TERMINOLOGÍA ESTADÍSTICA Ejemplo: Se quere hacer u estudo estadístco sobre el país de orge de 40 alumos de u Colego. Poblacó: Cojuto de elemetos sobre los que se realza

Más detalles

Transparencias de clase

Transparencias de clase Trasparecas de clase Dada ua tabla de datos se ha de ecotrar ua ucó que tome los valores requerdos e los putos dados; e el caso que os ocupa la ucó buscada será de carácter polómco Teorema: El polomo de

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 5: Medidas de Dispersión para Datos Agrupados por Valor Simple

Curso de Estadística Unidad de Medidas Descriptivas. Lección 5: Medidas de Dispersión para Datos Agrupados por Valor Simple Curo de Etadítca Udad de Medda Decrptva Leccó 5: Medda de Dperó para Dato Agrupado por Valor Smple Creado por: Dra. Noemí L. Ruz Lmardo, EdD 00 Derecho de Autor Objetvo. Calcular ampltud, varaza, devacó

Más detalles

Ejercicios y Talleres. puedes enviarlos a

Ejercicios y Talleres. puedes enviarlos a Ejerccos Talleres puedes evarlos a klasesdematematcasmas@gmal.com www.klasesdematematcasmas.com Taller 1 Ig. Oscar Restrepo 1. De las varables sguetes cuáles represeta datos dscretos cuáles datos cotuos

Más detalles

Orden de la tirada. Figura 1: Frecuencia relativa de cara para una sucesión de 400 tiradas.

Orden de la tirada. Figura 1: Frecuencia relativa de cara para una sucesión de 400 tiradas. Estadístca (Q) Dra. Daa M. Kelmasky 99. Teoremas límte Frecueca Relatva 0.5 0.6 0.7 0.8 0.9.0 0 00 00 300 400 Orde de la trada Fgura : Frecueca relatva de cara para ua sucesó de 400 tradas. La fgura muestra

Más detalles

TEMA 4: VALORACIÓN DE RENTAS

TEMA 4: VALORACIÓN DE RENTAS TEMA 4: ALORACIÓN DE RENTAS 1. Cocepto y valor facero de ua reta 2. Clasfcacó de las retas. 3. aloracó de Retas dscretas. Temporales. 4. aloracó de Retas dscretas. Perpetuas. 5. Ejerccos tema 4. 1. Cocepto

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

SISTEMAS DE ECUACIONES NO LINEALES

SISTEMAS DE ECUACIONES NO LINEALES SISTEMAS DE ECUACIONES NO INEAES Capítulo 7 Sstemas de ecuacoes o leales c Elzabeth Vargas 7 INTRODUCCIÓN os métodos teratvos para resolver ua ecuacó o leal se puede eteder para ecotrar la solucó de u

Más detalles

UNIDAD 14.- Distribuciones bidimensionales. Correlación y regresión (tema 14 del libro)

UNIDAD 14.- Distribuciones bidimensionales. Correlación y regresión (tema 14 del libro) UIDAD.- Dstrbucoes bdmesoales. Correlacó regresó (tema del lbro). VARIABLES ESTADÍSTICAS BIDIMESIOALES Vamos a trabajar sobre ua sere de feómeos e los que para cada observacó se obtee u par de meddas.

Más detalles

SOLUCIÓN EXAMEN PARCIAL I

SOLUCIÓN EXAMEN PARCIAL I Nombres: Apelldos:.I.: Frma: Fecha: 07/03/05 MÉTODO ETADÍTIO I EXAMEN I Prof. Gudberto Leó PARTE I: E el sguete gráfco se muestra los dagramas de caja correspodetes a los pesos de los bebés al acer segú

Más detalles

Temas: I. MEDIDAS DE TENDENCIA CENTRAL EN DATOS SIN AGRUPAR 2 II HISTOGRAMA DE FRECUENCIAS 6 III. MEDIDAS DE TENDENCIA CENTRAL EN DATOS AGRUPADOS.

Temas: I. MEDIDAS DE TENDENCIA CENTRAL EN DATOS SIN AGRUPAR 2 II HISTOGRAMA DE FRECUENCIAS 6 III. MEDIDAS DE TENDENCIA CENTRAL EN DATOS AGRUPADOS. INSTITUCION UNIVERSITARIA ANTONIO JOSÉ CAMACHO Asgatura: ESTADÍSTICA Profesores:; CESAR PAZ Temas: I. MEDIDAS DE TENDENCIA CENTRAL EN DATOS SIN AGRUPAR 2 MEDIA (PROMEDIO ARITMETICO) 2 MEDIANA (M e ) 3

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Uversdad de oora Departameto de Matemátcas Área Ecoómco Admstratva Matera: Estadístca I Maestro: Dr. Fracsco Javer Tapa Moreo emestre: 05- Hermosllo, oora, a 5 de septembre de 05. Itroduccó E la clase

Más detalles

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO C

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO C Febrero 010 EAMEN MODELO C Pág. 1 GRADO EN PICOLOGIA INTRODUCCIÓN AL ANÁLII DE DATO Códgo Asgatura: 6011037 FEBRERO 010 EAMEN MODELO C 1 80 5 3 8 4 1 5 6 6 7 1,0 1,47 38-40 18 35-37 36 3-34 5 9-31 46 6-8

Más detalles

ERRORES EN LAS MEDIDAS (Conceptos elementales)

ERRORES EN LAS MEDIDAS (Conceptos elementales) ERRORES E LAS MEDIDAS (Coceptos elemetales). Medda y tpos de errores ormalmete, al realzar varas meddas de ua magtud físca, se obtee e ellas valores dferetes. E muchas ocasoes, esta dfereca se debe a causas

Más detalles

ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA 3.5 Ojvas Este tpo de represetacó gráfca se costruye a partr de las frecuecas acumuladas (absolutas o relatvas) para varables cotuas o dscretas, co muchos

Más detalles

Test de Hipótesis. Error de tipo I: Rechazar H 0 siendo H 0 Verdadera. Error de tipo II: No rechazar H 0 siendo H 0 Falsa

Test de Hipótesis. Error de tipo I: Rechazar H 0 siendo H 0 Verdadera. Error de tipo II: No rechazar H 0 siendo H 0 Falsa Error tpo I: Rechazar H sedo H Verdara Test Hpótess Error tpo II: No rechazar H sedo H Falsa Nvel Sgfcacó: = P(error tpo I = P(Rechazar H sedo H Verdara Probabldad error tpo II: = P(error tpo II = P(No

Más detalles

Calificación= (0,4 x Aciertos) - (0,2 x Errores) No debe entregar los enunciados

Calificación= (0,4 x Aciertos) - (0,2 x Errores) No debe entregar los enunciados EAMEN MODELO A Pág. 1 INTRODUCCIÓN AL ANÁLII DE DATO FEBRERO 018 Códgo asgatura: 6011037 EAMEN TIPO TET MODELO A DURACION: HORA Materal: Addeda (Formularo y Tablas) y calculadora (cualquer modelo) Calfcacó

Más detalles

Probabilidad ( A) Los axiomas de la probabilidad. φ = el conjunto vacío A B = A y no B C

Probabilidad ( A) Los axiomas de la probabilidad. φ = el conjunto vacío A B = A y no B C Los axomas de la probabldad obabldad El prmer paso para descrbr la certdumbre es cosderar el cojuto de posbles resultados obtedos a partr de u expermeto aleatoro. Este cojuto es llamado espaco muestral

Más detalles

Teoría Simplificada de ERRORES Suscriben este documento los coordinadores de Laboratorio de Química, Física I y Física II.

Teoría Simplificada de ERRORES Suscriben este documento los coordinadores de Laboratorio de Química, Física I y Física II. Teoría Smplfcada de ERRORES Suscrbe este documeto los coordadores de Laboratoro de Químca, Físca I y Físca II. Defcoes Báscas: -Error absoluto (o error): Itervalo xe dode co máxma probabldad se ecuetra

Más detalles

El valor en el que se estabilizan las proporciones se le conceptualiza como la probabilidad

El valor en el que se estabilizan las proporciones se le conceptualiza como la probabilidad Regulardad estadístca. E vrtud de la gra varabldad de muchos procesos, se recurre al estudo del comportameto e grades cojutos de elemetos. Se busca captar los aspectos sstemátcos o los aleatoros. Se pretede

Más detalles

PROBABILIDAD Y ESTADISTICA

PROBABILIDAD Y ESTADISTICA 1. Es u cojuto de procedmetos que srve para orgazar y resumr datos, hacer ferecas a partr de ellos y trasmtr los resultados de maera clara, cocsa y sgfcatva? a) La estadístca b) Las matemátcas c) La ceca

Más detalles

MEDIDAS DE FORMA Y CONCENTRACIÓN

MEDIDAS DE FORMA Y CONCENTRACIÓN MEDIDAS DE FORMA Y CONCENTRACIÓN 4..- Asmetría: coefcetes de asmetría de Fsher y Pearso. Otros Coefcetes de asmetría. 4.2.- La ley ormal. 4..- Curtoss o aplastameto: coefcete de Fsher. 4.4.- Meddas de

Más detalles

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por:

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por: Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 65 Uversdad de los Ades Escuela de Estadístca. Mérda -Veezuela Meddas de Dspersó Además de obteer la formacó que reúe las meddas de tedeca cetral

Más detalles

En esta sección estudiaremos el caso en que se usa un solo "Predictor" para predecir la variable de interés ( Y )

En esta sección estudiaremos el caso en que se usa un solo Predictor para predecir la variable de interés ( Y ) Regresó Leal mple. REGREIÓN IMPLE El aálss de regresó es ua herrameta estadístca la cual utlza la relacó, etre dos o más varables de modo que ua varable pueda ser predcha desde la (s) otra (s). Por ejemplo

Más detalles

Supongamos que hemos aplicado el test F y hemos rechazado la H0.

Supongamos que hemos aplicado el test F y hemos rechazado la H0. Comparacó de medas tomadas de a pares CONDICION Meda s --------- ---------- ------ ---------- 0.00 3.0000 0.00 3.73 3 97.00 3.0000 4 93.00.44 TOTAL 98.73.6036 Supogamos que hemos aplcado el test F y hemos

Más detalles

ESTADÍSTICA. UNIDAD 3 Características de variables aleatorias. Ingeniería Informática TEORÍA

ESTADÍSTICA. UNIDAD 3 Características de variables aleatorias. Ingeniería Informática TEORÍA Uversdad Nacoal del Ltoral Facultad de Igeería y Cecas Hídrcas ESTADÍSTICA Igeería Iformátca TEORÍA Mg.Ig. Susaa Valesberg Profesor Ttular UNIDAD Característcas de varables aleatoras Estadístca - Igeería

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles