MEDIDAS DE TENDENCIA CENTRAL

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MEDIDAS DE TENDENCIA CENTRAL"

Transcripción

1 Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes estamos teresados e terpretar que ta dspersos está los datos, ecotrar u valor represetatvo que represete a toda la ormacó. E los sguetes regloes costruremos meddas que permta determar que parámetros utlzar para represetar a u cojuto caremos por ua de las meddas más comues detro de uestra cotdadad como lo es la meda o també coocdo como meda artmétca o valor promedo. DATOS NO AGRUPADOS Aalzaremos ahora las meddas de tedeca cetral más comues, como so la meda, la medaa y la moda, cosderado u cojuto de datos s agrupar Meda. Icaremos por ua de las meddas más coocdas como lo es la meda o també coocdo como meda artmétca o valor promedo. Este parámetro lo usamos co tata cotdadad que os será muy amlar, auque també aprederemos alguas propedades y mostraremos u teorema sumamete mportate. 1 S teemos el sguete cojuto de datos y deseamos ecotrar u valor que represete a todo el cojuto, seguramete lo prmero que vedrá a uestra mete es sumar todos los valores y dvdrlos etre el úmero total de datos. 10, 9, 8, 10, 9, 9, 10, 9, 10, 9 es decr, u valor represetatvo del cojuto de valores es Este valor, promedo artmétco, es coocdo como la meda y es ua de las meddas de tedeca cetral ya que represeta u valor co respecto a toda la ormacó. José Toleto Guevara Pérez

2 Probabldad y Estadístca Meddas de tedeca Cetral Para deotar la meda de ua poblacó utlzaremos y cuado se trate de la meda de ua muestra. Geeralzado sobre el ejemplo podemos decr que la meda de ua muestra es gual a E ocasoes, e alguas áreas es comú deotar la meda por e lugar. Para u cojuto de datos la meda artmétca os muestra ua geometría teresate como lo podemos observar e el sguete teorema: Teorema. La suma de las derecas de los datos y la meda os represeta u promedo smétrco de la ormacó, es decr, se cumple la sguete relacó: La demostracó es la sguete 0 Como la meda es ua costate y además la suma se supoe co respecto valores etoces Empleado la decó de la meda tedremos: José Toleto Guevara Pérez

3 Probabldad y Estadístca Meddas de tedeca Cetral 0 Es además obvo pesar que també la relacó 0 se cumple. Esta propedad lmta el hecho de poder obteer promedo sobre las desvacoes por lo que las costruccoes de los térmos deberá de hacerse a través de otro tpo de aálss. S perder de vsta algua relacó sobre algú promedo de las desvacoes podemos cosderar dos posbldades, ua prmera posbldad es cosderar el promedo de la suma de los cuadrados de las desvacoes, ua seguda posbldad es cosderar el promedo de la suma del valor absoluto de las desvacoes. A la prmera la llamaremos varaza y a la seguda desvacó absoluta meda. Las cuales será cosderadas como meddas de dspersó, debdas precsamete a su aturaleza y que será a bordadas e la seccó de meddas de dspersó. Ejemplo 1. Sea los sguetes valores las calcacoes de la probabldad y Estadístca de estudates del prmer parcal: Sumado los valores de las 30 calcacoes y dvdédolas etre los 30 datos obtedremos: Por lo que la meda de calcacoes obteda por el grupo cosderado es gual a 8. Podemos comprobar el teorema co las calcacoes presetadas, a cotuacó se preseta la tabla de derecas José Toleto Guevara Pérez

4 Probabldad y Estadístca Meddas de tedeca Cetral 8-10=- 8-8=0 8-6= 8-7.5= = = = = =- 8-10=- 8-8=0 8-6= 8-9= = = = 8-9.5= = = =0 8-6= 8-6= 8-9= =- 8-7=1 8-8= = =3 8-8= =0.5 Observamos que eectvamete se puede ver de maera medata que demostrado e el teorema. 0 como ue Otro teorema a cosderar es el sguete, el cual os dca como camba la meda cuado a cada varable la trasladamos ua costate, es decr, para cada medcó y c. le sumamos ua catdad, Teorema. La meda de al ser trasladada o remplazada por ua catdad costate para cada ua de las meddas se modca de la orma y c Demostracó. Sea ua muestra de medcoes 1,, 3,, a las que se les remplaza sumádoles ua catdad c, es decr, y1 1 c, y c, y3 3 c,, y c, por lo que al obteer la meda para c teemos 4 y c c c c Lo que demuestra el teorema. Moda La moda es la medda que se relacoa co la recueca co que se preseta el dato o los datos co mayor cdeca, co lo que se cosdera la posbldad de que esta más de ua moda para u cojuto de datos. La otacó más recuete es la sguete: Mo y ˆ. Esta medda se puede aparecer tato para datos cualtatvos como cuattatvos. Se dce que cuado u cojuto de datos tee ua moda la muestra es umodal, cuado tee José Toleto Guevara Pérez

5 Probabldad y Estadístca Meddas de tedeca Cetral dos modas bmodal, cuado la muestra cotee más de u dato repetdo se dce que es multmodal y u últmo caso es cuado gú dato tee ua recueca, e dcho caso se dce que la muestra es amodal. Ejemplos : Determar la moda de los sguetes cojutos de datos: a).- 1,, 3, 3, 4, 5, 6, 7, 7, 3, 1, 9, 3 La moda de este cojuto de datos es gual a 3 y se cosdera umodal b).- 1,, 3, 4, 4, 5,, 1, 3, 4,, -3, 4, 6, 3, 3 Las modas de este cojuto de datos so 3 y 4 ya que ambas tee la más alta recueca, por lo que la muestra es bmodal c).- 1,, 3, 4, 5, 6, 7, 8, 9 La muestra o cotee gú dato repetdo por lo que se cosdera que la muestra es amodal. Grácamete eso se puede relejar medate el aálss de u polígoo de recuecas. 5 José Toleto Guevara Pérez

6 Probabldad y Estadístca Meddas de tedeca Cetral Medaa La medaa de u cojuto to de valores es aquel valor que dvde al cojuto e dos partes guales, de orma que el úmero de valores mayor o gual a la medaa es gual al úmero de valores meores o gual a estos. Su aplcacó se ve lmtada ya que solo cosdera el orde jerárquco de los datos y o algua propedad propa de los datos, como e el caso de la meda. A cotuacó se muestra los crteros para costrur la medaa. Se puede costrur los sguetes crteros: Lo prmero que se requere es ordear los datos e orma ascedete o descedete, cualquera de los dos crteros coduce al msmo resultado. Sea ordeados lo datos e orde ascedete,,, 1, 3 S el úmero de valores es mpar, la medaa es el valor medo, el cual correspode al dato. Cuado el úmero de valores e el cojuto es par, o este u solo valor medo, s o que este dos valores medos, e tal caso, la medaa es el promedo de los valores, es decr, la medaa es umércamete gual a 6 Md 1 Podemos descrbr alguas propedades para la medaa: 1.- Es úca..- Es smple. 3.- Los valores etremos o tee eectos mportates sobre la medaa, lo que s ocurre co la meda. La otacó más usual que se utlza para represetar a la medaa es ~, Md o Me Ejemplo 3: Dados los sguetes datos: 1,, 3, 4, 0, 1, 4, 3, 1, 1, 1, 1,, 1, 3 para la obtecó de la medaa se deberá de ordear. Tomemos el crtero de orde ascedete co lo que, tedremos: José Toleto Guevara Pérez

7 Probabldad y Estadístca Meddas de tedeca Cetral 0, 1, 1, 1, 1, 1, 1, 1,,, 3, 3, 3 4, 4, Por otro lado el úmero de datos es gual a 15 datos, sedo el úmero de datos mpar se elge el dato que se ecuetra a la mtad, ua vez ordeados los datos, e este caso es 1. DATOS AGRUPADOS Ya vmos que es relatvamete ácl calcular la meda, la moda y la medaa para u cojuto de datos o agrupados, veremos ahora como se calcula estas tres meddas cosderado ua dstrbucó de recuecas Meda La meda para datos agrupados se calcula medate la sguete epresó: 1 m 1 dode es el total de datos, m el úmero total de clase y es la recueca de datos. 7 La decó es claramete etedda como ua etesó de la decó que dmos para datos o agrupados, ya que es lógco supoer que datos que se repte co ua recueca m puede smplcar la suma 1 por 1, por supuesto que los ídces de la seguda suma co respecto a la prmera corre co respecto a meor úmero, es decr, co respecto al úmero de agrupametos m. Ejemplo 4: Sea los sguetes datos 1, 1,,, 4, 4, 5,, 3,, 3, 4, 1,, 1. La meda para dchos datos es apromadamete gual a.4666, es decr, José Toleto Guevara Pérez

8 Probabldad y Estadístca Meddas de tedeca Cetral S embargo, el msmo resultado podemos obteer s tomamos la recueca co que aparece los datos, e este caso: Dato Frecueca Producto de recuecas y datos La obtecó de la meda almete se coverte e Para la obtecó de la meda cuado las recuecas está sujetas a la eleccó de clase bajo los métodos mostrados, se realza de gual maera, la úca dereca este e determar el valor sguete ejemplo. como el puto medo de cada clase (marca de clase), veamos el Ejemplo 5. Supogamos que ua clíca de salud, obtee ua tabla de edades de las persoas que so ateddas e u de semaa, para los que preseta la sguete tabla. Cuál será el promedo de edades de los eermos que acudero a recbr atecó médca? Tabla de recuecas reportadas por la clíca Clases (Datos e años) Marca de clase Frecueca José Toleto Guevara Pérez

9 Probabldad y Estadístca Meddas de tedeca Cetral Total de eermos ateddos 55 Por lo que el promedo de persoas a las que se les do servco es de: años 53 El valor de la meda obteda de la recueca agrupada es sucetemete apromado para trabajos estadístcos, ya que al trabajar co datos agrupados, se perde la ormacó prmara y o hay otro recurso que trabajar co marcas de clase e lugar de los datos orgales. S embargo, s la dstrbucó de recuecas es muy rregular, el valor de la meda o dará la sucete apromacó 1. Moda La moda para datos agrupados es el puto medo (marca de clase) del tervalo de clase que cotee la mayor recueca. La moda varará segú la orma de agrupar los datos 9 Ejemplo 6 Señale le moda de los sguetes datos Valores s agrupar Valores Agrupados e 6 clases Clases Frecueca Total 46 E 4 clases Clases Frecueca Total 46 1 Probabldad y Estadístca.- Samuel Fuelabrada José Toleto Guevara Pérez

10 Probabldad y Estadístca Meddas de tedeca Cetral total 46 Solucó: La moda e los datos s agrupar es 3, ya que su recueca es la más alta (6) E el agrupameto de 6 clases la moda es, que es la marca de clase de , que cotee la mayor recueca (14) E el agrupameto de 4 clases, la moda es 19, que es la marca de clase de tervalo que cotee la mayor recueca (0). Medaa El cálculo de la medaa para datos agrupados se realza medate la sguete epresó: Md L acum 1 medaa A Dode: Md = Medaa. L = Lmte eror o rotera eror de dode se ecuetra la medaa, la orma de calcularlo es a través de ecotrar la poscó /. E ocasoes e el tervalo dode se ecuetra la medaa se cooce como tervalo medao. = Número de observacoes o recueca total. acum 1 medaa = recueca acumulada ateror al tervalo medao. = Frecueca del tervalo medao. A = Ampltud del tervalo e el que se ecuetra la medaa. 10 Geométrcamete la medaa se ecuetra e el valor X que dvde al polígoo de recuecas e dos partes de áreas guales. José Toleto Guevara Pérez

11 Probabldad y Estadístca Meddas de tedeca Cetral Ejemplo 7. Retomemos la tabla del ejemplo 5 mostrado para determar la meda de atecoes médcas brdadas por el hosptal, adcoado la columa de la recueca acumulada Tabla de recuecas reportadas por la clíca Clases (Datos e años) Puto medo de cada clase Frecuecas de cada clase Frecuecas acumulada acumulada eermos ateddos Determemos el valor medo de los datos. Como = 55, etoces / 6.5 José Toleto Guevara Pérez

12 Probabldad y Estadístca Meddas de tedeca Cetral El tervalo medao o la clase dode se ecuetra la medaa se ecuetra e la seguda clase, ya que este tervalo es el prmero e rebasar el valor de / que e este ejemplo es 6.5 La clase medaa es pues Notemos que el acho de clase es 10, ya que o se está cosderado detro del tervalo al límte eror L 0; 1 A acum 8; medaa 0; 10 Susttuyedo e la ecuacó tedremos Md L acum 1 medaa A Por lo que se puede coclur que el 50% de las persoas ateddas e u de semaa por el hosptal tee ua edad eror a los 0.96 años. 1 José Toleto Guevara Pérez

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple 1 Curso de Estadístca Udad de Meddas Descrptvas Leccó 2: Meddas de Tedeca Cetral para Datos Agrupados por Valor Smple Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor 2 Objetvos 1. Calcular

Más detalles

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética Objetvos Itroduccó a las meddas de poscó (tedeca cetral o tpsmo): Moda y Medaa Meda artmétca tca Cuartles,, decles y percetles Meddas de poscó Defcó: : refereca a u lugar específco de ua dstrbucó, epresado

Más detalles

MEDIDAS DE CENTRALIZACIÓN

MEDIDAS DE CENTRALIZACIÓN Educagua.com MEDIDAS DE CETRALIZACIÓ Las meddas de cetralzacó so estadístcos que releja algú valor global de la sere estadístca. Las prcpales meddas de cetralzacó so: Meda artmétca smple. Meda artmétca

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases

Curso de Estadística Unidad de Medidas Descriptivas. Lección 3: Medidas de Tendencia Central para Datos Agrupados por Clases Curso de Estadístca Udad de Meddas Descrptvas Leccó 3: Meddas de Tedeca Cetral para Datos Agrupados por Clases Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor Objetvos 1. Der el cocepto

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central Meddas de Tedeca Cetral Ua edda de tedeca cetral es u valor que se calcula a partr de u cojuto de datos y que se utlza para descrbr los datos e algua fora. Geeralete quereos que el valor sea represetatvo

Más detalles

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD 1. CONCEPTO DE ESTADÍSTICA : Es la ceca que estuda la terpretacó de datos umércos. a) Proceso estadístco : Es aquél que a partr de uos datos umércos, obteemos

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

5.3 Estadísticas de una distribución frecuencial

5.3 Estadísticas de una distribución frecuencial 5.3 Estadístcas de ua dstrbucó frecuecal 5.3. Meddas de tedeca cetral Meddas de tedeca cetral Las meddas de tedeca cetral so descrptores umércos que proporcoa ua dea de los valores de la varable, alrededor

Más detalles

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos 4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato

Más detalles

Estadística Contenidos NM 4

Estadística Contenidos NM 4 Cetro Educacoal Sa Carlos de Aragó. Sector: Matemátca. Prof.: Xmea Gallegos H. 1 Estadístca Cotedos NM 4 Udad: Estadístca y Probabldades. Apredzajes Esperados: * Recooce dferetes formas de orgazar formacó:

Más detalles

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

4º MEDIO: MEDIDAS DE POSICIÓN

4º MEDIO: MEDIDAS DE POSICIÓN 4º MEDIO: MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co

Más detalles

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN INTRODUCCIÓN CONTENIDO DEFINICIÓN DE ESTADÍSTICA ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS POBLACIÓN VARIABLE: Cualtatvas o Categórcas y Cuattatvas (Dscretas y Cotuas) MUESTRA TAMAÑO MUESTRAL DATO DISTRIBUCIONES

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Estadístca Estadístca Descrptva. ESTADÍSTICA DESCRIPTIVA. Itroduccó.. Coceptos geerales. 3. Frecuecas y tablas. 4. Grácos estadístcos. 4. Dagrama de barras. 4. Hstograma. 4.3 Polgoal de recuecas. 4.4 Dagrama

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

Apuntes preparados por el profesor Sr. Rosamel Sáez Espinoza con fines de docencia

Apuntes preparados por el profesor Sr. Rosamel Sáez Espinoza con fines de docencia Aputes preparados por el profesor Sr. Rosamel Sáez Espoza co fes de doceca La meda Sea u cojuto de observacoes x 1,..., x, o agrupados. Se defe la meda o promedo, medate: x 1 La meda utlza todas las observacoes,

Más detalles

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción Parte Estadístca Descrptva Prof. María B. Ptarell PARTE - ESTADISTICA 7- Estadístca Descrptva 7. Itroduccó El campo de la estadístca tee que ver co la recoplacó, orgazacó, aálss y uso de datos para tomar

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

Estadística Espacial. José Antonio Rivera Colmenero

Estadística Espacial. José Antonio Rivera Colmenero Estadístca Espacal José Atoo Rvera Colmeero 1 Descrptores del patró putual Tedeca cetral 1. Meda cetral (Meda espacal). Meda cetral poderada 3. Medaa cetral (medaa espacal) o se utlza amplamete por su

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

CALCULO DIFERENCIAL E INTEGRAL II. Figura 1

CALCULO DIFERENCIAL E INTEGRAL II. Figura 1 TEMA (Últma modcacó 8-7-5 CALCULO DIFERENCIAL E INTEGRAL II DERIVABILIDAD Recordemos el cocepto de dervadas para ucoes de ua varable depedete = (. Para lo cual ormamos el cremeto de la ucó = ( + - ( El

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Parcalmete facado a través del PIE-04 (UMA). Promedos y meddas de poscó. Meddas de dspersó. Meddas de asmetría. Valores atípcos..4 Meddas de desgualdad..5 Valores atípcos: Dagrama

Más detalles

CAPITULO TRES MEDIDAS DE TENDENCIA CENTRAL

CAPITULO TRES MEDIDAS DE TENDENCIA CENTRAL CAPITULO TRES MEDIDAS DE TENDENCIA CENTRAL 3. CARACTERISTICAS NUMERICAS DE UNA VARIABLE S tratamos de represetar uestras edades medate u polígoo de frecuecas, y os ubcamos e el tempo: hace 0 años, hoy

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado e Geomátca y Topografía Escuela Técca Superor de Igeeros e Topografía, Geodesa y Cartografía. Uversdad Poltécca de Madrd Capítulo

Más detalles

TEMA 4: VALORACIÓN DE RENTAS

TEMA 4: VALORACIÓN DE RENTAS TEMA 4: ALORACIÓN DE RENTAS 1. Cocepto y valor facero de ua reta 2. Clasfcacó de las retas. 3. aloracó de Retas dscretas. Temporales. 4. aloracó de Retas dscretas. Perpetuas. 5. Ejerccos tema 4. 1. Cocepto

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN. Maestría en Administración. Formulario e Interpretaciones

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN. Maestría en Administración. Formulario e Interpretaciones UNIVERIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CONTADURÍA Y ADMINITRACIÓN Maestría e Admstracó Formularo e Iterpretacoes F A C U L T A D D E C O N T A D U R Í A Y A D M I N I T R A C I Ó N Formularo

Más detalles

ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I

ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I COLEGIO DE BACHILLERES ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I FASCÍCULO. MEDIDAS DE TENDENCIA CENTRAL Autores: Jua Matus Parra COLEGIO DE BACHILLERES Colaboradores Asesoría Pedagógca Revsó de Cotedo Dseño

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Fracsco Álvarez Gozález fracsco.alvarez@uca.es Bajo el térmo Estadístca Descrptva se egloba las téccas que os permtrá

Más detalles

1. El valor central o típico de los datos 2. La dispersión de los datos 3. La forma de la distribución de los datos

1. El valor central o típico de los datos 2. La dispersión de los datos 3. La forma de la distribución de los datos Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 47 Meddas Descrptvas Numércas Frecuetemete ua coleccó de datos se puede reducr a ua o uas cuatas meddas umércas secllas que resume al cojuto

Más detalles

ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA I UNIDAD I ESTADÍSTICA DESCRIPTIVA 3.5 Ojvas Este tpo de represetacó gráfca se costruye a partr de las frecuecas acumuladas (absolutas o relatvas) para varables cotuas o dscretas, co muchos

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II Solucoes de los ejerccos de Selectvdad sobre Ifereca Estadístca de Matemátcas Aplcadas a las Cecas Socales II Atoo Fracsco Roldá López de Herro * Covocatora de 006 Las sguetes págas cotee las solucoes

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Pága 09 PRACTICA Meda y desvacó típca 1 El úmero de faltas de ortografía que cometero u grupo de estudates e u dctado fue: 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 0 0 0 1 a) D cuál es la varable y de

Más detalles

1 ESTADÍSTICA DESCRIPTIVA

1 ESTADÍSTICA DESCRIPTIVA 1 ESTADÍSTICA DESCRIPTIVA 1.1 OBJETO DE ESTUDIO Y TIPOS DE DATOS La estadístca descrptva es u cojuto de téccas que tee por objeto orgazar y presetar de maera coveete para su aálss, la formacó coteda e

Más detalles

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Uverstat de les Illes Balears Col.leccó Materals Ddàctcs INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Joaquí Alegre Martí Magdalea Cladera Muar Palma, 00 ÍNDICE INTRODUCCIÓN: Qué es...? Qué

Más detalles

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ TEOREMA DE BERNOULLI GENERALIZADO > 0 Dada ua sucesó x1, x, x3,... x dos a dos depedetes, co ua msma dstrbucó de probabldad y co esperaza µ y varaza lím Se verfca que P x µ = 1 ó lím P x µ > = 0 El límte,

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral ÁLISIS D DTOS CULITTIVOS José Vcés Otero va Meda Moral ero 005 . COSTRUCCIÓ D U TL D COTIGCI Para aalzar la relacó de depedeca o depedeca etre dos varables cualtatvas omales o actores, es ecesaro estudar

Más detalles

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad.

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad. Propedades Estadístcas de los estmadores MICO Lealdad ) y Y Y Y Y = = = β Y Dado que la = 0 etoces β =.) S defmos el poderador k =, co las propedades sguetes: a) No estocástco b) k = 0 c) k = k d) = kx

Más detalles

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE)

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE) Comsó Ecoómca para Amérca Lata y el Carbe (CEPAL Dvsó de Estadístcas y Proyeccoes Ecoómcas (DEPE Cetro de Proyeccoes Ecoómcas (CPE Estmacó Putual de Parámetros Chrsta A. Hurtado Navarro Mayo, 006 Estmacó

Más detalles

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por:

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por: Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 65 Uversdad de los Ades Escuela de Estadístca. Mérda -Veezuela Meddas de Dspersó Además de obteer la formacó que reúe las meddas de tedeca cetral

Más detalles

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD.

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD. NSTTUTO TECNOLÓGCO DE ZCO Estadístca OLDD XOMS Y TEOEMS DE L OLDD. DEFNCONES DE L OLDD. La palabra probabldad se utlza para cuatfcar uestra creeca de que ocurra u acotecmeto determado. Exste tres formas

Más detalles

MEDIDAS RESUMEN OBJETIVOS. Al término de la unidad el alumno podrá:

MEDIDAS RESUMEN OBJETIVOS. Al término de la unidad el alumno podrá: 3 MEDIDAS RESUMEN OBJETIVOS Al térmo de la udad el alumo podrá: 3. Compreder las meddas como ua herrameta más que descrbe los datos obtedos e ua vestgacó socal o de la vda dara. 3. Compreder los sgfcados

Más detalles

2.5. Área de una superficie.

2.5. Área de una superficie. .5. Área de ua superfce. Sea g ua fucó co prmeras dervadas parcales cotuas, tal que z g( x y), 0 e toda la regó D del plao xy. Sea S la parte de la gráfca de g cuya proyeccó e el plao xy es como se lustra

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS

Tema 9 Estadística Matemáticas B 4º E.S.O. 1 TABLAS DE FRECUENCIAS Y REPRESENTACIONES GRÁFICAS EN VARIABLES DISCRETAS Tema 9 Estadístca Matemátcas B º E.S.O. TEM 9 ESTDÍSTIC TBLS DE FRECUENCIS Y REPRESENTCIONES GRÁFICS EN VRIBLES DISCRETS EJERCICIO : l pregutar a 0 dvduos sobre el úmero de lbros que ha leído e el últmo

Más detalles

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos Dreccó Facera Pág Sergo Alejadro Herado Westerhede, Igeero e Orgazacó Idustral 5. INTRODUCCIÓN Los prcpales métodos para la seleccó y valoracó de versoes se agrupa e dos modaldades: métodos estátcos y

Más detalles

3 Metodología de determinación del valor del agua cruda

3 Metodología de determinación del valor del agua cruda 3 Metodología de determacó del valor del agua cruda Este aexo de la metodología del valor de agua cruda (VAC), cotee el método de detfcacó de la relacó etre reco y caudal, el cálculo de los estadígrafos

Más detalles

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente.

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente. Sere de radete (eométrco y rtmétco) y su Relacó co el resete. Certos proyectos de versó geera fluos de efectvo que crece o dsmuye ua certa catdad costate cada período. or eemplo, los gastos de matemeto

Más detalles

Análisis amortizado. Técnicas Avanzadas de Programación - Javier Campos 205

Análisis amortizado. Técnicas Avanzadas de Programación - Javier Campos 205 Aálss amortzado Téccas Avazadas de Programacó - Javer Campos 205 Aálss amortzado El pla: Coceptos báscos: Método agregado Método cotable Método potecal Prmer ejemplo: aálss de tablas hash dámcas Motículos

Más detalles

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Estadístca y probabldad 1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL 1.1 DISTRIBUCIONES ESTADÍSTICAS Se usa dagramas de barras, dode la altura de éstas represeta la recueca de cada

Más detalles

NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN

NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN UNIVERSIDAD DE CHILE VICERRECTORÍA DE ASUNTOS ACADÉMICOS DEPARTAMENTO DE EVALUACIÓN, MEDICIÓN Y REGISTRO EDUCACIONAL NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN SANTIAGO, septembre de 2008

Más detalles

Estadística. Tema 6: Análisis de Regresión.. Estadística. UNITEC Tema 6: Análisis de Regresión Prof. L. Lugo

Estadística. Tema 6: Análisis de Regresión.. Estadística. UNITEC Tema 6: Análisis de Regresión Prof. L. Lugo Estadístca Tema 6: Aálss de Regresó. Estadístca. UNITEC Tema 6: Aálss de Regresó Modelos de Regresó E muchos problemas este ua relacó herete etre dos o mas varables, resulta ecesaro eplorar la aturaleza

Más detalles

Análisis estadístico de datos muestrales

Análisis estadístico de datos muestrales Aálss estadístco de datos muestrales M. e A. Víctor D. Plla Morá Facultad de Igeería, UNAM Resume Represetacó de los datos de ua muestra: tablas de frecuecas, frecuecas relatvas y frecuecas relatvas acumuladas.

Más detalles

Es aquella Serie Uniforme, cuyo Pago tiene lugar, al Final del Periodo.

Es aquella Serie Uniforme, cuyo Pago tiene lugar, al Final del Periodo. ANUALIDADES SERIES UNIFORMES SERIE UNIFORME Se defe como u Cojuto de Pagos Iguales y Peródcos. El Térmo PAGO hace refereca tato a Igresos como a Egresos. També se deoma ANUALIDADES: Se defe como u Cojuto

Más detalles

LECCIONES DE ESTADÍSTICA

LECCIONES DE ESTADÍSTICA LECCIONES DE ESTADÍSTICA Estos aputes fuero realzados para mpartr el curso de Métodos Estadístcos y umércos e el I.E.S. A Xuquera I de Potevedra. Es posble que tega algú error de trascrpcó, por lo que

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

6- SUMA DE VARIABLES ALEATORIAS Y TEOREMA CENTRAL DEL LÍMITE

6- SUMA DE VARIABLES ALEATORIAS Y TEOREMA CENTRAL DEL LÍMITE arte Suma de varables aleatoras y Teorema cetral del límte rof. María B. tarell 3 6- SUMA DE VARIABLES ALEATORIAS TEOREMA CENTRAL DEL LÍMITE 6. Suma de varables aleatoras deedetes Cuado se estudaro las

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO ECEL D. Fracsco Parra Rodríguez. Jefe de Servco de Estadístcas Ecoómcas y Socodemográfcas. Isttuto Cátabro de Estadístca. Dª.

Más detalles

Tema 16: Modelos de distribución de probabilidad: Variables Continuas

Tema 16: Modelos de distribución de probabilidad: Variables Continuas Aálss de Datos I Esquema del Tema 6 Tema 6: Modelos de dstrbucó de robabldad: Varables Cotuas. EL MODELO RECTANGULAR. EL MODELO NORMAL, N(μ, σ) 3. MODELO CHI-CUADRADO DE PEARSON, χ k 4. MODELO t DE STUDENT,

Más detalles

Introducción a la Programación Lineal

Introducción a la Programación Lineal Itroduccó a la Programacó Leal Clauda Llaa Daza Garzó cldaza@uversa.et.co Trabajo de Grado para Optar por el Título de Matemátco Drector: Pervys Rego Rego Igeero Uversdad Nacoal de Colomba Fudacó Uverstara

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2008

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2008 Solucó del exame de Ivestgacó Operatva de Sstemas de septembre de 008 Problema : (3 putos) E Vllafresca uca hace sol dos días segudos. S u día hace sol, hay las msmas probabldades de que el día sguete

Más detalles

Al conjunto de los distintos valores numéricos que adopta un carácter cuantitativo se llama variable estadística.

Al conjunto de los distintos valores numéricos que adopta un carácter cuantitativo se llama variable estadística. Pága del Colego de Matemátcas de la ENP-UNAM Estadístca descrptva Autor: Dr. José Mauel Becerra Esposa ESTADÍSTICA DESCRIPTIVA UNIDAD I I. DEFINICIÓN Y CLASIFICACIÓN DE VARIABLES La estadístca descrptva

Más detalles

Estadística descriptiva

Estadística descriptiva Estadístca descrptva PARAMETROS Y ESTADISTICOS Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca Meddas de tedeca cetral: Moda, Medaa, Meda

Más detalles

Este documento es de distribución gratuita y llega gracias a El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a  El mayor portal de recursos educativos a tu servicio! Este documeto es de dstrbucó gratuta y llega gracas a Ceca Matemátca www.cecamatematca.com El mayor portal de recursos educatvos a tu servco! INTRODINTRODUCCIÓN D etro del estudo de muchos feómeos de

Más detalles

Nociones de Estadística

Nociones de Estadística Químca Aalítca Prof. Aa Galao Jméez Nocoes de Estadístca Las medcoes tee sempre asocadas u error expermetal (herete a la resolucó del equpameto empleado, a errores aleatoros y/o a errores sstemátcos).

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

CENTRO DE MASA centro de masas centro de masas

CENTRO DE MASA centro de masas centro de masas CENTRO DE ASA El cetro de masas de u sstema dscreto o cotuo es el puto geométrco que dámcamete se comporta como s e él estuvera aplcada la resultate de las fuerzas exteras al sstema. De maera aáloga, se

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA H. Helam Estadístca -/5 ITRODUCCIÓ. COCEPTO DE ETADÍTICA ETADÍTICA DECRIPTIVA La estadístca es la rama de las matemátcas que estuda los eómeos colectvos recogedo, ordeado y clascado y smplcado los datos

Más detalles

CAPÍTULO III. METODOLOGÍA. De acuerdo con la clasificación de Amartya Sen (2001), las medidas de desigualdad se

CAPÍTULO III. METODOLOGÍA. De acuerdo con la clasificación de Amartya Sen (2001), las medidas de desigualdad se CAPÍTULO III. METODOLOGÍA III. Tpos de Medcó De acuerdo co la clasfcacó de Amartya Se (200), las meddas de desgualdad se puede catalogar e u setdo objetvo o ormatvo. E el setdo objetvo se utlza algua medda

Más detalles

Estadística I. Carmen Trueba Salas Lorena Remuzgo Pérez Vanesa Jordá Gil José María Sarabia Alegría. Capítulo 2. Medidas de posición y dispersión

Estadística I. Carmen Trueba Salas Lorena Remuzgo Pérez Vanesa Jordá Gil José María Sarabia Alegría. Capítulo 2. Medidas de posición y dispersión Estadístca I Capítulo. Meddas de poscó y dspersó Carme Trueba Salas Lorea Remuzgo Pérez Vaesa Jordá Gl José María Saraba Alegría DPTO. DE ECOOMÍA Este tema se publca bajo Lceca: Creatve Commos BY-C-SA

Más detalles

Objetivos. El alumno conocerá y aplicará el concepto de arreglos unidimensionales para resolver problemas que requieren algoritmos de tipo numérico.

Objetivos. El alumno conocerá y aplicará el concepto de arreglos unidimensionales para resolver problemas que requieren algoritmos de tipo numérico. Objetvos El alumo coocerá y aplcará el cocepto de arreglos udmesoales para resolver problemas que requere algortmos de tpo umérco. Al fal de esta práctca el alumo podrá:. Maejar arreglos udmesoales.. Realzar

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO UNA POPUESTA DE GÁFICO DE CONTOL DIFUSO PAA EL CONTOL DEL POCESO VIVIAN LOENA CHUD PANTOJA (UDV) vvalorea16@gmal.com NATHALY MATINEZ ESCOBA (UDV) atta10@gmal.com Jua Carlos Osoro Gómez (UDV) juacarosoro@yahoo.es

Más detalles

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS IV Gráfcos de Cotrol por Atrbutos IV GRÁFICOS DE CONTROL POR ATRIBUTOS INTRODUCCIÓN Los dagramas de cotrol por atrbutos costtuye la herrameta esecal utlzada para cotrolar característcas de caldad cualtatvas,

Más detalles

Probabilidad. 1. Experimentos aleatorios Espacio muestral asociado a un experimento aleatorio Sucesos... 3

Probabilidad. 1. Experimentos aleatorios Espacio muestral asociado a un experimento aleatorio Sucesos... 3 Probabldad PROBABILIDAD 1. Expermetos aleatoros... 2 2. Espaco muestral asocado a u expermeto aleatoro. 3 3. Sucesos... 3 4. El álgebra de Boole de los sucesos... 4 5. Frecuecas. Propedades... 6 6. Defcó

Más detalles

n 2 fi donde: n es el número de individuos

n 2 fi donde: n es el número de individuos ESTADÍSTICA. INTRODUCCIÓN La ecesdad de poseer datos cfrados sobre la poblacó y sus codcoes materales de exsteca ha debdo hacerse setr desde que se establecero socedades humaas orgazadas. Desde los comezos

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

Guía para la Presentación de Resultados en Laboratorios Docentes

Guía para la Presentación de Resultados en Laboratorios Docentes Guía para la Presetacó de Resultados e Laboratoros Docetes Prof. Norge Cruz Herádez Departameto de Físca Aplcada I Escuela Poltécca Superor Uversdad de Sevlla Curso 0-03 6 de octubre de 0 I Itroduccó Las

Más detalles

CÁLCULO DEL ANCHO DE BANDA EFECTIVO PARA UN FLUJO MARKOVIANO CON TASAS DE TRANSFERENCIA CONTINUAS

CÁLCULO DEL ANCHO DE BANDA EFECTIVO PARA UN FLUJO MARKOVIANO CON TASAS DE TRANSFERENCIA CONTINUAS CÁLCULO DEL ANCHO DE BANDA EFECTIVO PARA UN FLUJO MARKOVIANO CON TASAS DE TRANSFERENCIA CONTINUAS Beatrz Marró Uversdad Nacoal del Sur, beatrz.marro@us.edu.ar Resume: El objetvo de este trabajo es geeralzar

Más detalles

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS 1. Medidas de resume descriptivas Para describir u cojuto de datos utilizamos ua serie de medidas, de igual forma que para describir a u persoa podemos utilizar

Más detalles