Análisis de datos del Aguacate Hass (presentación caja 10 kilogramos)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Análisis de datos del Aguacate Hass (presentación caja 10 kilogramos)"

Transcripción

1 Análisis de datos del Aguacate Hass (presentación caja 10 kilogramos) Alberto Contreras Cristán, Miguel Ángel Chong Rodríguez. Departamento de Probabilidad y Estadística Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Universidad Nacional Autónoma de México Secretaría de Economía Sistema Nacional de Información e Integración de Mercados Dentro de los productos agropecuarios que la base de datos del SNIIM presenta, se pensó en estudiar el aguacate Hass debido que es un producto que está presente en los mercados nacionales durante todo el año. Primeramente se intentó trabajar con la presentación en cajas de 17 kilogramos, pero debido a que hubieron períodos de tiempo sin datos 1, se optó por trabajar con la presentación en cajas de 10 kilogramos, para la cual se tienen datos más completos. Para la presentación de 10 kilogramos, se tienen registros, los cuales podemos desagregar por origenes y destinos como vemos a continuación Cuadro 1: Origen - Destino Número de observaciones Origen - Destino Número de observaciones Total Existen siete registros que no tienen fecha y por lo tanto no fueron considerados, estos registros son que están en los renglones 939, 1519, 2649, 4767, 6814 y 8566 de la base de datos. Además, sólo hay una observación 1 Los periodos de tiempo donde no se registraron precios fueron:11 julio al 26 de agosto del 2005, 20 al 24 de noviembre del 2006, 27 al 31 de agosto del 2007 y 17 de septiembre al 19 de octubre del

2 para los siguientes orígenes y destinos Cuadro 2: Origen - Destino Fecha /10/ /05/ /09/2000 y por tanto tampoco fueron considerados en el análisis. Con el fin de trabajar con la serie de datos de precio frecuente, calculamos (en caso de ser posible) el promedio de los precios frecuentes en cada día. Después con esta nueva serie de datos, calculamos el promedio semanal obteniendo los promedios semanales del precio frecuente, esta serie de tiempo se muestra en la figura 1. Precio promedio semanal Series Figura 1: Notemos que aunque en ocasiones no haya datos para calcular el promedio de los precios frecuentes en un día dado, en la mayoría de los casos si es posible calcular el promedio semanal. Aunque no es aparente en la figura 1, existen dos semanas en donde no hay datos para poder calcular el promedio semanal del precio frecuente. Estas semanas son del 3 al 7 de enero del 2000 y la del 24 al 28 de 2

3 septiembre del En la figura 1 podemos apreciar un comportamiento cíclico y con tendencia de los datos. Pese que es aparente que existe un patrón estacional, notemos que para los años 2002 y 2003 este patrón estacional es un poco diferente al que se tiene para los años 2004, 2005, 2006 y En estos últimos años el patrón estacional es más parecido. Por las razones anteriores decidimos usar los promedios semanales de los precios en el horizonte de tiempo que va de enero de 2004 hasta la semana del 17 al 21 de septiembre de 2007 (una semana antes del dato faltante), para plantear un primer modelo paramétrico. La finalidad de este modelo fue la de predecir (estimar) el dato faltante de la semana del 24 al 28 de septiembre. Además, para lograr una varianza homoscedástica de los datos se consideró transformarlos con el logaritmo en base 10, así entonces consideramos la siguiente serie de tiempo de logaritmos de promedios semanales de precios frecuentes Logaritmo de los datos Figura 2: El modelo propuesto para los logaritmos de los promedios semanales de los precios es un ARIMA estacional (SARIMA(p, d, q) (P, D, Q) s, véase Brockwell y Davis, 1990 y Shumway y Sto er, 2000). Como en nuestro caso el período de la serie corresponde a s = 52 semanas, para diagnosticar un modelo de esta naturaleza procedemos a calcular la primera diferencia de los logaritmos de los datos seguida de una diferencia a lag 52. 3

4 La Figura 3, presenta la sucesión de autocorrelación de la serie resultante. ACF Lag Figura 3: ACF de (1 B)(1 B s )X Cuadro 3: ma1 ma2 ma3 ma4 ma5 ma6 ma7 sma1 Coeficiente estimado Desviación estándar De acuerdo a teoría del diagnóstico de modelos SARIMA, a la luz del correlograma, podemos proponer la estimación de un modelo SARIMA(0, 1, 7) (0, 1, 1) 52 para estos datos. Esta propuesta proviene de observar en la figura 3 que los coeficientes correspondientes a los lags 52 y 7 son significativos. Para la estimación vía máxima verosimilitud, se utilizaron librerías del paquete de usos estadisticos R (los programas se anexan en el apéndice). La tabla 3 muestra los valores de los coeficientes estimados del modelo. La figura 4, corresponde a un análisis de residuales del modelo. El panel superior izquierdo muestra la serie de tiempo de los residuales, no se observan patrones de heteroscedasticidad. El panel superior derecho muestra la sucesión de autocorrelación de los residuales, no hay evidencia de correlación en los residuales. Los paneles inferior izquierdo y derecho, corresponden a una gráfica en papel normal y un histograma de los residuales, no hay lejanía aparente de una distribución normal. 4

5 Series residuals residuals ACF Lag Normal Q Q Plot Histogram of residuals Sample Quantiles Frequency Theoretical Quantiles residuals Figura 4: Análisis de residuales. De las gráficas anteriores podemos suponer que los residuales no estan correlacionados y siguen una distribución normal. Para verificar nuestro supuesto distribucional sobre los residuales, se aplicó la prueba de hipótesis no paramétrica de Anderson-Darling y al calcular el estadístico de prueba obtuvimos A = , y por otro lado el valor crítico con un nivel de significancia =0.05 es w = Como A<wconcluimos que no se rechaza la hipótesis de que los residuales provienen de una distribución normal. Entonces usando este modelo predecimos el valor de la semana faltante y nos dió En la escala original de los promedios semanales de precios frecuentes tenemos que esta predicción vale que es un valor verosímil puesto que el promedio de los precios de una semana antes del valor faltante y el de una semana despúes son 355 y 320 respectivamente. Una vez calculado el valor faltante, lo incluimos en la serie de datos y le vamos a buscar un modelo paramétrico a los datos completados en el horizonte de tiempo, enero del 2004 a julio del Con este modelo pronosticarémos los últimos cinco datos que sí los conocemos. Lo anterior es con el fin de ver que tan bueno es el modelo propuesto. Nuevamente a la serie de los logaritmos en base 10 de los promedios semanales se les aplicó una diferencia y después el operador (1 B 52 ). La figura 5 muestra la sucesión de autocorrelación de (1 B)(1 B 52 )X y nuevamente a la luz de esta ACF parecería que un modelo SARIMA(0, 1, 7) (0, 1, 1) 52 ajustaría bien los datos. Al estimar los coeficientes para dicho modelo tenemos que En la figura 6, muestra el análisis de residuales bajo este último modelo. El panel superior izquierdo muestra la serie de tiempo de los residuales, no se observan patrones de heteroscedasticidad. El panel superior derecho 5

6 ACF Lag Figura 5: Cuadro 4: ma1 ma2 ma3 ma4 ma5 ma6 ma7 sma1 Coeficiente estimado Desviación estándar muestra la sucesión de autocorrelación de los residuales, no hay evidencia de correlación en los residuales. Los paneles inferior izquierdo y derecho respectivamente, corresponden a una gráfica en papel normal y un histograma de los residuales, no hay lejanía aparente de una distribución normal. De manera análoga como se hizo antes, a los residuales de este modelo se les aplicó la prueba de hipótesis no paramétrica de Anderson-Darling y al calcular el estadístico de prueba obtuvimos A = , y por otro lado el valor crítico con un nivel de significancia =0.05 es w = Como A<wconcluimos que no se rechaza la hipótesis de que los residuales procedan de una distribución normal. En la figura 7 se muestra con una línea continua la serie de tiempo con la cual ajustamos el modelo, con forma de círculos los pronósticos de las cinco semanas siguientes y en líneas punteadas las bandas de confianza para cada esitimación puntual. Las estimaciones puntuales se muestran en la tabla 5. De la tabla 5 notamos que en todos los casos el precio promedio semanal está contenido en el intervalo de confianza estimado, por lo que concluimos que el modelo propuesto ajusta razonablemente bien el comportamiento del precio promedio semanal. Por último diremos que para la serie de los promedios de los precios frecuentes en el horizonte de tiempo, 6

7 Series residuals residuals ACF Lag Normal Q Q Plot Histogram of residuals Sample Quantiles Frequency Theoretical Quantiles residuals Figura 6: Análisis de residuales Figura 7: enero del 2004 a agosto del 2008, en la cual existe un dato faltante en la semana del 24 al 28 de septiembre de 2007, se trató de estimar dicho valor faltante vía una descomposición clásica. Para lo anterior se estimó la tendencia y después la parte cíclica de la serie, pero notamos que bajo este método la estimación no era 7

8 Cuadro 5: Fecha Promedio real Estimación Promedio real-estimación límite inferior límite superior 7 al 11 de julo al 18 de julo al 25 de julo al 31 de julo y 5 de agosto adecuada y por lo tanto se optó por estimar el valor faltante con un modelo paramétrico. Lo anterior no quiere decir que la conocida descomposición clásica no funcionaría con estos datos, sino que es necesario explorar diferentes formas de estimación de las componentes de tendencia y estacional para tal descomposición. REFERENCIAS Brockwell, P.J., and Davis, R.A. (1991). Series, Theory and Methods. Springer-Verlag. Shumway, R.H., and Sto er, D.S. (2000) Series Analysis and its Applications. Springer-Verlag. 8

Análisis de datos del SNIIM correspondientes al Aguacate Hass (caja 10kg.)

Análisis de datos del SNIIM correspondientes al Aguacate Hass (caja 10kg.) Análisis de datos del SNIIM correspondientes al Aguacate Hass (caja 10kg.) p. 1/11 Análisis de datos del SNIIM correspondientes al Aguacate Hass (caja 10kg.) Departamento de Probabilidad y Estadística

Más detalles

ACTIVIDAD 2: La distribución Normal

ACTIVIDAD 2: La distribución Normal Actividad 2: La distribución Normal ACTIVIDAD 2: La distribución Normal CASO 2-1: CLASE DE BIOLOGÍA El Dr. Saigí es profesor de Biología en una prestigiosa universidad. Está preparando una clase en la

Más detalles

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) 2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) La idea principal en este capitulo es el inicio a planear los diseño experimentales y su correspondiente análisis estadístico. En este caso iniciaremos

Más detalles

Estadística Industrial. Universidad Carlos III de Madrid Series temporales Práctica 5

Estadística Industrial. Universidad Carlos III de Madrid Series temporales Práctica 5 Estadística Industrial Universidad Carlos III de Madrid Series temporales Práctica 5 Objetivo: Análisis descriptivo, estudio de funciones de autocorrelación simple y parcial de series temporales estacionales.

Más detalles

Pronósticos Automáticos

Pronósticos Automáticos Pronósticos Automáticos Resumen El procedimiento de Pronósticos Automáticos esta diseñado para pronosticar valores futuros en datos de una serie de tiempo. Una serie de tiempo consiste en un conjunto de

Más detalles

APÉNDICE A GRÁFICAS Y TABLAS EMPLEADAS PARA LA DETERMINACIÓN DE LOS MODELOS

APÉNDICE A GRÁFICAS Y TABLAS EMPLEADAS PARA LA DETERMINACIÓN DE LOS MODELOS APÉNDICE A GRÁFICAS Y TABLAS EMPLEADAS PARA LA DETERMINACIÓN DE LOS MODELOS 48 GRÁFICAS Y TABLAS EMPLEADAS PARA LA DETERMINACIÓN DE LOS MODELOS Para determinar el modelo que se ha empleado para las estimaciones,

Más detalles

Tercera práctica de REGRESIÓN.

Tercera práctica de REGRESIÓN. Tercera práctica de REGRESIÓN. DATOS: fichero practica regresión 3.sf3 1. Objetivo: El objetivo de esta práctica es aplicar el modelo de regresión con más de una variable explicativa. Es decir regresión

Más detalles

Regresión y Correlación

Regresión y Correlación Relación de problemas 4 Regresión y Correlación 1. El departamento comercial de una empresa se plantea si resultan rentables los gastos en publicidad de un producto. Los datos de los que dispone son: Beneficios

Más detalles

Tema 5: Introducción a la inferencia estadística

Tema 5: Introducción a la inferencia estadística Tema 5: Introducción a la inferencia estadística 1. Planteamiento y objetivos 2. Estadísticos y distribución muestral 3. Estimadores puntuales 4. Estimadores por intervalos 5. Contrastes de hipótesis Lecturas

Más detalles

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis Diseño Estadístico y Herramientas para la Calidad Pruebas de Hipótesis Expositor: Dr. Juan José Flores Romero juanf@umich.mx http://lsc.fie.umich.mx/~juan M. en Calidad Total y Competitividad Pruebas de

Más detalles

Segunda práctica de REGRESIÓN.

Segunda práctica de REGRESIÓN. Segunda práctica de REGRESIÓN. DATOS: fichero practica regresión 2.sf3. Objetivo: El objetivo de esta práctica es interpretar una regresión y realizar correctamente la diagnosis. En la primera parte se

Más detalles

Pronóstico con Modelos ARIMA para los casos del Índice de Precios y Cotizaciones (IPC) y la Acción de América Móvil (AM)

Pronóstico con Modelos ARIMA para los casos del Índice de Precios y Cotizaciones (IPC) y la Acción de América Móvil (AM) Pronóstico con Modelos ARIMA para los casos del Índice de Precios y Cotizaciones (IPC) y la Acción de América Móvil (AM) Rosa María Domínguez Gijón Resumen este proyecto son el IPC y la acción de América

Más detalles

AGRO Examen Parcial 2. Nombre:

AGRO Examen Parcial 2. Nombre: Densidad Densidad Densidad Densidad Examen Parcial 2 AGRO 5005 Nombre: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro, las tablas con fórmulas y la

Más detalles

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico.

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN 1. Conteste las preguntas siguientes: a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. 1. 2. 3. 4. b. En

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse

Más detalles

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 DOCENTE: Ing. Patricio Puchaicela ALUMNA: Andrea C. Puchaicela G. CURSO: 4to. Ciclo de Electrónica y Telecomunicaciones AÑO

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre

Más detalles

6. ESTIMACIÓN DE PARÁMETROS

6. ESTIMACIÓN DE PARÁMETROS PROBABILIDAD Y ESTADÍSTICA Sesión 7 6. ESTIMACIÓN DE PARÁMETROS 6.1 Características el estimador 6. Estimación puntual 6..1 Métodos 6..1.1 Máxima verosimilitud 6..1. Momentos 6.3 Intervalo de confianza

Más detalles

Distribución Chi (o Ji) cuadrada (χ( 2 )

Distribución Chi (o Ji) cuadrada (χ( 2 ) Distribución Chi (o Ji) cuadrada (χ( 2 ) PEARSON, KARL. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it Can Reasonably

Más detalles

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Materia: Estadística I Maestro: Dr. Francisco Javier Tapia Moreno Semestre: 015- Hermosillo, Sonora, a 14 de septiembre de

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

ENCUESTA CONTINUA DE HOGARES ABRIL 2016 Actividad, Empleo y Desempleo 1

ENCUESTA CONTINUA DE HOGARES ABRIL 2016 Actividad, Empleo y Desempleo 1 Montevideo, 9 de junio de ENCUESTA CONTINUA DE HOGARES ABRIL Actividad, Empleo y Desempleo 1 El Instituto Nacional de Estadística (INE) da a conocer a través de este informe, los principales indicadores

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

INFERENCIA DE LA PROPORCIÓN

INFERENCIA DE LA PROPORCIÓN ESTADISTICA INFERENCIA DE LA PROPORCIÓN DISTRIBUCIÓN MUESTRAL DE PROPORCIONES En una población la proporción de elementos (personas, animales, cosas o entes) que posee una cierta característica es p. En

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL

Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL Ejercicios T2 y T3.- DISTRIBUCIONES MUESTRALES Y ESTIMACIÓN PUNTUAL 1. Se ha realizado una muestra aleatoria simple (m.a.s) de tamaño 10 a una población considerada normal. Llegando a la conclusión que

Más detalles

SERIES TEMPORALES. Isabel Molina Peralta. Departamento de Estadística Universidad Carlos III de Madrid. Roland Fried

SERIES TEMPORALES. Isabel Molina Peralta. Departamento de Estadística Universidad Carlos III de Madrid. Roland Fried SERIES TEMPORALES Isabel Molina Peralta Departamento de Estadística Universidad Carlos III de Madrid Roland Fried Department of Statistics Technique University of Dormund 1 CONTENIDO 0. Introducción. 1.

Más detalles

El Movimiento Browniano en la modelización del par EUR/USD

El Movimiento Browniano en la modelización del par EUR/USD MÁSTER UNIVERSITARIO EN DIRECCIÓN FINANCIERA Y FISCAL TESINA FIN DE MÁSTER El Movimiento Browniano en la modelización del par EUR/USD Autor: José Vicente González Cervera Directores: Dr. Juan Carlos Cortés

Más detalles

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN

ESCUELA COMERCIAL CÁMARA DE COMERCIO EXTENSIÓN DE ESTUDIOS PROFESIONALES MAESTRÍA EN ADMINISTRACIÓN CICLO, ÁREA O MÓDULO: TERCER CUATRIMESTRE OBJETIVO GENERAL DE LA ASIGNATURA: Al termino del curso el alumno efectuara el análisis ordenado y sistemático de la Información, a través del uso de las técnicas

Más detalles

Análisis de Capabilidad (Porcentaje Defectuoso)

Análisis de Capabilidad (Porcentaje Defectuoso) Análisis de Capabilidad (Porcentaje Defectuoso) STATGRAPHICS Rev. 9/4/2006 Este procedimiento esta diseñado para estimar el porcentaje de artículos defectuosos en una población basándose en muestra de

Más detalles

DIFERENCIAS EN LA UTILIZACIÓN DE LA BIBLIOTECA DEL IIESCA ANTE UN CAMBIO DE INFORMACIÓN

DIFERENCIAS EN LA UTILIZACIÓN DE LA BIBLIOTECA DEL IIESCA ANTE UN CAMBIO DE INFORMACIÓN DIFERENCIAS EN LA UTILIZACIÓN DE LA BIBLIOTECA DEL IIESCA ANTE UN CAMBIO DE INFORMACIÓN Beatriz Meneses A. de Sesma * I. INTRODUCCIÓN En todo centro educativo, es de suma importancia el uso que se haga

Más detalles

Prueba de hipótesis para la diferencia de medias

Prueba de hipótesis para la diferencia de medias Estadística Técnica Prueba de hipótesis para la diferencia de medias Cladera Ojeda, Fernando Conceptos previos Inferencia estadística Población Muestra Parámetro Estadístico Hipótesis estadística Pruebas

Más detalles

TRABAJO PRÁCTICO ESTADISTICA APLICADA (746)

TRABAJO PRÁCTICO ESTADISTICA APLICADA (746) UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADEMICO AREA DE MATEMATICA TRABAJO PRÁCTICO ESTADISTICA APLICADA (746) JOSE GREGORIO SANCHEZ CASANOVA C.I. V-9223081 CARRERA: 610 SECCION Nº 1 SAN CRISTOBAL,

Más detalles

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica ECONOMETRÍA II Prof.: Begoña Álvarez 2007-2008 TEMA 1 INTRODUCCIÓN Estimación por máxima verosimilitud y conceptos de teoría asintótica 1. ESTIMACIÓN POR MÁXIMA VEROSIMILITUD (MAXIMUM LIKELIHOOD) La estimación

Más detalles

Test de Kolmogorov-Smirnov

Test de Kolmogorov-Smirnov Test de Kolmogorov-Smirnov Georgina Flesia FaMAF 2 de junio, 2011 Test de Kolmogorov-Smirnov El test chi-cuadrado en el caso continuo H 0 : Las v.a. Y 1, Y 2,..., Y n tienen distribución continua F. Particionar

Más detalles

Programa. Asignatura: Estadística Aplicada. año de la Carrera de Contador Público

Programa. Asignatura: Estadística Aplicada. año de la Carrera de Contador Público Sede y localidad Carrera Sede Atlántica, Viedma Contador Publico Programa Asignatura: Estadística Aplicada Año calendario: 2012 Carga horaria semanal: 6 (seis) hs. Cuatrimestre: Primer Cuatrimestre. Segundo

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

RESUMEN INTRODUCCION

RESUMEN INTRODUCCION Análisis de Series Temporales de la Amplitud Térmica para 7 Localidades de la Zona Centro-Norte-Costera de Venezuela con datos del Modelos de Reanalysis-NCAR Realizado por: Ing. Rafael Elías Mundaray Mago

Más detalles

Análisis de la Capacidad o Aptitud de un proceso ( Capítulo 8 ) Control Estadístico de Calidad

Análisis de la Capacidad o Aptitud de un proceso ( Capítulo 8 ) Control Estadístico de Calidad Análisis de la Capacidad o Aptitud de un proceso ( Capítulo 8 ) Control Estadístico de Calidad Introducción Cuantificar la variabilidad de un proceso. Analizar esta variabilidad en relación con los requisitos

Más detalles

1.- DATOS DE LA ASIGNATURA. Diseño Asistido por Computadora. Nombre de la asignatura: Ingeniería Industrial. Carrera: Clave de la asignatura: OPN-1307

1.- DATOS DE LA ASIGNATURA. Diseño Asistido por Computadora. Nombre de la asignatura: Ingeniería Industrial. Carrera: Clave de la asignatura: OPN-1307 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Diseño Asistido por Computadora Ingeniería Industrial Clave de la asignatura: (Créditos) SATCA 1 OPN-1307 0-6-6 2.- PRESENTACIÓN Caracterización

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles

CALCULO DE MEDIDAS DE RESUMEN CON DATOS TABULADOS

CALCULO DE MEDIDAS DE RESUMEN CON DATOS TABULADOS CALCULO DE MEDIDAS DE RESUMEN CON DATOS TABULADOS Jorge Galbiati Riesco Si los datos se presentan en tablas de recuencias por intervalos, se pueden obtener valores aproximados de las medidas de resumen,

Más detalles

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Aniel Nieves-González Aniel Nieves-González () LSP 1 / 16 Considere el ejemplo en cual queremos modelar las ventas en una cadena de tiendas por departamento. La v.a. dependiente

Más detalles

D.2 ANÁLISIS ESTADÍSTICO DE LAS TEMPERATURAS DE VERANO

D.2 ANÁLISIS ESTADÍSTICO DE LAS TEMPERATURAS DE VERANO Anejo Análisis estadístico de temperaturas Análisis estadístico de temperaturas - 411 - D.1 INTRODUCCIÓN Y OBJETIVO El presente anejo tiene por objeto hacer un análisis estadístico de los registros térmicos

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M.

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Abordaremos en este capítulo el modelo de regresión lineal múltiple, una vez que la mayor parte de las

Más detalles

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8. UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

EJERCICIOS TEMA 1. Clasifica los siguientes caracteres estadísticos según sean cualitativos, variables discretas o variables continuas:

EJERCICIOS TEMA 1. Clasifica los siguientes caracteres estadísticos según sean cualitativos, variables discretas o variables continuas: Ejercicio 1. Clasifica los siguientes caracteres estadísticos según sean cualitativos, variables discretas o variables continuas: a) Marca de los coches. b) Peso de los coches. c) Número de coches vendidos

Más detalles

Diferenciabilidad en un intervalo

Diferenciabilidad en un intervalo Diferenciabilidad en un intervalo Ahora que conocemos cómo calcular la derivada de una función en un punto conviene hacer la pregunta más general: «Cómo podemos saber si una derivada se puede derivar en

Más detalles

Universidad Rafael Belloso Chacín (URBE) Cátedra: Fundamentos de Estadística y Simulación Básica Semestre Profesor: Jaime Soto

Universidad Rafael Belloso Chacín (URBE) Cátedra: Fundamentos de Estadística y Simulación Básica Semestre Profesor: Jaime Soto Universidad Rafael Belloso Chacín (URBE) Cátedra: Fundamentos de Estadística y Simulación Básica Semestre 2011-1 Profesor: Jaime Soto PRUEBA DE HIPÓTESIS Ejemplo El jefe de la Biblioteca de la URBE manifiesta

Más detalles

Estimaciones puntuales. Estadística II

Estimaciones puntuales. Estadística II Estimaciones puntuales Estadística II Estimación Podemos hacer dos tipos de estimaciones concernientes a una población: una estimación puntual y una estimación de intervalo. Una estimación puntual es un

Más detalles

Estadísticas Pueden ser

Estadísticas Pueden ser Principios Básicos Para iniciar en el curso de Diseño de experimentos, es necesario tener algunos conceptos claros en la parte de probabilidad y estadística. A continuación se presentan los conceptos más

Más detalles

ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL

ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL ANÁLISIS EXPLORATORIO DE DATOS ESPACIALES ESTADÍSTICA ESPACIAL DEPARTAMENTO DE GEOGRAFÍA FACULTAD DE HUMANIDADES UNNE Prof. Silvia Stela Ferreyra Revista Geográfica Digital. IGUNNE. Facultad de Humanidades.

Más detalles

1. VALORES FALTANTES 2. MECANISMOS DE PÉRDIDA

1. VALORES FALTANTES 2. MECANISMOS DE PÉRDIDA 1. VALORES FALTANTES Los valores faltantes son observaciones que en un se tenía la intención de hacerlas, pero por distintas razones no se obtuvieron. Puede ser que no se encuentre a un encuestado, entonces

Más detalles

Relación entre la altura y la distancia del suelo al ombligo

Relación entre la altura y la distancia del suelo al ombligo Relación entre la altura y la distancia del suelo al ombligo JULIA VIDAL PIÑEIRO Los 79 datos usados para realizar el estudio estadístico de la relación altura- distancia al ombligo, se tomaron a personas

Más detalles

Bioestadística para Reumatólogos

Bioestadística para Reumatólogos Bioestadística para Reumatólogos Xavier Barber Vallés Mabel Sánchez Barrioluengo Colaboradores - Umh Todos los datos que se muestran son ficticios Tablas 2x2: Riesgos Relativos y Odds ratio En cada sociedad

Más detalles

Series de Tiempo. Germán Aneiros Pérez. Máster en Técnicas Estadísticas Curso 2008-09. Departamento de Matemáticas Universidade da Coruña

Series de Tiempo. Germán Aneiros Pérez. Máster en Técnicas Estadísticas Curso 2008-09. Departamento de Matemáticas Universidade da Coruña Departamento de Matemáticas Universidade da Coruña Máster en Técnicas Estadísticas Curso 2008-09 Bibliografía Índices Bibliografía Tema 1: Análisis descriptivo de una tiempo Tema 2: Series de tiempo y

Más detalles

ANÁLISIS DE FRECUENCIAS

ANÁLISIS DE FRECUENCIAS ANÁLISIS DE FRECUENCIAS EXPRESIONES PARA EL CÁLCULO DE LOS EVENTOS PARA EL PERÍODO DE RETORNO T Y DE LOS RESPECTIVOS ERRORES ESTÁNDAR DE ESTIMACIÓN REQUERIDOS PARA LA DETERMINACIÓN DE LOS INTERVALOS DE

Más detalles

Técnicas de Inferencia Estadística II. Tema 3. Contrastes de bondad de ajuste

Técnicas de Inferencia Estadística II. Tema 3. Contrastes de bondad de ajuste Técnicas de Inferencia Estadística II Tema 3. Contrastes de bondad de ajuste M. Concepción Ausín Universidad Carlos III de Madrid Grado en Estadística y Empresa Curso 2014/15 Contenidos 1. Introducción

Más detalles

8.2.5. Intervalos para la diferencia de medias de dos poblaciones

8.2.5. Intervalos para la diferencia de medias de dos poblaciones 8.. INTERVALOS DE CONFIANZA PARA LA DISTRIBUCIÓN NORMAL 89 distribuye de modo gaussiana. Para ello se tomó una muestra de 5 individuos (que podemos considerar piloto), que ofreció los siguientes resultados:

Más detalles

VALORACIÓN ECONÓMICA DE LUCRO CESANTE

VALORACIÓN ECONÓMICA DE LUCRO CESANTE Spain INFORME PREVIO VALORACIÓN ECONÓMICA DE LUCRO CESANTE VALORACIÓN ECONÓMICA DEL LUCRO CESANTE Este informe efectúa la valoración económica previa acordada por encargo profesional formalizado el 5 de

Más detalles

Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales

Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales Teoría de muestras Distribución de variables aleatorias en el muestreo 1. Distribución de medias muestrales Dada una variable estadística observada en una población, se puede calcular se media y su desviación

Más detalles

Análisis de diferencias de medias entre centros educativos chilenos según grupo socioeconómico y dependencia administrativa

Análisis de diferencias de medias entre centros educativos chilenos según grupo socioeconómico y dependencia administrativa Análisis de diferencias de medias entre centros educativos chilenos según grupo socioeconómico y dependencia administrativa Paola Ilabaca Baeza 1 José Manuel Gaete 2 paolailabaca@usal.es jmgaete@usal.es

Más detalles

Teoría de las decisiones y de los juegos Asignatura: Profesores: Sjaak Hurkens y Flip Klijn Examen: 6 de febrero de 2008

Teoría de las decisiones y de los juegos Asignatura: Profesores: Sjaak Hurkens y Flip Klijn Examen: 6 de febrero de 2008 Teoría de las decisiones y de los juegos Asignatura: 50 Profesores: Sjaak Hurkens y Flip Klijn Examen: 6 de febrero de 008 Observaciones: Versión: Duración: 3 horas Documentos autorizados: ninguno Teléfonos

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. CURSO 011-01 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumno debe elegir sólo una de las pruebas (A o B). - Cada una de las preguntas

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

Tema 7: Estadística y probabilidad

Tema 7: Estadística y probabilidad Tema 7: Estadística y probabilidad En este tema revisaremos: 1. Representación de datos e interpretación de gráficas. 2. Estadística descriptiva. 3. Probabilidad elemental. Representaciones de datos Cuatro

Más detalles

CORRELACIÓN Y REGRESIÓN. Raúl David Katz

CORRELACIÓN Y REGRESIÓN. Raúl David Katz CORRELACIÓN Y REGRESIÓN Raúl David Katz 1 Correlación y regresión Introducción Hasta ahora hemos visto el modo de representar la distribución de frecuencias de los datos correspondientes a una variable

Más detalles

Prueba de Hipótesis. Bondad de Ajuste. Tuesday, August 5, 14

Prueba de Hipótesis. Bondad de Ajuste. Tuesday, August 5, 14 Prueba de Hipótesis Bondad de Ajuste Conceptos Generales Hipótesis: Enunciado que se quiere demostrar. Prueba de Hipótesis: Procedimiento para determinar si se debe rechazar o no una afirmación acerca

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA INFERENCIA ESTADISTICA ESTIMACION 2 maneras de estimar: Estimaciones puntuales x s 2 Estimaciones por intervalo 2 ESTIMACION Estimaciones por intervalo Limites de Confianza LCI

Más detalles

Contrastes de hipótesis paramétricos

Contrastes de hipótesis paramétricos Estadística II Universidad de Salamanca Curso 2011/2012 Outline Introducción 1 Introducción 2 Contraste de Neyman-Pearson Sea X f X (x, θ). Desonocemos θ y queremos saber que valor toma este parámetro,

Más detalles

Contrib. pp. Contrib. pp. Variación % Variación % Contrib. pp.

Contrib. pp. Contrib. pp. Variación % Variación % Contrib. pp. IV.3. España. Tema específico debe estimarse, estimación que suele presentar un elevado grado de incertidumbre. No obstante, un buen indicador del ciclo es la utilización de la capacidad productiva en

Más detalles

Comparación de Líneas de Regresión

Comparación de Líneas de Regresión Comparación de Líneas de Regresión Resumen El procedimiento de Comparación de Líneas de Regresión esta diseñado para comparar líneas de regresión relacionas con Y y X en dos o mas niveles de un factor

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

Análisis Probit. StatFolio de Ejemplo: probit.sgp

Análisis Probit. StatFolio de Ejemplo: probit.sgp STATGRAPHICS Rev. 4/25/27 Análisis Probit Resumen El procedimiento Análisis Probit está diseñado para ajustar un modelo de regresión en el cual la variable dependiente Y caracteriza un evento con sólo

Más detalles

Regresión con variables independientes cualitativas

Regresión con variables independientes cualitativas Regresión con variables independientes cualitativas.- Introducción...2 2.- Regresión con variable cualitativa dicotómica...2 3.- Regresión con variable cualitativa de varias categorías...6 2.- Introducción.

Más detalles

ANALISIS DE LA SERIE TEMPORAL DEL IBEX-35 DESDE 1992 HASTA CONCLUSIONES PREDICTIVAS.

ANALISIS DE LA SERIE TEMPORAL DEL IBEX-35 DESDE 1992 HASTA CONCLUSIONES PREDICTIVAS. ANALISIS DE LA SERIE TEMPORAL DEL IBEX-35 DESDE 1992 HASTA 1997. CONCLUSIONES PREDICTIVAS. Introducción: En la presente comunicación nos proponemos analizar el comportamiento como serie temporal del índice

Más detalles

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Estadística Descriptiva. yanálisis de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS Ejemplos y ejercicios de Estadística Descriptiva yanálisis de Datos Diplomatura en Estadística Curso 007/08 Descripción estadística de una variable. Ejemplos

Más detalles

Prof. Antonio Santillana y Ainhoa Herrarte

Prof. Antonio Santillana y Ainhoa Herrarte La economía en el corto plazo: introducción al análisis del ciclo económico Prof. Antonio Santillana y Ainhoa Herrarte Contenido 1. Medición del ciclo económico: expansiones y recesiones económicas. Detección

Más detalles

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS 1 POR QUÉ SE LLAMAN CONTRASTES NO PARAMÉTRICOS? A diferencia de lo que ocurría en la inferencia paramétrica, ahora, el desconocimiento de la población que vamos

Más detalles

Ejercicio 1 (20 puntos)

Ejercicio 1 (20 puntos) ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Examen Montevideo, 15 de diciembre de 2015. Nombre: C.I.: EXAMEN Libre Reglamentado El examen consta de dos partes. La primera parte debe ser realizada

Más detalles

Ideas básicas del diseño experimental

Ideas básicas del diseño experimental Ideas básicas del diseño experimental Capítulo 4 de Analysis of Messy Data. Milliken y Johnson (1992) Diseño de experimentos p. 1/23 Ideas básicas del diseño experimental Antes de llevar a cabo un experimento,

Más detalles

Se redujo la Desnutrición en los municipios priorizados del Plan Hambre Cero?

Se redujo la Desnutrición en los municipios priorizados del Plan Hambre Cero? Se redujo la Desnutrición en los municipios priorizados del Plan Hambre Cero? Luis F. Hernández (PhD en Economía, Essex UK) Investigador Senior y Director Ejecutivo Asociación Grupo de Análisis Estratégico

Más detalles

UTILIZACIÓN DE LA CAPACIDAD INSTALADA EN LA INDUSTRIA MANUFACTURERA - SEGUNDO TRIMESTRE DE

UTILIZACIÓN DE LA CAPACIDAD INSTALADA EN LA INDUSTRIA MANUFACTURERA - SEGUNDO TRIMESTRE DE Montevideo, 28 de octubre de 2009. UTILIZACIÓN DE LA EN LA INDUSTRIA MANUFACTURERA - SEGUNDO TRIMESTRE DE 2009 - ANÁLISIS DE LOS PRINCIPALES INDICADORES El grado de utilización de la Capacidad Instalada

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

4. Regresión Lineal Simple

4. Regresión Lineal Simple 1 4. Regresión Lineal Simple Introducción Una vez conociendo las medidas que se utilizan para expresar la fuerza y la dirección de la relación lineal entre dos variables, se tienen elementos base para

Más detalles

Máster en comunicaciones. Clase 2. Modelos predictores.

Máster en comunicaciones. Clase 2. Modelos predictores. Máster en comunicaciones. Clase 2. Modelos predictores. 1. Introducción Uno de los cometidos más importantes de la estadística es la explotación de los datos observados de una o más características de

Más detalles

Anota aquí tus respuestas para esta sección Distribución Z

Anota aquí tus respuestas para esta sección Distribución Z Tarea 2. Estadística Inferencial Cada sección vale 25%. Cada inciso tiene el mismo peso. Hacer la tarea en equipo de dos personas y entregar solo una copia por cada equipo. 1. Cálculo lo siguiente. Ten

Más detalles

APROXIMACIÓN A UNA DISTRIBUCIÓN NORMAL

APROXIMACIÓN A UNA DISTRIBUCIÓN NORMAL Autor: Mª Isabel Conde Collado APROXIMACIÓN A UNA DISTRIBUCIÓN NORMAL Mediante el estudio de dos ejemplos concretos de distribuciones se intentará un acercamiento al ajuste de distribuciones a una distribución

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

Artículo de los payasos

Artículo de los payasos Artículo de los payasos (Página 30 a 3 del libro de Técnica estadística y diseño de investigación) Utilizando los datos de la tabla 3 podemos completar la siguiente información (valores p de probabilidad

Más detalles

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza

Más detalles

Práctica 2: Intervalos de confianza y contrastes con SPSS 1

Práctica 2: Intervalos de confianza y contrastes con SPSS 1 Estadística Aplicada Curso 2010/2011 Diplomatura en Nutrición Humana y Dietética Práctica 2: Intervalos de confianza y contrastes con SPSS 1 El objetivo de esta práctica es aprender a calcular intervalos

Más detalles

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A Regresión lineal REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL MÚLTIPLE N A Z IRA C A L L E J A Qué es la regresión? El análisis de regresión: Se utiliza para examinar el efecto de diferentes variables (VIs

Más detalles

Exactitud y Linearidad del Calibrador

Exactitud y Linearidad del Calibrador Exactitud y Linearidad del Calibrador Resumen El procedimiento Exactitud y Linearidad del Calibrador fue diseñado para estimar la exactitud del sistema de medición. En contraste con los procedimientos

Más detalles

Teoría de la decisión Estadística

Teoría de la decisión Estadística Conceptos básicos Unidad 7. Estimación de parámetros. Criterios para la estimación. Mínimos cuadrados. Regresión lineal simple. Ley de correlación. Intervalos de confianza. Distribuciones: t-student y

Más detalles

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI 2014 Para qué es útil la estadística inferencial? Se utiliza para probar hipótesis y generalizar los resultados obtenidos en la muestra a la población o universo.

Más detalles

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.

Más detalles

DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA UNIVERSIDAD DE VALLADOLID

DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA UNIVERSIDAD DE VALLADOLID d e p a r t a m e n t o d E 0.8 300 0.6 I O 0.4 250 0.2 50 100 200 150 200 250 www.eio.uva.es 300 150 universidad de valladolid e s t a d í s t i c a Ver.norm media desv. estand. o p e r a t i v a i n

Más detalles