NOCIONES PRELIMINARES (*) 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "NOCIONES PRELIMINARES (*) 1"

Transcripción

1 CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras mayúsculas, y los elementos con minúsculas y los símbolos {}. Hay dos formas de indicar un conjunto: por comprensión (o propiedad): se indica la propiedad que permite decidir cuáles son los elementos del conjunto. En símbolos: A = {x / x es un número dígito par}. por extensión: se enumeran todos los elementos. En símbolos: A = {2,4,6,8}. Algunos conjuntos particulares: Conjunto universal U: está formado por todos los elementos del tema de referencia. Conjunto vacío: cuando no tiene elementos. Símbolo: o {}. Conjunto unitario: tiene un solo elemento. Complemento de A: está formado por todos los elementos que no pertenecen a A. En símbolos: Ā = {x / x A}. ( se lee pertenece y se lee no pertenece ). Representación en diagramas (conocidos como diagramas de Venn) A U *a *b *c *c *a *b A *a *b *c *d a A, c A a A, b A, c A b A c A c U c B, d B d A, a B, b B Algunas relaciones entre conjuntos: 1. Inclusión: Un conjunto A está incluido en un conjunto B si todo elemento de A pertenece a B. En símbolos: A B x: (x A x B). A es un subconjunto de B. 2. Inclusión amplia: A B. El conjunto A está incluido en B o A es igual a B. 3. Igualdad: A = B A B B A. Operaciones entre conjuntos: Unión: A B. Es el conjunto formado por los elementos de A, o de B, o de ambos conjuntos. A B = {x / x A x B}. Ejemplo: A = {2,4,6 }, B = {2,7,8 }. Es: A B = {2,4,6,7,8}. 1 (*) Apunte elaborado por la Mgter. Prof. Duarte A. Comisión 1 1

2 Intersección: A B. Es el conjunto formado por los elementos comunes a ambos conjuntos. A B = {x / x A x B}. Ejemplo: A = {2,4,6 }, B = {2,7,8 }. Es: A B = {2}. Diferencia: A B. Es el conjunto formado por los elementos de A que no pertenecen a B. A - B = {x / x A x B}. Ejemplo: A = {2,4,6 }, B = {2,7,8 }. Es: A - B = {4,6}. Diferencia simétrica: A B. Es el conjunto formado por los elementos de A o de B y que no pertenecen a (A B). A B = { x / x A x B x A B}. Ejemplo: A = {2, 4, 6}, B = {2, 7, 8}. Es: A B = {4, 6, 7, 8}. Complemento: Sea A un subconjunto de U. Complemento de A (A c ) es el conjunto formado por los elementos de U que no pertenecen a A. A c = { x U / x A } Producto cartesiano A X B: Es el conjunto formado por todos los pares ordenados cuya primera componente pertenece a A y cuya segunda componente pertenece a B. Ejemplo: A = {2, 4, 6}, B = {2, 7, 8}. Es A X B = {(2;2), (2;7), (2;8), (4;2), (4;7), (4;8), (6;2), (6;7), (6;8) }. La representación gráfica se realiza colocando los elementos de A en una recta horizontal y los elementos de B en una recta vertical. Cada punto del gráfico es la representación de un par ordenado del producto cartesiano. El producto A X B es distinto a B X A, porqué?. Conjuntos especiales: son conjuntos cuyos elementos son números. Se tiene así: el conjunto de números naturales N, el de números enteros Z, el de números racionales Q, el de los irracionales I, el de los reales R y el conjunto de los números complejos C. Los Números Reales Cumplen con las siguientes propiedades: - La suma y el producto de dos números reales es otro número real. - La adición y sustracción son conmutativas y asociativas. - El elemento neutro para la suma es el cero y para el producto es el uno. - Un número más su opuesto es igual a cero y un número por su recíproco es igual a uno. En símbolos: o a + (-a) = 0 y a. (a -1 ) = 1 - El producto es distributivo con respecto a la suma. El orden en R Un número real puede ser cero, o positivo o negativo. En símbolos: a: ( a R a = 0 v a R + v a R ) Comisión 1 2

3 El conjunto de los número reales es totalmente ordenado por la relación menor o igual. O sea, dados dos números reales a y b, pueden ser: a < b, a = b, o a > b. Si a < b a b < 0, o sea a b R, de igual forma si b > a b a > 0, o sea b a R +. Las expresiones a < b, b > a o también a b y b a, se denominan desigualdades. Inecuaciones Cuando una desigualdad tiene incógnitas, se llama inecuación. Resolver una inecuación implica resolver la desigualdad, aplicando las propiedades que se verifiquen para ellas y obtener como resultado un conjunto solución. Ejemplo: resolver 3x + 5 > x 3 Rpta: 3x x > x > - 8 x > - 4. Conj. Solución: S = {x R / x > - 4}. Si la inecuación es cuadrática, se procede aplicando propiedades convenientes. Por ejemplo, resolver la inecuación 2x 2 + x - 6 > 0. Rpta: 2x 2 + x - 6 > 0 x 2 + 1/2x 3 > 0 (x + ¼) 2 > 49/16 2 x + 1/4 > 7/4 x + ¼ < -7/4 x > 3/2 x < - 2. Conj. Solución: S = {x R / x < - 2 x > 3/2 }. Si la inecuación fuera: 2x 2 + x - 6 < 0, se llega a: (x + ¼) 2 < 49/16 3 x + 1/4 < 7/4 x + ¼ > -7/4 x < 3/2 x > - 2. Conj. Solución: S = {x R / x > - 2 x < 3/2 }. Valor absoluto de un número real: es igual al mismo número si éste es positivo o cero, y es igual a su opuesto, cuando es negativo. En símbolos: a = a, si a 0 y a = - a, si a < 0. Propiedades: 1. a: ( a 0 a > 0 2. a: a = - a 3. a, b: a.b = a b 4. k> 0, x: x k - k x x k - k x k 5. k> 0, x: x k x k x - k 6. a, b: a + b a + b 7. a, b: a - b a - b CONJUNTOS DE NÚMEROS REALES: INTERVALOS Y ENTORNOS Intervalos Siendo a < b, el intervalo cerrado [a;b] es el conjunto de números reales formado por a, por b y por todos los números comprendidos entre a y b. En símbolos: [a;b] = {x / x R a x b}. Gráficamente: 2 Recordando que: x 2 > a 2 : x 2 - a 2 > 0 (x a)(x + a) > 0 x > a x < - a. 3 Se tiene en cuenta que: x 2 < a 2 : x 2 - a 2 < 0 (x a)(x + a) < 0 x < a x > - a. Comisión 1 3

4 La longitud del intervalo es el número positivo b a. Los números a y b se llaman extremos izquierdo y derecho respectivamente. Siendo a < b, el intervalo abierto (a;b) es el conjunto todos los números reales comprendidos entre a y b. En símbolos: (a;b) = {x / x R a < x < b}. Gráficamente: Ejemplo: [-2; 5] = {x / x R - 2 x 5}. En caso de ser (-2; 5], es un intervalo semiabierto y está formado por {x / x R - 2 < x 5}. También se podría tener el [-2;5). Entornos Si a es un número real cualquiera y h un número positivo, se llama entorno de centro a y radio h al intervalo abierto (a-h; a+h). En símbolos: E(a;h) = {x / a - h < x < a + h}. Utilizando una de las propiedades del valor absoluto, la definición se puede escribir: E(a;h) = {x / x a < h }. Ejemplo 1: un entorno expresado como intervalo E(3;2) = (3 2; 3 +2) = (1; 5) Ejemplo 2: un intervalo expresado como entorno (-2; 2) = E(0;2) Se puede observar que el centro es igual a la semisuma de los extremos del intervalo. Ejemplo 3: el intervalo (-7; 10) es un entorno de centro a = ( )/2 = 3/2. Para hallar el radio h se hace: a + h = 10 h = 10 3/2 = 17/2. Se trata del entorno E(3/2; 17/2). Intervalos infinitos (a; ) = {x / x > a } [a; ) = {x / x a } (- ; a) = {x / x < a } (- ; a] = {x / x a } (- ; ) = {x / x R } Intersección de intervalos Sea a < b. (a; ) (- ; b ) = {x R / x > a x < b} = {x R/ a < x < b} = (a ; b) (- ; a) (b; ) = {x R / x < a x > b} = Unión de intervalos (a; ) (- ; b ) = {x R / x > a x < b} = R = (- ; ) (- ; a) (b; ) = {x R / x < a x > b} Gráficamente: Comisión 1 4

5 Producto cartesiano de intervalos Se quiere hallar [a; b] X [c ; d]. Se puede visualizar en la representación gráfica. El resultado es el conjunto de pares ordenados (x ; y) cuya primera componente es a x b y cuya segunda componente es c y d. Cómo sería la representación gráfica de (a; b) X (c ; d)? También se podría realizar el producto cartesiano de intervalos infinitos. Un caso especial es : (- ; ) X (- ; ) = R X R = R 2 (se lee erre dos ). Su representación gráfica es el plano. Inecuaciones con valor absoluto Las propiedades estudiadas del valor absoluto se aplican a las inecuaciones. Ejemplo: Resolver la inecuación 3x - 1 < 2x + 5 Rpta: 3x - 1 < 2x + 5 3x 1 > -(2x + 5) 3x 1 < 2x + 5 x > -4/5 x < 6-4/5 < x < 6 S = {x R / -4/5 < x < 6 } = (-4/5 ; 6). RELACIONES De un producto cartesiano podemos seleccionar aquellos pares ordenados que satisfacen cierta condición que establece la correspondencia entre los elementos de ambos conjuntos. Esa condición se denomina relación (simbolizada por R). Por eso podemos decir que una relación es un conjunto incluido ampliamente en el producto cartesiano. En símbolos: R A X B. Si designamos con x a los elementos de A y con y a los elementos de B, entonces x R y, o (x;y) R indica una relación entre dichos elementos. En general: R = { (x;y) / p(x) }, siendo p la propiedad o condición que representa la relación. Por ejemplo: R: x es menor que y ( < ), En el producto cartesiano {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)} la relación dada está representada por todos los pares ordenados que tengan la primera componente menor que la segunda. R = {(1, 2), (1, 3), (2, 3)} Comisión 1 5

6 Definición Una relación de un conjunto A a un conjunto B es cualquier conjunto de pares ordenados de A B. Dominio y Codominio Definición El conjunto de todas las primeras componentes de una relación es el dominio de la relación. El conjunto de todas las segundas componentes de una relación es el codominio de la relación. Ejemplo: Enumerar el dominio y el codominio de la relación menor que del ejemplo anterior. Solución. D R = {1, 2} C R = {2, 3} Una relación puede darse entre elementos del mismo conjunto; es decir: R relación en A R A X A. En particular, si A es el conjunto de los números reales, R R X R. FUNCIONES De entre todas las relaciones binarias que se pueden presentar entre dos conjuntos, interesan especialmente aquellas que hacen corresponder a cada elemento del primer conjunto un único elemento del segundo conjunto. Este tipo de relación recibe el nombre de relación funcional, o función (también llamada aplicación, correspondencia o transformación). La palabra función (Leibniz, S.XVII) proviene del término latino functo, que significa acto de realizar. Definición Una función f de un conjunto A a un conjunto B es una regla de correspondencia que asigna a cada x de A un elemento determinado de manera única f(x) de B. A partir de esta definición podemos considerar: En forma simbólica: f: A B En forma geométrica: A f B Otra definición posible es: Sean A y B dos conjuntos. Una función de A a B es un conjunto f de pares ordenados en AXB, tal que para cada x A existe una y B única, con (x; y) f. En símbolos: 1. x A, y B / (x; y) f; (condición de existencia) 2. si (x; y) f y (x; z) f y = z.(condición de unicidad) Si (x; y) f, se puede decir que y = f( x), entonces (x; f(x)) f. Cuando x asume un valor particular a, y = f(a) se conoce como el valor de f en el punto a, o como la imagen del punto a bajo f. Ejemplo: Si A = {1; 2; 3} y f = {(1; 2 ), (2; 4), (3; 4)} Comisión 1 6

7 El conjunto de los elementos que aparecen como primer componente de los pares ordenados de f se llama dominio de f, debe coincidir con A y se denota D f.. El conjunto de todos los elementos de B se llama codominio de f y el conjunto de los elementos que aparecen como segunda componente de los pares ordenados de f se llama recorrido de f, Rf (o conjunto imagen). Nótese que el Dominio de f es siempre igual a A, en cambio el recorrido Rf puede ser un subconjunto del codominio B o en otros casos pueden ser iguales, Rf = Cdf. En el ejemplo dado, A y B son conjuntos de números, entonces la función es una Función numérica o función escalar. Como generalmente tomamos f : R R, entonces se denomina Función Real de variable real. Se considera como Dominio Natural de f al conjunto R, pero en ocasiones el dominio de f puede ser un subconjunto de R, por ejemplo un intervalo I, por lo tanto se cumple: f : I R. Por otra parte, el Codominio natural de f es R y el conjunto imagen o recorrido satisface la relación Rf R. Diferentes representaciones de una función: La regla de correspondencia entre los dos conjuntos se puede explicitar de manera coloquial, en forma de conjunto, en forma simbólica, en tablas y en gráficos (o grafos). Por ejemplo: Sea una función dada en forma coloquial por a cada x A, le corresponde su cuadrado en B, y sean A = B = R. Por medio de conjuntos: f = {(x; y) / y = x 2 } En símbolos: f: R R y f(x) = x 2. (en este caso es una expresión algebraica, pero no siempre). Por tablas: x f(x) Gráficamente: y x Cuando la función es real de variable real, la representación gráfica es un trazo continuo. Otra manera es representar a la función como a una máquina que acepta elementos de D(f) como materia prima y produce los elementos correspondientes de R(f) como productos finales. Comisión 1 7

8 Si se toma un elemento x de D(f), y se procesa a través de f se produce el elemento f(x), si se procesa un elemento diferente z de D(f), se obtiene f(z), que puede ser diferente o no de f(x). Si se intenta introducir en f algo que no pertenece a D(f), se encontrará que no es aceptado. Queda además clara la diferencia entre f (la máquina) y f(x) (la producción). x f f (x) Habitualmente, a x se designa como variable independiente de la función y a y como variable dependiente (del valor que toma x). En general, una función sirve para modelizar matemáticamente una situación real. Ejemplo: se ha encontrado que la velocidad mínima de vuelo de un pájaro es proporcional a la raíz cuadrada de su longitud. Es decir, la velocidad depende de la longitud, por ende, longitud es variable independiente y velocidad, variable dependiente: v = f (L). En este caso, expresado en símbolos: longitud. v k. = L, siendo k una constante de proporcionalidad y L su Intersecciones de una función con los ejes coordenados Si x = 0, se halla la imagen f(0) = y 0 ; el par (0; y 0 ) es la ordenada al origen de la función. Representa un punto que gráficamente es la intersección de la función con el eje y. Si se hace f(x 0 ) = 0, se halla el valor x = x 0 ; entonces el par (x 0 ; 0) es el cero de la función. Representa un Gráficamente, constituyen las intersecciones con el eje y con el eje x, respectivamente. Comisión 1 8

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.

El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D. Concepto de función Función real de variable real es toda correspondencia f que asocia a cada elemento de un determinado subconjunto de números reales, llamado dominio, otro número real (uno y sólo uno).

Más detalles

BLOQUE 1. LOS NÚMEROS

BLOQUE 1. LOS NÚMEROS BLOQUE 1. LOS NÚMEROS Números naturales, enteros y racionales. El número real. Intervalos. Valor absoluto. Tanto el Cálculo como el Álgebra que estudiaremos en esta asignatura, descansan en los números

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real

Más detalles

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la

Más detalles

SISTEMA DE NUMEROS REALES

SISTEMA DE NUMEROS REALES SISTEMA DE NUMEROS REALES 1.1 Conjuntos Es una agrupación de objetos distintos (pero con algunas características en común), los que reciben el nombre de elementos. Generalmente se nombra a un conjunto

Más detalles

Colegio Universitario Boston. Funciones

Colegio Universitario Boston. Funciones 70 Concepto de Función Una función es una correspondencia entre dos conjuntos, tal que relaciona, a cada elemento del conjunto A con un único elemento del conjunto Para indicar que se ha establecido una

Más detalles

FUNCIONES REALES DE VARIABLE REAL.

FUNCIONES REALES DE VARIABLE REAL. FUNCIONES REALES DE VARIABLE REAL. CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se denota por : A B A

Más detalles

Concepto de función. Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B

Concepto de función. Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES Como se ha señalado anteriormente la necesidad de resolver diversos problemas de origen aritmético y geométrico lleva a ir ampliando sucesivamente los conjuntos numéricos, N Z Q, y a definir

Más detalles

Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones

Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones Álgebra y Trigonometría Clase 2 Ecuaciones, desigualdades y Funciones CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

GUÍAS DE ESTUDIO. Programa de alfabetización, educación básica y media para jóvenes y adultos

GUÍAS DE ESTUDIO. Programa de alfabetización, educación básica y media para jóvenes y adultos GUÍAS DE ESTUDIO Código PGA-02-R02 1 INSTITUCIÓN EDUCATIVA CASD Programa de alfabetización, educación básica y media para jóvenes y adultos UNIDAD DE TRABAJO Nº 1 PERIODO 1 1. ÁREA INTEGRADA: MATEMÁTICAS

Más detalles

Funciones de varias variables.

Funciones de varias variables. Funciones de varias variables. Definición. Hasta ahora se han estudiado funciones de la forma y = f (x), f :D Estas funciones recibían el nombre de funciones reales de variable real ya que su valor y dependía

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

PUNTOS Y VECTORES EN EL PLANO

PUNTOS Y VECTORES EN EL PLANO PUNTOS Y VECTORES EN EL PLANO PUNTOS EN EL PLANO Tomando como referencia los ejes cartesianos del plano, un punto se representa mediante un par ordenado (a, b) de números reales, es decir, mediante un

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

En una recta numérica el punto que representa el cero recibe el nombre de origen.

En una recta numérica el punto que representa el cero recibe el nombre de origen. 1. Conjuntos numéricos Los conjuntos numéricos con los que has trabajado tanto en Enseñanza Básica como en Enseñanza Media, se van ampliando a medida que se necesita resolver ciertas problemáticas de la

Más detalles

UNIDAD II: TEORÍA DE CONJUNTOS 2.1. INTRODUCCIÓN

UNIDAD II: TEORÍA DE CONJUNTOS 2.1. INTRODUCCIÓN UNDD : TEORÍ DE CONJUNTOS 2.1. NTRODUCCÓN Según Georg Cantor un conjunto es la reunión, agrupación o colección de elementos bien definidos que tienen una propiedad en común, concepto que ha penetrado y

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números

Más detalles

En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse

En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse En matemáticas el concepto de conjunto es considerado primitivo y no se da una definición de este, por lo tanto la palabra CONJUNTO debe aceptarse lógicamente como un término no definido. Un conjunto se

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

MÓDULO 8: VECTORES. Física

MÓDULO 8: VECTORES. Física MÓDULO 8: VECTORES Física Magnitud vectorial. Elementos. Producto de un vector por un escalar. Operaciones vectoriales. Vector unitario. Suma de vectores por el método de componentes rectangulares. UTN

Más detalles

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función.

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Unidad II Funciones 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Función En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio)

Más detalles

FUNCIONES y = f(x) ESO3

FUNCIONES y = f(x) ESO3 Las correspondencias entre conjunto de valores o magnitudes se pueden expresar de varias formas: con un enunciado, con una tabla, con una gráfica, o con una fórmula o expresión algebraica o analítica.

Más detalles

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano.

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano. Plano cartesiano El plano cartesiano se forma con dos rectas perpendiculares, cuyo punto de intersección se denomina origen. La recta horizontal recibe el nombre de eje X o eje de las abscisas y la recta

Más detalles

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES UNIDAD I FUNCIONES Una función es una correspondencia entre dos conjuntos, que asocia a cada elemento del primer conjunto exactamente un elemento del otro conjunto. Una función f definida entre dos conjuntos

Más detalles

El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales.

El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales. EL SISTEMA DE LOS NÚMEROS REALES Introducción El ente básico de la parte de la matemática conocida como ANÁLISIS, lo constituye el llamado sistema de los número reales. Números tales como:1,3, 3 5, e,

Más detalles

PROPIEDADES DE LOS NUMEROS REALES

PROPIEDADES DE LOS NUMEROS REALES PROPIEDADES DE LOS NUMEROS REALES Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Prof. Yuitza T. Humarán Martínez Adaptado por Prof. Caroline Rodriguez Naturales N={1, 2, 3, 4, } {0}

Más detalles

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida

Más detalles

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico.

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico. Tema: Límites de las funciones Objetivos: Comprender el concepto de límite de una función y las propiedades de los límites. Calcular el límite de una función algebraica utilizando las propiedades de los

Más detalles

Funciones: Aspectos básicos

Funciones: Aspectos básicos Funciones: Aspectos básicos Nombre: Curso:.. Producto cartesiano En teoría de conjuntos, el producto cartesiano de dos conjuntos es una operación que resulta en otro conjunto cuyos elementos son todos

Más detalles

1.2 Si a y b son enteros impares, entonces a + b es par. 1.4 Si el producto de enteros a y b es par, entonces alguno de ellos es par.

1.2 Si a y b son enteros impares, entonces a + b es par. 1.4 Si el producto de enteros a y b es par, entonces alguno de ellos es par. Sesión 1 Demostraciones Demostración directa 1.1 Si n es un número entero impar, entonces n 2 es impar. 1.2 Si a y b son enteros impares, entonces a + b es par. Demostración indirecta 1.3 Si n 2 es par,

Más detalles

Unidad I. Números Reales

Unidad I. Números Reales Unidad I Números Reales 1.1 La Recta Numérica La recta numérica es un gráfico unidimensional de una línea recta en la que los números enteros son mostrados como puntos especialmente marcados que están

Más detalles

CURSO 2013/2014 RESUMEN LÍMITES Y CONTINUIDAD 2, ,61 2,01 4,0401 1,99 3,9601 2,001 4, ,999 3,

CURSO 2013/2014 RESUMEN LÍMITES Y CONTINUIDAD 2, ,61 2,01 4,0401 1,99 3,9601 2,001 4, ,999 3, RESUMEN LÍMITES Y CONTINUIDAD Límite de una función en un punto El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan

Más detalles

El espacio n Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n : 8. 1(x 1, x 2,, x n ) = (x 1, x 2,, x n )

El espacio n Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n : 8. 1(x 1, x 2,, x n ) = (x 1, x 2,, x n ) El espacio n Consideremos el conjunto de todas las n adas ordenadas de números reales, denotado por n : n = {(x 1,x,, x n ) / x 1,x,, x n } A cada uno de los números reales x 1,x,, x n que conforman la

Más detalles

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS.

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEORÍA DE CONJUNTOS. Definiciones. Se define un conjunto como una colección de objetos o cosas, se nombran con letras mayúsculas (A, B...). Cada uno de

Más detalles

Los números enteros Z = {,-3, -2, -1, 0, 1, 2, 3, }

Los números enteros Z = {,-3, -2, -1, 0, 1, 2, 3, } Los números enteros La unión de los números naturales y los enteros negativos forma el conjunto de los números enteros, que se designa con la palabra Z. Está constituido por infinitos elementos y se representan

Más detalles

Ax + By + C = 0. Que también puede escribirse como. ax + by + c = 0 y que se conoce como: la ecuación general de la línea recta

Ax + By + C = 0. Que también puede escribirse como. ax + by + c = 0 y que se conoce como: la ecuación general de la línea recta ECUACIÒN DE LA RECTA La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). La recta se puede entender como un conjunto infinito de puntos alineados

Más detalles

TEMA 1. NÚMEROS REALES Y COMPLEJOS

TEMA 1. NÚMEROS REALES Y COMPLEJOS TEMA 1. NÚMEROS REALES Y COMPLEJOS 1.1 DEFINICIÓN AXIOMATICA DE LOS NÚMEROS REALES 1.1.1 Axiomas de cuerpo En admitimos la existencia de dos operaciones internas la suma y el producto, con estas operaciones

Más detalles

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica.

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica. Capítulo 4. Estudio de la línea recta El análisis cartesiano (René Descartes 1596-1650) descubrió que las ecuaciones pueden tener una representación gráfica. Para lograr esa representación gráfica es necesario

Más detalles

Tema 1 Las Funciones y sus Gráficas

Tema 1 Las Funciones y sus Gráficas Tema Las Funciones y sus Gráficas..- Definición de Función y Conceptos Relacionados Es muy frecuente, en geometría, en física, en economía, etc., hablar de ciertas magnitudes que dependen del valor de

Más detalles

INTRODUCCIÓN. FUNCIONES. LÍMITES.

INTRODUCCIÓN. FUNCIONES. LÍMITES. INTRODUCCIÓN. FUNCIONES. LÍMITES. Este capítulo puede considerarse como una prolongación y extensión del anterior, límite de sucesiones, al campo de las funciones. Se inicia recordando el concepto de función

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuaciones con valor absoluto El valor absoluto de un número real a se denota por a y está definido por: Propiedades a a si a si a 0 a < 0 i a y b son números reales y n es un número entero, entonces:

Más detalles

Una matriz es un arreglo rectangular de elementos. Por ejemplo:

Una matriz es un arreglo rectangular de elementos. Por ejemplo: 1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con

Más detalles

CONJUNTOS. Consideremos, por ejemplo, los siguientes conjuntos:

CONJUNTOS. Consideremos, por ejemplo, los siguientes conjuntos: CONJUNTOS En una Teoría Intuitiva de Conjuntos, los conceptos de conjunto y pertenencia son considerados primitivos, es decir, no se definen de un modo formal; se les acepta como existentes de manera axiomática,

Más detalles

El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras.

El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras. 1.- LOS NÚMEROS REALES Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se pueden expresar en forma de fracción. El número irracional más

Más detalles

Pregunta 1 Es correcta esta definición? Por qué?

Pregunta 1 Es correcta esta definición? Por qué? TEORÍA DE CONJUNTOS. En un libro de COU de 1975 puede leerse la siguiente definición de conjunto: Un conjunto es una colección de objetos, cualquiera que sea su naturaleza. Pregunta 1 Es correcta esta

Más detalles

AYUDAS SOBRE LA LINEA RECTA

AYUDAS SOBRE LA LINEA RECTA AYUDAS SOBRE LA LINEA RECTA AYUDA : Grafiquemos la función Solución: Se debe escoger algunos números que representan a la variable x, para obtener el valor de la variable y respectivamente así: El proceso:

Más detalles

TEMA N 2 RECTAS EN EL PLANO

TEMA N 2 RECTAS EN EL PLANO 2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración

Más detalles

GEOMETRÍA EN EL ESPACIO.

GEOMETRÍA EN EL ESPACIO. GEOMETRÍA EN EL ESPACIO. Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

2.2 Rectas en el plano

2.2 Rectas en el plano 2.2 Al igual que ocurre con el punto, en geometría intrínseca, el concepto de recta no tiene definición, sino que constituye otro de sus conceptos iniciales, indefinibles. Desde luego se trata de un conjunto

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

TEMA 3 Elementos de la teoría de los conjuntos. *

TEMA 3 Elementos de la teoría de los conjuntos. * TEM 3 Elementos de la teoría de los conjuntos. * Conjuntos. Un conjunto es cualquier colección, bien definida, de objetos llamadas elementos o miembros del conjunto. Una manera de describir un conjunto

Más detalles

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy). UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios

Más detalles

El cuerpo de los números reales

El cuerpo de los números reales Capítulo 1 El cuerpo de los números reales 1.1. Introducción Existen diversos enfoques para introducir los números reales: uno de ellos parte de los números naturales 1, 2, 3,... utilizándolos para construir

Más detalles

Si se pueden obtener las imágenes de x por simple sustitución.

Si se pueden obtener las imágenes de x por simple sustitución. TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,

Más detalles

CURSOS CENEVAL TOLUCA

CURSOS CENEVAL TOLUCA Precálculo Propiedades de los números reales Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar

Más detalles

Representación de los números naturales

Representación de los números naturales Números naturales El conjunto de los números naturales se representa por la letra, y está formado por: N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...} Los números naturales sirven para contar los elementos de un

Más detalles

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 } LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden

Más detalles

TEMA 1. Las cuentas de andar por casa

TEMA 1. Las cuentas de andar por casa TEMA 1. Las cuentas de andar por casa 1.-Los distintos tipos de números Módulo 3 1.1. Los números naturales El conjunto de los números naturales está formado por: N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...}

Más detalles

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias

Más detalles

MATEMÁTICAS 2º DE ESO

MATEMÁTICAS 2º DE ESO MATEMÁTICAS 2º DE ESO LOE TEMA VII: FUNCIONES Y GRÁFICAS Coordenadas cartesianas. Concepto de función. Tabla y ecuación. Representación gráfica de una función. Estudio gráfico de una función. o Continuidad

Más detalles

Límites y continuidad de funciones reales de variable real

Límites y continuidad de funciones reales de variable real Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x):

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x): MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16 Función Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x 2 A exactamante un elemento

Más detalles

Ecuaciones, ecuación de la recta y sistemas

Ecuaciones, ecuación de la recta y sistemas Ecuaciones, ecuación de la recta y sistemas Ecuaciones Una ecuación es una igualdad condicionada en la que aplicando operaciones adecuadas se logra despejar (aislar) la incógnita. Cuando una ecuación contiene

Más detalles

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales. Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos

Más detalles

Espacios Vectoriales, Valores y Vectores Propios

Espacios Vectoriales, Valores y Vectores Propios , Valores y Vectores Propios José Juan Rincón Pasaye, División de Estudios de Postgrado FIE-UMSNH Curso Propedéutico de Matemáticas para la Maestría en Ciencias opciones: Sistemas de Control y Sistemas

Más detalles

Tema 7: Geometría Analítica. Rectas.

Tema 7: Geometría Analítica. Rectas. Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos

Más detalles

Apuntes de dibujo de curvas

Apuntes de dibujo de curvas Apuntes de dibujo de curvas El objetivo de estas notas es dar unas nociones básicas sobre dibujo de curvas definidas por medio de ecuaciones cartesianas explícitas o paramétricas y polares: 1. Curvas en

Más detalles

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS Sea una estructura formada por un conjunto A, sobre cuyos elementos se ha definido una operación o ley interna, comúnmente denotada por " * ", que

Más detalles

Tema 7.0. Repaso de números reales y de funciones

Tema 7.0. Repaso de números reales y de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Repaso de números reales y de funciones 47 Tema 70 Repaso de números reales y de funciones El conjunto de los números reales El conjunto de los números

Más detalles

CONJUNTOS CONJUNTOS NUMÉRICOS

CONJUNTOS CONJUNTOS NUMÉRICOS CONJUNTOS CONJUNTOS NUMÉRICOS 1. CONJUNTOS Un conjunto es una colección de elementos de cualquier índole. Describimos el conjunto escribiendo sus elementos entre llaves y separados por comas. Por ejemplo,

Más detalles

Apuntes de los NÚMEROS REALES

Apuntes de los NÚMEROS REALES Apuntes de los NÚMEROS REALES Apuntes y notas tomadas de la dirección URL: http://dgenp.unam.mx/direccgral/secacad/cmatematicas/pdf/m4unidad03.pdf pág. 1 tres posibilidades ESQUEMA DE LOS NÚMEROS REALES

Más detalles

Estrategias didácticas para la resolución de problemas en Matemática de I y II ciclos

Estrategias didácticas para la resolución de problemas en Matemática de I y II ciclos Estrategias didácticas para la resolución de problemas en Matemática de I y II ciclos Segundo Ciclo, Relaciones y Álgebra Abril, 2014 En el Segundo ciclo se busca la profundización en los aprendizajes

Más detalles

MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad

Más detalles

Repaso para el dominio de la materia

Repaso para el dominio de la materia LECCIÓN. Repaso para el dominio de la materia sar con las páginas 66 a 7 OJETIVO Representar gráficamente y comparar números positivos y negativos. EJEMPLO Los números enteros positivos son los números

Más detalles

Funciones algebraicas

Funciones algebraicas Funciones algebraicas Las funciones polinomiales tienen una gran aplicación en la elaboración de modelos que describen fenómenos reales. Algunos de ellos son: la concentración de una sustancia en un compuesto,

Más detalles

1 Números reales. Funciones y continuidad.

1 Números reales. Funciones y continuidad. 1 Números reales. Funciones y continuidad. En este tema nos centraremos en el estudio de la continuidad de funciones reales, es decir, funciones de variable real y valor real. Por ello es esencial en primer

Más detalles

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje. LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de

Más detalles

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Herramientas 6 1.1. Factorización

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de

Más detalles

Números Naturales. Los números enteros

Números Naturales. Los números enteros Números Naturales Con los números naturales contamos los elementos de un conjunto (número cardinal). O bien expresamos la posición u orden que ocupa un elemento en un conjunto (ordinal). El conjunto de

Más detalles

TEMA 1: Funciones elementales

TEMA 1: Funciones elementales MATEMATICAS TEMA 1 CURSO 014/15 TEMA 1: Funciones elementales 8.1 CONCEPTO DE FUNCIÓN: Una función es una ley que asigna a cada elemento de un conjunto un único elemento de otro. Con esto una función hace

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas real de con Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura real de con Índice real de con real de con.

Más detalles

UNIDAD II FUNCIONES. Ing. Ronny Altuve Esp.

UNIDAD II FUNCIONES. Ing. Ronny Altuve Esp. República Bolivariana de Venezuela Universidad Alonso de Ojeda Administración Mención Gerencia y Mercadeo UNIDAD II FUNCIONES Ing. Ronny Altuve Esp. Ciudad Ojeda, Septiembre de 2015 Función Universidad

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto. MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación

Más detalles

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3 Definición LA CIRCUNFERENCIA Se llama circunferencia a la sección cónica generada al cortar un cono recto con un plano perpendicular al eje del cono. La circunferencia es el lugar geométrico de todos los

Más detalles

Introducción a los espacios vectoriales

Introducción a los espacios vectoriales 1 / 64 Introducción a los espacios vectoriales Pablo Olaso Redondo Informática Universidad Francisco de Vitoria November 19, 2015 2 / 64 Espacios vectoriales 1 Las 10 propiedades de un espacio vectorial

Más detalles

TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios:

TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios: TEMA 7: CÓNICAS CIRCUNFERENCIA Se define la circunferencia como el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. A dicha distancia se le llama radio de la circunferencia.

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

INTRODUCCIÓN. Para las siguientes dos actividades necesitaras: regla, lápiz, tijeras, calculadora.

INTRODUCCIÓN. Para las siguientes dos actividades necesitaras: regla, lápiz, tijeras, calculadora. CAPÍTULO 1 INTRODUCCIÓN Construcción con tijeras y papel Para las siguientes dos actividades necesitaras: regla, lápiz, tijeras, calculadora. La caja1. De una hoja de papel vamos a recortar un cuadrito

Más detalles

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad

Más detalles

FUNDAMENTOS DEL ÁLGEBRA. Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES

FUNDAMENTOS DEL ÁLGEBRA. Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES FUNDAMENTOS DEL ÁLGEBRA Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES NOMBRE ID SECCIÓN SALÓN Prof. Eveln Dávila Contenido TEMA: Ecuaciones Lineales En Dos Variables... Solución

Más detalles

Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas

Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas Bloque 2. Geometría 2. Vectores 1. El plano como conjunto de puntos. Ejes de coordenadas Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares,

Más detalles

www.matesxronda.net José A. Jiménez Nieto

www.matesxronda.net José A. Jiménez Nieto NÚMEROS REALES 1. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal es exacta

Más detalles

O -2-1 1 2 X -1- -2- de coordenadas, y representamos los números sobre cada eje, eligiendo en ambos ejes la misma unidad, como muestra la figura.

O -2-1 1 2 X -1- -2- de coordenadas, y representamos los números sobre cada eje, eligiendo en ambos ejes la misma unidad, como muestra la figura. MATEMÁTICA I Capítulo 1 GEOMETRÍA Plano coordenado Para identificar cada punto del plano con un par ordenado de números, trazamos dos rectas perpendiculares que llamaremos eje y eje y, que se cortan en

Más detalles

Definición de Funciones MATE 3171

Definición de Funciones MATE 3171 Definición de Funciones MATE 3171 Función Una función, f, es una regla de correspondencia entre dos conjuntos, que asigna a cada elemento x de D exactamente un elemento de E : x 1 x 2 x 3 y 2 y 1 Terminología

Más detalles