Montaje en placa protoboard de un circuito detector de oscuridad. 1) Nombre y apellidos: Curso y grupo: 2) Nombre y apellidos: Curso y grupo:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Montaje en placa protoboard de un circuito detector de oscuridad. 1) Nombre y apellidos: Curso y grupo: 2) Nombre y apellidos: Curso y grupo:"

Transcripción

1 Montaje en placa protoboard de un circuito detector de oscuridad. Miembros del grupo: 1) 2) 3) 4) 5) 1

2 PRÁCTICAS DE ELECTRÓNICA ANALÓGICA. PRÁCTICA 1. Montajes en placa protoboard. Medida de magnitudes básicas. 0) La placa de montajes protoboard. La placa protoboard (prototipe board) se utiliza para realizar montajes de circuitos de manera rápida, sencilla y no permanente (los componentes se pueden insertar y extraer fácilmente). Presenta un aspecto similar al siguiente: Las patillas de conexión de los componentes se insertan en las ranuras de la placa protoboard. Ojo, las ranuras están conectadas eléctricamente (cortocircuitadas) como se indican en la siguiente figura: Ejemplos de montaje: Montaje correcto: dos resistencias en serie. 2

3 Montaje correcto: tres resistencias en paralelo. Montaje incorrecto: esta resistencia está cortocircuitada. 1) Medida de la tensión en bornes de un resistor: Para medir la tensión en bornes de un elemento, se utiliza el polímetro. Las sondas del polímetro se colocan en paralelo al elemento cuya tensión se quiere.si la medida sale negativa, se conectan las sondas al revés. La sonda a V+ se conecta a la clavija de Voltios (V-Ω) del polímetro, y la sonda a V- se conecta a la entrada común (COM) del polímetro. Se sitúa el selector (rueda) en la zona de medida de voltaje en continua, en el rango adecuado al voltaje a medir. Si aparece un «1» en el display es que hay sobrecarga, hay que subir la escala. 3

4 Practica la medida de tensiones: Toma dos resistores del taller y obtén su resistencias a partir del código de colores (procura que sean de similar valor): R1 = R2 = Montaje serie: Monta los resistores en la placa protoboard en serie, y aliméntalos con una tensión de 4.5 V. Mide la tensión en bornes de ambos resistores con el polímetro. V1 = V2 = Qué observas en las tensiones de los elementos en serie? Montaje paralelo: A continuación, monta los resistores en la placa protoboard en paralelo, y aliméntalos a 4.5 V. Mide la tensión en bornes de ambos resistores con el polímetro. V1 = V2 = Qué observas en las tensiones de los elementos en paralelo? Visto bueno del profesor: (No continúes hasta que el profesor te dé el visto bueno) 2) Medida de la resistencia de un resistor: Para medir la resistencia de un elemento se utiliza el polímetro: Las sondas del polímetro se colocan en paralelo con el elemento cuya resistencia se desea medir. Es muy importante que el elemento no esté conectado a ninguna alimentación (pila, fuente de alimentación, etc.). La resistencia de los componentes se mide desconectando dichos componentes del circuito. La sonda a V+ se conecta a la clavija de Ohmios (V-Ω) del polímetro, y la sonda a V- se conecta a la entrada común (COM) del polímetro. Se sitúa el selector (rueda) en la zona de medida de resistencias, en el rango adecuado a la resistencia a medir. Si aparece un «1» en el display es que hay sobrecarga, hay que subir la escala. Medida de la resistencia de un resistor: 4

5 Practica la medida de resistencias: Toma un LED, un diodo rectificador, un condensador y un relé y mide la resistencia que presentan: R (LED) = R (diodo) = R (condensador) = R (relé) = Toma dos resistores del taller y obtén su resistencias a partir del código de colores (procura que sean de similar valor): R1 = R2 = Mide la resistencia de esos dos resistores con el polímetro R1 = R2 = El valor de resistencia medido con el polímetro debe estar dentro del margen de resistencias indicado por el código de colores. Comprueba que es así. Montaje serie: Monta los resistores en la placa protoboard en serie. Mide con el polímetro la resistencia total de la agrupación serie de R1 y R2. Rs = Comprueba que el resultado coincide con el valor teórico esperado: Rs = R1 + R2 = Montaje paralelo: A continuación, monta los resistores en la placa protoboard en paralelo. Mide con el polímetro la resistencia total de la agrupación en paralelo de R1 y R2. Rp = Comprueba que el resultado coincide con el valor teórico esperado: 1 / Rp = (1 / R1) + (1 / R2) Rp = Visto bueno del profesor: (No continúes hasta que el profesor te dé el visto bueno) 3) Cálculo de la intensidad. Ley de Ohm. a) Practiquemos la Ley de Ohm. Para ello vamos a calcular el valor de intensidad de corriente que circula por un resistor, mediante la medida de la tensión y resistencia en el resistor. Toma un resistor cualquiera. Conecta la resistencia a una alimentación de 4.5 V. Con el polímetro, mide la resistencia del resistor, y la tensión en el resistor: V = R = Aplica la Ley de Ohm para calcular la intensidad de corriente circulante por el resistor: I (A) = b) Continuemos calculando intensidades de corriente: Toma dos resistores (R 1 y R 2 ) y móntalos en paralelo. Conéctalos a una alimentación de 4.5 V. Con el polímetro, mide la resistencia de cada resistor, y la tensión en cada resistor: V 1 = R 1 = V 2 = R 2 = Aplica la Ley de Ohm para calcular la intensidad de corriente circulante por cada resistor: I 1 (A) = I 2 (A) = 5

6 PRÁCTICA 2. Resistores fijos. 1) Código de colores de los resistores. Toma 4 resistores cualesquiera del taller. Anota las bandas de colores de cada resistor: R1 R2 R3 R4 Calcula el valor teórico de cada resistor, incluida su tolerancia: R1 = ± % R2 = ± % R3 = ± % R4 = ± % Toma el valor teórico, y súmale y réstale la tolerancia. Obtendrás el rango de valores posibles para cada resistor. Completa la siguiente tabla: Resistor Resistencia teórica Tolerancia Resistencia MAX. (Teórica + tolerancia) Resistencia MIN. (Teórica - tolerancia) Mide la resistencia real que presenta cada resistor (utiliza el polímetro). La resistencia real debe estar dentro del margen [R teórica tolerancia, R teórica + tolerancia]. R1 (real) = R2 (real) = R3 (real) = R4 (real) = 2) Montaje de resistores en placa protoboard. Realiza los montajes de los siguientes circuitos en placa Protoboard: a) Circuito serie (toma 3 resistencias cualesquiera): 6

7 b) Circuito paralelo: c) Circuito mixto: d) Protección de un LED: e) Divisor de tensión (las dos resistencias deben ser iguales): Mide con el polímetro la tensión en bornes de ambos resistores, y comprueba que la tensión del generador (6 V) se divide entre los dos resistores: V1 = V2 = f) Control de la corriente: 7

8 PRÁCTICA 3. Resistores variables y dependientes. 1) Potenciómetros. a) Estudio de la resistencia variable del potenciómetro. Toma 3 potenciómetros distintos y cambiando la posición del cursor, mide el nivel mínimo, medio y máximo de resistencia que ofrecen mediante el polímetro: Valor máximo Valor intermedio Valor mínimo Potenciómetro Resistencia máxima Resistencia media Resistencia mínima Potenciómetro 1 Potenciómetro 2 Potenciómetro 3 b) Control de iluminación (1). Monta el siguiente circuito en la protoboard, y comprueba que puedes controlar el nivel de iluminación del LED modificando la resistencia del potenciómetro. 8

9 c) Control de iluminación (2). Monta el siguiente circuito en Crocodile, y observa que conforme aumenta la iluminación en un LED, disminuye en el otro LED. 2) Fotoresistores. Estudio del comportamiento del fotoresistor: Toma un LDR del taller. Con el polímetro, mide la resistencia que presenta un LDR, bajo diferentes condiciones de iluminación: Resistencia LDR a plena luz Resistencia LDR en sombra Resistencia LDR a oscuras Notas: A plena luz: sol directo o iluminación directa de una bombilla, linterna o móvil. En sombra: impidiendo que la luz incida de forma directa sobre el LDR (a la sombra). A oscuras: tapando completamente el LDR con la mano, sin tocarlo. 3) Termistores. Estudio del comportamiento del termistor: Toma un termistor del taller. Con el polímetro, mide la resistencia que presenta el termistor, bajo diferentes temperaturas: Termistor a temperatura ambiente Termistor con aumento de temperatura Notas: A temperatura ambiente: el termistor al aire Aumento de temperatura: poner el dedo encima del componente. A la vista de los resultados, el termistor utilizado, es un NTC o un PTC? Marca la opción correcta: NTC PTC 9

10 PRÁCTICA 4. Diodo. 1) Diodo rectificador. Monta los siguientes circuitos para comprobar el funcionamiento del diodo rectificador. Fíjate en la posición de las patillas para montar el circuito de forma correcta. Mide la tensión a la que trabaja el diodo LED y la corriente circulante, en ambos casos: Vd (circuito 1) = I (circuito 1) = Vd (circuito 2) = I (circuito 2) = Explica los resultados que observas. 2) Diodo LED. Monta los siguientes circuitos para comprobar el funcionamiento del diodo LED. Fíjate en la posición de las patillas para montar el circuito de forma correcta. Mide la tensión a la que trabaja el diodo LED y la corriente circulante, en ambos casos: Vd (circuito 1) = I (circuito 1) = Vd (circuito 2) = I (circuito 2) = Explica los resultados que observas. 10

11 PRÁCTICA 5. Funcionamiento básico del transistor. 1) Circuito básico del transistor (1): a) Monta el siguiente circuito en la placa protoboard. Para identificar las patillas del transistor, fíjate bien en la imagen a continuación. b) Explica el funcionamiento del circuito, centrándote en el papel que juega el transistor: 2) Circuito básico del transistor (2): a) Monta el siguiente circuito en la placa protoboard. b) Explica el funcionamiento del circuito, centrándote en el papel que juega el transistor: 11

12 3) Circuito básico del transistor (3): Monta el siguiente circuito en la placa protoboard: a) Qué ocurre cuando aumenta la resistencia del potenciómetro? 4) Circuito básico del transistor (4): Monta el siguiente circuito en la placa protoboard: a) Qué ocurre cuando aumenta la resistencia del potenciómetro? b) En qué se diferencia este circuito del circuito anterior (apartado 3)? c) Dirías que ambos circuitos son complementarios (hacen lo mismo, pero al contrario)? 12

13 PRÁCTICA 6. Detector de oscuridad. Monta en placa protoboard un circuito capaz de encender un LED cuando detecta condiciones de oscuridad (interruptor crepuscular): Notas: La tensión de alimentación dependerá de la tensión de funcionamiento del relé. Para un relé de 6 V se requieren 6 V de alimentación. La resistencia de seguridad de 100Ω es necesaria para proteger el circuito en caso de que el potenciómetro tome el valor mínimo (0 Ω). Recordar que el relé tiene 5 contactos: dos de conexión a la bobina, común (COM), normalmente cerrado (NC) y normalmente abierto (NA). La resistencia de 220Ω se usa para proteger al LED. El potenciómetro se usa para ajustar las condiciones de oscuridad que disparan el circuito. a) Comprueba el funcionamiento del circuito: Cubre el LDR con la mano hasta dejarlo completamente a oscuras. El diodo LED se debe encender. Destapa el LDR para que le incida luz. El diodo LED ha de apagarse. b) Llama al profesor para que verifique que el circuito funciona correctamente. c) Ampliación: el circuito detector de luz (circuito que enciende un LED cuando detecta condiciones de luz) es muy similar. Te atreves a diseñarlo y construirlo? Si lo haces bien, tardarás muy poquito. 13

14 PRÁCTICA 7. Detector de temperatura. Monta en placa protoboard un circuito que active un motor cuando detecta una elevada temperatura: Notas: La tensión de alimentación dependerá de la tensión de funcionamiento del relé y de la tención de funcionamiento del motor. La alimentación debe ser la adecuada para permitir el funcionamiento del relé y el motor. El potenciómetro se usa para ajustar las condiciones de temperatura que disparan el circuito. a) Comprueba el funcionamiento del circuito: Aumenta la temperatura en el termistor (cúbrelo con la mano, acércale un mechero, etc.). El motor se debe activar. Disminuye la temperatura del termistor (déjalo a temperatura ambiente, saca el circuito al exterior, etc.). El motor estará desactivado. b) Llama al profesor para que verifique que el circuito funciona correctamente. 14

15 PRÁCTICA 8. Temporizador con retardo a la desconexión. Monta en placa protoboard un circuito que encienda un LED al pulsar un pulsador. El LED permanecerá encendido unos segundos, y se apagará automáticamente. Notas: Al pulsar el pulsador se activa el circuito (enciende el LED), e inicia la carga del condensador. Al soltar el pulsador, la descarga del condensador a través del potenciómetro fija el tiempo que el LED permanece encendido. Si se desea modificar la temporización, sólo hay que variar la resistencia del potenciómetro. a) Comprueba el funcionamiento del circuito: Al pulsar 1 vez el pulsador, el LED se enciende y permanece encendido unos segundos. Después se apaga automáticamente. Para aumentar el tiempo de encendido, hay que.. Para disminuir el tiempo de encendido, hay que... b) Llama al profesor para que verifique que el circuito funciona correctamente. 15

16 SOLUCIÓN DE PROBLEMAS. El circuito que has montado no funciona, o funciona de forma incorrecta. Antes de llamar al profesor para que te sea él quien solucione el problema, intenta solucionarlo por ti mismo. Comprueba que no has cometido los siguientes errores típicos: 1) Alimentación del circuito. Asegúrate que estás alimentando el circuito, con una pila o una fuente de alimentación. Cerciórate que la pila no está descargada, que la fuente de alimentación está encendida, y que estás llevando la energía del generador al circuito (con cables). Un circuito jamás funcionará sin un generador que le suministre energía eléctrica. 2) Inserciones de componentes y cables en placa protoboard incorrectas. Comprueba que todos los componentes y cables están bien insertados en la placa protoboard. Tanto las patillas de los componentes como el hilo conductor de los cables deben estar bien insertados en sus correspondientes ranuras. 3) Cortocircuitos en placa protoboard. Fíjate de haber conectado correctamente los componentes a la protoboard. Hay filas de ranuras que en la protoboard están conectadas eléctricamente, podrías estar cortocircuitando un componente. Esta resistencia está mal montada (cortocircuitada) Esta resistencia está bien montada (sin cortocircuitar). 4) Componente con patillas no conectadas. Los componentes tienen 2, 3 o más patillas de conexión. Asegúrate que has conectado al circuito todas las patillas necesarias del componente. 5) Componentes conectados sin respetar la polaridad. Hay componentes con terminales bien diferenciados (terminales con distinta funcionalidad). Si no has respetado la polaridad del componente no funcionará, y tu circuito tampoco. Componentes con polaridad: zumbador, condensador electrolítico, diodo, transistor, etc. Componentes sin polaridad: resistor, NTC, LDR, condensador, etc. Un componente conectado sin respetar su polaridad simplemente no funciona. 6) Potenciómetros mal ajustados. En ciertos circuitos el potenciómetro sirve para ajustar el funcionamiento del circuito a las condiciones de operación (luz ambiente, temperatura, etc.). Prueba a variar el valor de resistencia del potenciómetro para ajustar la respuesta del circuito. 7) Conexión de las resistencias variables. Existen dos tipos de resistencias variables: de dos patillas y de tres patillas de conexión. Dependiendo de las patillas de conexión que presente el potenciómetro, su conexión al circuito varía: 16

17 Potenciómetro de dos terminales (Entrada y Salida): Se conecta como cualquier resistor. Potenciómetro de 3 terminales (Entrada, Salida y Cursor): Se conecta el terminal de entrada y el cursor como salida, o bien se interconectan cursor y terminal de salida 8) No hay componentes del valor necesario. Necesitas un resistor de 220Ω pero en el taller no quedan. No pasa nada, toma un resistor de valor similar, pero superior (por ejemplo, toma un resistor de 300 ó 330 Ω). 9) Componente estropeado. Tal vez uno de los componentes que has utilizado está estropeado. Chequea que no están quemados, que sus patillas no están sueltas o rotas, prueba que funcionan con el polímetro, o montándolos en sencillos circuitos de prueba, etc. Este diodo correctamente montado debería iluminarse. Si no lo hace es porque está estropeado. 10) Circuito mal montado. Puede que simplemente no hayas montado bien el circuito. Revisa el esquema y repasa las conexiones que has hecho, comprueba que las conexiones entre los componentes son correctas, que no te has dejado ningún componente del esquema sin conectar, que no hay cables sueltos, etc. 17

Departamento de Tecnología Villargordo. Componentes del grupo Nº : CURSO

Departamento de Tecnología Villargordo. Componentes del grupo Nº : CURSO Departamento de Tecnología Villargordo J.M.A. Componentes del grupo Nº : - - CURSO USO DEL POLÍMETRO DIGITAL Pantalla Selector Clavija para transistores clavija 10A DC clavija VΩmA clavija COMÚN 1. Pantalla

Más detalles

ELECTRICIDAD Y ELECTRÓNICA: MONTAJES PRÁCTICOS

ELECTRICIDAD Y ELECTRÓNICA: MONTAJES PRÁCTICOS ELECTRICIDAD Y ELECTRÓNICA: MONTAJES PRÁCTICOS Monta los siguientes circuitos, calcula y mide las magnitudes que se piden: 1) Con el Voltímetro, mide la tensión de una pila y la de la fuente de tensión

Más detalles

PRÁCTICAS DE ELECTRÓNICA 4º E.S.O.

PRÁCTICAS DE ELECTRÓNICA 4º E.S.O. PRÁCTICAS DE ELECTRÓNICA 4º E.S.O. DEPARTAMENTO DE TECNOLOGÍA I.E.S. SEFARAD www.tecnosefarad.com ALUMNO/A: GRUPO: 1. INTRODUCCIÓN Las prácticas se realizarán de la siguiente manera: En este cuaderno se

Más detalles

PRÁCTICAS CROCODILE CLIPS.

PRÁCTICAS CROCODILE CLIPS. PRÁCTICAS CROCODILE CLIPS. 3º ESO curso 2013-2014 1. Construye el siguiente circuito en serie, formado por dos bombillas idénticas, un generador de 4,5 V y un interruptor, a continuación completa la siguiente

Más detalles

Electrónica REPASO DE CONTENIDOS

Electrónica REPASO DE CONTENIDOS Tema 1 Electrónica Conocerás las principales componentes de los circuitos eléctricos. Resistencias, condensadores, diodos y transistores. Sabrás cómo montar circuitos eléctricos simples. REPASO DE CONTENIDOS

Más detalles

PRÁCTICAS CON CROCODILE CLIPS

PRÁCTICAS CON CROCODILE CLIPS Explica el funcionamiento de los siguientes circuitos. INTERRUPTORES UPUD: Interruptor Un Polo Una Dirección UPDD: Interruptor Un Polo Dos Direcciones DPDD: Interruptor Dos Polos Una Dirección DPDD: Interruptor

Más detalles

Nombre: Grupo: PRÁCTICAS CON CRODILE CLIPS. CIRCUITOS CON BOMBILLAS Realiza los siguientes circuitos y completa las soluciones:

Nombre: Grupo: PRÁCTICAS CON CRODILE CLIPS. CIRCUITOS CON BOMBILLAS Realiza los siguientes circuitos y completa las soluciones: CIRCUITOS CON BOMBILLAS Realiza los siguientes circuitos y completa las soluciones: a) Representa el circuito con el interruptor cerrado, y CIRCUITO SERIE las lecturas de V y A. b) Qué ocurre si se funde

Más detalles

ACTIVIDADES DE ELECTRÓNICA

ACTIVIDADES DE ELECTRÓNICA ACTIVIDADES DE ELECTRÓNICA 1. Dibuja el símbolo de los siguientes componentes electrónicos y explica su función: COMPONENTE IMAGEN REAL SÍMBOLO FUNCIÓN RESISTENCIA FIJA POTENCIÓMETRO LDR TERMISTOR (NTC)

Más detalles

[PRÁCTICAS DE SIMULACIÓN ELECTRÓNICA]

[PRÁCTICAS DE SIMULACIÓN ELECTRÓNICA] 2013 [PRÁCTICAS DE SIMULACIÓN ELECTRÓNICA] 3º E.S.O. PRACTICA Nº 1. RESISTENCIAS VARIABLES POTENCIÓMETRO Monta los circuitos de la figura y observa que ocurre cuando el potenciómetro es de 100Ω, de 1kΩ

Más detalles

TECNOLOGÍA - 4º ESO PRÁCTICAS DE ELECTRÓNICA

TECNOLOGÍA - 4º ESO PRÁCTICAS DE ELECTRÓNICA TECNOLOGÍA 4º ESO PRÁCTICAS DE ELECTRÓNICA RESISTENCIAS (TRABAJO EN GRUPO) Miembros del grupo:........ 1. Determina el valor de cada una de las resistencias que te ha entregado el profesor. Para ello debes,

Más detalles

ELECTRONICA. (Problemas) Alumno: Curso: Año:

ELECTRONICA. (Problemas) Alumno: Curso: Año: (Problemas) Alumno: Curso: Año: (ACTIVIDADES) AW01. RESISTENCIAS (ACTIVIDADES) 1.- Utilizando el código de colores, determinar el valor teórico de la siguiente 2.- Utilizando el código de colores, determinar

Más detalles

Electronica. Estudia los circuitos y componente que permiten modificar la corriente eléctrica: determinada velocidad (filtra)

Electronica. Estudia los circuitos y componente que permiten modificar la corriente eléctrica: determinada velocidad (filtra) Electronica Estudia los circuitos y componente que permiten modificar la corriente eléctrica: 1. Aumentar o disminuir la intensidad 2. Obliga a los electrones a circular en un sentido (rectifica) 3. Deja

Más detalles

4º E.S.O. PRÁCTICAS DE ELECTRICIDAD Y ELECTRÓNICA

4º E.S.O. PRÁCTICAS DE ELECTRICIDAD Y ELECTRÓNICA Cuaderno de prácticas I 4º E.S.O. PRÁCTICAS DE ELECTRICIDAD Y ELECTRÓNICA Departamento de Tecnología I.E.S. Pedro Simón Abril (Alcaraz) REPASO DE CIRCUITOS BÁSICOS 1. Control de un punto de luz desde dos

Más detalles

EJERCICIOS DE ELECTRÓNICA RESISTENCIAS FIJAS

EJERCICIOS DE ELECTRÓNICA RESISTENCIAS FIJAS Qué es la electrónica? Es la parte de la electricidad de trabaja con componentes fabricados con materiales semiconductores. La electrónica usa las señales eléctricas que hay en un circuito como información

Más detalles

Fecha: Alumno: PRACTICA 1: INTRODUCCIÓN AL PROGRAMA COCODRILE. Curso:

Fecha: Alumno: PRACTICA 1: INTRODUCCIÓN AL PROGRAMA COCODRILE. Curso: PRACTICA 1: INTRODUCCIÓN AL PROGRAMA COCODRILE Alumno: Monta los siguientes circuitos utilizando el programa Cocodrile y anota al lado de cada uno de ellos la que sucede al pulsar el elemento de maniobra.

Más detalles

Departamento de Tecnología Villargordo. Componentes del grupo Nº : CURSO

Departamento de Tecnología Villargordo. Componentes del grupo Nº : CURSO Departamento de Tecnología Villargordo Componentes del grupo Nº : - - CURSO DETECTORES ELECTRÓNICOS Para estos montajes se usará el circuito integrado BC 879, este es un circuito que incluye dos transistores

Más detalles

Analógicos. Digitales. Tratan señales digitales, que son aquellas que solo pueden tener dos valores, uno máximo y otro mínimo.

Analógicos. Digitales. Tratan señales digitales, que son aquellas que solo pueden tener dos valores, uno máximo y otro mínimo. Electrónica Los circuitos electrónicos se clasifican en: Analógicos: La electrónica estudia el diseño de circuitos que permiten generar, modificar o tratar una señal eléctrica. Analógicos Digitales Tratan

Más detalles

UNIDAD TEMÁTICA 3: ELECTRÓNICA. 10. Dibuja los esquemas simbólicos de los siguientes circuitos.

UNIDAD TEMÁTICA 3: ELECTRÓNICA. 10. Dibuja los esquemas simbólicos de los siguientes circuitos. 10. Dibuja los esquemas simbólicos de los siguientes circuitos. 11. Sobre los esquemas dibujados en el ejercicio anterior indica mediante flechas el sentido de la corriente eléctrica: (considera que los

Más detalles

ELECTRÓNICA ANALÓGICA. El circuito eléctrico. 1-1 Ediciones AKAL, S. A. Está formado por cuatro elementos fundamentales:

ELECTRÓNICA ANALÓGICA. El circuito eléctrico. 1-1 Ediciones AKAL, S. A. Está formado por cuatro elementos fundamentales: El circuito eléctrico Está formado por cuatro elementos fundamentales: Generador de corriente: pila. Conductor de la corriente: los cables. Control de la corriente: los interruptores. Receptores: bombillas,

Más detalles

COMPONENTES ELECTRÓNICOS

COMPONENTES ELECTRÓNICOS UD 5.- COMPONENTES ELECTRÓNICOS 1. RESISTENCIA FIJA O RESISTOR 2. RESISTENCIAS VARIABLES 3. EL RELÉ 4. EL CONDENSADOR 5. EL DIODO 6. EL TRANSISTOR 7. MEDICIÓN CON POLÍMETRO 1. RESISTENCIA FIJA O RESISTOR

Más detalles

ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO

ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO ELEMENTOS BÁSICOS DE UN CIRCUITO ELECTRÓNICO En un circuito electrónico hay una gran variedad de componentes. Los siguientes son los más habituales. Resistencias Una resistencia es un elemento que se intercala

Más detalles

CIRCUITOS ELECTRÓNICOS COMPONENTES ELECTRÓNICOS

CIRCUITOS ELECTRÓNICOS COMPONENTES ELECTRÓNICOS CIRCUITOS ELECTRÓNICOS En la primera evaluación hemos estudiado los circuitos eléctricos, su principal misión es convertir la energía eléctrica en otra energía más útil, luz en una bombilla, movimiento

Más detalles

P R Á C T I C A S D E E L E C T R Ó N I C A A N A L Ó G I C A

P R Á C T I C A S D E E L E C T R Ó N I C A A N A L Ó G I C A P R Á C T I C A S D E E L E C T R Ó N I C A A N A L Ó G I C A Nombres y apellidos: Curso:. Fecha:.. Firma: PRÁCTICA 1: RESISTENCIAS OBJETIVO: Conocer los tipos y características de las resistencias, así

Más detalles

PRÁCTICAS CON CRODILE CLIPS ELECTRÓNICA. COMPONENTES BÁSICOS. Monta cada uno de los siguientes circuitos, y contesta a las preguntas planteadas.

PRÁCTICAS CON CRODILE CLIPS ELECTRÓNICA. COMPONENTES BÁSICOS. Monta cada uno de los siguientes circuitos, y contesta a las preguntas planteadas. ELECTRÓNICA. COMPONENTES BÁSICOS Monta cada uno de los siguientes circuitos, y contesta a las preguntas planteadas. 1. Construye, estudia y explica el comportamiento del siguiente circuito. En este circuito,

Más detalles

CIRCUITOS CON RESISTENCIAS

CIRCUITOS CON RESISTENCIAS CIRCUITOS CON RESISTENCIAS Divisores de voltaje Videotutorial de la práctica A. DESCRIPCIÓN En esta práctica vamos a montar una serie de circuitos, con diferentes tipos de resistencias, para estudiar lo

Más detalles

(El examen consta de 6 preguntas, todas ellas con la misma puntuación) CÓDIGO DE COLORES DE RESISTENCIAS

(El examen consta de 6 preguntas, todas ellas con la misma puntuación) CÓDIGO DE COLORES DE RESISTENCIAS Nombre: Clase: (El examen consta de 6 preguntas, todas ellas con la misma puntuación) CÓDIGO DE COLORES DE RESISTENCIAS Color 1 er, 2º o 3 er color 4ºcolor Negro 0 Marrón 1 +1% Rojo 2 +2% Naranja 3 Amarillo

Más detalles

Un relé es un interruptor automático controlado por electricidad. Los relés permiten abrir o cerrar circuitos sin la intervención humana.

Un relé es un interruptor automático controlado por electricidad. Los relés permiten abrir o cerrar circuitos sin la intervención humana. 5. RELÉS. Un relé es un interruptor automático controlado por electricidad. Los relés permiten abrir o cerrar circuitos sin la intervención humana. Relé comercial Esquema interno de un relé Simbología

Más detalles

1.-Relé. 2.-Condensador. 3.-LED. 4.-Piezoeléctrico. 5.-Diodo. 6.-Transistor.

1.-Relé. 2.-Condensador. 3.-LED. 4.-Piezoeléctrico. 5.-Diodo. 6.-Transistor. 1.-Relé. 2.-Condensador. 3.-LED. 4.-Piezoeléctrico. 5.-Diodo. 6.-Transistor. 1.-Relé. Realiza el montaje de la figura comprobando el funcionamiento del relé. V=12v B1 V= Prueba ahora los contactos NC.

Más detalles

CIRCUITOS ELECTRÓNICOS COMPONENTES ELECTRÓNICOS

CIRCUITOS ELECTRÓNICOS COMPONENTES ELECTRÓNICOS CIRCUITOS ELECTRÓNICOS En la primera evaluación hemos estudiado los circuitos eléctricos, su principal misión es convertir la energía eléctrica en otra energía más útil, luz en una bombilla, movimiento

Más detalles

ELECTRÓNICA 4º ESO IES JJLOZANO Curso 2013-2014

ELECTRÓNICA 4º ESO IES JJLOZANO Curso 2013-2014 Transistores Transistores Bipolares. PNP y NPN Los transistores son componentes electrónicos formados por semiconductores como los diodos, que en un circuito cumplen funciones de conmutador, amplificador

Más detalles

Prácticas de electricidad Corrección. Para poder interpretar correctamente las correcciones de los ejercicios seguir las siguientes indicaciones:

Prácticas de electricidad Corrección. Para poder interpretar correctamente las correcciones de los ejercicios seguir las siguientes indicaciones: Para poder interpretar correctamente las correcciones de los ejercicios seguir las siguientes indicaciones: En el circuito que debéis leer la corriente está marcada. Por tanto sólo debéis situaros en el

Más detalles

COMPONENTES ELECTRÓNICOS

COMPONENTES ELECTRÓNICOS UD 2.- COMPONENTES ELECTRÓNICOS 2.1. RESISTENCIA FIJA O RESISTOR 2.2. RESISTENCIAS VARIABLES 2.3. EL RELÉ 2.4. EL CONDENSADOR 2.5. EL DIODO 2.6. EL TRANSISTOR 2.7. MONTAJES BÁSICOS CON COMPONENTES ELECTRÓNICOS

Más detalles

EL POLIMETRO. CONCEPTOS BASICOS. MEDIDAS

EL POLIMETRO. CONCEPTOS BASICOS. MEDIDAS EL POLIMETRO. CONCEPTOS BASICOS. MEDIDAS CONCEPTOS BASICOS El aparato de medida más utilizado en electricidad y electrónica es el denominado POLÍMETRO, también denominado a veces multímetro o texter. El

Más detalles

EJERCICIOS TEMA 12: CIRCUITOS ELÉCTRICOS DE CORRIENTE CONTINUA

EJERCICIOS TEMA 12: CIRCUITOS ELÉCTRICOS DE CORRIENTE CONTINUA EJERCICIOS TEMA 12: CIRCUITOS ELÉCTRICOS DE CORRIENTE CONTINUA 1. Qué cantidad de electrones habrán atravesado un cable si la intensidad ha sido de 5 A durante 30 minutos? I = Q = I. t = 5. 30. 60 = 9000

Más detalles

Programa de Tecnologías Educativas Avanzadas. Bach. Pablo Sanabria Campos

Programa de Tecnologías Educativas Avanzadas. Bach. Pablo Sanabria Campos Programa de Tecnologías Educativas Avanzadas Bach. Pablo Sanabria Campos Agenda Conceptos básicos. Relación entre corriente, tensión y resistencia. Conductores, aislantes y semiconductores. Elementos importantes

Más detalles

FUNDAMENTOS DE ELECTRICIDAD

FUNDAMENTOS DE ELECTRICIDAD FUNDAMENTOS DE ELECTRICIDAD RESPUESTAS AL CUESTIONARIO DE REFLEXIÓN 1. Señala si es verdadero o falso: A. En una gotita de leche hay millones de cargas positivas y negativas. VERDADERO B. Las cargas iguales

Más detalles

PRÁCTICAS DE ELECTRICIDAD Y ELECTRÓNICA CON CROCODILE. Lucía Defez Sánchez Profesora de la asignatura tecnología en la ESO

PRÁCTICAS DE ELECTRICIDAD Y ELECTRÓNICA CON CROCODILE. Lucía Defez Sánchez Profesora de la asignatura tecnología en la ESO PRÁCTICAS DE ELECTRICIDAD Y ELECTRÓNICA CON CROCODILE Lucía Defez Sánchez Profesora de la asignatura tecnología en la ESO 1 OBJETO Se elabora el presente cuaderno de prácticas con el fin de facilitar la

Más detalles

APUNTES DE TECNOLOGÍA

APUNTES DE TECNOLOGÍA APUNTES DE TECNOLOGÍA 4º E.S.O. TEMA 1 CIRCUITOS ELÉCTRICOS Alumno: Grupo: 4º 1 CORRIENTE ELÉCTRICA 1.-CIRCUITOS ELÉCTRICOS La corriente eléctrica es un flujo de electrones en el seno de un material conductor.

Más detalles

Unidad didáctica ELECTRICIDAD 2º ESO

Unidad didáctica ELECTRICIDAD 2º ESO Unidad didáctica ELECTRICIDAD 2º ESO TIPOS DE CONEXIONES conexión mixta EFECTOS DE LA CORRIENTE ELÉCTRICA SIMBOLOGÍA NORMALIZADA A la hora de dibujar los circuitos eléctricos en un plano, no se utiliza

Más detalles

Práctica 5 Diseño de circuitos con componentes básicos.

Práctica 5 Diseño de circuitos con componentes básicos. Práctica 5 Diseño de circuitos con componentes básicos. Descripción de la práctica: -Con esta práctica, se pretende realizar circuitos visualmente útiles con componentes más simples. Se afianzarán conocimientos

Más detalles

Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 1 1. INSTRUMENTACIÓN DEL LABORATORIO.

Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 1 1. INSTRUMENTACIÓN DEL LABORATORIO. Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 1 1. INSTRUMENTACIÓN DEL LABORATORIO. Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 2 1.1. Fuente de alimentación CPS250

Más detalles

Prácticas de circuitos eléctricos con Cocodrile

Prácticas de circuitos eléctricos con Cocodrile CEFIRE DE ELDA ÁREA DE TECNOLOGÍA Prácticas de circuitos eléctricos con Cocodrile Autores: Fernández González, Jorge Toledo Jiménez, Beatriz Índice 1. Introducción... 3 2. Estructura de las prácticas...

Más detalles

Unidad 3. Análisis de circuitos en corriente continua

Unidad 3. Análisis de circuitos en corriente continua Unidad 3. Análisis de circuitos en corriente continua Actividades 1. Explica cómo conectarías un polímetro, en el esquema de la Figura 3.6, para medir la tensión en R 2 y cómo medirías la intensidad que

Más detalles

3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA TEMA ELECTRICIDAD

3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA TEMA ELECTRICIDAD 3º ESO Tecnología, programación y robótica Tema Electricidad página 1 de 12 3º ESO TECNOLOGÍA, PROGRAMACIÓN Y ROBÓTICA TEMA ELECTRICIDAD 1.Circuito eléctrico...2 2.MAGNITUDES ELÉCTRICAS...2 3.LEY de OHM...3

Más detalles

MEDIDAS ELÉCTRICAS CON MULTÍMETRO

MEDIDAS ELÉCTRICAS CON MULTÍMETRO MEDIDAS ELÉCTRICAS CON MULTÍMETRO CIRCUITO DE CARGA CON ALTERNADOR La corriente eléctrica que produce el alternador es de tipo alterna aunque, tras pasar por los diodos rectificadores se convierte en corriente

Más detalles

ELECTRÓNICA. 1. Qué es la electrónica? 2. Componentes electrónicos Pasivos

ELECTRÓNICA. 1. Qué es la electrónica? 2. Componentes electrónicos Pasivos ELECTRÓNICA 1. Qué es la electrónica? Es el campo de la ingeniería y de la física que estudia el diseño de circuitos que permiten generar, modificar o tratar una señal eléctrica (circuitos electrónicos).

Más detalles

ELECTRÓNICA ANALÓGICA: COMPONENTES ELECTRÓNICOS.

ELECTRÓNICA ANALÓGICA: COMPONENTES ELECTRÓNICOS. ELECTRÓNICA ANALÓGICA: COMPONENTES ELECTRÓNICOS. Nombre y apellidos: Curso y grupo: 1. INTRODUCCIÓN. La mayoría de aparatos que empleamos cotidianamente funcionan gracias a la electricidad. Sin embargo.

Más detalles

IES Alquibla Departamento de Tecnología 3º ESO ELECTRÓNICA

IES Alquibla Departamento de Tecnología 3º ESO ELECTRÓNICA Introducción ELECTRÓNICA La electrónica es la ciencia que estudia y diseña dispositivos relacionados con el comportamiento de los electrones en la materia. Se encarga del control de flujo de la corriente

Más detalles

Permite manejar grandes intensidades de corriente por medio de otras pequeñas. Basado en materiales semiconductores (germanio, silicio, ).

Permite manejar grandes intensidades de corriente por medio de otras pequeñas. Basado en materiales semiconductores (germanio, silicio, ). Permite manejar grandes intensidades de corriente por medio de otras pequeñas. Basado en materiales semiconductores (germanio, silicio, ). Tienen 3 terminales o patas (base B, colector C y emisor E). Usos:

Más detalles

Nombre: Grupo: PRÁCTICAS CON EL SIMULADOR DE CIRCUITOS

Nombre: Grupo: PRÁCTICAS CON EL SIMULADOR DE CIRCUITOS CIRCUITOS CON BOMBILLAS Realiza los siguientes circuitos y completa las soluciones: CIRCUITO SERIE a) Representa el circuito con el interruptor cerrado, y las lecturas de V y A. b) Qué ocurre si se funde

Más detalles

Ejercicios de ELECTRÓNICA ANALÓGICA

Ejercicios de ELECTRÓNICA ANALÓGICA 1. Calcula el valor de las siguientes resistencias y su tolerancia: Código de colores Valor en Ω Tolerancia Rojo, rojo, rojo, plata Verde, amarillo, verde, oro Violeta, naranja, gris, plata Marrón, azul,

Más detalles

TEMA 13: CIRCUITOS ELÉCTRICOS

TEMA 13: CIRCUITOS ELÉCTRICOS TEMA 13: CIRCUITOS ELÉCTRICOS 1 TEMA 13: CIRCUITOS ELÉCTRICOS 13.1.- QUÉ ES UN CIRCUITO ELÉCTRICO? Un circuito eléctrico es un conjunto de elementos conectados entre sí, por los que circula una corriente

Más detalles

LEY DE OHM EXPERIMENTO 1. CIRCUITOS, TARJETAS DE EXPERIMENTACIÓN

LEY DE OHM EXPERIMENTO 1. CIRCUITOS, TARJETAS DE EXPERIMENTACIÓN LEY DE OHM EXPERIMENTO 1. CIRCUITOS, TARJETAS DE EXPERIMENTACIÓN Objetivos. Estudiar y familiarizarse con el tablero de conexiones (Protoboard ) y la circuitería experimental. Aprender a construir circuitos

Más detalles

TEMA: CIRCUITOS ELÉCTRICOS

TEMA: CIRCUITOS ELÉCTRICOS TEMA: CIRCUITOS ELÉCTRICOS ÍNDICE 1. INTRODUCCIÓN 2 2. LA ELECTRICIDAD 2 3. EL CIRCUITO ELÉCTRICO 2 a) Generador de corriente 3 b) Conductor 3 c) Receptores 3 d) Controladores 3 4. TIPOS DE CIRCUITOS 3

Más detalles

PRACTICA LEY DE OHM CIRCUITOS EN SERIE, PARALELO Y MIXTO

PRACTICA LEY DE OHM CIRCUITOS EN SERIE, PARALELO Y MIXTO Ing. Gerardo Sarmiento Díaz de León CETis 63 PRACTICA LEY DE OHM CIRCUITOS EN SERIE, PARALELO Y MIXTO TRABAJO DE LABORATORIO Ley de Ohm Asociación de Resistencias OBJETO DE LA EXPERIENCIA: Comprobar la

Más detalles

ELECTRONICA. Las resistencias, tanto en electricidad como en electrónica, se pueden representar de dos formas, ambas igualmente válidas:

ELECTRONICA. Las resistencias, tanto en electricidad como en electrónica, se pueden representar de dos formas, ambas igualmente válidas: Diferencia entre electricidad y electrónica. ELECTRONICA La electricidad trabaja con conductores y la electrónica con semiconductores que tienen unas propiedades diferentes. La electrónica ha permitido

Más detalles

Electrónica Analógica

Electrónica Analógica Electrónica Analógica Circuitos con Transistores Gabriel Ocaña Rebollo Ingeniero Superior de Telecomunicaciones Profesor de Tecnología CEP Indalo, Marzo 2012 El Transistor como conmutador En corte: I B

Más detalles

Profesor: Pascual Santos López

Profesor: Pascual Santos López Pascual Santos López Alumno: PRÁCTICA Nº 1: Comprobador de diodos Objetivos generales de las presentes prácticas: 1. Adquirir las competencias específicas para montar y manejar sistemas electrónicos y

Más detalles

Electricidad. Electrónica

Electricidad. Electrónica Electricidad. Electrónica 1. El átomo. Su estructura. 2. Las partículas elementales. Los electrones. 3. La corriente eléctrica. Tipos de corriente eléctrica. 4. Las magnitudes eléctricas más importantes.

Más detalles

IES VILLALBA HERVAS. Se dice que entre ellos hay una, pero este concepto se conoce más como eléctrica o y se mide en.

IES VILLALBA HERVAS. Se dice que entre ellos hay una, pero este concepto se conoce más como eléctrica o y se mide en. Electricidad La materia está formada por constituidos por tres tipos de partículas:, y. Los protones tienen carga eléctrica. Están en el. Los electrones tienen carga eléctrica y giran alrededor del núcleo

Más detalles

INTERRUPTOR MAGNÉTICO

INTERRUPTOR MAGNÉTICO INTERRUPTOR MAGNÉTICO Coge los bornes de cable sueltos y conéctalos a la pila. Mientras tanto otro compañero acercará el imán al interruptor magnético. Qué sucede? (Elige la correcta) Un interruptor magnético

Más detalles

MONTAJES ELECTRÓNICOS ANALÓGICOS

MONTAJES ELECTRÓNICOS ANALÓGICOS MONTAJES ELECTRÓNICOS ANALÓGICOS Monta los siguientes circuitos electrónicos con el Cocodrile Clips para que comprendas mejor el funcionamiento de los diversos componentes electrónicos que hemos visto

Más detalles

TEMA 3: ELECTRICIDAD Y ELECTRÓNICA

TEMA 3: ELECTRICIDAD Y ELECTRÓNICA TEMA 3: ELECTRICIDAD Y ELECTRÓNICA Francisco Raposo Tecnología 3ºESO 1. INTRODUCCIÓN. LA CARGA ELÉCTRICA Los materiales están formados por átomos que se componen a su vez de: - Electrones: son carga eléctrica

Más detalles

PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM.

PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM. PRÁCTICA 1: MEDIDAS ELÉCTRICAS. LEY DE OHM. Objetivos: Aprender a utilizar un polímetro para realizar medidas de diversas magnitudes eléctricas. Comprobar la ley de Ohm y la ley de la asociación de resistencias

Más detalles

Resistencias Variables

Resistencias Variables Resistencias Variables Estos tipos de resistencias se denominan potenciómetros, siendo posible modificar el valor óhmico mediante un dispositivo móvil llamado cursor. Estos valores varían entre cero y

Más detalles

Módulo 1. Sesión 1: Circuitos Eléctricos

Módulo 1. Sesión 1: Circuitos Eléctricos Módulo 1 Sesión 1: Circuitos Eléctricos Electricidad Qué es electricidad? Para qué sirve la electricidad? Términos relacionados: Voltaje Corriente Resistencia Capacitor, etc. Tipos de materiales Conductores

Más detalles

ELECTRÓNICA ANALÓGICA: COMPONENTES ELECTRÓNICOS.

ELECTRÓNICA ANALÓGICA: COMPONENTES ELECTRÓNICOS. ELECTRÓNICA ANALÓGICA: COMPONENTES ELECTRÓNICOS. Nombre y apellidos: Curso y grupo: 1. INTRODUCCIÓN. La mayoría de aparatos que empleamos cotidianamente funcionan gracias a la electricidad. Sin embargo.

Más detalles

IES GUSTAVO ADOLFO BÉCQUER DEPARTAMENTO DE TECNOLOGÍA TECNOLOGÍAS 4ºESO PLAN DE RECUPERACIÓN SEPTIEMBRE Nombre:... Curso:...

IES GUSTAVO ADOLFO BÉCQUER DEPARTAMENTO DE TECNOLOGÍA TECNOLOGÍAS 4ºESO PLAN DE RECUPERACIÓN SEPTIEMBRE Nombre:... Curso:... DEPARTAMENTO DE TECNOLOGÍA TECNOLOGÍAS 4ºESO PLAN DE RECUPERACIÓN SEPTIEMBRE 2010 Nombre:... Curso:... Se recomienda realizar los ejercicios propuesto y un resumen por cada tema. Presentación de los trabajos:

Más detalles

PRÁCTICAS DE ELECTRICIDAD CON CROCODILE CLIPS.

PRÁCTICAS DE ELECTRICIDAD CON CROCODILE CLIPS. PRÁCTICAS DE ELECTRICIDAD CON CROCODILE CLIPS. Repaso de electricidad (1). Circuito eléctrico. Arranca Crocodile Clips y presta atención a la explicación del profesor. Él te guiará y te enseñará la electricidad,

Más detalles

CIRCUITOS ELÉCTRICOS

CIRCUITOS ELÉCTRICOS CIRCUITOS ELÉCTRICOS 1.- CONCEPTOS FUNDAMENTALES 2.-MAGNITUDES ELÉCTRICAS. LEY DE OHM 3.- ANÁLISIS DE CIRCUITOS 3.1.- CIRCUITO SERIE 3.2.- CIRCUITO PARALELO 3.3.- CIRCUITO MIXTO 4.- INSTRUMENTOS DE MEDIDA

Más detalles

TEMA ELECTRICIDAD 3º ESO TECNOLOGÍA

TEMA ELECTRICIDAD 3º ESO TECNOLOGÍA 3º ESO Tecnologías Tema Electricidad página 1 de 6 TEMA ELECTRICIDAD 3º ESO TECNOLOGÍA 1.Circuito eléctrico...2 2.MAGNITUDES ELÉCTRICAS...2 3.LEY de OHM...3 3.1.Circuito EN SERIE...3 3.2.Circuito EN PARALELO...4

Más detalles

2. Medida de tensiones (V) y de Intensidades (I):

2. Medida de tensiones (V) y de Intensidades (I): 2. Medida de tensiones (V) y de Intensidades (I): Para medir TENSIONES (V) Para medir TENSIONES (V) con un polímetro, debes conectar el polímetro en PARALELO. Seleccionamos DC. La sonda roja se introduce

Más detalles

B Acumuladores de corriente eléctrica

B Acumuladores de corriente eléctrica 1 B Acumuladores de corriente eléctrica Condensadores Distintos tipos de condensadores. 2 3 Configuraciones para acoplar condensadores. Pilas y baterías a) Características de las pilas y baterías: Resistencia

Más detalles

Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO

Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO FCULTD DE CIENCIS UNIERSIDD DE LICNTE Grado de Óptica y Optometría signatura: FÍSIC Curso: 200- Práctica nº 5. MEDIDS DE RESISTENCIS, OLTJES Y CORRIENTES: MULTÍMETRO Material Fuente de alimentación de

Más detalles

Juego de habilidad con ondulaciones. Material suministrado:

Juego de habilidad con ondulaciones. Material suministrado: 104.249 Juego de habilidad con ondulaciones Material suministrado: 1 Contrachapado de madera 5 x 200 x 200 mm 1 Contrachapado de madera 5 x 70 x 70 mm 3 Varillas de madera Ø 10 x 1 Hembrilla 15 a 20 mm

Más detalles

SINTETIZADOR ANALÓGICO ELECTRÓNICO. TUTORIAL. TALLER DE ELECTRÓNICA BÁSICA.

SINTETIZADOR ANALÓGICO ELECTRÓNICO. TUTORIAL. TALLER DE ELECTRÓNICA BÁSICA. SINTETIZADOR ANALÓGICO ELECTRÓNICO. TUTORIAL. TALLER DE ELECTRÓNICA BÁSICA. WWW.DIGITART.COM.MX SINTETIZADOR ANALÓGICO ELECTRÓNICO. MATERIALES. 8 1 2 7 3 4 9 6 10 11 12 5 1. Protoboard. 2. Circuito Integrado

Más detalles

PRÁCTICA: MEDIDAS ELÉCTRICAS. LEY DE OHM.

PRÁCTICA: MEDIDAS ELÉCTRICAS. LEY DE OHM. PRÁCTICA: MEDIDAS ELÉCTRICAS. LEY DE OHM. Objetivos: Aprender a utilizar un polímetro para realizar medidas de diversas magnitudes eléctricas. Comprobar la ley de Ohm y las leyes de la asociación de resistencias

Más detalles

CIRCUITOS ELÉCTRICOS

CIRCUITOS ELÉCTRICOS CIRCUITOS ELÉCTRICOS 1. LA CORRIENTE ELÉCTRICA. 1.1. Estructura del átomo. Todos los materiales están formados por átomos. En el centro del átomo (el núcleo) hay dos tipos de partículas: los protones (partículas

Más detalles

CORRIENTE ELÉCTRICA. Con respecto a la electricidad se distinguen dos tipos de materiales:

CORRIENTE ELÉCTRICA. Con respecto a la electricidad se distinguen dos tipos de materiales: CORRIENTE ELÉCTRICA Autor: Santiago Camblor Índice 1 La carga eléctrica. 2 Tipos de materiales 3 La corriente eléctrica 4 Elementos de un circuito 5 Unidades y magnitudes eléctricas 6 ESQUEMA ELÉCTRICO

Más detalles

En el siguiente informe trataremos la ley de ohms desde una perspectiva practica.

En el siguiente informe trataremos la ley de ohms desde una perspectiva practica. GUIA DE LABORATORIO NUMERO 1 USO DEL MULTITESTER LEY DE OHM (c) año 2001 INTRODUCCIÓN En el siguiente informe trataremos la ley de ohms desde una perspectiva practica. Con la ayuda de experiencias practicas

Más detalles

Corriente continua (CC): Cuando todos los electrones van en la misma dirección.

Corriente continua (CC): Cuando todos los electrones van en la misma dirección. 1. INTRODUCCIÓN Antes de empezar la Unidad de electrónica y control, vamos a recordar unos conceptos básicos de electricidad: 1.1. CORRIENTE ELÉCTRICA Se define como el movimiento ordenado de electrones

Más detalles

Tema 1: Electricidad y electrónica

Tema 1: Electricidad y electrónica Tema 1: Electricidad y electrónica 1.- La corriente eléctrica Cualquier trozo de materia está formado por una cantidad enorme de unas partículas pequeñísimas, a las que los científicos han dado el nombre

Más detalles

R ' V I. R se expresa en Ohmios (Ω), siempre que I esté expresada en Amperios y V en Voltios.

R ' V I. R se expresa en Ohmios (Ω), siempre que I esté expresada en Amperios y V en Voltios. I FUNDAMENTO TEÓRICO. LEY DE OHM Cuando aplicamos una tensión a un conductor, circula por él una intensidad, de tal forma que si multiplicamos (o dividimos) la tensión aplicada, la intensidad también se

Más detalles

ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA. Práctica 2 de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO

ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA. Práctica 2 de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO EL OSCILOSCOPIO DIGITAL Circuitos. Estudio del Régimen Transitorio.

Más detalles

UD6. ELECTRICIDAD Y ELECTRÓNICA

UD6. ELECTRICIDAD Y ELECTRÓNICA UD6. ELECTRICIDAD Y ELECTRÓNICA BLOQUE 1 1. LA CORRIENTE ELÉCTRICA Y SUS MAGNITUDES. VOLTAJE RESISTENCIA INTENSIDAD LEY DE OHM POTENCIA ELÉCTRICA ENERGÍA ELÉCTRICA 2. CORRIENTE CONTINUA Y CORRIENTE ALTERNA.

Más detalles

PROYECTO DE APLICACIÓN: LUZ AUTOMATICA NOCTURNA

PROYECTO DE APLICACIÓN: LUZ AUTOMATICA NOCTURNA UNIVERSIDAD NACIONAL DE SAN JUAN FACULTAD DE FILOSOFIA, HUMANIDADES Y ARTES DEPARTAMENTO DE FÍSICA Y QUÍMICA CÁTEDRA: ELECTRÓNICA GENERAL Alumna: Caño Cabrera, Claudia Alejandra rodri_mari2007@yahoo.com.ar

Más detalles

BLOQUE.- ELECTRICIDAD - GRUPO: 2º E.S.O. ALUMNO-A:

BLOQUE.- ELECTRICIDAD - GRUPO: 2º E.S.O. ALUMNO-A: BLOQUE.- ELECTRICIDAD - GRUPO: 2º E.S.O. ALUMNO-A: 1.- Completa la siguiente tabla. En la columna función escoge alguna de las siguientes expresiones. controla paso de corriente-proporciona energía-utiliza

Más detalles

Problemas de ELECTRICIDAD

Problemas de ELECTRICIDAD Problemas de ELECTRICIDAD. Cargas eléctricas. Cálculo de I, N y t. Aplicación de I = N / t 1. Calcula qué intensidad de corriente ha circulado por una lámpara que ha estado encendida durante 3 segundos,

Más detalles

Práctica 4. Control de potencia en corriente alterna

Práctica 4. Control de potencia en corriente alterna Práctica 4. Control de potencia en corriente alterna 1. Objetivos Conocer el funcionamiento de sistemas de control de corriente alterna. Conocer el funcionamiento y la utilidad de los integrados optoacopladores.

Más detalles

ACTIVIDADES DE ANÁLISIS: CIRCUITOS CON TRANSISTOR

ACTIVIDADES DE ANÁLISIS: CIRCUITOS CON TRANSISTOR ACTIVIDADES DE ANÁLISIS: CIRCUITOS CON TRANSISTOR 1 TEMPORIZADOR 1 C Observa el esquema del temporizador y contesta a las siguientes preguntas: (2) Cómo está el LED en este momento, suponiendo que C está

Más detalles

Laboratorio de Electricidad PRACTICA - 3 LEY DE OHM. PROPIEDADES DE LOS CIRCUITOS DE RESISTENCIAS SERIE Y PARALELO

Laboratorio de Electricidad PRACTICA - 3 LEY DE OHM. PROPIEDADES DE LOS CIRCUITOS DE RESISTENCIAS SERIE Y PARALELO Laboratorio de lectricidad PCIC - 3 LY D OHM. POPIDDS D LOS CICUIOS D SISNCIS SI Y PLLO I - Finalidades 1.- Comprobar experimentalmente la ley de Ohm. 2.- Comprobar experimentalmente que en un circuito

Más detalles

CURSO TALLER ACTIVIDAD 3 PROTOBOARD MULTÍMETRO MEDICIÓN DE VOLTAJES Y CORRIENTES DE CORRIENTE DIRECTA

CURSO TALLER ACTIVIDAD 3 PROTOBOARD MULTÍMETRO MEDICIÓN DE VOLTAJES Y CORRIENTES DE CORRIENTE DIRECTA CUSO TALLE ACTIIDAD 3 POTOBOAD MULTÍMETO MEDICIÓN DE OLTAJES Y COIENTES DE COIENTE DIECTA FUENTE DE OLTAJE DE COIENTE DIECTA Como su nombre lo dice, una fuente de voltaje de corriente directa (C.D) es

Más detalles

TEMA ELECTRÓNICA 3º ESO TECNOLOGÍA curso 15-16

TEMA ELECTRÓNICA 3º ESO TECNOLOGÍA curso 15-16 3º ESO TPR Tema Electrónica sencilla 2015-16 página 1 de 11 TEMA ELECTRÓNICA 3º ESO TECNOLOGÍA curso 15-16 Índice de contenido 1 Electrónica...2 2 Circuitos más claros: separamos + y de la pila...2 3 El

Más detalles

TEMA ELECTRÓNICA 3º ESO TECNOLOGÍA

TEMA ELECTRÓNICA 3º ESO TECNOLOGÍA 3º ESO Tecnologías Tema Electrónica página 1 de 11 TEMA ELECTRÓNICA 3º ESO TECNOLOGÍA Índice de contenido 1 Electrónica...2 2 Pilas en los circuitos electrónicos...2 3 DIODO...2 4 LED (diodo emisor de

Más detalles

Medidor de Electrostática

Medidor de Electrostática Medidor de Electrostática Medidor idóneo para la medición de carga electrostática en superficies, objetos en movimiento e incluso en entornos ionizados. ÍNDICE 1. Introducción 2. Seguridad 3. Uso y funcionamiento

Más detalles

UNIDAD 5.- LA ELECTRICIDAD

UNIDAD 5.- LA ELECTRICIDAD UNIDAD 5.- LA ELECTRICIDAD 5.1. CONCEPTOS GENERALES. 5.2. CORRIENTE ELÉCTRICA. 5.3. CIRCUITO ELÉCTRICO: SIMBOLOGÍA 5.4. MAGNITUDES ELÉCTRICAS: LA LEY DE OMH 5.5. ASOCIACIÓN DE RECEPTORES 5.1. CONCEPTOS

Más detalles

LABORATORIO_01: Resistencias Especiales

LABORATORIO_01: Resistencias Especiales LABORATORIO_01: Resistencias Especiales CURSO : ELECTRONICA ANALOGICA INSTRUCTOR : RAUL ROJAS REATEGUI 1.- CRITERIOS DE EVALUACION Criterios de evaluación de individual en el Taller Criterios de Evaluación

Más detalles

Prácticas de electrónica básica para el área de Tecnología en Educación Secundaria. Curso para profesores.

Prácticas de electrónica básica para el área de Tecnología en Educación Secundaria. Curso para profesores. Prácticas de electrónica básica para el área de Tecnología en Educación Secundaria. Curso para profesores. CEP de Albacete. Ponente: Jorge Muñoz Rodenas febrero de 2007 1 ELECTRONICA BASICA PARA PROFESORES

Más detalles

Electrónica Analógica

Electrónica Analógica Objetivos Antes de empezar Esta quincena aprenderá sobre: Diseñar circuitos electrónicos analógicos sencillos con la simbología adecuada. Describir el funcionamiento y la aplicación de un circuito electrónico

Más detalles

PRÁCTICAS DE ELECTRÓNICA ANALÓGICA

PRÁCTICAS DE ELECTRÓNICA ANALÓGICA PRÁCTICAS DE ELECTRÓNICA ANALÓGICA PRÁCTICAS DE ELECTRÓNICA ANALÓGICA Nombres y apellidos: Curso:. Fecha:.. PRÁCTICA 1: RESISTENCIAS OBJETIVO: Conocer los tipos y características de las resistencias, así

Más detalles