Integral Definida. Tema Introducción. 6.2 Definición de Integral Definida

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida"

Transcripción

1 Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de sumndos tiende infinito y cd uno de ellos tiende cero. Desde el punto de vist histórico l construcción del concepto riguroso de integrl está socido l cálculo de áres. 6.2 Definición de Integrl Definid Comenzremos nlizndo el problem de clculr el áre determind por el eje de bsciss, ls rects =, = b y l gráfic de l función f(), que supondremos en un primer cso continu y positiv en el intervlo [, b]: L ide que utilizremos es prtir el intervlo [, b] en vrios subintervlos: [, 1 ], [ 1, 2 ],... [ n 1, b], de mner que el áre que buscmos será l sum de ls áres de cd un de ls figurs plns que resultn de dich división. Tomemos hor en cd sub-intervlo un vlor rbitrrio de l bscis: {ξ 1,..., ξ n }, y construymos el rectángulo de ltur f(ξ) correspondiente cd uno de los subintervlos (ver Figur 8.1 derech). Podemos sí proimr el vlor del áre buscd por l sum: A f(ξ 1 ) ( 1 ) + f(ξ 2 ) ( 2 1 ) f(ξ n ) (b n 1 ) Evidentemente est proimción será tnto mejor cunto más subintervlos se introduzcn, y en prticulr si el número de ellos tiende infinito (y l nchur de todos y cd uno de ellos tiende cero) entonces en dicho límite el resultdo será ecto y nos proporcionrá el áre buscd. Este proceso de pso l límite es el que define l integrl definid o integrl de Riemnn, que veremos continución con más detlle: 59

2 60 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 8 y y b Ξ 1 1 Ξ 2 2 Ξ 3 3 Ξ 4 b Figur 6.1: Construcción de un sum de Riemnn. El concepto de integrl definid se construye prtir de l ide de psr l límite un sum cundo el número de sumndos tiende infinito y simultánemente cd uno de los sumndos tiende cero. Pr determinr con precisión est ide introduciremos ls siguientes definiciones: Definición. Ddo un intervlo [, b] llmremos prtición de [, b] tod colección de n + 1 puntos P = { 0, 1,, n } tles que = 0 < 1 < 2 < < n = b. Tod prtición P del intervlo [, b] lo divide en n subintervlos [ k 1, k ] de nchurs respectivs k = k k 1. Definición. Dd un función f() definid en el intervlo [, b], un prtición P = { 0, 1,, n } de [, b] y ddos n puntos ξ = {ξ 1, ξ 2,, ξ n } tles que ξ k [ k 1, k ], se llm sum integrl o sum de Riemnn de l función f() en [, b] correspondiente l prtición P y l elección de puntos ξ l sum siguiente: n S(f, P, ξ) = f(ξ k ) k = f(ξ 1 ) f(ξ n ) n k=1 Si suponemos que l función es continu 1 en [, b] entonces, por el teorem de Weierstrss, f() lcnz su vlor máimo M k y su mínimo m k en cd subintervlo [ k 1, k ], podemos entonces construir ls sums de Riemnn correspondientes dichos vlores, obteniendo l sum superior de Riemnn de f() en [, b] con respecto l prtición P : n U(f, P ) = M k k y l respectiv sum inferior: L(f, P ) = k=1 n m k k 1 Relmente serí suficiente con que f() fuer continu en cd subintervlo de l prtición P. k=1

3 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 8 61 Es evidente entonces que el conjunto de tods ls sums de Riemnn de un función dd en un intervlo, con respecto un prtición concret P, está cotdo superiormente por U(f, P ) e inferiormente por L(f, P ). Definición. Se dice que un función f() definid en [, b] es integrble (en el sentido de Riemnn, o simplemente integrble) en [, b] si el supremo de tods sus sums inferiores de Riemnn coincide con el ínfimo de tods sus sums superiores. A dicho número se le denomin integrl definid o integrl de Riemnn de f() en [, b] y se denot como: f() d Es posible definir de mner equivlente l integrl definid como el límite de ls sums de Riemnn de l función en el intervlo cundo el número de puntos de ls prticiones considerds tiende infinito mientrs que l nchur máim de los subintervlos determindos por l prtición tiende cero, siempre que dicho límite se demás independiente de l elección de puntos relizd pr construir ls sums de Reiemnn. L definición de integrl definid se complet ñdiendo que se considerrá tmbién el cso en el que > b, y el cso = b, de l form: f()d = b f()d ; f()d = 0 Ejemplo: Clculemos ls integrles: d, d En el primer cso ls sums de Riemnn serán de l form: S(f, P, ξ) = n = b independientemente de l prtición tomd y de l elección de puntos relizd. L integrl por tnto es: d = b que obvimente coincide con el áre del rectángulo de bse b y ltur 1. (Ver Figur 8.2, izquierd). Pr clculr l segund integrl podemos proceder de vris forms. En primer lugr es evidente que el resultdo de l integrl v ser el áre del trpecio de l Figur 8.2 (derech), y sbemos que el áre de un trpecio es igul l producto de l ltur (b ) por l sum de ls bses dividid por dos 1 2 ( + b), es decir: d = 1 2 ( + b)(b ) = 1 2 ( b 2 2)

4 62 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 8 y y b b b Figur 6.2: Funciones f() = 1 y f() = en el intervlo [, b]. Demostrremos no obstnte este resultdo plicndo directmente l definición de integrl definid. Ddo que l función f(s) = es continu, será integrble en [, b]. Ls sums de Riemnn correspondientes un prtición culquier P = { 0, 1,..., n }, con = 0 < 1 <... < n = b será: S(f, P, ξ) = ξ ξ ξ n n = ξ 1 ( 1 0 ) + ξ 2 ( 2 1 ) ξ n (b n 1 ) siendo ξ = {ξ 1,..., ξ n } un elección culquier de puntos en los subintervlos de l prtición P. Ddo que f() es creciente siempre, ls sums superiores e inferiores de Riemnn se obtienen eligiendo ξ i = i y ξ i = i 1 respectivmente: U(f, P ) = 1 ( 1 0 ) + 2 ( 2 1 ) n ( n n 1 ) = n ( 2 i i i 1 ) i=1 L(f, P ) = 0 ( 1 0 ) + 1 ( 2 1 ) n 1 ( n n 1 ) = n ( i i 1 2 i 1) Observmos entonces que se cul se l prtición P l sum de U(f, P ) y L(f, P ) es: U(f, P ) + L(f, P ) = 2 n 2 0 = b 2 2 Si tommos hor el límite de Riemnn, teniendo en cuent que f() es integrble, result que tnto U(f, P ) como L(f, P ) tienden l integrl definid y por tnto: i=1 Q.E.D. U(f, P ) + L(f, P ) 2 d = b 2 2 d = 1 2 ( b 2 2) 6.3 Propieddes básics 1. Si f() es integrble en [, b] entonces está cotd en [, b].

5 CÁLCULO / CIENCIAS AMBIENTALES / TEMA Si f() es continu en [, b] entonces es integrble en [, b]. 3. Si f() está cotd en [, b] y present en dicho intervlo un número finito de discontinuiddes, entonces es integrble en [, b]. Est propiedd tmbién es ciert si el número de discontinuiddes es infinito pero contble (numerble). 4. L integrl definid es linel, es decir: Si f() y g() son dos funciones integrbles en [, b], entonces su sum tmbien lo es y se verific: (f() + g())d = f()d + mientrs que si k es un número rel culquier, entonces: kf()d = k 5. Ddos tres números reles, b y c, se verific: f()d = c siempre que ls integrles nteriores eistn. f()d + f()d c f()d g()d 6. Si f() g(), [, b] y mbs son integrbles en [, b], entonces se verific: f() d g() d 7. Si < b y f() es integrble en [, b], se verific: f()d f() d 6.4 Teorem Fundmentl del Cálculo y Regl de Brrow Teorem del Vlor Medio del Cálculo Integrl. Si f() es un función continu en el intervlo [, b], entonces eiste en [, b] l menos un punto c tl que se verific: f()d = (b ) f(c) Not: l número rel f = 1 b b f()d se le llm vlor medio o vlor promedio de f() en [, b]. Demostrción: Ddo que f() es continu en [, b], por el teorem de Weierstrss lcnz en [, b] su vlor máimo, M y su mínimo, m. Tendremos entonces, utilizndo ls propieddes nteriormente epuests: m f() M, [, b]

6 64 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 8 y sí: m d f() d M d m(b ) m f()d b M f()d M(b ) Pero l ser M y m lcnzdos en [, b] (supongmos que en los puntos 1 y 2, [ 1, 2 ] [, b]), tendremos que f() lcnz todos los vlores intermedios entre m y M, y por tnto: c [ 1, 2 ] c [, b] tl que: f(c) = f()d b Q.E.D. Plnteremos continución el Teorem Fundmentl del Cálculo, que relcion dos conceptos prentemente diferentes como son el de integrl indefinid (operción invers o recíproc de l derivción) y el de integrl definid (límite de sums cundo el número de sumndos tiende infinito mientrs que cd sumndo tiende cero): Teorem Fundmentl del Cálculo. Se f() un función continu en el intervlo [, b], entonces l función F () definid de l form: F () = f(t)dt en el intervlo [, b] es derivble en (, b) y demás F () = f(). Not: Si f() es integrble pero no continu en [, b] entonces sólo podemos segurr que F () es continu en [, b], pero l derivbilidd de F () sólo está grntizd en los puntos de continuidd de f(). L función F () tiene un significdo geométrico evidente ddo que nos proporcion el áre determind 2 por l gráfic de f() entre el punto inicil y un punto concreto del intervlo [, b]. Regl de Brrow. Si f() es continu en [, b] y G() es un primitiv de f() en [, b], entonces se verific: f()d = G() b = G(b) G() Demostrciones: Demostrremos en primer lugr el Teorem Fundmentl del Cálculo: Dd l función f() continu en [, b], definiremos entonces en [, b] l función: F () = f(u)du 2 Evidentemente hblmos de áre en sentido figurdo, pues se trt relmente de un áre pr funciones definids positivs en [, b].

7 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 8 65 Consideremos h > 0 tl que y + h pertenezcn mbos l intervlo [, b], tendremos entonces (plicndo ls propieddes básics de ls integrles) que: F ( + h) F () = +h f(u)du f(u)du = +h f(u)du Aplicndo continución el Teorem del Vlor Medio en el intervlo [, + h], eistirá un vlor c [, + h] tl que: +h f(u)du = f(c)( + h ) = f(c) h Pero entonces l derivd de F () en el punto se re-escribe de l form: F F ( + h) F () () = lim = lim f(c) h 0 h h 0 y ddo que f() es continu en [, b] y, en consecuenci, en [, + h], tendremos que h 0 nos llev que c + h c, y en definitiv, l ser f() continu: Q.E.D 3. lim f(c) = lim f(c) = f() F () = f() h 0 c Demostrción de l regl de Brrow: Dd l función continu f() en [, b], si G() es un primitiv de f() en [, b] tendremos que, ddo que F () definid nteriormente tmbién lo es, mbs deben diferencirse tn sólo en un constnte C, de est form: En prticulr: G() F () = C, [, b] G() F () = C G() G(b) F (b) = C G(b) f()d = C f()d = C restndo mbs epresiones, y considerndo que f()d = 0, tendremos: Q.E.D. f()d = G(b) G() 6.5 Integrles Impropis En l construcción y definición de integrl definid o integrl de Riemnn hemos prtido de un función f() definid en un intervlo finito [, b] y demás cotd en el mismo. Ls integrles impropis se definen precismente pr contemplr l posibilidd de integrr en intervlos infinitos, por un ldo, e integrr funciones no cotds, por otro. 3 Estrictmente hblndo hemos demostrdo tn sólo que l derivd por l derech de F () es f(). Es trivil completr l demostrción en el otro sentido.

8 66 CÁLCULO / CIENCIAS AMBIENTALES / TEMA Integrles Impropis de Primer Especie Un integrl impropi de primer especie es un integrl etendid un intervlo no finito. Pr definirl utilizremos l siguiente epresión: f()d = lim b f()d Si dicho límite eiste y es finito diremos que l integrl impropi de primer especie f()d es convergente, en cso contrrio será divergente. De mner nálog se definen ls integrles impropis de primer especie siguientes: f()d = lim f()d ; Integrles Impropis de Segund Especie f()d = lim k k k f()d Un condición necesri pr que f() fuer integrble en [, b] er que estuvier cotd en [, b]. Si f() es integrble en [, b ε] y no está cotd en un entorno de b, definimos l integrl impropi de segund especie: f() d = lim ε 0+ ε f() d L integrl será convergente si el límite eiste y es finito. Ejemplos: y otr de segund especie: Un integrl impropi de primer especie convergente: d = lim b (rctn b rctn 0) = π 2 d 1 2 = lim ε 0+ (rcsen(1 ε) rcsen 0) = π Aplicciones geométrics de l Integrl definid Cálculo de Áres. Funciones eplícits en Coordends Crtesins. Dd un curv y = f(), el áre determind por dich curv, ls rects =, = b (con < b) y el eje de bsciss nos viene dd por l integrl definid: A = f() d

9 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 8 67 En el cso de que l vrible despejd se l, es decir un ecución eplícit de l form = g(y), l epresión: A = d c g(y) dy nos proporcion el áre determind por el eje de ordends, ls rects y = c, y = d y l gráfic de g(y). Epresiones en prmétrics: El áre delimitd por l curv c epresd en ecuciones prmétrics, c y el eje OX entre ls bsciss (t 1 ) y (t 2 ) es, A = t2 Epresiones en coordends polres: t 1 y(t) (t) dt { = (t) y = y(t) El áre delimitd por l curv c epresd en ecuciones polres r = r(θ) y ls rects rdiles θ = θ 1 y θ = θ 2 es dd por, A = 1 2 θ2 θ 1 r 2 (θ)dθ Cálculo de longitudes de rco de curv: Epresiones en coordends crtesins: L longitud de l curv y = f() entre ls bsciss = 1 y = 2 viene epresd medinte l fórmul: 2 L = 1 + (f ()) 2 d Epresiones en prmétrics: { por: L longitud de l curv c L = 1 = (t) y = y(t) t2 Epresiones en coordends polres: t 1 entre ls bsciss (t 1 ) y (t 2 ) viene dd ( (t)) 2 + (y (t)) 2 dt L longitud de l curv r = r(θ) entre ls coordends ngulres θ = θ 1 y θ = θ 2 viene dd como: θ2 L = (r(θ)) 2 + (r (θ)) 2 dθ θ 1

10 68 CÁLCULO / CIENCIAS AMBIENTALES / TEMA Cálculo de volúmenes de revolución (lrededor del eje OX): Epresiones en coordends crtesins: El volumen generdo por l curv y = y() l girr lrededor del eje OX entre ls bsciss 1 y 2 corresponde l fórmul: V = π 2 1 (f()) 2 d Epresiones en prmétrics El volumen de revolución respecto del eje OX de l curv ((t), y(t)) delimitdo por ls bsciss (t 1 ) y (t 2 ) está ddo por: V = π t2 t 1 (y(t)) 2 (t) dt Epresiones en coordends polres: El volumen de revolución de l curv r = r(θ) sobre el eje OX delimitdo por ls vribles ngulres θ 1 y θ 2 es V = 2π 3 θ2 θ 1 r 3 (θ) senθ dθ Cálculo de áres de revolución (lrededor del eje OX): El áre generdo por l curv c l girr lrededor del eje OX puede ser clculdo según ls siguientes epresiones: Epresiones en coordends crtesins: El áre lterl referido nteriormente de l curv y = f() entre ls bsciss 1 y 2 será: 2 A L = 2π f() 1 + (f ()) 2 d 1 Epresiones en prmétrics: En ecuciones prmétrics, el áre lterl limitd por ls bsciss (t 1 ) y (t 2 ) viene dd por: t2 A L = 2π y(t) ( (t)) 2 + (y (t)) 2 dt t 1 Epresiones en coordends polres: L epresión en coordends polres es: θ2 A L = 2π r(θ) sen θ (r(θ)) 2 + (r (θ)) 2 dθ θ 1

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

Cálculo integral de funciones de una variable

Cálculo integral de funciones de una variable Lino Alvrez - Aure Mrtínez CÁLCULO II Cálculo integrl de funciones de un vrible 1 L integrl de Riemnn Se f : [, b] R R un función cotd en [, b]. Definición 1.- Un prtición P = {t 0, t 1,..., t n } del

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

CAPÍTULO XII. INTEGRALES IMPROPIAS

CAPÍTULO XII. INTEGRALES IMPROPIAS CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

Integración de funciones reales de una variable real. 24 de octubre de 2014

Integración de funciones reales de una variable real. 24 de octubre de 2014 Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014 c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl

Más detalles

La Integral de Riemann

La Integral de Riemann Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función

Más detalles

Tema 4: Integrales Impropias

Tema 4: Integrales Impropias Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

6.1 Sumas de Riemann e integral definida

6.1 Sumas de Riemann e integral definida Tem 6 Integrción Definid 6.1 Sums de Riemnn e integrl definid Supongmos que estmos interesdos en clculr el áre que se encuentr bjo un curv y = f(x) en un intervlo [, b] (pr simplificr, consideremos el

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES L integrl definid Se y f un función definid en el intervlo,, se llm integrl definid de f en n el intervlo, y se denot por fd lim fc i i i. n i y se llmn límites

Más detalles

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica.

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica. Práctic 3: Cálculo Integrl con MtLb Curso 2010-2011 1 1 Introducción Un de los pquetes más útiles pr el cálculo con MtLb lo constituye Symbolic Mth Toolbox, que permite relizr cálculo simbólico vnzdo,

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

Integración en una variable. Aplicaciones

Integración en una variable. Aplicaciones Tem 4 Integrción en un vrible. Aplicciones Ls integrles formlizn un concepto bstnte sencillo e intuitivo, el de áre. Los orígenes del cálculo de áres los podemos encontrr en el método de exhución desrrolldo

Más detalles

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES IMPROPIAS Ing. Jun Scerdoti Deprtmento de Mtemátic Fcultd de Ingenierí Universidd de Buenos Aires V INDICE INTEGRALES IMPROPIAS.- PUNTOS SINGULARES

Más detalles

TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo

TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo TEMA 6. INTEGRAL DE RIEMANN 6.1 INTEGRAL DE RIEMANN 6.1.1 Prtición de un intervlo Se f :, y fx K x,. Definición: Un prtición de, es un conjunto ordendo y finito de números reles y distintos P x 0,...,x

Más detalles

7.1. Definición de la Integral de Riemann

7.1. Definición de la Integral de Riemann Cpítulo 7 Integrl de Riemnn 71 Definición de l Integrl de Riemnn En este cpítulo supondremos, menos que se indique lo contrrio, que < b y f : [, b] R es un función cotd Definición 71 Un prtición del intervlo

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

Integral de Riemann. Introducción a la integración numérica.

Integral de Riemann. Introducción a la integración numérica. Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo mribel@ugr.es. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

Integral Definida. Aplicaciones

Integral Definida. Aplicaciones Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

Notas de Integral de Riemann-Stieltjes

Notas de Integral de Riemann-Stieltjes Nots de Integrl de Riemnn-Stieltjes 1. Definición y propieddes Dds funciones g, F : [, b] R que cumpln ciertos requisitos, definiremos l expresión g(x)df(x) de tl mner que cundo consideremos el cso prticulr

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

7. Integrales Impropias

7. Integrales Impropias Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Bsdo en el punte del curso Cálculo (2d semestre), de Roerto Cominetti, Mrtín Mtml y Jorge

Más detalles

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua. Integrción indefinid y definid. Aplicciones de l integrl: vlor medio de un función continu. Jun Ruiz 1 Mrcos Mrvá 1 1 Deprtmento de Mtemátics. Universidd de Alclá de Henres. Contenidos Introducción 1 Introducción

Más detalles

Cálculo integral. Beatriz Campos Sancho Cristina Chiralt Monleon. Departament de matemàtiques. Codi d assignatura 305. Cálculo integral - UJI

Cálculo integral. Beatriz Campos Sancho Cristina Chiralt Monleon. Departament de matemàtiques. Codi d assignatura 305. Cálculo integral - UJI Cálculo integrl Betriz Cmpos Sncho Cristin Chirlt Monleon Deprtment de mtemàtiques Codi d ssigntur 35 Betriz Cmpos / Cristin Chirlt - ISBN: 978-84-694-64- Edit: Publiccions de l Universitt Jume I. Servei

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas) Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice:. Derivd de un unción... Derivd de un unción en un punto... Interpretción geométric.3. Derivds lterles..4. Función derivd. Derivds sucesivs.. Derivbilidd y continuidd.

Más detalles

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0.

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0. CÁLCULO ELEMENTAL APUNTES Vlor bsoluto Definición 1. El vlor bsoluto del número rel, que se design por, se define por { si 0, = si < 0. Definición 2. L distnci entre los números x 1 y x 2 de l rect rel

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

Segunda Versión. Integración y Series. Tomo II

Segunda Versión. Integración y Series. Tomo II UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE CIENCIA Deprtmento de Mtemátic y Cienci de l Computción CÁLCULO Segund Versión Integrción y Series Tomo II Gldys Bobdill A. y Rfel Lbrc B. Sntigo de Chile 4

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

2.3.1 Cálculo de primitivas

2.3.1 Cálculo de primitivas Mtemátics I.3 Lists de ejercicios de Cálculo Integrl.3 Lists de ejercicios de Cálculo Integrl.3. Cálculo de primitivs 75. Encontrr l epresión de ls siguientes integrles indefinids: ) p) tg b) e sen cos

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

Introducción a la integración numérica

Introducción a la integración numérica Tem 7 Introducción l integrción numéric Versión: 13 de ril de 009 7.1 Motivción L integrl definid de un función continu f : [, ] R R en el intervlo [, ], If) = fx) dx 7.1) es el áre de l región del plno

Más detalles

ÍNDICE GENERAL. Índice de Símbolos 37. Bibliografía 39

ÍNDICE GENERAL. Índice de Símbolos 37. Bibliografía 39 Índice generl. L Integrl Indenid.. Antiderivd e Integrl Indenid...................... Integrles inmedits........................... 3.3. Regl de l Cden............................ 4.4. Sustitución o Cmbio

Más detalles

5.5 Integración numérica

5.5 Integración numérica 88 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.5 Integrción numéric Métodos de Newton-Côtes De cr clculr l integrl definid: f(x) dx se llmn Métodos de Newton-Côtes los que se bsn en integrr, en lugr de l

Más detalles

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

CAPÍTULO 3 CÁLCULO INTEGRAL

CAPÍTULO 3 CÁLCULO INTEGRAL CAPÍTULO 3 CÁLCULO INTEGRAL. INTERROGANTES CENTRALES DEL CAPÍTULO Concepto de áre Sums de Riemnn Integrl definid Propieddes de l integrl definid Integrl indefinid Propieddes de l integrl indefinid Teorem

Más detalles

NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007

NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007 NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007 1 1. Intervlos Ddos dos números reles y,

Más detalles

6. Variable aleatoria continua

6. Variable aleatoria continua 6. Vrile letori continu Un diálogo entre C3PO y Hn Solo, en El Imperio Contrtc, cundo el Hlcón Milenrio se dispone entrr en un cmpo de steroides: - C3PO: Señor, l proilidd de sorevivir l pso por el cmpo

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida Integrl Indefinid Estmos costumrdos decir que el producto el cociente son operciones inverss. Lo mismo sucede con l potencición l rdicción. Vmos estudir hor l operción invers de l diferencición. Dd l función

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si:

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: .- CONTINUIDAD TEMA 6 Continuidd, Cálculo Diferencil. FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continu en si: Lim f( ) f( ) Pr que un función se continu en un punto se h de cumplir: º f ( ) D º Lim

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

n f j (x). j=0 f n Los teoremas que hemos obtenido anteriormente para sucesiones de funciones pueden aplicarse a las series de funciones.

n f j (x). j=0 f n Los teoremas que hemos obtenido anteriormente para sucesiones de funciones pueden aplicarse a las series de funciones. Cpítulo 10 Series de Funciones 10.1. Series de Funciones Definición 10.1 Se X R y (f n ) n N un sucesión de funciones reles sobre X. Pr n N definimos S n : X R por S n (x) = f j (x). Llmmos (S n ) n N

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

LÍMITES CONCEPTO INTUITIVO DE LÍMITE

LÍMITES CONCEPTO INTUITIVO DE LÍMITE Mrí Teres Szostk Ingenierí Comercil Mtemátic II Clse Nº, LÍMITES El concepto de ite, es uno de los pilres en que se bs el Análisis Mtemático, se encontrb en 8 en estdo potencil, ern más principios intuitivos

Más detalles

Relación entre el cálculo integral y el cálculo diferencial.

Relación entre el cálculo integral y el cálculo diferencial. Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

Se traza la paralela al lado a y distancia la altura h a.

Se traza la paralela al lado a y distancia la altura h a. Hojs de Problems Geometrí IV 56. Construir un triángulo conocido el ldo, l medin reltiv l ldo b y l ltur reltiv l ldo. Tomndo como ldos de un rectángulo los ldos, b del triángulo nterior clculr los ldos

Más detalles

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K

DETERMINANTES K K. A cada matriz n-cuadrada A = (a ij ) se le asigna un escalar particular denominado determinante de A, denotado por det (A), A o = K DETERMINANTES A cd mtriz ncudrd A ( ij ) se le sign un esclr prticulr denomindo determinnte de A, denotdo por det (A), A o n n n n nn K Un tbl ordend n n de esclres situd entre dos línes verticles, llmd

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicción Exmen, 7 de Septiembre de 24 Primer prte Ejercicio. Clculr ls coordends de los puntos P y Q de l prábol y x 2, tles que el triángulo formdo por el eje

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

3.- Derivada e integral de funciones de variable compleja.

3.- Derivada e integral de funciones de variable compleja. 3.- Derivd e integrl de funciones de vrile complej. ) Derivds, funciones nlítics e interpretción geométric. ) Regls de diferencición. c) Ecuciones de uch-riemnn. d) Funciones rmónics. e) Integrción complej.

Más detalles

Aplicaciones de la integral.

Aplicaciones de la integral. Tem 1 Aplicciones de l integrl. 1.1 Áres de superficies plns. 1.1.1 Funciones dds de form explícit. A l vist del estudio de l integrl definid relizdo en el Tem 1, prece rzonble l siguiente definición:

Más detalles

APUNTES DE VARIABLE COMPLEJA PARA INGENIEROS DE TELECOMUNICACION Elaborados por José Manuel Rodríguez Versión abreviada de Dmitry Yakubovich (2011)

APUNTES DE VARIABLE COMPLEJA PARA INGENIEROS DE TELECOMUNICACION Elaborados por José Manuel Rodríguez Versión abreviada de Dmitry Yakubovich (2011) APUNTES DE VARIABLE COMPLEJA PARA INGENIEROS DE TELECOMUNICACION Elbordos por José Mnuel Rodríguez Versión brevid de Dmitry Ykubovich (20). INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS Se define el conjunto de

Más detalles

Práctico 9 - Cálculo de integrales. 1. Teorema fundamental y regla de Barrow

Práctico 9 - Cálculo de integrales. 1. Teorema fundamental y regla de Barrow Universidd de l Repúblic Cálculo Fcultd de Ingenierí - IMERL Segundo semestre 6 Práctico 9 - Cálculo de integrles. Teorem fundmentl y regl de Brrow. Utilizndo los resultdos del ejercicio 9 del práctico

Más detalles

Integración Numérica. 18 Regla del Trapecio

Integración Numérica. 18 Regla del Trapecio Integrción Numéric L integrl resuelve el problem de clculr el áre bjo l gráfic de un función positiv definid sobre un intervlo cerrdo. El cálculo elementl de funciones de un vrible rel proporcion un método

Más detalles

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales.

Espacios vectoriales y Aplicaciones Lineales I: Bases y coordenadas. Aplicaciones lineales. UNIVERSIDAD DE JAÉN ESCUEA POITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 009/10 PRÁCTICA Nº9 Espcios vectoriles y Aplicciones ineles I: Bses y coordends. Aplicciones lineles. Recordemos

Más detalles

TRABAJOS DE MATEMATICA

TRABAJOS DE MATEMATICA UNIVERSIDAD NACIONAL DE CÓRDOBA FACULTAD DE MATEMÁTICA, ASTRONOMÍA Y FÍSICA SERIE C TRABAJOS DE MATEMATICA Nº 36/07 Un segundo curso de Cálculo Crin Boyllin, Elid Ferreyr, Mrt Urciuolo, Cynthi Will Editores:

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice: 1. Derivd de un unción. 1.1. Derivd de un unción en un punto. 1.. Interpretción geométric 1.3. Derivds lterles. 1.4. Función derivd. Derivds sucesivs.. Derivbilidd

Más detalles

LA INTEGRAL DEFINIDA Y SUS APLICACIONES

LA INTEGRAL DEFINIDA Y SUS APLICACIONES Integrl Definid y Aplicciones LA INTEGRAL DEFINIDA Y SUS APLICACIONES Autores: Pco Mrtínez (jmrtinezos@uoc.edu), Ptrici Molinàs (pmolins@uoc.edu), Ángel A. Jun (junp@uoc.edu). ESQUEMA DE CONTENIDOS Aplicciones

Más detalles

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}.

Espacios vectoriales y Aplicaciones Lineales II: Núcleo e imagen. Diagonalización. Ker(f) = {x V f(x) = 0} Im(f) = {f(x) x V}. UNIVERSIDAD DE JAÉN ESCUELA POLITÉCNICA SUPERIOR Deprtmento de Mtemátics (Áre de Álgebr) Curso 28/9 PRÁCTICA Nº Espcios vectoriles y Aplicciones Lineles II: Núcleo e imgen. Digonlizción. NÚCLEO E IMAGEN

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

Métodos de Integración I n d i c e

Métodos de Integración I n d i c e Métodos de Integrción I n d i c e Introducción Cmbio de Vrible Integrción por prtes Integrles de funciones trigonométrics Sustitución Trigonométric Frcciones prciles Introducción. En est sección, y con

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes

Más detalles

Integración en el plano complejo

Integración en el plano complejo Integrción en el plno complejo 4.1. Funciones complejs de vrible rel Un función complej de vrible rel es un función w : [, b] C, donde b. L prte rel y l prte imginri de w son dos funciones reles de vrible

Más detalles

Teoría de la medida e integral de Lebesgue 1

Teoría de la medida e integral de Lebesgue 1 MATMÁTICA APLICADA II Segundo cutrimestre 2011 Licencitur en Físic, Universidd Ncionl de Rosrio Teorí de l medid e integrl de Lebesgue 1 1. Introducción Un de ls crcterístics más molests de l teorí de

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

ACTIVIDADES DE APRENDIZAJE Nº 5... 112

ACTIVIDADES DE APRENDIZAJE Nº 5... 112 FACULTAD DE INGENIERÍA - UNJ Unidd : olinomios UNIDAD olinomios Introducción - Epresiones lgebrics - Clsificción de ls epresiones lgebrics - Epresiones lgebrics enters 7 - Monomios 7 - Grdo de un monomio

Más detalles

INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS

INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS INTEGRAL DEFINIDA APLICACIÓN l CÁLCULO de ÁREAS Isc Brrow (60-677), teólogo y mtemático inglés, mestro de Newton y precursor de l regl que llev su nomre. MATEMÁTICAS II º Bchillerto Alfonso González IES

Más detalles

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual MsMtes.com Integrles Selectividd CCNN. [ANDA] [JUN-A] De l función f:(-,+ ) se se que f (x ) = y que f() =. (x+) () Determinr f. () Hllr l primitiv de f cuy gráfic ps por el punto (,).. [ANDA] [JUN-B]

Más detalles

INTEGRALES INDEFINIDAS INTEGRALES DEFINIDAS: CÁLCULO DE ÁREAS

INTEGRALES INDEFINIDAS INTEGRALES DEFINIDAS: CÁLCULO DE ÁREAS INTEGRALES INDEFINIDAS INTEGRALES DEFINIDAS: CÁLCULO DE ÁREAS Mtemátics º de Bchillerto Ciencis y Tecnologí Profesor: Jorge Escribno Colegio Inmculd Niñ Grnd www.coleinmculdnin.org TEMA 7.- INTEGRALES

Más detalles

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo IES Pdre Poved (Gudi UNIDAD 6: DERIVADAS.. TASA DE VARIACIÓN MEDIA. Se deine l ts de vrición medi de un unción y en un intervlo [ b] T. M. [, b] ( b (, como: b (,, B,, Si considero l rect que une A ( b

Más detalles

CÁLCULO INTEGRAL EN VARIAS VARIABLES

CÁLCULO INTEGRAL EN VARIAS VARIABLES UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS CÁLCULO INTEGRAL EN VARIAS VARIABLES Rmón Bruzul Mrisel Domínguez Crcs, Venezuel Julio 25 Rmón

Más detalles

Presentación Axiomática de los Números Reales

Presentación Axiomática de los Números Reales Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. 1 Prte I Presentción Axiomátic de los Números Reles 1. Axioms de los Números Reles 1.1. Axioms de Cuerpo Aceptremos l existenci de un conjunto R cuyos elementos

Más detalles

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS

REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS TRIIGONOMETRÍÍA REPASO DE MEDIDAS DE ÁNGULOS Y EQUIVALENCIAS Recuerd que los ángulos los medímos en grdos o en rdines. Además, los grdos podín dividirse en minutos segundos, de form similr como se distribuen

Más detalles

ESCEMMat ESCENARIOS MULTIMEDIA EN FORMACIÓN DE FUTUROS PROFESORES DE MATEMÁTICAS DE SECUNDARIA FUNDAMENTACIÓN TEÓRICA ESCENARIO 2

ESCEMMat ESCENARIOS MULTIMEDIA EN FORMACIÓN DE FUTUROS PROFESORES DE MATEMÁTICAS DE SECUNDARIA FUNDAMENTACIÓN TEÓRICA ESCENARIO 2 FUNDAMENTACIÓN TEÓRICA ESCENARIO Dominio I: Conocimientos de Mtemátics Tem: Funciones reles de un vrible rel. L función eponencil. L función logrítmic. Asignturs involucrds en l formción universitri: Análisis

Más detalles

La Geometría de las Normas del Espacio de las Funciones Continuas

La Geometría de las Normas del Espacio de las Funciones Continuas Divulgciones Mtemátics Vol. 11 No. 1(2003), pp. 71 82 L Geometrí de ls Norms del Espcio de ls Funciones Continus The Geometry of the Norms of the Spce of Continuous Functions Arístides Arellán (ristide@ciens.ul.ve)

Más detalles

Aplicaciones de la integral indefinida

Aplicaciones de la integral indefinida Aplicciones_de_l_integrl.n Aplicciones de l integrl indefinid Práctic de Cálculo, E.U.A.T,Grupos ºA y ºB, 2005 Est práctic muestr cómo clculr lguns áres y volúmenes utilizndo integrles. En cd cso dremos

Más detalles

Tema 4. Integración compleja

Tema 4. Integración compleja Not: Ls siguientes línes son un resuen de ls cuestiones que se hn trtdo en clse sore este te. El desrrollo de todos los tópicos trtdos está recogido en l iliogrfí recoendd en l Progrción de l signtur.

Más detalles

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) -FUNCION LOGARITMO NATURAL Definición propieddes L funcion logritmo nturl de un numero positivo se not ln su dominio es el conjunto de los números reles positivos

Más detalles

1.4. Integral de línea de un campo escalar.

1.4. Integral de línea de un campo escalar. .4. Integrl de líne de un cmpo esclr. L integrl de líne tiene vris plicciones en el áre de ingenierí, y un de ls interpretciones importntes pr tles plicciones es el significdo que posee l integrl de líne

Más detalles

TEMA 3. Integración de funciones reales de variable real.

TEMA 3. Integración de funciones reales de variable real. TEMA 3 Integrción de funciones reles de vrible rel. Ls integrles formlizn un concepto bstnte sencillo e intuitivo, el de áre. Los orígenes del cálculo de áres los podemos encontrr en el método de exhución

Más detalles