Integral Definida. Tema Introducción. 6.2 Definición de Integral Definida

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida"

Transcripción

1 Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de sumndos tiende infinito y cd uno de ellos tiende cero. Desde el punto de vist histórico l construcción del concepto riguroso de integrl está socido l cálculo de áres. 6.2 Definición de Integrl Definid Comenzremos nlizndo el problem de clculr el áre determind por el eje de bsciss, ls rects =, = b y l gráfic de l función f(), que supondremos en un primer cso continu y positiv en el intervlo [, b]: L ide que utilizremos es prtir el intervlo [, b] en vrios subintervlos: [, 1 ], [ 1, 2 ],... [ n 1, b], de mner que el áre que buscmos será l sum de ls áres de cd un de ls figurs plns que resultn de dich división. Tomemos hor en cd sub-intervlo un vlor rbitrrio de l bscis: {ξ 1,..., ξ n }, y construymos el rectángulo de ltur f(ξ) correspondiente cd uno de los subintervlos (ver Figur 8.1 derech). Podemos sí proimr el vlor del áre buscd por l sum: A f(ξ 1 ) ( 1 ) + f(ξ 2 ) ( 2 1 ) f(ξ n ) (b n 1 ) Evidentemente est proimción será tnto mejor cunto más subintervlos se introduzcn, y en prticulr si el número de ellos tiende infinito (y l nchur de todos y cd uno de ellos tiende cero) entonces en dicho límite el resultdo será ecto y nos proporcionrá el áre buscd. Este proceso de pso l límite es el que define l integrl definid o integrl de Riemnn, que veremos continución con más detlle: 59

2 60 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 8 y y b Ξ 1 1 Ξ 2 2 Ξ 3 3 Ξ 4 b Figur 6.1: Construcción de un sum de Riemnn. El concepto de integrl definid se construye prtir de l ide de psr l límite un sum cundo el número de sumndos tiende infinito y simultánemente cd uno de los sumndos tiende cero. Pr determinr con precisión est ide introduciremos ls siguientes definiciones: Definición. Ddo un intervlo [, b] llmremos prtición de [, b] tod colección de n + 1 puntos P = { 0, 1,, n } tles que = 0 < 1 < 2 < < n = b. Tod prtición P del intervlo [, b] lo divide en n subintervlos [ k 1, k ] de nchurs respectivs k = k k 1. Definición. Dd un función f() definid en el intervlo [, b], un prtición P = { 0, 1,, n } de [, b] y ddos n puntos ξ = {ξ 1, ξ 2,, ξ n } tles que ξ k [ k 1, k ], se llm sum integrl o sum de Riemnn de l función f() en [, b] correspondiente l prtición P y l elección de puntos ξ l sum siguiente: n S(f, P, ξ) = f(ξ k ) k = f(ξ 1 ) f(ξ n ) n k=1 Si suponemos que l función es continu 1 en [, b] entonces, por el teorem de Weierstrss, f() lcnz su vlor máimo M k y su mínimo m k en cd subintervlo [ k 1, k ], podemos entonces construir ls sums de Riemnn correspondientes dichos vlores, obteniendo l sum superior de Riemnn de f() en [, b] con respecto l prtición P : n U(f, P ) = M k k y l respectiv sum inferior: L(f, P ) = k=1 n m k k 1 Relmente serí suficiente con que f() fuer continu en cd subintervlo de l prtición P. k=1

3 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 8 61 Es evidente entonces que el conjunto de tods ls sums de Riemnn de un función dd en un intervlo, con respecto un prtición concret P, está cotdo superiormente por U(f, P ) e inferiormente por L(f, P ). Definición. Se dice que un función f() definid en [, b] es integrble (en el sentido de Riemnn, o simplemente integrble) en [, b] si el supremo de tods sus sums inferiores de Riemnn coincide con el ínfimo de tods sus sums superiores. A dicho número se le denomin integrl definid o integrl de Riemnn de f() en [, b] y se denot como: f() d Es posible definir de mner equivlente l integrl definid como el límite de ls sums de Riemnn de l función en el intervlo cundo el número de puntos de ls prticiones considerds tiende infinito mientrs que l nchur máim de los subintervlos determindos por l prtición tiende cero, siempre que dicho límite se demás independiente de l elección de puntos relizd pr construir ls sums de Reiemnn. L definición de integrl definid se complet ñdiendo que se considerrá tmbién el cso en el que > b, y el cso = b, de l form: f()d = b f()d ; f()d = 0 Ejemplo: Clculemos ls integrles: d, d En el primer cso ls sums de Riemnn serán de l form: S(f, P, ξ) = n = b independientemente de l prtición tomd y de l elección de puntos relizd. L integrl por tnto es: d = b que obvimente coincide con el áre del rectángulo de bse b y ltur 1. (Ver Figur 8.2, izquierd). Pr clculr l segund integrl podemos proceder de vris forms. En primer lugr es evidente que el resultdo de l integrl v ser el áre del trpecio de l Figur 8.2 (derech), y sbemos que el áre de un trpecio es igul l producto de l ltur (b ) por l sum de ls bses dividid por dos 1 2 ( + b), es decir: d = 1 2 ( + b)(b ) = 1 2 ( b 2 2)

4 62 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 8 y y b b b Figur 6.2: Funciones f() = 1 y f() = en el intervlo [, b]. Demostrremos no obstnte este resultdo plicndo directmente l definición de integrl definid. Ddo que l función f(s) = es continu, será integrble en [, b]. Ls sums de Riemnn correspondientes un prtición culquier P = { 0, 1,..., n }, con = 0 < 1 <... < n = b será: S(f, P, ξ) = ξ ξ ξ n n = ξ 1 ( 1 0 ) + ξ 2 ( 2 1 ) ξ n (b n 1 ) siendo ξ = {ξ 1,..., ξ n } un elección culquier de puntos en los subintervlos de l prtición P. Ddo que f() es creciente siempre, ls sums superiores e inferiores de Riemnn se obtienen eligiendo ξ i = i y ξ i = i 1 respectivmente: U(f, P ) = 1 ( 1 0 ) + 2 ( 2 1 ) n ( n n 1 ) = n ( 2 i i i 1 ) i=1 L(f, P ) = 0 ( 1 0 ) + 1 ( 2 1 ) n 1 ( n n 1 ) = n ( i i 1 2 i 1) Observmos entonces que se cul se l prtición P l sum de U(f, P ) y L(f, P ) es: U(f, P ) + L(f, P ) = 2 n 2 0 = b 2 2 Si tommos hor el límite de Riemnn, teniendo en cuent que f() es integrble, result que tnto U(f, P ) como L(f, P ) tienden l integrl definid y por tnto: i=1 Q.E.D. U(f, P ) + L(f, P ) 2 d = b 2 2 d = 1 2 ( b 2 2) 6.3 Propieddes básics 1. Si f() es integrble en [, b] entonces está cotd en [, b].

5 CÁLCULO / CIENCIAS AMBIENTALES / TEMA Si f() es continu en [, b] entonces es integrble en [, b]. 3. Si f() está cotd en [, b] y present en dicho intervlo un número finito de discontinuiddes, entonces es integrble en [, b]. Est propiedd tmbién es ciert si el número de discontinuiddes es infinito pero contble (numerble). 4. L integrl definid es linel, es decir: Si f() y g() son dos funciones integrbles en [, b], entonces su sum tmbien lo es y se verific: (f() + g())d = f()d + mientrs que si k es un número rel culquier, entonces: kf()d = k 5. Ddos tres números reles, b y c, se verific: f()d = c siempre que ls integrles nteriores eistn. f()d + f()d c f()d g()d 6. Si f() g(), [, b] y mbs son integrbles en [, b], entonces se verific: f() d g() d 7. Si < b y f() es integrble en [, b], se verific: f()d f() d 6.4 Teorem Fundmentl del Cálculo y Regl de Brrow Teorem del Vlor Medio del Cálculo Integrl. Si f() es un función continu en el intervlo [, b], entonces eiste en [, b] l menos un punto c tl que se verific: f()d = (b ) f(c) Not: l número rel f = 1 b b f()d se le llm vlor medio o vlor promedio de f() en [, b]. Demostrción: Ddo que f() es continu en [, b], por el teorem de Weierstrss lcnz en [, b] su vlor máimo, M y su mínimo, m. Tendremos entonces, utilizndo ls propieddes nteriormente epuests: m f() M, [, b]

6 64 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 8 y sí: m d f() d M d m(b ) m f()d b M f()d M(b ) Pero l ser M y m lcnzdos en [, b] (supongmos que en los puntos 1 y 2, [ 1, 2 ] [, b]), tendremos que f() lcnz todos los vlores intermedios entre m y M, y por tnto: c [ 1, 2 ] c [, b] tl que: f(c) = f()d b Q.E.D. Plnteremos continución el Teorem Fundmentl del Cálculo, que relcion dos conceptos prentemente diferentes como son el de integrl indefinid (operción invers o recíproc de l derivción) y el de integrl definid (límite de sums cundo el número de sumndos tiende infinito mientrs que cd sumndo tiende cero): Teorem Fundmentl del Cálculo. Se f() un función continu en el intervlo [, b], entonces l función F () definid de l form: F () = f(t)dt en el intervlo [, b] es derivble en (, b) y demás F () = f(). Not: Si f() es integrble pero no continu en [, b] entonces sólo podemos segurr que F () es continu en [, b], pero l derivbilidd de F () sólo está grntizd en los puntos de continuidd de f(). L función F () tiene un significdo geométrico evidente ddo que nos proporcion el áre determind 2 por l gráfic de f() entre el punto inicil y un punto concreto del intervlo [, b]. Regl de Brrow. Si f() es continu en [, b] y G() es un primitiv de f() en [, b], entonces se verific: f()d = G() b = G(b) G() Demostrciones: Demostrremos en primer lugr el Teorem Fundmentl del Cálculo: Dd l función f() continu en [, b], definiremos entonces en [, b] l función: F () = f(u)du 2 Evidentemente hblmos de áre en sentido figurdo, pues se trt relmente de un áre pr funciones definids positivs en [, b].

7 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 8 65 Consideremos h > 0 tl que y + h pertenezcn mbos l intervlo [, b], tendremos entonces (plicndo ls propieddes básics de ls integrles) que: F ( + h) F () = +h f(u)du f(u)du = +h f(u)du Aplicndo continución el Teorem del Vlor Medio en el intervlo [, + h], eistirá un vlor c [, + h] tl que: +h f(u)du = f(c)( + h ) = f(c) h Pero entonces l derivd de F () en el punto se re-escribe de l form: F F ( + h) F () () = lim = lim f(c) h 0 h h 0 y ddo que f() es continu en [, b] y, en consecuenci, en [, + h], tendremos que h 0 nos llev que c + h c, y en definitiv, l ser f() continu: Q.E.D 3. lim f(c) = lim f(c) = f() F () = f() h 0 c Demostrción de l regl de Brrow: Dd l función continu f() en [, b], si G() es un primitiv de f() en [, b] tendremos que, ddo que F () definid nteriormente tmbién lo es, mbs deben diferencirse tn sólo en un constnte C, de est form: En prticulr: G() F () = C, [, b] G() F () = C G() G(b) F (b) = C G(b) f()d = C f()d = C restndo mbs epresiones, y considerndo que f()d = 0, tendremos: Q.E.D. f()d = G(b) G() 6.5 Integrles Impropis En l construcción y definición de integrl definid o integrl de Riemnn hemos prtido de un función f() definid en un intervlo finito [, b] y demás cotd en el mismo. Ls integrles impropis se definen precismente pr contemplr l posibilidd de integrr en intervlos infinitos, por un ldo, e integrr funciones no cotds, por otro. 3 Estrictmente hblndo hemos demostrdo tn sólo que l derivd por l derech de F () es f(). Es trivil completr l demostrción en el otro sentido.

8 66 CÁLCULO / CIENCIAS AMBIENTALES / TEMA Integrles Impropis de Primer Especie Un integrl impropi de primer especie es un integrl etendid un intervlo no finito. Pr definirl utilizremos l siguiente epresión: f()d = lim b f()d Si dicho límite eiste y es finito diremos que l integrl impropi de primer especie f()d es convergente, en cso contrrio será divergente. De mner nálog se definen ls integrles impropis de primer especie siguientes: f()d = lim f()d ; Integrles Impropis de Segund Especie f()d = lim k k k f()d Un condición necesri pr que f() fuer integrble en [, b] er que estuvier cotd en [, b]. Si f() es integrble en [, b ε] y no está cotd en un entorno de b, definimos l integrl impropi de segund especie: f() d = lim ε 0+ ε f() d L integrl será convergente si el límite eiste y es finito. Ejemplos: y otr de segund especie: Un integrl impropi de primer especie convergente: d = lim b (rctn b rctn 0) = π 2 d 1 2 = lim ε 0+ (rcsen(1 ε) rcsen 0) = π Aplicciones geométrics de l Integrl definid Cálculo de Áres. Funciones eplícits en Coordends Crtesins. Dd un curv y = f(), el áre determind por dich curv, ls rects =, = b (con < b) y el eje de bsciss nos viene dd por l integrl definid: A = f() d

9 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 8 67 En el cso de que l vrible despejd se l, es decir un ecución eplícit de l form = g(y), l epresión: A = d c g(y) dy nos proporcion el áre determind por el eje de ordends, ls rects y = c, y = d y l gráfic de g(y). Epresiones en prmétrics: El áre delimitd por l curv c epresd en ecuciones prmétrics, c y el eje OX entre ls bsciss (t 1 ) y (t 2 ) es, A = t2 Epresiones en coordends polres: t 1 y(t) (t) dt { = (t) y = y(t) El áre delimitd por l curv c epresd en ecuciones polres r = r(θ) y ls rects rdiles θ = θ 1 y θ = θ 2 es dd por, A = 1 2 θ2 θ 1 r 2 (θ)dθ Cálculo de longitudes de rco de curv: Epresiones en coordends crtesins: L longitud de l curv y = f() entre ls bsciss = 1 y = 2 viene epresd medinte l fórmul: 2 L = 1 + (f ()) 2 d Epresiones en prmétrics: { por: L longitud de l curv c L = 1 = (t) y = y(t) t2 Epresiones en coordends polres: t 1 entre ls bsciss (t 1 ) y (t 2 ) viene dd ( (t)) 2 + (y (t)) 2 dt L longitud de l curv r = r(θ) entre ls coordends ngulres θ = θ 1 y θ = θ 2 viene dd como: θ2 L = (r(θ)) 2 + (r (θ)) 2 dθ θ 1

10 68 CÁLCULO / CIENCIAS AMBIENTALES / TEMA Cálculo de volúmenes de revolución (lrededor del eje OX): Epresiones en coordends crtesins: El volumen generdo por l curv y = y() l girr lrededor del eje OX entre ls bsciss 1 y 2 corresponde l fórmul: V = π 2 1 (f()) 2 d Epresiones en prmétrics El volumen de revolución respecto del eje OX de l curv ((t), y(t)) delimitdo por ls bsciss (t 1 ) y (t 2 ) está ddo por: V = π t2 t 1 (y(t)) 2 (t) dt Epresiones en coordends polres: El volumen de revolución de l curv r = r(θ) sobre el eje OX delimitdo por ls vribles ngulres θ 1 y θ 2 es V = 2π 3 θ2 θ 1 r 3 (θ) senθ dθ Cálculo de áres de revolución (lrededor del eje OX): El áre generdo por l curv c l girr lrededor del eje OX puede ser clculdo según ls siguientes epresiones: Epresiones en coordends crtesins: El áre lterl referido nteriormente de l curv y = f() entre ls bsciss 1 y 2 será: 2 A L = 2π f() 1 + (f ()) 2 d 1 Epresiones en prmétrics: En ecuciones prmétrics, el áre lterl limitd por ls bsciss (t 1 ) y (t 2 ) viene dd por: t2 A L = 2π y(t) ( (t)) 2 + (y (t)) 2 dt t 1 Epresiones en coordends polres: L epresión en coordends polres es: θ2 A L = 2π r(θ) sen θ (r(θ)) 2 + (r (θ)) 2 dθ θ 1

5.2 Integral Definida

5.2 Integral Definida 80 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.2 Integrl Definid Definición de Integrl Definid El concepto de integrl definid se construye prtir de l ide de psr l límite un sum cundo el número de sumndos

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas Cpítulo 8 Integrles Impropis 8.. Introducción L integrl de Riemnn tl como l hemos estudido, está definid únicmente pr funciones cotds y definids sobre intervlos cerrdos y cotdos. En este cpítulo estudiremos

Más detalles

Integración de funciones de una variable real

Integración de funciones de una variable real Cpítulo 5 Integrción de funciones de un vrible rel 5.1. Introducción Los inicios del Cálculo Integrl se remontn Arquímedes, mtemático, físico e ingeniero griego del S.III A.C., quién clculó el áre de numeross

Más detalles

Cálculo integral de funciones de una variable

Cálculo integral de funciones de una variable Lino Alvrez - Aure Mrtínez CÁLCULO II Cálculo integrl de funciones de un vrible 1 L integrl de Riemnn Se f : [, b] R R un función cotd en [, b]. Definición 1.- Un prtición P = {t 0, t 1,..., t n } del

Más detalles

La integral de Riemann

La integral de Riemann L integrl de Riemnn 1 Vmos dr un definición precis de l integrl de un función definid en un intervlo. Este tiene que ser un intervlo cerrdo y cotdo, es decir [,] con < R, y l definición que dremos de integrl

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

CAPÍTULO XII. INTEGRALES IMPROPIAS

CAPÍTULO XII. INTEGRALES IMPROPIAS CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN.

5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. 5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.4.1. El áre de un círculo medinte proximción por polígonos regulres. 5.4.1. El áre

Más detalles

Funciones de variable compleja

Funciones de variable compleja Funciones de vrible complej Integrles impropis. Mrí Eugeni Torres Universidd Ncionl de Entre Ríos Fcultd de Ingenierí Funciones de Vrible Complej (Bioingenierí, Pln 28) Myo 29 Integrles impropis Alcnce

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Aplicaciones de la Integral.

Aplicaciones de la Integral. Seminrio 2 Aplicciones de l Integrl. 2.1. Áre de figurs plns. Definición 2.1.1. Se f : [, b] R continu y f(x) 0 x [, b]. El áre del recinto {(x, y) R 2 : x b, 0 y f(x)} viene dd por l integrl: A = f(x)

Más detalles

LA INTEGRAL DE RIEMANN

LA INTEGRAL DE RIEMANN LA INTEGRAL DE RIEMANN En este tem se introduce el Cálculo Integrl que demás de permitir clculr longitudes, áres y volúmenes, tiene multiples plicciones en l Ciencis, Ingenierí, etc... En primer lugr,

Más detalles

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración.

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración. INTEGRAL DEFINIDA Apuntes de A. Cñó Mtemátics II 6. Aproimción intuitiv l concepto de integrl definid. Propieddes con respecto l integrndo y l intervlo de integrción. 6. El teorem fundmentl del cálculo

Más detalles

TEMA 5: INTEGRACIÓN. f(x) dx.

TEMA 5: INTEGRACIÓN. f(x) dx. TEMA 5: INTEGRACIÓN. L integrl indefinid En muchos spectos, l operción llmd integrción que vmos estudir quí es l operción invers l derivción. Definición.. L función F es un ntiderivd (o primitiv) de l

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso Fundmentos Mtemáticos de l Ingenierí. (Tem 9) Hoj Escuel Técnic Superior de Ingenierí Civil e Industril (Esp. en Hidrologí) Fundmentos Mtemáticos de l Ingenierí. Tem 9: Cálculo integrl de funciones de

Más detalles

Integración de funciones reales de una variable real. 24 de octubre de 2014

Integración de funciones reales de una variable real. 24 de octubre de 2014 Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014 c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

Anexo 3: Demostraciones

Anexo 3: Demostraciones 170 Mtemátics I : Cálculo integrl en IR Anexo 3: Demostrciones Integrl de Riemnn Demostrción de: Propieddes 264 de l págin 142 Propieddes 264.- Se f: [, b] IR un función cotd. ) Pr tod P P[, b], se verific

Más detalles

La Integral de Riemann

La Integral de Riemann Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función

Más detalles

6.1 Sumas de Riemann e integral definida

6.1 Sumas de Riemann e integral definida Tem 6 Integrción Definid 6.1 Sums de Riemnn e integrl definid Supongmos que estmos interesdos en clculr el áre que se encuentr bjo un curv y = f(x) en un intervlo [, b] (pr simplificr, consideremos el

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

Integración en una variable. Aplicaciones

Integración en una variable. Aplicaciones Tem 4 Integrción en un vrible. Aplicciones Ls integrles formlizn un concepto bstnte sencillo e intuitivo, el de áre. Los orígenes del cálculo de áres los podemos encontrr en el método de exhución desrrolldo

Más detalles

PRIMITIVA E INTEGRACIÓN INDEFINIDA

PRIMITIVA E INTEGRACIÓN INDEFINIDA TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es un primitiv de f() si F () = f() Ejemplos: función: f() Primitiv: F() sen - cos Not: Un función tiene

Más detalles

7.1. Definición de la Integral de Riemann

7.1. Definición de la Integral de Riemann Cpítulo 7 Integrl de Riemnn 71 Definición de l Integrl de Riemnn En este cpítulo supondremos, menos que se indique lo contrrio, que < b y f : [, b] R es un función cotd Definición 71 Un prtición del intervlo

Más detalles

Tema 4: Integrales Impropias

Tema 4: Integrales Impropias Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m

Más detalles

TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo

TEMA 6. INTEGRAL DE RIEMANN. 6.1 INTEGRAL DE RIEMANN 6.1.1 Partición de un intervalo TEMA 6. INTEGRAL DE RIEMANN 6.1 INTEGRAL DE RIEMANN 6.1.1 Prtición de un intervlo Se f :, y fx K x,. Definición: Un prtición de, es un conjunto ordendo y finito de números reles y distintos P x 0,...,x

Más detalles

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES L integrl definid Se y f un función definid en el intervlo,, se llm integrl definid de f en n el intervlo, y se denot por fd lim fc i i i. n i y se llmn límites

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

TEMA 13: INTEGRAL DEFINIDA

TEMA 13: INTEGRAL DEFINIDA TEMA : INTEGRAL DEFINIDA..- El problem de clculr el áre bjo un curv El problem de clculr el áre limitd por lguns curvs fue borddo, por los mtemáticos griegos, desde bstntes siglos trás. El método empledo

Más detalles

Integral impropia Al definir la integral definida b

Integral impropia Al definir la integral definida b Mte Univ II, 14 FCE-BUAP CÁLCULO INTEGRAL ALEJANDRO RAMÍREZ PÁRAMO 1. Sucesiones y series Integrl impropi Al definir l integrl definid b f(x)dx, pretendimos que l función f estb definid; demás de cotd,

Más detalles

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES IMPROPIAS Ing. Jun Scerdoti Deprtmento de Mtemátic Fcultd de Ingenierí Universidd de Buenos Aires V INDICE INTEGRALES IMPROPIAS.- PUNTOS SINGULARES

Más detalles

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica.

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica. Práctic 3: Cálculo Integrl con MtLb Curso 2010-2011 1 1 Introducción Un de los pquetes más útiles pr el cálculo con MtLb lo constituye Symbolic Mth Toolbox, que permite relizr cálculo simbólico vnzdo,

Más detalles

TEMA 4. Cálculo integral

TEMA 4. Cálculo integral TEMA 4. Cálculo integrl En este tem considerremos el cálculo integrl, que es un complemento nturl del cálculo diferencil y tiene múltiples plicciones en otrs ciencis. 4.. Introducción l cálculo integrl

Más detalles

Notas de Integral de Riemann-Stieltjes

Notas de Integral de Riemann-Stieltjes Nots de Integrl de Riemnn-Stieltjes 1. Definición y propieddes Dds funciones g, F : [, b] R que cumpln ciertos requisitos, definiremos l expresión g(x)df(x) de tl mner que cundo consideremos el cso prticulr

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

D I F E R E N C I A L

D I F E R E N C I A L D I F E R E N C I A L µ dy y = d Si un función y = f() dmite derivd finit en un punto su incremento puede epresrse como y = f () + ε, siendo ε un infinitésimo pr 0. Al primer término se lo llm diferencil

Más detalles

EJERCICIOS DE INTEGRALES IMPROPIAS

EJERCICIOS DE INTEGRALES IMPROPIAS EJERCICIOS DE INTEGRALES IMPROPIAS. Integrles impropis de primer especie. Clculr Pr n, n con >. F (b) = b n n+ = n + Si n >, entonces F (b) =, con lo que Si n

Más detalles

Integral Definida. Aplicaciones

Integral Definida. Aplicaciones Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

Integral de Riemann. Introducción a la integración numérica.

Integral de Riemann. Introducción a la integración numérica. Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo mribel@ugr.es. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo

Más detalles

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0.

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0. CÁLCULO ELEMENTAL APUNTES Vlor bsoluto Definición 1. El vlor bsoluto del número rel, que se design por, se define por { si 0, = si < 0. Definición 2. L distnci entre los números x 1 y x 2 de l rect rel

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

7. Integrales Impropias

7. Integrales Impropias Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Bsdo en el punte del curso Cálculo (2d semestre), de Roerto Cominetti, Mrtín Mtml y Jorge

Más detalles

Cálculo integral. Beatriz Campos Sancho Cristina Chiralt Monleon. Departament de matemàtiques. Codi d assignatura 305. Cálculo integral - UJI

Cálculo integral. Beatriz Campos Sancho Cristina Chiralt Monleon. Departament de matemàtiques. Codi d assignatura 305. Cálculo integral - UJI Cálculo integrl Betriz Cmpos Sncho Cristin Chirlt Monleon Deprtment de mtemàtiques Codi d ssigntur 35 Betriz Cmpos / Cristin Chirlt - ISBN: 978-84-694-64- Edit: Publiccions de l Universitt Jume I. Servei

Más detalles

2.3.1 Cálculo de primitivas

2.3.1 Cálculo de primitivas Mtemátics I.3 Lists de ejercicios de Cálculo Integrl.3 Lists de ejercicios de Cálculo Integrl.3. Cálculo de primitivs 75. Encontrr l epresión de ls siguientes integrles indefinids: ) p) tg b) e sen cos

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua. Integrción indefinid y definid. Aplicciones de l integrl: vlor medio de un función continu. Jun Ruiz 1 Mrcos Mrvá 1 1 Deprtmento de Mtemátics. Universidd de Alclá de Henres. Contenidos Introducción 1 Introducción

Más detalles

6.1. Integral de Riemann de una función.

6.1. Integral de Riemann de una función. Tem 6 L integrl definid 6.. Integrl de Riemnn de un función. En un principio (Euler), el cálculo integrl se definí como l operción invers l diferencición, sin embrgo, en l primer mitd del siglo XIX se

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas) Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv

Más detalles

Segunda Versión. Integración y Series. Tomo II

Segunda Versión. Integración y Series. Tomo II UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE CIENCIA Deprtmento de Mtemátic y Cienci de l Computción CÁLCULO Segund Versión Integrción y Series Tomo II Gldys Bobdill A. y Rfel Lbrc B. Sntigo de Chile 4

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

b) Calcule el área del recinto limitado por la gráfica de la función f(x) y el eje de abscisas entre x = 1 e y x = e.

b) Calcule el área del recinto limitado por la gráfica de la función f(x) y el eje de abscisas entre x = 1 e y x = e. MsMtescom Integrles Selectividd CCNN Murci [] [EXT-A] ) Clcule l integrl indefinid rctgd, donde rctg denot l función rco-tngente de ) De tods ls primitivs de l función f() = rctg, encuentre l que ps por

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

5.5 Integración numérica

5.5 Integración numérica 88 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.5 Integrción numéric Métodos de Newton-Côtes De cr clculr l integrl definid: f(x) dx se llmn Métodos de Newton-Côtes los que se bsn en integrr, en lugr de l

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice:. Derivd de un unción... Derivd de un unción en un punto... Interpretción geométric.3. Derivds lterles..4. Función derivd. Derivds sucesivs.. Derivbilidd y continuidd.

Más detalles

ÍNDICE GENERAL. Índice de Símbolos 37. Bibliografía 39

ÍNDICE GENERAL. Índice de Símbolos 37. Bibliografía 39 Índice generl. L Integrl Indenid.. Antiderivd e Integrl Indenid...................... Integrles inmedits........................... 3.3. Regl de l Cden............................ 4.4. Sustitución o Cmbio

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x)

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x) Cálculo de primitivs: f(x) dx = F (x) + C, siendo F (x) un ntiderivd de f(x), es decir, siendo F (x) tl que F (x) = f(x) L constnte C se denomin constnte de integrción; es un constnte rbitrri porque se

Más detalles

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO UNIVERSIDAD CARLOS III DE MADRID Deprtmento de Mtemátics MATEMÁTICAS CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 2010 2011 Elbordo por Elen Romer Índice generl 4. Cálculo

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral CAPÍTULO Aplicciones de l integrl. Momentos centro de un ms.. Centro de ms de un sistem unidimensionl Considerr el sistem unidimensionl, tl como se muestr en l siguiente figur, formdo por un vrill (de

Más detalles

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde

Más detalles

Cálculo de volúmenes II: Método de los casquetes cilíndricos

Cálculo de volúmenes II: Método de los casquetes cilíndricos Sesión 6 II: Método de los csquetes cilíndricos Tems Método de los csquetes cilíndricos pr clculr volúmenes de sólidos de revolución. Cpciddes Conocer y plicr el método de los csquetes esféricos pr clculr

Más detalles

CAPÍTULO. La derivada

CAPÍTULO. La derivada CAPÍTULO 5 L derivd 5. L derivd de un función A continución trtremos uno de los concetos fundmentles del cálculo, que es el de l derivd. Este conceto es un ite que está estrecmente ligdo l rect tngente,

Más detalles

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si:

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: .- CONTINUIDAD TEMA 6 Continuidd, Cálculo Diferencil. FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continu en si: Lim f( ) f( ) Pr que un función se continu en un punto se h de cumplir: º f ( ) D º Lim

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

Tema 8.4: Teorema de Runge. Aproximación de funciones holomorfas por funciones racionales

Tema 8.4: Teorema de Runge. Aproximación de funciones holomorfas por funciones racionales Tem 8.4: Teorem de Runge. Aproximción de funciones holomorfs por funciones rcionles Fcultd de Ciencis Experimentles, Curso 2008-09 Enrique de Amo, Universidd de Almerí Sbemos que ls funciones holomorfs

Más detalles

APLICACIONES DE LA INTEGRAL DEFINIDA. A1. Curvas expresadas en forma explícita (Coordenadas Cartesianas)

APLICACIONES DE LA INTEGRAL DEFINIDA. A1. Curvas expresadas en forma explícita (Coordenadas Cartesianas) ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA APLICACIONES DE LA INTEGRAL DEFINIDA CÁLCULO DE ÁREAS Y VOLÚMENES (De revolución) A. Cálculo

Más detalles

Introducción a la integración numérica

Introducción a la integración numérica Tem 7 Introducción l integrción numéric Versión: 13 de ril de 009 7.1 Motivción L integrl definid de un función continu f : [, ] R R en el intervlo [, ], If) = fx) dx 7.1) es el áre de l región del plno

Más detalles

(Ésta es una versión preliminar de la teoría del tema.)

(Ésta es una versión preliminar de la teoría del tema.) Estudio de funciones periódics Ést es un versión preliminr de l teorí del tem. Un función fx se dice que es periódic de periodo cundo fx = fx +, x. Si se conoce fx en el intervlo [, ] su ciclo, se l conoce

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida Integrl Indefinid Estmos costumrdos decir que el producto el cociente son operciones inverss. Lo mismo sucede con l potencición l rdicción. Vmos estudir hor l operción invers de l diferencición. Dd l función

Más detalles

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x

INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x en INTEGRAL DEFINIDA El concepto de integrl definid está relciondo con el vlor que determin el áre jo l curv dd por un función f (x) el [, ]. (ve l intervlo gráfic) Uno de los primeros psos pr llegr este

Más detalles

Relación entre el cálculo integral y el cálculo diferencial.

Relación entre el cálculo integral y el cálculo diferencial. Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd

Más detalles

n f j (x). j=0 f n Los teoremas que hemos obtenido anteriormente para sucesiones de funciones pueden aplicarse a las series de funciones.

n f j (x). j=0 f n Los teoremas que hemos obtenido anteriormente para sucesiones de funciones pueden aplicarse a las series de funciones. Cpítulo 10 Series de Funciones 10.1. Series de Funciones Definición 10.1 Se X R y (f n ) n N un sucesión de funciones reles sobre X. Pr n N definimos S n : X R por S n (x) = f j (x). Llmmos (S n ) n N

Más detalles

CAPÍTULO 3 CÁLCULO INTEGRAL

CAPÍTULO 3 CÁLCULO INTEGRAL CAPÍTULO 3 CÁLCULO INTEGRAL. INTERROGANTES CENTRALES DEL CAPÍTULO Concepto de áre Sums de Riemnn Integrl definid Propieddes de l integrl definid Integrl indefinid Propieddes de l integrl indefinid Teorem

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

6. Variable aleatoria continua

6. Variable aleatoria continua 6. Vrile letori continu Un diálogo entre C3PO y Hn Solo, en El Imperio Contrtc, cundo el Hlcón Milenrio se dispone entrr en un cmpo de steroides: - C3PO: Señor, l proilidd de sorevivir l pso por el cmpo

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral Cpítulo Aplicciones de l integrl Hst hor únicmente hemos prendido clculr integrles, sin plnternos l utilidd que ésts pueden tener. Sin embrgo, l integrl definid es un método rápido pr clculr áres, volúmenes,

Más detalles

SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY.

SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY. 42 Funciones de vrible complej. Eleonor Ctsigers. 25 Abril 2006. FUNCIONES SEGUNDA PARTE. ANALÍTICAS Y TEORÍA DE CAUCHY. Resumen Se prueb que tod función holomorf es nlític, y recíprocmente. Se desrroll

Más detalles

Teoría Tema 7 Integral definida. Área encerrada por una curva

Teoría Tema 7 Integral definida. Área encerrada por una curva Colegio Mrist L Inmculd de Grnd Profesor Dniel Prtl Grcí www.dniprtl.net Asigntur: Mtemátics II 2ºBchillerto Teorí Tem 7: Integrl definid. Áre encerrd por un curv págin /0 Teorí Tem 7 Integrl definid.

Más detalles

Funciones Vectoriales

Funciones Vectoriales Pntoj Crhuvilc Cálculo Agend Algebr de Función Algebr de Función Consideremos un prtícul en movimiento sobre un plno. Su posición en un determindo instnte t viene determindo por dos coordends x(t) e y(t)

Más detalles

NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007

NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007 NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007 1 1. Intervlos Ddos dos números reles y,

Más detalles