PROTOCOLO DE INTERNET VERSIÓN 6

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROTOCOLO DE INTERNET VERSIÓN 6"

Transcripción

1 PROTOCOLO DE INTERNET VERSIÓN 6 GENERALIZACIÓN RED DE INVESTIGACIÓN DE TECNOLOGÍA AVANZADA

2 PROTOCOLO DE INTERNET VERSIÓN 6 1. Qué es? El protocolo de internet versión 6 (IPv6) es la nueva versión del Protocolo Internet, diseñado como el sucesor para IP versión 4 (IPv4). 2. Por qué IPv6? El motivo básico por el que surge en el seno del IETF la necesidad de crear un nuevo protocolo, fue la evidencia de falta de direcciones. Además de esto se tienen los principales problemas de IPv4: Falta de coordinación en la década de los 80 en la delegación de direcciones Con la falta de coordinación y la asignación por clase, sobre todo las direcciones clases C se generó una gran cantidad de rutas y una gran dimensión de las tablas de enrutamiento en el troncal de internet Con el uso extensivo de NAT muchos protocolos y aplicaciones tienen problemas y limitaciones para poder atravesar estos dispositivos 3. Diferencias con IPv4 Capacidades de Direccionamiento Extendida El IPv6 incrementa el tamaño de dirección IP de 32 bits a 128 bits, para dar soporte a más niveles de direccionamiento jerárquico, un número mucho mayor de nodos direccionables, y una autoconfiguración más simple de direcciones. La escalabilidad del enrutamiento multicast se mejora agregando un campo "ámbito" a las direcciones multicast, Y se define un nuevo tipo de dirección llamada "anycast", usado para enviar un paquete a cualquiera de un grupo de nodos. Simplificación del Formato de Cabecera Algunos campos de la cabecera IPv4 se han sacado o se han hecho opcional, para reducir el costo del caso común de proceso de tratamiento de paquete y para limitar el costo del ancho de banda, de la cabecera IPv6. Soporte Mejorado para las Extensiones y Opciones Los cambios en la manera en que se codifican las opciones de la cabecera IP permiten un reenvío más eficiente, límites menos rigurosos en la longitud de opciones, y mayor flexibilidad para introducir nuevas opciones en el futuro.

3 Capacidad de Etiquetado de Flujo Una nueva capacidad se agrega para permitir el etiquetado de paquetes que pertenecen a "flujos" de tráfico particulares para lo cual el remitente solicita tratamiento especial, como la calidad de servicio no estándar o el servicio en "tiempo real". 4. Cabecera IPv6 La cabecera de un paquete IPv6 es más sencilla que la de un paquete IPv4, siendo la funcionalidad del protocolo IPv6 mucho mayor. La cabecera de un paquete IPv4 es variable por lo que necesita un campo de tamaño o longitud. IPv6 utiliza un tamaño de cabecera fijo de 40 bytes simplificando el procesamiento en los enrutadores. La cabecera está compuesta por un total de ocho campos como se observa en la Figura 1: Cabecera IPv6 Fuente: Versión: Identifica la versión del protocolo, tiene una longitud de 4 bits, y su valor es 6. Clase de tráfico: Tiene una longitud de 8 bits y tiene la función de identificar o distinguir entre clases o prioridades de paquetes IPv6. Etiqueta de flujo: Este campo es de 20 bits de longitud, y puede ser usado por un host para solicitar manejo especial para ciertos paquetes, como aquellos con una calidad de servicio de tiempo real. Longitud de carga útil: Entero sin signo de 16 bits. Longitud de la carga útil IPv6, es decir, el resto del paquete que sigue a esta cabecera IPv6, en octetos. Los encabezados de extensión especial son considerados parte de la carga útil. Siguiente cabecera: Selector de 8 bits. Identifica el tipo de cabecera que sigue inmediatamente a la cabecera IPv6. Utiliza los mismos valores que el campo Protocolo del IPv4.En la tabla x se muestran algunos valores posibles del campo siguiente cabecera.

4 Valor Header 0 Hop-by-Hop options 1 ICMPv4 4 IP in IP encapsulation 6 TCP 17 UDP 58 ICMPv6 59 None Tabla 1: Valores del campo siguiente cabecera Límite de saltos: Entero sin signo de 8 bits. Decrementado en 1 por cada nodo que reenvía el paquete. Se descarta el paquete si el Límite de Saltos es decrementado hasta cero. Dirección Origen: Dirección de 128 bits del originador del paquete. Dirección Destino: Dirección de 128 bits del recipiente pretendido del paquete (posiblemente no el último recipiente, si está presente una cabecera Enrutamiento). 4.1 Cabeceras de extensión IPv6 En IPv6, la información de capa de internet opcional se codifica en cabeceras separadas que se pueden colocar entre la cabecera IPv6 y la cabecera de capa superior dentro de un paquete. Hay un número pequeño de tales cabeceras de extensión, cada una identificada por un valor de Cabecera Siguiente distinto. Según lo ilustrado en estos ejemplos, un paquete IPv6 puede llevar cero, una, o más cabeceras de extensión, cada una identificada por el campo Cabecera Siguiente de la cabecera precedente, un par de ejemplos se muestra en la Figura 2. Figura 2: Cabeceras de extensión IPv6 Fuente:

5 Las cabeceras de extensión no son examinadas ni procesadas por ningún nodo a lo largo de la ruta de entrega de un paquete, hasta que el paquete alcance el nodo (o cada uno del conjunto de nodos, en el caso de multicast) identificado en el campo dirección destino de la cabecera IPv6. Allí, el demultiplexaje normal en el campo Cabecera Siguiente de la cabecera IPv6 invoca el módulo para procesar la primera cabecera de extensión, o la cabecera de capa superior si no hay ninguna cabecera de extensión presente. El contenido y la semántica de cada cabecera de extensión determinan si se procede o no a la cabecera siguiente. Por lo tanto, las cabeceras de extensión se deben procesar estrictamente en el orden que aparecen en el paquete. Hay una excepción a esta regla: cuando el valor del campo siguiente cabecera es cero, lo que indica la opción y examinado y proceso salto por salto. La excepción mencionada es la cabecera opciones de Salto a Salto, la cual lleva información que debe ser examinada y procesada por cada nodo a lo largo de la ruta de entrega de un paquete, incluyendo los nodos de origen y de destino. La cabecera Opciones de Salto a Salto, cuando está presente, debe seguir inmediatamente a la cabecera IPv6. Las cabeceras de extensión tienen una longitud múltiplo de 8 bits, cuando se tiene más de una cabecera de extensión en un mismo paquete, las cabeceras deben aparecer en el siguiente orden: Cabecera de Encaminamiento (Routing Header) Cabecera de Fragmentación (Fragment Header) Cabecera de nodo-por-nodo (Host-by-Host Options Header) Cabecera de extremo-a-extremo (End-to-End Options Header) Cabecera de Autenticación (Authentication Header) Cabecera IPv6 (IPv6 Header) 5. Direccionamiento IPv6 La arquitectura de direccionamiento IPv6 está descrita en el RFC Las direcciones IPv6 tienen una longitud de 128 bits de largo y está escrita en notación hexadecimal separada por dos puntos (:). Está compuesta por ocho números hexadecimales de 16 bits cada uno, unos ejemplos serian de la siguiente manera: 2001:0db8:ab12:cf34:78dd:342e:ffaa:2312 ABCD:EF01:2345:6789:ABCD:EF01:2345:6789 El protocolo IPv6, como principio fundamental aporta direcciones, lo que equivale a 3.4x10 38, Para hacerse una idea el número de direcciones que se podrían tener por metro cuadrado de la superficie terrestre es Las direcciones IPv6 se dividen en tres grandes grupos: 1 https://tools.ietf.org/html/rfc

6 Unicast: Este grupo de direcciones se caracteriza por identificar una única interfaz. Un interfaz enviado a una dirección unicast será entregado solo a la interfaz identificada con dicha dirección. Multicast: Las direcciones multicast agrupan un conjunto de interfaces. Un paquete enviado a una dirección multicast será entregado a todas las interfaces identificadas por dicha dirección. La misión de este tipo de paquetes es evidente: aplicaciones de transmisión múltiple. Anycast: Este grupo de direcciones al igual que el multicast agrupa un conjunto interfaces. La diferencia principal con el multicast está en sistema de entrega de paquetes. Un paquete enviado a una dirección anycast es entregado solo a una (cualquiera) interface (el miembro más cercano del grupo al emisor del paquete, de acuerdo a medidas de distancia del protocolo de encaminado). Este tipo de agrupación no existe en IPv4. Una dirección IPv6 se divide en tres porciones: el prefijo de red, el identificador de subred y un identificador de host. El prefijo de red: Son los bits d orden superior de la dirección, se utiliza para identificar una red específica y en algunos casos, un tipo específico de dirección. El identificador de Subred (ID): Identifica a un sitio o red y permite a los administradores de red definir subredes dentro de la red disponible. El ID es asignado por el administrador local del sitio. El identificador de host: Es un identificador único para un nodo de red y puede identificar una interface específica de un host. Este identificador generalmente es de 64 bits. Los prefijos de red son análogos pero no equivalentes a las máscaras de subred, las cuales no existen en IPV6. La notación / es usada para indicar el número de bits que componen el prefijo de red. Un ejemplo seria el siguiente: 2001:0db8:ab12:cf34:78dd:342e:ffaa:2312/48 Lo cual indica que el prefijo de red es de 48 bits, los 80 bits restantes son asignados por el administrador local, 16 bits para el ID y 64 para el identificador de host. Este ejemplo se muestra en la Tabla bits 16 bits 64 bits Network Prefix Subnet ID Host ID 2001:0db8:ab12 cf34 78dd:342e:ffaa:2312 Tabla 2: Partes de una dirección IPv6 El host ID se puede obtener automáticamente mediante el algoritmo EUI-64 modificado, mediante un servidor DHCPv6, o por asignación manual. Direcciones especiales en IPv6 Dirección de loopback (::1) No se asigna a ninguna interface física, se trata de una interface virtual, puesto que los paquetes nunca salen de la máquina que los envía.

7 Permite hace un bucle para verificar la correcta inicialización del protocolo. Corresponde a en IPv4. Dirección no especificada (::) Indica ausencia de dirección. Dirección IPv6 mapeadas desde IPv4 (::FFFF:<dirección IPv4>) Permite que los nodos que solo soportan IPv4 puedan seguir trabajando en redes IPv6. Los clientes IPv6 serán gestionados de modo nativo, mientras que los clientes IPv4 aparecerán como clientes IPv6 cuya dirección es una dirección IPv6 IPv4-mapeada. La Tabla 3 muestra un resumen de los tipos de direcciones IPv6: Tipo de dirección Notación IPv6 Usos Dirección IPv4 embebida ::FFFF/96 Direcciones IPv4 embebidas Loopback ::1/128 Dirección loopback para cada interface (RFC2460) Unicast Global 2000::/3 Globales Unicast y anicast asignadas (RFC4291) Teredo 2001:0::/32 Teredo (RFC4380) No ruteable 2001:DB8::/32 Para documentación únicamente (RFC3849) 6to4 2002::/16 6to4 (RFC3056) Link-Local FE80::/10 Direcciones de enlace local Dirección Local Única FC00::/7 Dirección Local Única (ULA) (RFC4193) Multicast FF00::/8 Direcciones Multicast (RFC4291) Tabla 3: Tipos de direcciones IPv6 6. Nuevos protocolos asociados 6.1 ICMPv6 El protocolo de mensajes de control de internet (Internet Control Message Protocol), descrito originalmente en el documento RFC792 para IPv4, ha sido actualizado para permitir su uso en IPv6. El protocolo resultante de dicha modificación es ICMPv6, y se le ha asignado un valor para el campo siguiente cabecera, igual a 58. ICMPv6 definido en el RFC4433, es parte integral de IPv6 y debe ser totalmente incorporado en cualquier implementación de nodo IPv6. ICMP es empleado por IPv6 para reportar errores que se encuentran durante el procesado de paquetes, así como la realización de otras funciones relativas a la capa internet, como diagnósticos ( ping ).

8 6.2 Protocolo Neighbor Discovery Detallado en el RFC2461 3, es un protocolo para IPv6, y es en cierto modo equivalente a ARP en IPv4, sin embargo incorpora la funcionalidad de otros protocolos de IPv4, como ICMP Router Discovey e ICMP Redirect. Consiste en el mecanismo por el cual un nodo que se incorpora a una red, descubre la presencia de otros en su mismo enlace, para determinar sus direcciones en la capa de enlace, para localizar los routers, y para mantener la información de conectividad acerca de las rutas a los vecinos activos. El protocolo ND también se emplea para mantener limpios los caches donde se almacena la información relativa al contexto de la red a la que está conectado un nodo (host o router), y por tanto para detectar cualquier cambio en la misma. El protocolo ND es bastante completo y sofisticado, emplea los mensajes de ICMPv6 y es la base para permitir el mecanismo de autoconfiguración en IPv6. Define entre otros, mecanismos para: descubrir routers, prefijos y parámetros, autoconfiguración de direcciones, resolución de direcciones, determinación del siguiente salto, detección de nodos no alcanzables, detección de direcciones duplicadas o cambios, redirección, balanceo de carga entrante, direcciones anycast y anunciación de proxies. Neighbor Discovery define cinco tipos de mensajes IPv6: Solicitud de router: es generado por una interfaz cuando ésta es activada, para pedir a los routers que se anuncien inmediatamente. Tipo en paquete ICMPv6 = 133. Anunciación de router: generado por los routers periódicamente (entre cada 4 y 1800 segundos), o como consecuencia de una "solicitud de router", de esta manera informa de su presencia así como de otros parámetros de enlace y de Internet, como prefijos, tiempos de vida y configuración de direcciones. Es muy importante para permitir la remuneración. Tipo en paquete ICMPv6 = 134. Solicitud de vecino: lo generan los nodos para determinar la dirección en la capa de enlace de sus vecinos, o para verificar que el nodo vecino es alcanzable, también se genera para detectar las direcciones duplicadas. Tipo en paquete ICMPv6 = 135. Anunciación de vecino: los nodos lo producen como respuesta a la "solicitud de vecino", o bien para indicar cambios de direcciones en el nivel de enlace. Tipo en paquete ICMPv6 = 136. Redirección: los routears generan este paquete para informar a los host de que existe un salto mejor para llegar a un determinado destino. Es equivalente, en parte a "ICMP redirect". Tipo en paquete ICMPv6 = Autoconfiguración La autoconfiguración es el conjunto de por los cuales un host decide como autoconfigurar sus interfaces en IPv6. Este es el mecanismo que nos permite afirmar que IPv6 es Plug & Play. El proceso incluye la asignación de unan dirección, verificación de que no está duplicada en dicho enlace y determinación de la información que ha de ser autoconfigurada (direcciones y otra información). En IPv6 se distinguen dos 3

9 mecanismos básicos de autoconfiguración, mediante DHCPv6 (Autoconfiguración Stateful mediante un servidor), o mediante la autoconfiguración automática sin estado o stateless (SLAAC). El mecanismo de autoconfiguración automática sin estado 4 o stateless address autoconfiguration (SLAAC) define el proceso para generar una dirección de enlace local, direcciones globales y locales de sitio mediante el procedimiento automático (stateless), SLAAC utiliza los mensajes de descubrimiento de routers de ICMPv6. SLAAC también define el proceso para detectar direcciones duplicadas. La autoconfiguración stateless, no requiere ninguna configuración manual de host, configuración mínima de routers, y no precisa servidores adicionales. Permite a un host generar su propia información mediante una combinación de información disponible localmente e información anunciada por los routers. Los routers anuncian los prefijos que identifican la subred o subredes asociadas con el enlace, mientras el host genera un identificador de interfaz, que identifica de forma única la interface en la subred, la dirección se compone de la combinación de ambos campos. En ausencia de un router, el host solo puede generar la dirección de enlace local, que utiliza el prefijo fe80::/10. En ambos casos en host utiliza el algoritmo EUI-64 para generar las direcciones. 7. Enrutamiento IPv6 El uso de IPv6 no implica cambios significativos en la forma en que operan los protocolos de enrutamiento en las redes IP. Sin embargo, para aprovechar las nuevas características de IPv6, se han desarrollado nuevas versiones o complementos a los protocolos de enrutamiento más utilizados, como es el caso de RIPng, OSPFv3, EIGRP. Los protocolos de enrutamiento que se ejecutan en los dispositivos capa 3 eligen la ruta con la métrica más baja, a excepción cuando todas son iguales, donde implementan lo que se conoce como, balanceo de carga. La función principal del router es conectar redes y enviar paquetes a distintas redes calculando la mejor ruta y enviándolos a su destino. Utilizan la tabla de enrutamiento, que es un conjunto de redes conocidas, que incluyen redes directamente conectadas y redes remotas. Las redes remotas son redes que no están conectadas directamente al router. Las redes remotas se configuran de dos maneras: mediante rutas estáticas las cuales son muy comunes y no requieren la misma cantidad de procesamiento y sobrecarga que los protocolos de enrutamiento, y mediante los protocolos de enrutamiento dinámico. Para las redes directamente conectadas no existe como tal el concepto de enrutamiento porque son redes conocidas por el router al estar conectadas directamente a una interfaz. 7.1 RIPng RIPng es un protocolo pensado para redes pequeñas, no muy cambiantes y de máximo 15 saltos, es completamente viable utilizarlo en este proyecto. Tiene una métrica de ruta que se basa sólo en el conteo de saltos y que se limita a 15 saltos. RIPng es RIP para Ipv6 y está definido el documento RFC2080, y es muy parecido al 4

10 usado para Ipv4. Utiliza una métrica de conteo saltos, que es el número de routers entre el router inicial y la red de destino. La mejor ruta es elegida por el protocolo de enrutamiento en función de la métrica de que usa ese protocolo de enrutamiento. Para detener eventualmente el aumento de la métrica, "infinito" se define configurando un valor máximo de métrica. Por ejemplo, el RIP define lo que es infinito con un valor de 16 saltos (una métrica "inalcanzable"). 7.2 OSPFv3 Definido en el documento RFC2740, es el protocolo OSPF con las modificaciones para soportar la versión 6 del protocolo de internet vesion 6 (IPv6). Los mecanismos fundamentales de OSPF permanecerán sin cambios. Sin embargo, algunos cambios han sido necesarios, ya sea debido a cambios en la semántica de protocolo entre IPv4 e IPv6, o simplemente por manejar el aumento de tamaño de las direcciones de IPv6. A continuación se mencionaran algunos aspectos generales de OSPF, el cual tiene muchas características lo cual hace que su documentación sea extensa. Es un protocolo para interiores: trabaja dentro de los límites de un sistema autónomo Es un protocolo estado de enlace: utiliza el algoritmo SFP para obtener la ruta más corta Utiliza métrica de costo OSPF es un protocolo de enrutamiento estándar, lo que garantiza la interoperabilidad entre los distintos fabricantes de dispositivos de red. Permite segmentar un sistema autónomo en distintas áreas, siendo el área principal el área 0, o área backbone. Elige la mejor ruta en función del ancho de banda de los enlaces, y elige la mejor ruta por el enlace más rápido. Cuando se tienen enlaces de alta velocidad resultaría mejor utilizar OSPF 8. Mecanismos de transición y coexistencia El cambio de IPV4 a IPV6 no sucede de manera rápida sino que por el contrario ha demorado un largo tiempo. El hecho de que IPV4 sea bastante predominante actualmente y que internet se haya convertido en algo imprescindible en el planeta hace que sea difícil por no decir imposible realizar la sustitución de los protocolos de una manera rápida. Esta operación involucra a muchas organizaciones y empresas que tendrían que trabajar conjuntamente y de manera sincronizada en el cambio a IPV6 lo cual es casi imposible. Debido a los retos mencionados en el proceso de cambio a IPV6 la IETF diseño junto con el mismo protocolo IPV6 unos mecanismos llamados de transición y coexistencia con el fin de manejar el paso de IPV4 a IPv6. Así que ambos Protocolos de Internet (IPV4 e IPV6) deberán coexistir durante un periodo de tiempo en el que poco a poco habrá más contenidos disponibles en IPV6, y por consiguiente más tráfico IPV6, y al mismo tiempo IPV4 debe tender a desaparecer al menos en un gran porcentaje de la red. Los mecanismos de transición y coexistencia que han sido desarrollados se dividen en tres grupos, Dual Stack, túneles y traducción.

11 8.1 Dual Stack o Doble Pila Es el método propuesto originalmente para tener una transición suave hacia IPv6. La RFC 2893 introdujo el mecanismo dual-stack, en el que el sistema operativo de un host o un enrutador (un nodo IPV4-IPV6) está equipado con las dos pilas de protocolos. De esta manera el nodo estará en la capacidad de enviar y recibir paquetes IPV4 e IPV6, de esta forma, cuando se establece una conexión hacia un destino sólo IPv4, se utilizará la conectividad IPv4 y si es hacia una dirección IPv6, se utilizará la red IPv6. Los nodos IPv4/IPv6 procesan las aplicaciones IPv4 utilizando la pila IPv4, mientras que para las aplicaciones IPv6 utilizan la pila IPv6. En caso que el destino tenga ambos protocolos, normalmente se preferirá intentar conectar primero por IPv6 y en segunda instancia por IPv4. Esta es tal vez la manera más simple de coexistencia de IPV4 e IPV6. Las decisiones de flujo se basan en el encabezado de IP, en su campo versión para recibir y en la dirección destino para enviar. La Error! No se encuentra el origen de la referencia. muestra la forma en que funciona la doble pila, donde se tiene de izquierda a derecha una maquina IPV4, una maquina doble pila y una maquina solo IPV6. Figura 3: Host Ipv4, Host Dual Stack, Host IPv6 Fuente: (LACNIC, 2014) Es importante en la transición no afectar IPV4, por lo que conviene usar la doble pila, la doble pila no significa necesariamente que debamos de tener direcciones ipv4 públicas, es decir cuando exista un agotamiento total de direcciones ipv4 públicas, aun así podemos mantener la doble pila. Existen dispositivos que solo tiene pila IPv6 y dispositivos que solo tienen pila IPv4, entonces es ideal tener doble pila, para los dos casos la maquina con doble pila que puede ser un host o un servidor, y puede comunicare con los dispositivos que solo tienen ipv4 y con los dispositivos que solo tienen ipv6. Por lo anteriormente mencionado, dual stack es el método de transición por excelencia para el despliegue de IPv6 dentro en las instituciones y empresas, y universidades del mundo. Configurar dual stack en los equipos significa instalar y configurar IPv6 teniendo ya configurado IPv4. Por ejemplo en los routers que soporten los dos protocolos, es decir

12 que sean dual stack, se configuran direcciones IPv6, y estos quedan configurados con las direcciones IPv4 que ya tenían y con las direcciones IPv6 que se les acaban de configurar. De igual manera se hace con todos los host Linux, Windows, Servidores, etc. 8.2 Túneles Al implementar dual stack en una red, se desea acceder vía IPv6 a otras redes y servicios sobre IPv6 a nivel nacional y mundial. Pero qué sucede si en el camino de la comunicación algún nodo o red no soporte IPv6? Si es así la comunicación falla y no se puede realizar, por tal razón el mecanismo dual stack no resuelve todo. Es aquí donde entra en juego los túneles, uno de los mecanismos más antiguos para poder atravesar redes que no tienen soporte nativo del protocolo que se está utilizando. En general se utilizan túneles encapsulando IPv6 dentro de IPv4, permitiendo de esta forma atravesar redes que no manejan IPv6, aunque también se puede la situación inversa. Los paquetes originales son transportados hasta un punto de la red por medio del protocolo original, luego encapsulados para atravesar la porción de red que no lo soporta y luego des-encapsulados en el otro extremo para ser enviados al destino final en forma nativa. En la Figura 4 se observa como dos redes implementando dual stack, tienen que hacer uso de túneles encapsulando el paquete IPv6 para poder comunicarse a través de una red IPv4 haciendo uso del protocolo IPv6. Figura 4: Túnel IPv6 a través de una red IPv4 Fuente: IPv6 coexistence with IPv4 (6deploy, 2014) Dentro de los mecanismos de túneles existen dos tipos, los túneles automáticos y los túneles manuales Túneles Manuales Los túneles manuales son la configuración estática en los túneles, en palabras sencillas utilizara una relación de direcciones IPv4 con IPv6 de forma estática y solamente podrá transportar paquetes de IPv6 a redes previamente establecidas, es decir hace una conexión punto a punto con una configuración previamente establecida en los dos extremos. Las limitantes de un túnel manual son similares a las limitantes de rutas estáticas. El método manual permitirá comunicar partes internas de un sitio (LAN) o bien intercomunicar dos sitios cuando el camino no radica en IPv6. La técnica de túneles manuales tiene la desventaja de que si se anexa una tercera red IPv6 todo

13 los enrutadores frontera de cada red deben actualizar su configuración de túneles, esto es claramente un problema de escalabilidad Túneles Automáticos En los túneles automáticos solo un extremo se tiene que configurar, por lo tanto es ideal para los usuarios residenciales. Estos permiten que diferentes redes IPv6 estén interconectadas sobre una red IPv4. La diferencia clave con los túneles manuales es que el túnel automático no es punto a punto, sino que se crean de manera dinámica, punto multipunto. Existe una gran variedad de este tipo de túneles, como 6to4, isatap y teredo. 8.3 Herramientas de traducción Ni los mecanismos dual-stack ni los mecanismos de tunelizado funcionan para comunicaciones entre un nodo sólo IPV6 y un nodo sólo IPV4. Esas comunicaciones requieren un mecanismo de traducción ya sea en la capa de red, transporte o aplicación. Este mecanismo fue pensado inicialmente para plataformas que solo tuvieran soporte IPV4 y tuvieran que comunicarse con plataformas que solo tuvieran soporte IPV6. Originalmente se pensó que los servidores web tendrían una velocidad de adopción mucho más lenta que los clientes, pero en realidad no ha sido así porque la mayoría de los sistemas operativos tienen su versión cliente y servidor, con soporte IPV4 e IPV6, por ello y por otras razones propias de la traducción, la IETF decidió descatalogar los mecanismos de traducción 5. 5 Seminarios Virtuales IPv6, Mecanismos de Transición, 2014,

Introducción a redes Ing. Aníbal Coto Cortés

Introducción a redes Ing. Aníbal Coto Cortés Capítulo 8: Direccionamiento IP Introducción a redes Ing. Aníbal Coto Cortés 1 Capítulo 8 8.0 8.1 8.2 8.3 8.4 Introducción Direcciones de red IPv4 Direcciones de red IPv6 Verificación de la conectividad

Más detalles

IP v6. :: Redes :: Redes : : IP v6. transporte. red. enlace. física. aplicación. Versión 28/02/11

IP v6. :: Redes :: Redes : : IP v6. transporte. red. enlace. física. aplicación. Versión 28/02/11 Versión 28/02/11 :: Redes :: aplicación transporte red enlace IP v6 física David Villa :: http://www.inf-cr.uclm.es/www/dvilla/ 1 Contenidos Crecimiento de Internet Paquete IPv6 Direccionamiento

Más detalles

Protocolos de Interconexión de Redes

Protocolos de Interconexión de Redes Protocolos de Interconexión de Redes Tema 04. Internet de nueva generación: IPv6 Luis Sánchez González DPTO. DE INGENIERÍA DE COMUNICACIONES Este tema se publica bajo Licencia: CreaKve Commons BY NC SA

Más detalles

TEMA 1. Protocolo IPv6: Direccionamiento

TEMA 1. Protocolo IPv6: Direccionamiento AMPLIACIÓN DE SISTEMAS OPERATIVOS Y REDES Grados Ingeniería en Informática Universidad Complutense de Madrid TEMA 1. Protocolo IPv6: Direccionamiento PROFESORES: Rafael Moreno Vozmediano Rubén Santiago

Más detalles

IP versión 6 TRABAJO DE INVESTIGACIÓN CARLOS ITURRIETA

IP versión 6 TRABAJO DE INVESTIGACIÓN CARLOS ITURRIETA IP versión 6 TRABAJO DE INVESTIGACIÓN CARLOS ITURRIETA Introducción En el mundo de las telecomunicaciones es indispensable la conectividad, para que esto sea posible es necesario identificar de alguna

Más detalles

Problemas con IPv4. Espacio IPv4 limitado y mal distribuído

Problemas con IPv4. Espacio IPv4 limitado y mal distribuído Introducción a IPv6 These materials are licensed under the Creative Commons Attribution-Noncommercial 3.0 Unported license (http://creativecommons.org/licenses/by-nc/3.0/) Problemas con IPv4 Espacio IPv4

Más detalles

IPv6. Autores: Belén Aldecoa Sánchez del Río Luis Alberto Ramon Surutusa

IPv6. Autores: Belén Aldecoa Sánchez del Río Luis Alberto Ramon Surutusa IPv6 Autores: Belén Aldecoa Sánchez del Río Luis Alberto Ramon Surutusa 1. Nacimiento de un nuevo protocolo El principal motivo para la aparición de la nueva versión del protocolo de internet es la escasez

Más detalles

TEMA 25: El Protocolo TCP/IP.

TEMA 25: El Protocolo TCP/IP. Tema 25 Protocolo TCP/IP TEMA 25: El Protocolo TCP/IP. Índice 1 INTRODUCCIÓN 1 1.1 Historia 1 2 CAPAS DEL PROTOCOLO 2 2.1 La capa de aplicación 2 2.2 La capa de transporte 3 2.2.1 El protocolo TCP Protocolo

Más detalles

CONTENIDO. 10. Protocolo RIPng 11. Direcciones IPv6

CONTENIDO. 10. Protocolo RIPng 11. Direcciones IPv6 CONTENIDO 1. Que es IPv6? 2. Antecedentes 3. Crecimiento de Internet 4. Problemáticas del Ipv4 5. Comparación IPv6 con IPv4 6. Características del IPv6 7. Ventajas de IPv6 8. Encabezados IPv6 vs IPv4 9.

Más detalles

Fundación Consorcio Ecuatoriano para el

Fundación Consorcio Ecuatoriano para el Fundación Consorcio Ecuatoriano para el desarrollo de Internet Avanzado Introducción a IPv6 Cuenca, 25-26 26 enero 2010 Distribución actual de direcciones IPv4 Evolución del pool central de direcciones

Más detalles

Neighbor Discovery. Juan C. Alonso juancarlos@lacnic.net

Neighbor Discovery. Juan C. Alonso juancarlos@lacnic.net Neighbor Discovery Juan C. Alonso juancarlos@lacnic.net Neighbor Discovery definido en la RFC 4861. Asume las funciones de los ARP, ICMP Router Discovery e ICMP Redirect de IPv4. Agrega nuevos métodos

Más detalles

cambiar la dirección IP) con independencia de la localización, movimiento e infraestructura de red utilizada.

cambiar la dirección IP) con independencia de la localización, movimiento e infraestructura de red utilizada. TEMA 2: IPMOVIL EN IPv6. 1. INTRODUCCION. Las nuevas mejoras de la tecnología IP móvil actual están pensadas para IPv6. IPv4 móvil es más complejo, debido a que hay mas procesos y los encaminamientos son

Más detalles

Universisdad de Los Andes Facultad de Ingeniería Escuela de Sistemas. Capa de Red. Mérida - Venezuela Prof. Gilberto Díaz

Universisdad de Los Andes Facultad de Ingeniería Escuela de Sistemas. Capa de Red. Mérida - Venezuela Prof. Gilberto Díaz Universisdad de Los Andes Facultad de Ingeniería Escuela de Sistemas Capa de Red Mérida - Venezuela Prof. Gilberto Díaz Capa de Red Gestión de tráfico entre redes Direcciones IP Las direcciones de red

Más detalles

IPv6. Siguiente Generación del Protocolo Internet. Por Antonio Rodríguez López. Ampliación de Automatización Industrial

IPv6. Siguiente Generación del Protocolo Internet. Por Antonio Rodríguez López. Ampliación de Automatización Industrial IPv6 Siguiente Generación del Protocolo Internet Por Antonio Rodríguez López Ampliación de Automatización Industrial 3º Ingeniería Técnica Industrial E.P.S. La Rábida, Huelva 01/05/02 1 INTRODUCCIÓN Los

Más detalles

Capítulo 7: Implementando Servicios de direccionamiento IP

Capítulo 7: Implementando Servicios de direccionamiento IP CCNA Exploration 4 Acceso a la WAN Capítulo 7: Implementando Servicios de direccionamiento IP Ricardo José Chois Antequera INSTITUTO TECNOLÓGICO DE SOLEDAD ATLÁNTICO - ITSA Version 4.0 2006 Cisco Systems,

Más detalles

Lab. 1 Configuración de IPv6 y encaminamiento RIPng

Lab. 1 Configuración de IPv6 y encaminamiento RIPng Lab. 1 Configuración de IPv6 y encaminamiento RIPng 1.1. Introducción a IPv6 Una dirección IPv6 está formada por 128 bits. Las direcciones se clasifican en diferentes tipos: unicast, multicast y anycast.

Más detalles

Direcciones IPv6 Transición IPv4

Direcciones IPv6 Transición IPv4 TRANSICIÓN IPv6 Direcciones IPv6 Transición IPv4 Lo importante de la transición es la interoperabilidad. Una transición abrupta no es aconsejable. IETF ha trabajado sobre cuestiones específicas que permitan

Más detalles

FUNDAMENTOS DE REDES CONCEPTOS DE LA CAPA DE RED

FUNDAMENTOS DE REDES CONCEPTOS DE LA CAPA DE RED FUNDAMENTOS DE REDES CONCEPTOS DE LA CAPA DE RED Dolly Gómez Santacruz dolly.gomez@gmail.com CAPA DE RED La capa de red se ocupa de enviar paquetes de un punto a otro, para lo cual utiliza los servicios

Más detalles

El Protocolo IPv6 SUMARIO

El Protocolo IPv6 SUMARIO Versión Fecha: 4.0 05/01/2004 Título: Tipo: Autor(es): Editor: El Protocolo IPv6 Documento Teórico 6SOS Documento original facilitado por Jordi Palet Martínez, adaptación posterior por Alberto Cabellos-Aparicio

Más detalles

Introducción a IPv6. José Domínguez Carlos Vicente. Universidad de Oregón

Introducción a IPv6. José Domínguez Carlos Vicente. Universidad de Oregón Introducción a IPv6 José Domínguez Carlos Vicente Universidad de Oregón Temas Introducción Repaso técnico de IPv6 Direccionamiento Coexistencia de IPv6/IPv4 Estatus de IPv6 Problemas con IPv4 Espacio IPv4

Más detalles

PROTOCOLO IPv6. 2.1 Protocolo de Internet Versión 6

PROTOCOLO IPv6. 2.1 Protocolo de Internet Versión 6 PROTOCOLO IPv6 La versión 4 del protocolo de Internet (IPv4) proporciona los medios de comunicación básica dentro del conjunto de protocolos TCP/IP, pero conforme pasa el tiempo y se vuelve más exigente

Más detalles

TELECOMUNICACIONES Y REDES

TELECOMUNICACIONES Y REDES TELECOMUNICACIONES Y REDES Redes Computacionales I Prof. Cristian Ahumada V. Unidad V: Capa de Red OSI 1. Introducción. 2. Protocolos de cada Red 3. Protocolo IPv4 4. División de Redes 5. Enrutamiento

Más detalles

FUNDAMENTOS DE REDES CONCEPTOS DE LA CAPA DE RED

FUNDAMENTOS DE REDES CONCEPTOS DE LA CAPA DE RED FUNDAMENTOS DE REDES CONCEPTOS DE LA CAPA DE RED Mario Alberto Cruz Gartner malcruzg@univalle.edu.co CONTENIDO Direcciones privadas Subredes Máscara de Subred Puerta de Enlace Notación Abreviada ICMP Dispositivos

Más detalles

DIDACTIFICACION DE IPv6 2. CABECERA, DIRECC. Y CONFIG. BÁSICAB 2.2. DIRECCIONAMIENTO

DIDACTIFICACION DE IPv6 2. CABECERA, DIRECC. Y CONFIG. BÁSICAB 2.2. DIRECCIONAMIENTO DIDACTIFICACION DE IPv6 2. CABECERA, DIRECC. Y CONFIG. BÁSICAB 2. CABECERA, DIRECCIONAMIENTO Y CONFIGURACIÓN BÁSICA En primer lugar se tratarán las siguientes cuestiones: Capacidad de direccionamiento

Más detalles

REDES IP, DESDE IPv4 A IPv6

REDES IP, DESDE IPv4 A IPv6 REDES IP, DESDE IPv4 A IPv6 Carlos Balduz Bernal 4º IINF Escuela Técnica Superior de Ingeniería-ICAI. Universidad Pontificia Comillas. Asignatura: Comunicaciones Industriales Avanzadas. Curso 2011-2012.

Más detalles

Repercusión de IPv6 en la Administración General del Estado

Repercusión de IPv6 en la Administración General del Estado Repercusión de IPv6 en la Administración General del Estado Maria José Lucas Vegas Ingeniera Superior de Telecomunicaciones Jefa de Proyecto de Sistemas Informáticos Subdirección General de Planificación

Más detalles

Introducción y Estado del Arte de IPv6. Francisco Obispo (fobispo@nic.ve) Coordinador del NIC-VE/CNTI/MCT/Venezuela

Introducción y Estado del Arte de IPv6. Francisco Obispo (fobispo@nic.ve) Coordinador del NIC-VE/CNTI/MCT/Venezuela Introducción y Estado del Arte de IPv6 Francisco Obispo (fobispo@nic.ve) Coordinador del NIC-VE/CNTI/MCT/Venezuela Porque un Nuevo Protocolo de Internet? Un único motivo lo impulso: Más direcciones! Para

Más detalles

PROTOCOLO DE INTERNET VERSION 6

PROTOCOLO DE INTERNET VERSION 6 PROTOCOLO DE INTERNET VERSION 6 DIRECCIONAMIENTO IPV6 RED DE INVESTIGACIÓN DE TECNOLOGÍA AVANZADA rita@udistrital.edu.co MANUAL PARA UN PLAN DE DIRECCIONAMIENTO IPV6 1. ESTRUCTURA DE LAS DIRECCIONES IPV6

Más detalles

ÍNDICE INTRODUCCIÓN... 19

ÍNDICE INTRODUCCIÓN... 19 ÍNDICE INTRODUCCIÓN... 19 CAPÍTULO 1. INTRODUCCIÓN A LAS REDES... 25 1.1 CONCEPTOS BÁSICOS... 25 1.2 MODELO DE REFERENCIA OSI... 26 1.2.1 Descripción de las siete capas... 28 1.3 FUNCIONES DE LA CAPA FÍSICA...

Más detalles

Seguridad IPv6. Fernando Gont. Seminario virtual organizado por LACNIC

Seguridad IPv6. Fernando Gont. Seminario virtual organizado por LACNIC Seguridad IPv6 Fernando Gont Seminario virtual organizado por LACNIC Viernes 29 de Abril de 2011 Agenda Objetivos de este seminario Breve comparación de IPv6/IPv4 Discusión de aspectos de seguridad de

Más detalles

Examen Cisco Online CCNA4 V4.0 - Capitulo 7. By Alen.-

Examen Cisco Online CCNA4 V4.0 - Capitulo 7. By Alen.- Consulte la ilustración. Un técnico de red determina que los clientes de DHCP no funcionan correctamente. Los clientes están recibiendo información de la configuración IP de un servidor DHCP configurado

Más detalles

Capa de red en Internet

Capa de red en Internet Capa de red en Internet Una colección de Sistemas Autónomos (AS) Algunos backbones (espina dorsal, corazón de la red) formados por proveedores de nivel más alto Lo que los une es el Protocolo IP Necesidad

Más detalles

Capítulo 11: Capa 3 - Protocolos

Capítulo 11: Capa 3 - Protocolos Capítulo 11: Capa 3 - Protocolos Descripción general 11.1 Dispositivos de Capa 3 11.1.1 Routers 11.1.2 Direcciones de Capa 3 11.1.3 Números de red únicos 11.1.4 Interfaz/puerto del router 11.2 Comunicaciones

Más detalles

Introducción a redes Ing. Aníbal Coto Cortés

Introducción a redes Ing. Aníbal Coto Cortés Capítulo 5: Ethernet Introducción a redes Ing. Aníbal Coto Cortés 1 Objetivos En este capítulo, aprenderá a: Describir el funcionamiento de las subcapas de Ethernet. Identificar los campos principales

Más detalles

IPv6: Motivación y Desafíos. Fernando Gont

IPv6: Motivación y Desafíos. Fernando Gont IPv6: Motivación y Desafíos Fernando Gont Acerca de... He trabajado en análisis de seguridad de protocolos de comunicaciones para: UK NISCC (National Infrastructure Security Co-ordination Centre) UK CPNI

Más detalles

Coexistencia y Transición. Juan C. Alonso juancarlos@lacnic.net

Coexistencia y Transición. Juan C. Alonso juancarlos@lacnic.net Coexistencia y Transición Juan C. Alonso juancarlos@lacnic.net Coexistencia y Transición Toda la estructura de Internet esta basada en el protocolo IPv4 Un cambio inmediato de protocolo es inviable debido

Más detalles

Objetivos y Temario CURSO REDES CISCO. PREPARACIÓN PARA LA CERTIFICACIÓN CCNA ROUTING Y SWITCHING OBJETIVOS

Objetivos y Temario CURSO REDES CISCO. PREPARACIÓN PARA LA CERTIFICACIÓN CCNA ROUTING Y SWITCHING OBJETIVOS Objetivos y Temario CURSO REDES CISCO. PREPARACIÓN PARA LA CERTIFICACIÓN CCNA ROUTING Y SWITCHING OBJETIVOS Este curso representa una herramienta de autoestudio para el aprendizaje de los temas relacionados

Más detalles

Protocolos de enrutamiento dinamico RIP, OSPF, BGP

Protocolos de enrutamiento dinamico RIP, OSPF, BGP BGP dinamico,, BGP Facultad de Ciencias Matemáticas - UNMSM EAP. Computación Científica 23 de octubre de 2012 BGP Introduccion Un protocolo de es un software complejo que se ejecuta de manera simultánea

Más detalles

Glosario IPv6 SUMARIO

Glosario IPv6 SUMARIO Versión Fecha: 1.2 16/02/2004 Título: Tipo: Autor(es): Editor: Glosario IPv6 Divulgación 6SOS Eduardo Jacob Taquet, Fidel Liberal Malaina, Alex Muñoz Mateos. SUMARIO Glosario de términos empleados en IPv6.

Más detalles

Tutorial de IPv6: INTRODUCCION. Jordi Palet Presidente del Grupo de Trabajo de Educación, Promoción y Relaciones Públicas del IPv6 Forum

Tutorial de IPv6: INTRODUCCION. Jordi Palet Presidente del Grupo de Trabajo de Educación, Promoción y Relaciones Públicas del IPv6 Forum Tutorial de IPv6: INTRODUCCION Jordi Palet Presidente del Grupo de Trabajo de Educación, Promoción y Relaciones Públicas del IPv6 Forum -1 La Internet Actual Falta de Direcciones IPv4 Clase B Demasiados

Más detalles

IPv6 en la Red CENIAInternet. II Convención CITMATEL 2005 Ing. Luis Rojas luis@ceniai.inf.cu

IPv6 en la Red CENIAInternet. II Convención CITMATEL 2005 Ing. Luis Rojas luis@ceniai.inf.cu IPv6 en la Red CENIAInternet II Convención CITMATEL 2005 Ing. Luis Rojas luis@ceniai.inf.cu Agenda IPv6? Por qué y para qué? IPv6 en el mundo y en la región. CoexistenciaIPv4 e IPv6 Qué hemos hecho en

Más detalles

Capa de red en Internet

Capa de red en Internet Capa de red en Internet Una colección de Sistemas Autónomos (AS) Algunos backbones (espina dorsal, corazón de la red) formados por proveedores de nivel más alto Lo que los une es el Protocolo IP Necesidad

Más detalles

Direccionamiento IPv6. So#a Silva Berenguer sofia@lacnic.net

Direccionamiento IPv6. So#a Silva Berenguer sofia@lacnic.net Direccionamiento IPv6 So#a Silva Berenguer sofia@lacnic.net Direccionamiento Una dirección IPv4 está formada por 32 bits. 2 32 = 4.294.967.296 Una dirección IPv6 está formada por 128 bits. 2 128 = 340.282.366.920.938.463.463.374.607.431.768.211.456

Más detalles

Semestre I Aspectos básicos de Networking

Semestre I Aspectos básicos de Networking Semestre I Aspectos básicos de Networking Capítulo 6: Direccionamiento de la red Ip v4 1 Estructura de una dirección Ip v4 Cada dispositivo de una red debe ser definido en forma exclusiva. En la capa de

Más detalles

TESIS DE GRADO. ANÁLISIS DEL PROTOCOLO IPv6 SU EVOLUCION Y APLICABILIDAD. Silvia Duque, David Vallejo

TESIS DE GRADO. ANÁLISIS DEL PROTOCOLO IPv6 SU EVOLUCION Y APLICABILIDAD. Silvia Duque, David Vallejo TESIS DE GRADO ANÁLISIS DEL PROTOCOLO IPv6 SU EVOLUCION Y APLICABILIDAD i AGRADECIMIENTO El más profundo agradecimiento a todas las personas que han colaborado de una u otra forma para la culminación de

Más detalles

TEMA: Configuración de Servidores DHCPv6. Laboratorio de Redes, Universidad Tecnológica de El Salvador. TRABAJO FINAL, PRESENTADO POR:

TEMA: Configuración de Servidores DHCPv6. Laboratorio de Redes, Universidad Tecnológica de El Salvador. TRABAJO FINAL, PRESENTADO POR: FACULTAD: INFORMATICA Y CIENCIAS APLICADAS T E C N I C O E N I N G E N I E R I A D E R E D ES C O M P U T A C I O N A L E S. TEMA: Configuración de Servidores DHCPv6. Laboratorio de Redes, Universidad

Más detalles

- ERouting Final Exam - CCNA Exploration: Routing Protocols and Concepts (Versión 4.0)

- ERouting Final Exam - CCNA Exploration: Routing Protocols and Concepts (Versión 4.0) 1 of 20 - ERouting Final Exam - CCNA Exploration: Routing Protocols and Concepts (Versión 4.0) 1 Cuáles son las afirmaciones verdaderas con respecto al encapsulamiento y desencapsulamiento de paquetes

Más detalles

Enrutamiento con un protocolo de vector distancia en una red empresarial

Enrutamiento con un protocolo de vector distancia en una red empresarial Enrutamiento con un protocolo de vector distancia en una red empresarial Introducción al enrutamiento y la conmutación en la empresa. Capítulo 5 2006 Cisco Systems, Inc. Todos los derechos reservados.

Más detalles

CCNA 2 Conceptos y Protocolos de Enrutamiento

CCNA 2 Conceptos y Protocolos de Enrutamiento CCNA 2 Conceptos y Protocolos de Enrutamiento 1 Objetivos Desarrollar un conocimiento sobre la manera en que un router aprende sobre las redes remotas Como un router determina la mejor ruta hacia dichas

Más detalles

Fig.1 Redes conectadas a Internet a través de routers IP

Fig.1 Redes conectadas a Internet a través de routers IP PRACTICA 4 EL PROTOCOLO IP Hasta ahora hemos visto aspectos relacionados con el hardware de red de nuestras máquinas: Acceso al adaptador de red y un mecanismo para la resolución de direcciones hardware.

Más detalles

Protocolo Internet (IP)

Protocolo Internet (IP) Protocolo Internet (IP) Diseño de IP La versión más utilizada de IP (Internet Protocol) todavía es la 4 (IPv4), la primera versión estable que se publicó. La versión 5 es experimental y la versión 6 está

Más detalles

Entrega #1 Monografía IPv6. 2 Cuatrimestre de 2014. 80674 Ojea Quintana, Guillermo

Entrega #1 Monografía IPv6. 2 Cuatrimestre de 2014. 80674 Ojea Quintana, Guillermo Seminario de Redes 66.48 Entrega #1 Monografía IPv6 2 Cuatrimestre de 2014 Abstract El siguiente trabajo describe el protocolo IP versión 6 y los desafíos que se presentan en su implementación. También

Más detalles

1.4 Análisis de direccionamiento lógico. 1 Elaboró: Ing. Ma. Eugenia Macías Ríos

1.4 Análisis de direccionamiento lógico. 1 Elaboró: Ing. Ma. Eugenia Macías Ríos 1.4 Análisis de direccionamiento lógico 1 Se lleva a cabo en la capa de Internet del TCP/IP (capa de red del modelo OSI) la cual es responsable de las funciones de conmutación y enrutamiento de la información

Más detalles

INTERCONECTIVIDAD 6 YENSY CAROLINA GOMEZ CARDENAS EDWIN YHOVANY GARZON AMEZQUITA

INTERCONECTIVIDAD 6 YENSY CAROLINA GOMEZ CARDENAS EDWIN YHOVANY GARZON AMEZQUITA INTERCONECTIVIDAD 6 YENSY CAROLINA GOMEZ CARDENAS EDWIN YHOVANY GARZON AMEZQUITA CORPORACION UNIVERSITARIA MINUTO DE DIOS UNIMINUTO FACULTAD DE INGENIERIA, TECNOLOGIA EN INFORMATICA SOACHA 2011 INTERCONECTIVIDAD

Más detalles

IPv6. Redes de Banda Ancha Universidad Pública de Navarra. Autores: Belén Aldecoa Sánchez del Río Luis Alberto Ramon Surutusa

IPv6. Redes de Banda Ancha Universidad Pública de Navarra. Autores: Belén Aldecoa Sánchez del Río Luis Alberto Ramon Surutusa IPv6 Redes de Banda Ancha Universidad Pública de Navarra Autores: Belén Aldecoa Sánchez del Río Luis Alberto Ramon Surutusa 1 ÍNDICE Parte Teórica: 0. Acrónimos... 3 1. Introducción... 4 2. Direccionamiento...

Más detalles

Práctica de laboratorio: Identificación de direcciones IPv6

Práctica de laboratorio: Identificación de direcciones IPv6 Práctica de laboratorio: Identificación de direcciones IPv6 Topología Objetivos Parte 1: Identificar los diferentes tipos de direcciones IPv6 Revisar los distintos tipos de direcciones IPv6. Identificar

Más detalles

Clase 26 Soluciones al problema de direccionamiento Tema 7.- Ampliación de temas

Clase 26 Soluciones al problema de direccionamiento Tema 7.- Ampliación de temas Clase 26 Soluciones al problema de direccionamiento Tema 7.- Ampliación de temas Dr. Daniel Morató Redes de Ordenadores Ingeniero Técnico de Telecomunicación Especialidad en Sonido e Imagen, 3º curso Temario

Más detalles

Introducción y Estado del Arte de IPv6

Introducción y Estado del Arte de IPv6 Introducción y Estado del Arte de IPv6 Jordi Palet (jordi.palet@consulintel.es) Education, Promotion, Public Relations and Awareness Working Group Chair IPv6 Forum - 1 Porque un Nuevo Protocolo de Internet?

Más detalles

Dirección General de Educación Superior Tecnológica INSTITUTO TECNOLÓGICO DE SALINA CRUZ

Dirección General de Educación Superior Tecnológica INSTITUTO TECNOLÓGICO DE SALINA CRUZ Dirección General de Educación Superior Tecnológica INSTITUTO TECNOLÓGICO DE SALINA CRUZ UNIDAD: 3 CAPA DE RED Y DIRECCIONAMIENTO DE LA RED: IPv4 ACTIVIDAD: REPORTE DEL CAPITULO 6 DE CISCO MATERIA: FUNDAMENTOS

Más detalles

Apuntes disertación. Clase B

Apuntes disertación. Clase B Apuntes disertación Las direcciones IP tienen una estructura jerárquica. Una parte de la dirección corresponde a la red, y la otra al host dentro de la red. Cuando un router recibe un datagrama por una

Más detalles

DIDACTIFICACION DE IPv6. 3.2 Stateless

DIDACTIFICACION DE IPv6. 3.2 Stateless DIDACTIFICACION DE IPv6 3.2 Stateless RFC 4862: Stateless Address Autoconfiguration (SLAC) En la configuración stateless los equipos de la red se autoconfiguran sin necesidad de ningún servidor DHCP. Esta

Más detalles

Direccionamiento IP. Eduard Lara

Direccionamiento IP. Eduard Lara Direccionamiento IP Eduard Lara 1 INDICE 1. Clases direcciones IP 2. Direcciones especiales 3. Colapso direcciones IPv4. IPv6 4. Concepto de Mascara 5. Subnetting 6. VLSM 2 ASIGNACIÓN DIRECCIONES IP ICANN,

Más detalles

Práctica de laboratorio: Visualización de tablas de enrutamiento de host

Práctica de laboratorio: Visualización de tablas de enrutamiento de host Práctica de laboratorio: Visualización de tablas de enrutamiento de host Topología Objetivos Parte 1: Acceder a la tabla de enrutamiento de host Parte 2: Examinar las entradas de la tabla de enrutamiento

Más detalles

Introducción a los protocolos de enrutamiento dinámico

Introducción a los protocolos de enrutamiento dinámico Introducción a los protocolos de enrutamiento dinámico Conceptos y protocolos de enrutamiento. Capítulo 3 1 Objetivos Describir la función de los protocolos de enrutamiento dinámico y ubicar estos protocolos

Más detalles

Capitulo 5: RIP Versión 1(Protocolo de enrutamiento con clase por vector de distancia)

Capitulo 5: RIP Versión 1(Protocolo de enrutamiento con clase por vector de distancia) Lic. en Sistemas Computacionales MATERIA: Diseño de Redes ALUMNOS DEL EQUIPO: María Concepción de la Cruz Gómez Rodolfo Vasconcelos López DOCENTE: Lic. Rafael Mena de la Rosa Capitulo 5: RIP Versión 1(Protocolo

Más detalles

GLOSARIO. Backbone.- Nivel más alto en una red jerárquica, generalmente el más rápido y capaz de transportar la mayoría del tráfico en una red.

GLOSARIO. Backbone.- Nivel más alto en una red jerárquica, generalmente el más rápido y capaz de transportar la mayoría del tráfico en una red. GLOSARIO AIIH (Assignment of IPv4 Global Addresses to IPv6 Hosts).- Método que permite asignar temporalmente direcciones IPv4 a hosts Dual Stack dentro de una red IPv6. Anycast.- Un identificador para

Más detalles

Transición a IPv6. Área de Ingeniería Telemática Dpto. Automática y Computación http://www.tlm.unavarra.es/

Transición a IPv6. Área de Ingeniería Telemática Dpto. Automática y Computación http://www.tlm.unavarra.es/ Transición a IPv6 Área de Ingeniería Telemática Dpto. Automática y Computación http://www.tlm.unavarra.es/ Soluciones Doble pila Dispositivos con IPv4 e IPv6 Túneles Comunicar IPv6 a través de zonas IPv4

Más detalles

Introducción Internet no tiene una estructura real, pero existen varios backbone principales. Estos se construyen a partir de líneas y routers de alta velocidad. Conectados a los backbone hay redes regionales

Más detalles

La capa de red (Parte 3 de 3)

La capa de red (Parte 3 de 3) La capa de red (Parte 3 de 3) Redes de Computadoras Movilidad sobre IP 1 Movilidad sobre IP Los protocolos de Internet fueron diseñados asumiendo nodos fijos En los primeros tiempos, solo enlaces cableados.

Más detalles

CAPITULO II. EL PROTOCOLO IPv6

CAPITULO II. EL PROTOCOLO IPv6 CAPITULO II EL PROTOCOLO IPv6 2.1 Introducción a IPv6 2.2 Características de IPv6 2.3 Notación IPv6 2.4 Tipos de direcciones IPv6 2.5 Datagrama IPv6 2.6 DNS para IPv6 2.7 Principales protocolos en IPv6

Más detalles

El Protocolo IP. Tema 3. Servicio y Protocolo IP. Aplicaciones en Redes Locales 05/06

El Protocolo IP. Tema 3. Servicio y Protocolo IP. Aplicaciones en Redes Locales 05/06 El Protocolo IP Tema 3 Aplicaciones en Redes Locales 05/06 Servicio y Protocolo IP Historia: Sus inicios datan de un proyecto que le propusieron a la agencia de Defensa de USA, DARPA para diseñar una red

Más detalles

John R. Correa Administrador de Seguridad de la Información.

John R. Correa Administrador de Seguridad de la Información. John R. Correa Administrador de Seguridad de la Información. Agenda 2. Implementando un servidor DHCP6 en IPv6. 2.1. Introducción. 2.2. ICMPv6 2.3. Neighbor Discovery (ND). 2.4. Router Advertisements (RA).

Más detalles

CCNA EXPLORATION CONCEPTOS Y PROTOCOLOS

CCNA EXPLORATION CONCEPTOS Y PROTOCOLOS CCNA EXPLORATION CONCEPTOS Y PROTOCOLOS DE ENRUTAMIENTO COMPARACIÓN DEL NUEVO PROGRAMA DE ESTUDIOS CON EL PROGRAMA ACTUAL Preparada por Cisco Learning Institute 25 de junio, 2007 Resumen de conceptos y

Más detalles

- ENetwork Chapter 6 - CCNA Exploration: Network Fundamentals (Versión 4.0)

- ENetwork Chapter 6 - CCNA Exploration: Network Fundamentals (Versión 4.0) 1 of 5 - ENetwork Chapter 6 - CCNA Exploration: Network Fundamentals (Versión 4.0) 1 Consulte la presentación. Qué prefijo de red funcionará con el esquema de direccionamiento IP que se muestra en el gráfico?

Más detalles

WALC2011 Track 2: Despliegue de IPv6 Día -1 Guayaquil - Ecuador 10-14 Octubre 2011

WALC2011 Track 2: Despliegue de IPv6 Día -1 Guayaquil - Ecuador 10-14 Octubre 2011 WALC2011 Track 2: Despliegue de IPv6 Día -1 Guayaquil - Ecuador 10-14 Octubre 2011 Alvaro Vives (alvaro.vives@consulintel.es) - 1 4. ICMPv6, Neighbor Discovery y DHCPv6 4.1 ICMPv6 4.2 Neighbor Discovery

Más detalles

Redes WAN. IPv6. Esteban De La Fuente Rubio esteban@delaf.cl L A TEX. 18 abr 2011. Universidad Andrés Bello

Redes WAN. IPv6. Esteban De La Fuente Rubio esteban@delaf.cl L A TEX. 18 abr 2011. Universidad Andrés Bello IPv6 esteban@delaf.cl L A TEX Universidad Andrés Bello 18 abr 2011 Tabla de contenidos 1 Características Qué es? Mejoras 2 Tipos de asignación 3 Stack doble Tunneling Traducción de protocolos NAT (NAT-Protocol

Más detalles

4.1 Introducción a los protocolos por vector distancia.

4.1 Introducción a los protocolos por vector distancia. 4.0 Introducción En este capítulo se analiza el funcionamiento, ventajas y desventajas de los protocolos de enrutamiento por vector distancia. 4.1 Introducción a los protocolos por vector distancia. 4.1.1

Más detalles

Implementación de servicios de direccionamiento IP

Implementación de servicios de direccionamiento IP Implementación de servicios de direccionamiento IP Acceso a la WAN: capítulo 7 2006 Cisco Systems, Inc. Todos los derechos reservados. Información pública de Cisco 1 Objetivos Configurar DHCP en la red

Más detalles

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ESCUELA DE COMPUTACION

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ESCUELA DE COMPUTACION UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ESCUELA DE COMPUTACION CICLO: 01/ 2012 Nombre de la Practica: Lugar de Ejecución: Tiempo Estimado: MATERIA: DOCENTES: GUÍA DE LABORATORIO #08 Configuración

Más detalles

Direcciones IP. Identifican unívocamente un punto de acceso (interfaz) a la red. Un router o un host multi-homed tienen varias.

Direcciones IP. Identifican unívocamente un punto de acceso (interfaz) a la red. Un router o un host multi-homed tienen varias. Subnetting 1 Direcciones IP Identifican unívocamente un punto de acceso (interfaz) a la red. Un router o un host multi-homed tienen varias. Tienen un significado global en la Internet. Son asignadas por

Más detalles

IPv6: Mecanismos de Transición IPv4 - IPv6.

IPv6: Mecanismos de Transición IPv4 - IPv6. : Mecanismos de Transición -. Carlos Ralli Ucendo (ralli@tid.es) Introducción Características de Migración -: e incompatibles a nivel de paquete: Los nodos finales actuales de Internet no generan ni reconocen.

Más detalles

Servicio host to host. Conectar millones de LANs?

Servicio host to host. Conectar millones de LANs? Capa de Red Administración de Redes Locales Introducción Servicio host to host Conectar millones de LANs? Cómo encontrar un path entre dos hosts? Cómo reenviar paquetes a través de ese host? Introducción

Más detalles

REDES DE COMPUTADORES Laboratorio

REDES DE COMPUTADORES Laboratorio 1nsloo.cl REDES DE COMPUTADORES Laboratorio Práctica 3: Protocolos de enrutamiento dinámico RIP y OSPF 1. OBJETIVO El objetivo de esta práctica es conocer el modo de operar de los protocolos de enrutamiento

Más detalles

Sistemas de Transporte de Datos (9186). Curso 2010-11 Ingeniería Informática

Sistemas de Transporte de Datos (9186). Curso 2010-11 Ingeniería Informática Sistemas de Transporte de Datos (9186). Curso 2010-11 Ingeniería Informática Carlos A. Jara Bravo (cajb@dfists.ua.es) Grupo de Innovación Educativa en Automática 2010 GITE IEA Sistemas de Transporte de

Más detalles

Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Laboratorio de Comunicación y Redes

Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Laboratorio de Comunicación y Redes Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Laboratorio de Comunicación y Redes wradvs: Un Servidor de Autoconfiguración sin Estado para IPv6 en Plataforma Windows Trabajo

Más detalles

Capa de red de OSI. Semestre 1 Capítulo 5 Universidad Cesar Vallejo Edwin Mendoza emendozatorres@gmail.com

Capa de red de OSI. Semestre 1 Capítulo 5 Universidad Cesar Vallejo Edwin Mendoza emendozatorres@gmail.com Capa de red de OSI Semestre 1 Capítulo 5 Universidad Cesar Vallejo Edwin Mendoza emendozatorres@gmail.com Capa de red: Comunicación de host a host Procesos básicos en la capa de red. 1. Direccionamiento

Más detalles

REDES INFORMATICAS: Protocolo IP

REDES INFORMATICAS: Protocolo IP REDES INFORMATICAS: Protocolo IP 1. PRINCIPIOS BÁSICOS DE IP El protocolo IP se basa en tres principios básicos: Un direccionamiento de los ordenadores. Un tipo de dato: el datragrama IP. Un algoritmo

Más detalles

WALC2011 Track 2: Despliegue de IPv6 Día -4 Guayaquil - Ecuador 10-14 Octubre 2011

WALC2011 Track 2: Despliegue de IPv6 Día -4 Guayaquil - Ecuador 10-14 Octubre 2011 WALC2011 Track 2: Despliegue de Día -4 Guayaquil - Ecuador 10-14 Octubre 2011 Alvaro Vives (alvaro.vives@consulintel.es) - 1 Agenda 8. Mecanismos de Transición 9. Gestión de Red con PRÁCTICA: Gestión Redes

Más detalles

DISEÑO E IMPLEMENTACIÓN DE SOFTWARE PARA PROTOCOLO IPV6.

DISEÑO E IMPLEMENTACIÓN DE SOFTWARE PARA PROTOCOLO IPV6. DISEÑO E IMPLEMENTACIÓN DE SOFTWARE PARA PROTOCOLO IPV6. Tesis de Grado para optar al Titulo de Ingeniero Civil en Informática. Profesor Patrocinante: Luis Vidal Ingeniero Civil en Informatica MOISÉS EDUARDO

Más detalles

Unidad de Aprendizaje 2 Capa de Red. Redes de Computadores Sergio Guíñez Molinos sguinez@utalca.cl 21 2009

Unidad de Aprendizaje 2 Capa de Red. Redes de Computadores Sergio Guíñez Molinos sguinez@utalca.cl 21 2009 Unidad de Aprendizaje 2 Capa de Red sguinez@utalca.cl 21 2009-2009 Concepto del enlace de redes y modelo arquitectónico 2 Interconexión a nivel de aplicación Diseñadores de redes toman 2 enfoques para

Más detalles

INSTITUTO TECNOLÓGICO DE SALINA CRUZ. REDES DE COMPUTADORAS. SEMESTRE FEBRERO JULIO. REPORTE DE LECTURA DE CISCO CCNA2. ALUMNO: NOE SANCHEZ SANTIAGO.

INSTITUTO TECNOLÓGICO DE SALINA CRUZ. REDES DE COMPUTADORAS. SEMESTRE FEBRERO JULIO. REPORTE DE LECTURA DE CISCO CCNA2. ALUMNO: NOE SANCHEZ SANTIAGO. INSTITUTO TECNOLÓGICO DE SALINA CRUZ. REDES DE COMPUTADORAS. SEMESTRE FEBRERO JULIO. REPORTE DE LECTURA DE CISCO CCNA2. ALUMNO: NOE SANCHEZ SANTIAGO. INSTRUCTORA: SUSANA MÓNICA ROMÁN NÁJERA. UNIDAD: 3.

Más detalles

Juan C. Alonso. juancarlos@lacnic.net @jotaceuy. Introducción a IPv6

Juan C. Alonso. juancarlos@lacnic.net @jotaceuy. Introducción a IPv6 Juan C. Alonso juancarlos@lacnic.net @jotaceuy Introducción a IPv6 Internet y el TCP/IP 1969 Inicio de ARPANET 1981 Definición de IPv4 en la RFC 791 1983 ARPANET adopta los protocolos TCP/IP 1990 Primeros

Más detalles

Proyecto de Grado 2008 Anexo VII IP4JVM Glosario

Proyecto de Grado 2008 Anexo VII IP4JVM Glosario Proyecto de Grado 2008 Anexo VII I Glosario Autores: Leandro Scasso Marcos Techera Tutor: Ariel Sabiguero Tribunal: Andrés Aguirre Eduardo Grampín Carlos Martínez address o dirección: Un identificador

Más detalles

ESTUDIO E IMPLEMENTACION DE LA TRANSICION DE REDES IPv4 A IPv6

ESTUDIO E IMPLEMENTACION DE LA TRANSICION DE REDES IPv4 A IPv6 ESTUDIO E IMPLEMENTACION DE LA TRANSICION DE REDES IPv4 A IPv6 JAVIER TOQUICA GAONA, FERNANDO MUÑOZ RODRIGUEZ UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS INGENIERIA EN TELECOMUNICACIONES 1. RESUMEN

Más detalles

Introducción a IPv6. Lima, Perú Mayo, 2009 Jordi Palet, Consulintel (jordi.palet@consulintel.es) - 1

Introducción a IPv6. Lima, Perú Mayo, 2009 Jordi Palet, Consulintel (jordi.palet@consulintel.es) - 1 Introducción a IPv6 Lima, Perú Mayo, 2009 Jordi Palet, Consulintel (jordi.palet@consulintel.es) - 1 Porque un Nuevo Protocolo de Internet? Un único motivo lo impulso: Más direcciones! Para miles de millones

Más detalles

TCP/IP e Internet. Eytan Modiano MIT. Eytan Modiano. Slide 1

TCP/IP e Internet. Eytan Modiano MIT. Eytan Modiano. Slide 1 TCP/IP e Internet MIT Slide 1 El protocolo TCP/IP Protocolo de control de transmisión / Protocolo de Internet Desarrollado por DARPA con el fin de conectar entre sí las universidades y los laboratorios

Más detalles

Capa de red de OSI. Aspectos básicos de networking: Capítulo 5. 2007 Cisco Systems, Inc. Todos los derechos reservados.

Capa de red de OSI. Aspectos básicos de networking: Capítulo 5. 2007 Cisco Systems, Inc. Todos los derechos reservados. Capa de red de OSI Aspectos básicos de networking: Capítulo 5 1 Objetivos Identificar la función de la capa de red, la cual describe la comunicación desde un dispositivo final hacia otro. Examinar el protocolo

Más detalles

1.Introducción. 2.Direcciones ip

1.Introducción. 2.Direcciones ip 1.Introducción El papel de la capa IP es averiguar cómo encaminar paquetes o datagramas a su destino final, lo que consigue mediante el protocolo IP. Para hacerlo posible, cada interfaz en la red necesita

Más detalles

Protocolo IP. Campos del paquete IP:

Protocolo IP. Campos del paquete IP: Protocolo IP Campos del paquete IP: _ - Versión - Longitud de cabecera. - Tipo de servicio (prioridad). - Longitud total. - Identificación. - Flags para la fragmentación. - Desplazamiento del fragmento.

Más detalles

Implementación del Servicio de Sincronización Horaria Coordinada sobre IPv6. Mantenga la hora actualizada a través de Internet

Implementación del Servicio de Sincronización Horaria Coordinada sobre IPv6. Mantenga la hora actualizada a través de Internet Implementación del Servicio de Sincronización Horaria Coordinada sobre IPv6 Mantenga la hora actualizada a través de Internet Derlis Zárate dzarate@cnc.una.py Centro Nacional de Computación Universidad

Más detalles