Variación n de las temperaturas en el ciclo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Variación n de las temperaturas en el ciclo"

Transcripción

1 Análisis térmico t de la inyección Variación n de las temperaturas en el ciclo Juan de Juanes Márquez M Sevillano

2 Interés s del control de temperatura del molde Una de los parámetros más m s importantes a controlar durante la inyección n es la evolución n de la temperatura de la masa y del molde. Un ajuste correcto de la evolución n de la temperatura permite: Reducir los costes de las piezas. Conseguir contracciones uniformes. Obtener la calidad superficial de la pieza exigida. Alcanzar las características mecánicas adecuadas en todas las partes de la pieza.

3 Temperatura del molde La temperatura del molde se refiere a la temperatura de las paredes del molde. Es un parámetro sobre el que puede actuarse durante el proceso y que debe ser tenido en cuenta en el diseño del molde al diseñar el sistema de enfriamiento. Los objetivos que debemos considerar en el diseño o del sistema de enfriamiento son: La temperatura media del molde debe mantenerse en un rango lo más reducido como sea posible. La temperatura debe ser lo más uniforme como sea posible a lo largo de todos los puntos del molde. El tiempo de ciclo debe ser lo más corto como sea posible.

4 Variación n de la temperatura del molde La temperatura del molde en un punto determinado varía a a lo largo del ciclo de inyección. n. Inyección Desmoldeo ϑ WE = Temperatura desmoldeo ϑ W = Temperatura molde t ciclo = Tiempo de ciclo El sistema de enfriamiento influye en la variación n de la temperatura. La temperatura desciende más m s rápidamente r después s del desmoldeo (molde abierto).

5 Variación n de la temperatura del molde La temperatura máxima m es función n de la permeabilidad térmica: bw. ϑw min + bm. ϑm ϑ W max = b = ρ. λ. c b + b W Material M Permeabilidad W s 1/2 m -2 deg -1 Berilio (BeCu 25) 17, Acero no aleado (C 45 W 3) 13, Acero al cromo (X 40 Cr 13) 11, Polietileno (PE-HD) 0, Poliestileno (PS) 0, ϑ wmin = temperatura mínima ϑ M = temperatura masa b W = permeabilidad molde b M = permeabilidad polímero ρ= densidad λ= conductividad térmica c= calor específico

6 Variación n de la temperatura del molde La amplitud de la fluctuación n es menor en el interior de las paredes del molde (sensores de temperatura). Tiempo Distancia del termopar

7 Tiempo de enfriamiento El enfriamiento comienza en la fase de llenado, aunque la mayor parte del calor extraído se produce a partir de esta fase El llenado del molde es un proceso bastante isotermo debido al aporte de energía a debido al rozamiento interno de la masa El tiempo de enfriamiento se puede estimar aproximadamente a través s de las ecuaciones siguientes aplicadas a cada parte de la pieza Si el enfriamiento se realiza muy rápido r las desviaciones que se obtienen son elevadas. Por ello se recomienda que el número n de Fourier sea mayor de 0,05 t. a > 0.05 mejor > 2 x ( 0,1 ) t = tiempo de enfriamiento estimado a = difusividad térmica x = espesor de pared s o radio r en cilíndros largos

8 Temperaturas de proceso En el momento de desmoldeo el perfil de temperatura en las paredes de la pieza es según n se presenta en la figura Termoplástico Temperatura Molde C Temperatura Masa C Temperatura de desmoldeo C Apec HT (PC-HT) Bayblend (PC+ABS) (55) 1) Desmopan (TPU) Durethan A (PA 66) (60) 1) Durethan AKV (PA 66), GF) (60) 1) Durethan B (PA 6) (60) 1) Durethan BKV (PA 6, GF) (60) 1) Makrolon (PC) (>65) 1) <140 Makrolon (PC, GF) (>65) 1) <150 Novodur ABS (>45) 1) Lustran ABS (>45) 1) Lustran SAn Pocan (PBT) (>60) 1) <140 Pocan (PBT, GF)) (>60) 1) <150 Triax (ABS + PA)

9 Tiempo de enfriamiento Tiempo de enfriamiento Tiempo de enfriamiento Tiempo de enfriamiento Parámetros en el tiempo de enfriamiento Espesor de pared Temperatura desmoldeo Temperatura molde Temperatura masa

10 Parámetros en el tiempo de enfriamiento En resumen: Las paredes deben ser lo más delgadas como sea posible. Las temperaturas de desmoldeo lo más alta como sea posible. Temperatura del molde razonable. La temperatura de la masa debe ser la adecuada para obtener una fluidez correcta.

11 Balance térmico t del molde El objetivo es establecer la cantidad de energía a calorífica a extraer del molde durante el ciclo de inyección. n. Flujo térmico del polímero inyectado Q F Flujo por conducción desde la unidad de inyección Q H Flujo por conducción a la inyectora Q L Flujo por convección al ambiente Q K Flujo por radiación al ambiente Q Str Flujo extraído por el sistema de refrigeración Q TM

12 Energía a térmica t del polímero La energía a térmica t aportada por el polímero en la inyección n es. Q F m Δh =. t Entalpía específica m = Masa del polímero Δh= Incremento de entalpía t = Tiempo del ciclo Amorfos Entalpía específica Temperatura Semicristalinos Temperatura

13 Flujos de convección n en el molde Las pérdidas p de calor por convección n sigue la ley de Newton: A S = Superficie lateral. Q K A S L ( ϑ ϑ ) =.α WA U α L = Coeficiente de convección natural del aire. 8W/m 2.grado ϑ WA = Temperatura de la superficie exterior del molde ϑ U = Temperatura ambiente La temperatura exterior del molde es difícil de estimar, pero existe una correlación n estrecha con la temperatura media del circuito de enfriamiento. Acero aleado Acero no aleado Berilio-cobre

14 Flujos de convección n en el molde Las pérdidas p con el molde abierto son: t A. α ( ϑ ϑ ). TR L WA U t off ciclo A TR = Superficie de partición t off = Tiempo de apertura del molde t ciclo = Tiempo de ciclo El flujo total por convección n será:. Q K = α L A. t TR off ( ϑ ) + WA ϑu. As tciclo

15 Flujos de radiación n en el molde Las pérdidas p por radiación n son más m s reducidas que las de convección n (25% de las de convección n a temperaturas del molde superiores a 90ºC). Las pérdidas p por radiación n siguen la ley de Stefan- Boltzmann:. 4 U Q str = A S. ε. C S TWA 100 A s = Superficie de radiación T 100 ε = Factor de emisión 0,25 para acero brillante 0,8 para moldes usados C S = Coeficiente de radicación cuerpo negro T WA = Temperatura absoluta molde T U = Temperatura absoluta ambiente 4 Convección Radiación

16 Flujos de conducción n en el molde Los flujos de calor por conducción n se establecen entre el molde y los platos de la máquina. m. Q L A A ( ϑ ϑ ) =.β WA U A A = Superficies de las placas del molde β = Coeficiente de transmisión En el caso de colocar aislantes el coeficiente de conducción n será: β isol = 1 + S I β isol. λ. λ F isol W λ W = Conductividad del molde λ isol = Conductividad aislante S isol = Espesor aislante I F = Espesor molde m 2 β W. grado Acero 98 Acero aleado 84 Aleación Cobre 116 λ isol W 0.7 m. K

17 Circuito de enfriamiento La temperatura entre el polímero y los canales de enfriamiento varía a cualitativamente como se observa en la figura. Canal de enfriamiento Polímero Δθ 1 = Incremento de temperatura por conducción (negativo) Δθ 2 = Incremento de temperatura por transmisión Para conseguir una buena uniformidad en los flujos térmicos t es aconsejable que el salto térmico t no sea mayor de 30ºC

18 Circuito de enfriamiento Influencia de la conductividad del material del molde. Cobre-berilio Acero al cromo Los incrementos de temperatura por transmisión n pueden ser positivos en los canales

19 Posición n de los canales de enfriamiento El objetivo es obtener un enfriamiento uniforme. En componentes de precisión n el enfriamiento debe pensarse en la fase de diseño o conceptual del molde. El canal ideal sería a el que aparece en la figura a, pero por rigidez puede ser más m s adecuado los canales que aparecen en la figura b. a b

20 Posición n de los canales de enfriamiento La posición n relativa de los canales da lugar a variaciones de la temperatura en la superficie del molde Se recomienda que la variación n de temperatura no sea mayor de : 2,5 a 5% en los polímeros semicristalinos. 5 a 10% en los polímeros amorfos.

21 Circuitos de enfriamiento Circuitos exteriores

22 Circuitos de enfriamiento Circuitos de refrigeración n interiores para núcleosn

23 Análisis numérico Distribución n temperaturas en el momento de desmoldeo

24 Variación n de la temperatura del molde La evolución n de la temperatura cuando la masa caliente contacta con el molde frío o es cualitativamente la siguiente. Molde Polímero Punto de medida temperatura Esta evolución n depende de las propiedades térmicas t del material del molde y del polímero.

25 Tiempo de enfriamiento El grado de enfriamiento es: Geometría Condiciones contorno Plano Ecuación Cilindro Cilindro

26 Tiempo de enfriamiento Cubo Esfera Cilindro hueco Con Cilindro hueco Con

27 Tiempo de enfriamiento La difusividad térmica para diferentes polímeros: Difusividad Difusividad Polímeros amorfos Temperatura del molde Temperatura del molde Polímeros semicristalinos

28 Tiempo de enfriamiento Tiempo de enfriamiento Tiempo de enfriamiento Tiempo de enfriamiento Parámetros en el tiempo de enfriamiento t K = S π max 2 2 aeff 4 ln π.θ θ = T T M E T T W W Espesor de pared Temperatura desmoldeo Temperatura molde Temperatura masa

29 Circuito de enfriamiento Δϑ ϑ ϑ = = 1 w KK Δϑ = ϑ 2 KK ϑ TM. Q. δ. n F 2. A. λ. F. KK FT W QF + QU + Q = 2. A. α TM. H α TM = NU. λ D KK TM Nu= ( ) D KK Re 180 Pr 1+ ITK 0,67 Válido para Re<10 6 y 0,6<Pr<500 VTM D Re= V ν Pr= a TM TM TM KK V = TM DKK ρ η TM TM TM λtm a T = M C ρ TM

30 Posición n de los canales de enfriamiento La posición n relativa de los canales da lugar a variaciones de la temperatura en la superficie del molde Se recomienda que la variación n de temperatura no sea mayor de : 2,5 a 5% en los polímeros semicristalinos. 5 a 10% en los polímeros amorfos. j = 2.4 Bi 0.22 B C B 2.8 In C α Bi = λ TM D KK W j Δϑ = ϑ WIj W 100%

Eficiencia energética en conductos de climatización. Claire Plateaux

Eficiencia energética en conductos de climatización. Claire Plateaux Eficiencia energética en conductos de climatización Claire Plateaux Introducción Informe Anual De Consumos Energéticos IDAE - 2009 Sector Residencial + Servicio : 27% del consumo total Acondicionamiento

Más detalles

INTERCAMBIADORES DE CALOR

INTERCAMBIADORES DE CALOR 1 OBJETO: INTERCAMBIADORES DE CALOR Estudio del comportamiento de un cambiador de calor de carcasa y tubos. Determinación de su coeficiente global de transmisión de calor, DMLT, F, eficiencia, NUT, y pérdidas

Más detalles

TEMA 5 DISEÑO DE CHIMENEAS

TEMA 5 DISEÑO DE CHIMENEAS TEMA 5 DISEÑO DE CHIMENEAS TEMA 5. DISEÑO DE CHIMENEAS 1. Introducción 1.1. Objetivos Dilución de contaminantes y dispersión en la atmósfera C inmisión C normativa Diseño: - Altura - Diámetro - Materiales

Más detalles

Contracciones y deformaciones en las piezas de plástico

Contracciones y deformaciones en las piezas de plástico Contracciones y deformaciones en las piezas de plástico Las contracciones en el diseño o del molde Juan de Juanes Márquez M Sevillano Contracción n y deformación Contracción: : cambio de volumen que sufre

Más detalles

OPERACIONES UNITARIAS

OPERACIONES UNITARIAS OPERACIONES UNITARIAS 2016 TEMA 2 - CALOR INTRODUCCION MECANISMOS DE TRANSFERENCIA DE CALOR Prácticamente en todas las operaciones que realiza el ingeniero interviene la producción o absorción de energía

Más detalles

Bloque II. TRANSMISIÓN DEL CALOR

Bloque II. TRANSMISIÓN DEL CALOR Bloque II. TRANSMISIÓN DEL CALOR TEMA 4. MECANISMOS BÁSICOS DE TRANSMISIÓN DEL CALOR 4.1 Transmisión del calor: concepto. Modos de transmisión del calor. 4.2 Conducción. Ley de Fourier. 4.3 Convección.

Más detalles

Solar Fototérmica. Libro de texto: F.P. Incropera, D.P. de Witt, T.L. Bergman y A. S. Lavine Fundamentals of Heat Mass Transfer Willey 6a Edición.

Solar Fototérmica. Libro de texto: F.P. Incropera, D.P. de Witt, T.L. Bergman y A. S. Lavine Fundamentals of Heat Mass Transfer Willey 6a Edición. Temario para el examen de admisión Solar Fototérmica Libro de texto: F.P. Incropera, D.P. de Witt, T.L. Bergman y A. S. Lavine Fundamentals of Heat Mass Transfer Willey 6a Edición. Incropera 1. Conducción

Más detalles

TRANSFERENCIA DE CALOR. Q x

TRANSFERENCIA DE CALOR. Q x RANSFERENCIA DE CAOR CONDUCCIÓN k. A.( t t ) Q ó k. A.( t t) Q x t t Cara posterior (fría) a t Material con conductividad k t x Nomenclatura de la ecuación t Cara anterior (caliente) a t Q Dirección del

Más detalles

PLAN DE ESTUDIOS 1996

PLAN DE ESTUDIOS 1996 Ríos Rosas, 21 28003 MADRID. UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE MINAS ------- DEPARTAMENTO DE INGENIERÍA QUÍMICA Y COMBUSTIBLES PROGRAMA DE LA ASIGNATURA FENÓMENOS

Más detalles

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERIA TRANSFERENCIA DE CALOR PROF.. FRANZ RAIMUNDO

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERIA TRANSFERENCIA DE CALOR PROF.. FRANZ RAIMUNDO UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERIA TRANSFERENCIA DE CALOR PROF.. FRANZ RAIMUNDO CONTENIDO: INTRODUCCIÓN Qué es la transferencia de calor? Cómo se transfiere el calor? Modos de transferencia

Más detalles

TITULACIÓN: INGENIERO TÉCNICO DE MINAS

TITULACIÓN: INGENIERO TÉCNICO DE MINAS Ríos Rosas, 21 28003 MADRID. UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE MINAS ------- TITULACIÓN: INGENIERO TÉCNICO DE MINAS ESPECIALIDAD EN: RECURSOS ENERGÉTICOS COMBUSTIBLES

Más detalles

Transferencia de Calor Cap. 4. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D.

Transferencia de Calor Cap. 4. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Transferencia de Calor Cap. 4 Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Conducción de calor en régimen transitorio Consideraremos la variación de la temperatura con el tiempo así como con la posición,

Más detalles

Ejercicios N 2. Ingeniería Industrial

Ejercicios N 2. Ingeniería Industrial Ejercicios N 2 1. Calcule la perdida de calor por m 2 de área superficial en la pared aislante temporal de un cuarto de almacenamiento en frio, si la temperatura exterior del corcho es de 299.9 K y la

Más detalles

Aislamiento térmico en cañerías y estanques. Fundamentos teóricos, ejemplos prácticos.

Aislamiento térmico en cañerías y estanques. Fundamentos teóricos, ejemplos prácticos. Aislamiento térmico en cañerías y estanques Fundamentos teóricos, ejemplos prácticos. Índice 1. Fundamentos teóricos transferencia de calor. 1.1. Conducción. 1.2. Convección. 1.3. Radiación. 2. Aislamiento

Más detalles

SISTEMA DE SUELO RADIANTE BRASELI

SISTEMA DE SUELO RADIANTE BRASELI SISTEMA DE SUELO RADIANTE BRASELI 51 SISTEMA DE CALEFACCION Y FRIO CON SUELO RADIANTE BRASELI Un suelo radiante es un sistema de calefacción basado en un circuito de tuberías empotradas en el mortero situado

Más detalles

Práctica 1. Cálculo de los procesos de transmisión de calor en los cerramientos exteriores de una vivienda.

Práctica 1. Cálculo de los procesos de transmisión de calor en los cerramientos exteriores de una vivienda. Práctica. Cálculo de los procesos de transmisión de calor en los cerramientos exteriores de una vivienda. Física del Medio Ambiente. Prof. Diego Pablo Ruiz Padillo Material: Termómetro de infrarrojos,

Más detalles

Principios de la termodinámica

Principios de la termodinámica Física aplicada a procesos naturales Tema I.- Balance de Energía: Primer principio de la Termodinámica. Lección 1. Principios de la termodinámica Equilibrio térmico. Define el método de medida de la temperatura

Más detalles

Introducción y Conceptos.

Introducción y Conceptos. Introducción y Conceptos. Introducción y Conceptos. EQUIPOS DE TRANSFERENCIA DE CALOR Introducción y Conceptos. Los equipos de transferencia de calor tales como intercambiadores de calor, las calderas,

Más detalles

Cálculo de la eficiencia del colector

Cálculo de la eficiencia del colector XI Cálculo de la eficiencia del colector A continuación veremos cómo utilizar las fórmulas desarrolladas en las secciones anteriores para calcular la eficiencia de un colector solar en un día específico,

Más detalles

Tabla de Contenidos. 1. Introducción... 19. 2. El agua y su importancia en la vivienda... 29. 1.1. Antecedentes... 19. 1.2. Alcances...

Tabla de Contenidos. 1. Introducción... 19. 2. El agua y su importancia en la vivienda... 29. 1.1. Antecedentes... 19. 1.2. Alcances... Tabla de Contenidos 1. Introducción... 19 1.1. Antecedentes... 19 1.2. Alcances... 19 1.3. La Humedad... 20 1.3.1. Humedad de lluvia... 20 1.3.2. Humedad accidental... 20 1.3.3. Humedad del suelo... 21

Más detalles

Matemáticas 4 Enero 2016

Matemáticas 4 Enero 2016 Laboratorio #1 Vectores I.- Calcule el producto escalar de los dos vectores y el coseno del ángulo entre ellos. 1) u = 3i + 2j 4k; v = i + 5j 3k 2) u = i + 2j 3k; v = 1i 2j + 3k 3) u = 1 2 i + 1 3 j +

Más detalles

R979 AISLANTE PREFORMADO PARA INSTALACIONES DE SUELO RADIANTE

R979 AISLANTE PREFORMADO PARA INSTALACIONES DE SUELO RADIANTE R979 AISLANTE PREFORMADO PARA INSTALACIONES DE SUELO RADIANTE GIACOMINI ESPAÑA, S.L. Ctra. Viladrau Km. 10 - P.I. Monmany nº 2 08553 - SEVA (Barcelona) t. 938841001 - f. 938841073 La creciente difusión

Más detalles

MEDICIÓN DE CONDUCTIVIDAD TÉRMICA

MEDICIÓN DE CONDUCTIVIDAD TÉRMICA MEDICIÓN DE CONDUCTIVIDAD TÉRMICA Introducción: Las soluciones de la Ley de Fourier en su formulación diferencial, empleando las condiciones de borde adecuadas, permite resolver el problema de conducción

Más detalles

PROBLEMAS TRANSMISIÓN DE CALOR

PROBLEMAS TRANSMISIÓN DE CALOR PROBLEMAS TRANSMISIÓN DE CALOR CD_1 El muro de una cámara frigorífica de conservación de productos congelados está compuesto por las siguientes capas (de fuera a dentro): - Revoco de cemento de 2 cm de

Más detalles

Würth Calidad Traducido y verificado por: Original consta en archivo de WÜRTH ESPAÑA, S.A. Dpto. Control de Calidad

Würth Calidad Traducido y verificado por: Original consta en archivo de WÜRTH ESPAÑA, S.A. Dpto. Control de Calidad Control de Calidad Certificado de Calidad 0681 001 130-200 MULTITHERMIC- TERMOPLUS WÜRTH ESPAÑA CERTIFICA QUE: Este producto cumple con las siguientes especificaciones técnicas. 1- Resistencia Térmica

Más detalles

Introducción n a los moldes de inyección

Introducción n a los moldes de inyección Introducción n a los moldes de inyección Fases de diseño o de un molde Juan de Juanes Márquez M Sevillano Elementos del molde 1. Brida 2. Placa aislante 3. Tornillo 4. Tornillo 5. Tope 6. Muelle de tirante

Más detalles

MEMORIA DE CÁLCULO CONDUCTORES BARRAJE 115kV SUBESTACIÓN CAMPOBONITO 115 kv

MEMORIA DE CÁLCULO CONDUCTORES BARRAJE 115kV SUBESTACIÓN CAMPOBONITO 115 kv Página :1 de 15 Nombre del documento: MEMORIA DE CÁLCULO CONDUCTORES BARRAJE 115kV SUBESTACION CAMPOBONITO 115kV Consecutivo del documento: LE-FR-CON-256-MC-007 MEMORIA DE CÁLCULO CONDUCTORES BARRAJE 115kV

Más detalles

Transferencia de Calor I

Transferencia de Calor I ransferencia Calor I Introducción En primer lugar tenemos ue cir ue la transferencia calor es el área la ingeniería ue estudia los diferentes mecanismos transferencia calor. Definición termodinámica calor:

Más detalles

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera 1. ey de Fourier ué flujo de calor es necesario hacer pasar a través de una barra circular de madera de 5 cm de diámetro y 10 cm de longitud, cuya temperatura en los extremos es de 50 C y 10 C en sus extremos?

Más detalles

Conceptos térmicos. Aislamiento térmico. Dónde aislar? Ventilación 20% Techo 30% Ventanas 13% Pared 30% Puentes térmicos 5% Suelo 7%

Conceptos térmicos. Aislamiento térmico. Dónde aislar? Ventilación 20% Techo 30% Ventanas 13% Pared 30% Puentes térmicos 5% Suelo 7% Aislamiento térmico Techo 30% Ventilación 20% Dónde aislar? Pared 30% Ventanas 13% Puentes térmicos 5% Suelo 7% Aislamiento térmico Con qué aislar? Cómo elegir los aislantes? Aislantes minerales

Más detalles

Transferencia de Calor Cap. 1. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D.

Transferencia de Calor Cap. 1. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Transferencia de Calor Cap. 1 Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Conceptos básicos Termodinámica: estudia la cantidad de transferencia de calor medida que un sistema pasa por un proceso de

Más detalles

Medición de la Conductividad

Medición de la Conductividad Medición de la Conductividad 1.1. Introducción Las soluciones de la Ley de Fourier en su formulación diferencial, empleando las condiciones de borde adecuadas, permite resolver el problema de conducción

Más detalles

MATERIALES Y PROCESOS III

MATERIALES Y PROCESOS III MATERIALES Y PROCESOS III DEFINICIÓN Es un proceso de transformación secundario, en el cual una lámina de material termoplástico se moldea por la acción de temperatura y presión. La temperatura ayuda a

Más detalles

MATERIALES POLIMÉRICOS Y COMPUESTOS TEMA 7- Métodos de procesado. Moldeo por inyección PROBLEMAS.- HOJA 1

MATERIALES POLIMÉRICOS Y COMPUESTOS TEMA 7- Métodos de procesado. Moldeo por inyección PROBLEMAS.- HOJA 1 TEMA 7- Métodos de procesado. Moldeo por inyección PROBLEMAS.- HOJA 1 P1.- Una cavidad en forma de disco circular de radio 50 mm y espesor 3 mm debe llenarse con resina acrílica a través de una espiga

Más detalles

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR El calor: Es una forma de energía en tránsito. La Termodinámica y La Transferencia de calor. Diferencias. TERMODINAMICA 1er. Principio.Permite determinar

Más detalles

TRANSFERENCIA DE CALOR POR CONVECCIÓN

TRANSFERENCIA DE CALOR POR CONVECCIÓN TRANSFERENCIA DE CALOR POR CONVECCIÓN Nos hemos concentrado en la transferencia de calor por conducción y hemos considerado la convección solo hasta el punto en que proporciona una posible condición de

Más detalles

MÁQUINA PARA MOLDEO POR INYECCIÓN. Partes de una Máquina

MÁQUINA PARA MOLDEO POR INYECCIÓN. Partes de una Máquina MÁQUINA PARA MOLDEO POR INYECCIÓN Partes de una Máquina Bancada: Soporte o base marco en fundición de hierro y con partes de acero soldadas por arco eléctrico. Mecanismo de cierre: debe de cumplir con

Más detalles

SISTEMAS DE SUELO RADIANTE

SISTEMAS DE SUELO RADIANTE SISTEMAS DE SUELO RADIANTE El confort más eficiente para su hogar El sistema de suelo radiante y refrescante Enertres constituye la base para lograr el confort en su hogar. En combinación con cualquiera

Más detalles

MEMORIA DE CÁLCULO CONDUCTORES Y CABLES PARA ALTA Y MEDIA TENSIÓN SUBESTACIONES SAN MARTIN, ACACIAS Y CUMARAL

MEMORIA DE CÁLCULO CONDUCTORES Y CABLES PARA ALTA Y MEDIA TENSIÓN SUBESTACIONES SAN MARTIN, ACACIAS Y CUMARAL FORMATO MEMORIAS DE CÁLCULO Rev. 01 Pág. 1 de 15 Nombre del documento: MEMORIA DE CÁLCULO CONDUCTORES Y CABLES PARA MEDIA TENSIÓN SUBESTACIÓNES SAN MARTIN, ACACIAS Y CUMARAL Consecutivo del documento:

Más detalles

Tema 1: Introducción. Rafael Royo, José Miguel Corberán. Curso Diapositiva 1. Tema1: Introducción INTRODUCCIÓN. JM Corberán, R Royo (UPV) 1

Tema 1: Introducción. Rafael Royo, José Miguel Corberán. Curso Diapositiva 1. Tema1: Introducción INTRODUCCIÓN. JM Corberán, R Royo (UPV) 1 Diapositiva 1 INTRODUCCIÓN. JM Corberán, R Royo (UPV) 1 Diapositiva 2 ÍNDICE 1. CONCEPTOS PREVIOS DE TERMODINÁMICA 2. INTRODUCCIÓN A LOS MODOS DE TRANSMISIÓN DE CALOR 2.1. CONDUCCIÓN 2.2. CONVECCIÓN 2.3.

Más detalles

En el presente Anejo sólo se incluyen los símbolos más frecuentes utilizados en la Instrucción.

En el presente Anejo sólo se incluyen los símbolos más frecuentes utilizados en la Instrucción. PARTE SEGUNDA: ANEJOS Anejo 1 Notación En el presente Anejo sólo se incluyen los símbolos más frecuentes utilizados en la Instrucción. Mayúsculas romanas A A c A ct A e A j A s A' s A s1 A s2 A s,nec A

Más detalles

PRÁCTICA 1: ECUACIÓN TÉRMICA DE ESTADO DE UNA SUSTANCIA PURA

PRÁCTICA 1: ECUACIÓN TÉRMICA DE ESTADO DE UNA SUSTANCIA PURA TERMODINÁMICA TÉCNICA Y TRANSMISION DE CALOR E.I.I. Valladolid Departamento de Ingeniería Energética y Fluidomecánica Curso 2012-2013 PRÁCTICA 1: ECUACIÓN TÉRMICA DE ESTADO DE UNA SUSTANCIA PURA OBJETIVOS:

Más detalles

Transferencia de Calor curso Ejercicios

Transferencia de Calor curso Ejercicios Ejercicios 1. Un chip de espesor despreciable se coloca sobre una placa base de baquelita de 5 mm de espesor y conductividad k=1,0 W/mK. La resistencia térmica de contacto entre el chip y la plaqueta es

Más detalles

Aplicaciones del Análisis Experimental de Vibraciones: Mantenimiento Predictivo: Detección

Aplicaciones del Análisis Experimental de Vibraciones: Mantenimiento Predictivo: Detección Aplicaciones del Análisis Experimental de Vibraciones: Mantenimiento Predictivo: Detección prematura de fallos en maquinaria. Validación de modelos teóricos: Se emplean las medidas experimentales para

Más detalles

6. Revisión de parámetros para el estaño

6. Revisión de parámetros para el estaño Estudio de la influencia de diferentes diseños de los sistemas de alimentación y compensación en la fundición en arena 6. Revisión de parámetros para el estaño Como se mencionó en el capítulo 3, no existe

Más detalles

Control 1: Parte Numérica

Control 1: Parte Numérica Control : Parte Numérica Profesor: omás Vargas. Auxiliar: Melanie Colet. Ayudante: Jorge Monardes Diego Guiachetti. Problema Nº Se tiene un termo conteniendo agua a 00 ºC y se desea estimar cuanto tiempo

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA DEPARTAMENTO DE ENERGÉTICA UNIDAD CURRICULAR: TRANSFERENCIA DE CALOR

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA DEPARTAMENTO DE ENERGÉTICA UNIDAD CURRICULAR: TRANSFERENCIA DE CALOR UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA DEPARTAMENTO DE ENERGÉTICA UNIDAD CURRICULAR: TRANSFERENCIA DE CALOR Convección Profesor: Ing. Isaac Hernández Isaachernandez89@gmail.com

Más detalles

CAPÍTULO 2 CONVECCION NATURAL SOBRE PLACAS HORIZONTALES. La transferencia de calor es la ciencia que busca predecir la transferencia de energía

CAPÍTULO 2 CONVECCION NATURAL SOBRE PLACAS HORIZONTALES. La transferencia de calor es la ciencia que busca predecir la transferencia de energía CAPÍTULO 2 CONVECCION NATURAL SOBRE PLACAS HORIZONTALES 2.1 Transferencia de Calor La transferencia de calor es la ciencia que busca predecir la transferencia de energía que puede tener lugar entre dos

Más detalles

PROBLEMAS SOBRE CONVECCIÓN pfernandezdiez.es

PROBLEMAS SOBRE CONVECCIÓN pfernandezdiez.es PROBLEMAS SOBRE CONVECCIÓN V.1.- Se bombea aceite de motor sin usar a 60ºC, a través de 80 tubos que tienen un diámetro de,5 cm, y una longitud de 10 m a una velocidad media de 0,6 m/s. Calcular: a) La

Más detalles

GUIA N o 2: TRANSMISIÓN DE CALOR Física II

GUIA N o 2: TRANSMISIÓN DE CALOR Física II GUIA N o 2: TRANSMISIÓN DE CALOR Física II Segundo Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería Sede Caseros II Buenos

Más detalles

SYLLABUS CARRERA DE INGENIERIA (E) INDUSTRIAL

SYLLABUS CARRERA DE INGENIERIA (E) INDUSTRIAL NOMBRE ASIGNATURA OPERACIONES UNITARIAS CÓDIGO IEI -730 NOMBRE DEL DOCENTE LUIS G. VENEGAS MUÑOZ OBJETIVOS DE LA ASIGNATURA: - COMPRENDER LOS FUNDAMENTOS Y ALCANCES DE LAS OPERACIONES UNITARIAS EN LOS

Más detalles

ASPECTOS GENERALES PARA LA SOLUCIÓN DE PROBLEMAS RELACIONADOS CON LA CONDUCCIÓN TRANSITORIA.

ASPECTOS GENERALES PARA LA SOLUCIÓN DE PROBLEMAS RELACIONADOS CON LA CONDUCCIÓN TRANSITORIA. CONDUCCIÓN TRANSITORIA Aquí encontrarás Los métodos gráficos y el análisis teórico necesario para resolver problemas relacionados con la transferencia de calor por conducción en estado transitorio a través

Más detalles

Guía de Problemas Resueltos usando Foodconduction - Versión Alfa2

Guía de Problemas Resueltos usando Foodconduction - Versión Alfa2 UNIVERSIDAD AUSTRAL DE CHILE INSTITUTO DE CIENCIA Y TECNOLOGIA DE LOS ALIMENTOS / ASIGNATURA : Ingeniería de Procesos III (ITCL 234) PROFESOR : Elton F. Morales Blancas UNIDAD 5: CALENTAMIENTO Y ENFRIAMIENTO

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE SILABO P.A II

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE SILABO P.A II UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE SILABO P.A. 2011-II 1. INFORMACION GENERAL Nombre del curso : Transferencia de Calor y Masa Código del curso

Más detalles

GRADO: INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES CURSO: 3º CUATRIMESTRE: 1º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA

GRADO: INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES CURSO: 3º CUATRIMESTRE: 1º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA DENOMINACIÓN ASIGNATURA: TRANSFERENCIA DE CALOR GRADO: INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES CURSO: 3º CUATRIMESTRE: 1º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA SEMANA SESIÓN 1 1 DESCRIPCIÓN DEL CONTENIDO

Más detalles

CAPITULO V TERMODINAMICA - 115 -

CAPITULO V TERMODINAMICA - 115 - CAPIULO V ERMODINAMICA - 5 - 5. EL GAS IDEAL Es el conjunto de un gran número de partículas diminutas o puntuales, de simetría esférica, del mismo tamaño y de igual volumen, todas del mismo material. Por

Más detalles

UNIVERSIDAD NACIONAL DEL NORDESTE FACULTAD DE INGENIERÍA DEPARTAMENTO DE FÍSICAF CLASE X. Prof. Juan José Corace

UNIVERSIDAD NACIONAL DEL NORDESTE FACULTAD DE INGENIERÍA DEPARTAMENTO DE FÍSICAF CLASE X. Prof. Juan José Corace UNIVERSIDAD NACIONAL DEL NORDESTE FACULTAD DE INGENIERÍA DEPARTAMENTO DE FÍSICAF Y QUÍMICA CURSO FÍSICAF II 2013 CLASE X Corace MECANISMOS DE TRANSFERENCIA DE LA ENERGÍA TRANSMISIÓN N DE CALOR Parte 1

Más detalles

3. Convección interna forzada

3. Convección interna forzada Tubos circulares resisten grandes diferencias de presión dentro y fuera del tubo (Equipos de transferencia) Tubos no circulares costos de fabricación e instalación más bajos (Sistemas de calefacción) Para

Más detalles

TRANSMITANCIA TÉRMICA BLOQUES DE HORMIGÓN

TRANSMITANCIA TÉRMICA BLOQUES DE HORMIGÓN DERROCHE INNECESARIO DE ENERGÍA FACTORES QUE PUEDEN PRODUCIR Excesivos gastos de calefacción originados por techos con deficiente aislación, demasiada superficie de ventanas o paños transparentes, sobre

Más detalles

APLICACIÓN DE SIMUSOL EN SECADORES SOLARES: SECADOR SOLAR TIPO CABINA

APLICACIÓN DE SIMUSOL EN SECADORES SOLARES: SECADOR SOLAR TIPO CABINA UNIVERSIDAD NACIONAL JORGE BASADRE GROHMANNTACNA Facultad de Ciencias Escuela Académico Profesional de Física Aplicada APLICACIÓN DE SIMUSOL EN SECADORES SOLARES: SECADOR SOLAR TIPO CABINA Autores: Dr.

Más detalles

Ensayos experimentales para cuantificar el efecto térmico de distintos espesores de pinturas aislantes

Ensayos experimentales para cuantificar el efecto térmico de distintos espesores de pinturas aislantes Ensayos experimentales para cuantificar el efecto térmico de distintos espesores de pinturas aislantes 1. Introducción El objeto del presente estudio es comprobar la capacidad de aislar térmicamente de

Más detalles

TRANSFERENCIA DE CALOR

TRANSFERENCIA DE CALOR Conducción Convección Radiación TRANSFERENCIA DE CALOR Ing. Rubén Marcano Temperatura es una propiedad que depende del nivel de interacción molecular. Específicamente la temperatura es un reflejo del nivel

Más detalles

ASPECTOS GENERALES DE LA TRANSFERENCIA DE CALOR U.C: TRANSFERENCIA DE CALOR

ASPECTOS GENERALES DE LA TRANSFERENCIA DE CALOR U.C: TRANSFERENCIA DE CALOR ASPECTOS GENERALES DE LA TRANSFERENCIA DE CALOR U.C: TRANSFERENCIA DE CALOR ASPECTOS GENERALES DE LA TRASFERENCIA DE CALOR. Objetivo Didáctico: Establecer un marco conceptual y metodológico para la correcta

Más detalles

FLUJO DE CALOR EN BARRAS METÁLICAS

FLUJO DE CALOR EN BARRAS METÁLICAS PRÁCTICA 9 FLUJO DE CALOR EN BARRAS METÁLICAS OBJETIVO Estudio de la transmisión de calor en una barra metálica que se calienta por un extremo. Determinación del coeficiente de enfriamiento de Newton y

Más detalles

FICHA TÉCNICA: Estudio de suelo radiante para calefacción

FICHA TÉCNICA: Estudio de suelo radiante para calefacción 2015 FICHA TÉCNICA: Estudio de suelo radiante para calefacción Alejandro Palacios Rodrigo Rosmann Ingeniería 1-3-2015 Índice 0. Introducción...2 1. Fórmulas de cálculo...2 2. Estructura del suelo:...3

Más detalles

Determinación de valores Higrotérmicos

Determinación de valores Higrotérmicos Determinación de valores Higrotérmicos Paneles prefabricados de cerámica y yeso LATEROYESO fabricados por Hilayes SL Edición B Junio de 2011 Wellington 19 E-08018 Barcelona tel. 933 09 34 04 fax 933 00

Más detalles

Física II TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO

Física II TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés TRANSFERENCIA

Más detalles

COJINETES EN BRONCE LAMINADO

COJINETES EN BRONCE LAMINADO COJINETES EN BRONCE LAMINADO CATALOGO TECNICO Desde 1976 especialistas en cojinetes de fricción. Más de 5.000.000 de piezas en stock. Instalaciones: 2.000 m 2 MATERIALES RESISTENCIA A LA CORROSIÓN Fabricados

Más detalles

Programa de Transmisión de Calor

Programa de Transmisión de Calor Programa de Transmisión de Calor. Ingeniero Químico Pag. 1 de 6 Programa de Transmisión de Calor Cursos 2011-2012, 2012-2013, 2013-2014 Datos generales Centro E. S. de Ingenieros. Universidad de Sevilla.

Más detalles

TUTORIAL PROPIEDADES MATERIALES

TUTORIAL PROPIEDADES MATERIALES TUTORIAL PROPIEDADES MATERIALES Ya se habló sobre transmisión de calor en otro de los tutoriales de la sección (8/11/2015). En esta fecha nuestra entrada se relaciona notablemente con aquella pues se analizan

Más detalles

ENERGÍA SOLAR TÉRMICA

ENERGÍA SOLAR TÉRMICA ENERGÍA SOLAR TÉRMICA 1. Efectos de la radiación sobre los cuerpos 1.1. Conversión fotovoltaica 1.2. Conversión fototérmica 2. Transferencia de calor 2.1. Conducción. Conductividad térmica 2.2. Convección.

Más detalles

ALMACENAMIENTO BAJO REGIMEN DE FRIO ALMACENAMIENTO BAJO REGIMEN DE FRIO. Problema de termotransferencia combinada: BALANCE FRIGORÍFICO

ALMACENAMIENTO BAJO REGIMEN DE FRIO ALMACENAMIENTO BAJO REGIMEN DE FRIO. Problema de termotransferencia combinada: BALANCE FRIGORÍFICO ALMACENAMIENTO BAJO REGIMEN DE FRIO BALANCE FRIGORÍFICO ALMACENAMIENTO BAJO REGIMEN DE FRIO TRANSMISION A TRAVES DE CERRAMIENTOS CARACTERISTICAS BASICAS Enfriamiento del producto Calor respiración Transmisión

Más detalles

ALMACENAMIENTO BAJO RÉGIMEN DE FRÍO

ALMACENAMIENTO BAJO RÉGIMEN DE FRÍO ALMACENAMIENTO BAJO RÉGIMEN DE FRÍO TRANSMISIÓN A TRAVÉS DE CERRAMIENTOS Enfriamiento del producto Calor respiración Transmisión de calor cerramientos Renovación de aire Organos de trasiego Otros (Díficil

Más detalles

Confort térmico : ausencia de molestias sensoriales. El confort térmico depende de:

Confort térmico : ausencia de molestias sensoriales. El confort térmico depende de: 1 Edificio Confort Confort térmico : ausencia de molestias sensoriales El confort térmico depende de: La temperatura El grado higrotérmico La radiación La turbulencia y limpieza del aire Apreciación subjetiva

Más detalles

MÉTODOS FÓRMULA PARA LA PREDICCIÓN DE TIEMPOS DE CONGELACIÓN DE GEOMETRÍAS REGULARES 1D, 2D y 3D

MÉTODOS FÓRMULA PARA LA PREDICCIÓN DE TIEMPOS DE CONGELACIÓN DE GEOMETRÍAS REGULARES 1D, 2D y 3D Asignatura: Ingeniería de Procesos III (ITCL 34) MÉTODOS FÓRMULA PARA LA PREDICCIÓN DE TIEMPOS DE CONGELACIÓN DE GEOMETRÍAS REGULARES D, D y 3D. Ecuación de PLANK (94). Existen un gran número de métodos

Más detalles

Plan. cuerpo gris factor de forma. Transferencia de Calor p. 1/2

Plan. cuerpo gris factor de forma. Transferencia de Calor p. 1/2 Transferencia de Calor p. 1/2 Plan modos de conducción de calor conducción - ecuación del calor convección radiación estado estacionario, 1D resistencia térmica sistemas con generación de calor aletas,

Más detalles

Tecnología de. Tecnología de Fabricación y. Máquinas. Procesos de fabricación; Conformado por moldeo. Inyección de termoplásticos

Tecnología de. Tecnología de Fabricación y. Máquinas. Procesos de fabricación; Conformado por moldeo. Inyección de termoplásticos Procesos de fabricación; Conformado por moldeo. Inyección de termoplásticos Tecnología de Fabricación y Tecnología de Máquinas DISEÑO PARA LA INYECCIÓN DE TERMOPLÁSTICOS 1. Introducción 2. Materiales para

Más detalles

Esfuerzo Temperatura. Flujo Flujo de calor. Figura 7.1. El resto de variables o no tienen sentido físico o no son necesarias.

Esfuerzo Temperatura. Flujo Flujo de calor. Figura 7.1. El resto de variables o no tienen sentido físico o no son necesarias. Capítulo T6 T7 Transferencia de calor 7.. INTRODUCCIÓN Cuando la técnica de Bond-Graph es aplicada a la transferencia de calor, no aparecen todos los elementos clásicos; solamente existen las puertas resorte

Más detalles

ÍNDICE DE CONTENIDOS

ÍNDICE DE CONTENIDOS ÍNDICE DE CONTENIDOS CERTIFICACIÓN DE LA ELABORACIÓN DEL PROYECTO LEGALIZACIÓN DEL PROYECTO DEDICATORIA AGRADECIMIENTO ÍNDICE DE CONTENIDOS RESUMEN Pag. ii iii iv v vi xviii CAPÍTULO 1: GENERALIDADES 1.1

Más detalles

ThyssenKrupp Aceros y Servicios S.A.

ThyssenKrupp Aceros y Servicios S.A. Aceros para Herramientas Moldes para plásticos Normas Nombre AISI W. Nr. DIN THYROPLAST 2738 P20+Ni 1.2738 40CrMnNiMo8 Aplicaciones Moldes para la industria plástica con grabado profundo y alta resistencia

Más detalles

Cinética de Congelación

Cinética de Congelación Cinética de Congelación Curvas de Congelación La curva de congelación no es otra cosa que la representación gráfica de la variación de la temperatura del alimento en función del tiempo para un determinado

Más detalles

TRABAJO FIN DE GRADO 2013 / 2014 DISEÑO DE UN MOLDE DE INYECCIÓN DE UNA PIEZA PLÁSTICA 1. ÍNDICE

TRABAJO FIN DE GRADO 2013 / 2014 DISEÑO DE UN MOLDE DE INYECCIÓN DE UNA PIEZA PLÁSTICA 1. ÍNDICE eman ta zabal zazu ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL DE BILBAO GRADO EN INGENIERÍA MECÁNICA TRABAJO FIN DE GRADO 2013 / 2014 DISEÑO DE UN MOLDE DE INYECCIÓN DE UNA PIEZA PLÁSTICA 1.

Más detalles

FABRICACIÓN N ASISTIDA POR ORDENADOR

FABRICACIÓN N ASISTIDA POR ORDENADOR FABRICACIÓN N ASISTIDA POR ORDENADOR TEMA 14: INTRODUCCIÓN N Y APLICACIONES DE LOS SISTEMAS HIDRÁULICOS ÍNDICE 1. Introducción 2. Leyes generales de la hidráulica 3. Características del aceite de mando

Más detalles

Diseño Termohidráulico de Intercambiadores de Calor.

Diseño Termohidráulico de Intercambiadores de Calor. Diseño Termohidráulico de Intercambiadores de Calor. Horario de clases: Martes y Jueves, 10:00-13:00 hrs. Horario de asesorías: Miércoles de 12:00-14:00 hrs. Aula: B-306 Trimestre: 13I Curso: 2122096 1

Más detalles

TRANSFERENCIA DE CALOR POR CONVECCIÓN

TRANSFERENCIA DE CALOR POR CONVECCIÓN MARZO, 2016 REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NACIONAL BOLIVARIANA CÁTEDRA: TRANSFERENCIA

Más detalles

TECNOLOGÍA DE FLUIDOS Y CALOR

TECNOLOGÍA DE FLUIDOS Y CALOR Departamento de Física Aplicada I Escuela Universitaria Politécnica TECNOLOGÍA DE FLUIDOS Y CALOR TABLAS DE MECÁNICA DE FLUIDOS A. Propiedades del agua... 1 B. Propiedades de líquidos comunes... 2 C. Propiedades

Más detalles

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Transferencia de Calor. Ingeniería Electromecánica EMM - 0536 3 2 8 2.- HISTORIA

Más detalles

Espesor óptimo económico de aislamiento

Espesor óptimo económico de aislamiento AISLAMIENTO TÉRMICO 43 02.04. Espesor óptimo económico de aislamiento 02.04.01. INTRODUCCIÓN Hasta el momento, todos los aspectos analizados se refieren a cálculos técnicos sobre los aislamientos. La determinación

Más detalles

PROPIEDADES TERMICAS

PROPIEDADES TERMICAS PROPIEDADES TERMICAS POR "PROPIEDAD O CARACTERÍSTICA TÉRMICA" SE ENTIENDE LA RESPUESTA DE UN MATERIAL AL SER CALENTADO A MEDIDA QUE UN SÓLIDO ABSORBE ENERGÍA EN FORMA DE CALOR, SU TEMPERATURA Y SUS DIMENSIONES

Más detalles

Análisis del proceso de vaciado.

Análisis del proceso de vaciado. Análisis del proceso de vaciado. Flujo conservativo (lo cual no es verdad): se puede realizar un primer análisis empleando para tal fin la ecuación de Bernoulli La suma de las energías (altura, presión

Más detalles

Modelado de Microsistemas. José Manuel Quero Reboul Dpto. Ingeniería Electrónica

Modelado de Microsistemas. José Manuel Quero Reboul Dpto. Ingeniería Electrónica Modelado de Microsistemas José Manuel Quero Reboul Dpto. Ingeniería Electrónica 1 Indice Propiedades de los materiales Análisis de microestructuras Modelado Mecánico. Modelado Térmico. Modelado Fluídico.

Más detalles

10. Proceso de corte. Contenido: 1. Geometría de corte 2. Rozamiento en el corte 3. Temperatura en el mecanizado

10. Proceso de corte. Contenido: 1. Geometría de corte 2. Rozamiento en el corte 3. Temperatura en el mecanizado 10. Proceso de corte Contenido: 1. Geometría de corte 2. Rozamiento en el corte 3. Temperatura en el mecanizado Conformado por arranque de viruta Conformado por arranque de viruta: la herramienta presiona

Más detalles

Astrofísica del Sistema Solar. Atmósferas planetarias

Astrofísica del Sistema Solar. Atmósferas planetarias Astrofísica del Sistema Solar Atmósferas planetarias UNLP 2do. Semestre 2016 Introducción Una atmósfera es la región gaseosa más externa de un objeto. Hay atmósferas en planetas, planetas enanos, satélites

Más detalles

GMR. Nombre: Curso: 2º ESO B Examen 3. Fecha: 15 de febrero de ª Evaluación

GMR. Nombre: Curso: 2º ESO B Examen 3. Fecha: 15 de febrero de ª Evaluación GMR Nombre: Curso: º ESO B Examen Fecha: 15 de febrero de 017 ª Evaluación 1.- Uno de los embalses más grandes de la península ibérica es el de La Serena, de la cuenca del río Guadiana a su paso por la

Más detalles

Fundamentos de acústica

Fundamentos de acústica Tema 1 Fundamentos de acústica 1.1 Introducción Definición del sonido El sonido es una vibración mecánica que se transmite a través de un medio elástico, capaz de producir una sensación auditiva debido

Más detalles

E.U.I.T.I.Z. (1º Electrónicos) Curso Electricidad y Electrometría. P. resueltos Tema 3 1/27

E.U.I.T.I.Z. (1º Electrónicos) Curso Electricidad y Electrometría. P. resueltos Tema 3 1/27 E.U.I.T.I.Z. (1º Electrónicos) Curso 2006-07 Electricidad y Electrometría. P. resueltos Tema 3 1/27 Tema 3. Problemas resueltos 4. Un condensador de montaje superficial para placas de circuito impreso

Más detalles