Support Vector Machine

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Support Vector Machine"

Transcripción

1 Juan Carlos Caicedo Juan Carlos Mendivelso Maestria en Ingenieria de Sistemas y Computacion Universidad Nacional de Colombia 20 de marzo de 2007

2 Agenda

3 Outline

4 Clasificador lineal que utiliza la siguiente metodología Mapear puntos de entrenamiento a un espacio dimensional mayor Construir un hiperplano que separa los puntos en las clases respectivas Clasificar un punto nuevo de acuerdo a su ubicación con respecto al hiperplano de separación

5 Outline

6 Preliminares Para el caso de 2 clases: Los x k son los patrones de entrenamiento en R j, k = 1,..., n Los patrones x k tienen un atributo z k que determina la clase z k { 1, 1} Los patrones x k son transformados a y k = ϕ(x k ) Los y k están en R d, con d > j

7 Discriminador lineal Se construye un discriminador lineal en el espacio aumentado de la forma g(y) =< w, y >= w t y

8 Hiperplano de Separación Este discriminador es una familia de hiperplanos y el hiperplano de separación es: w t y = 0

9 Escala del vector w El vector w puede tener cualquier escala y sigue generando el mismo hiperplano. Aunque el plano y los patrones permanezcan estáticos la distancia entre ellos depende de la norma de w:

10 Escala del vector w Un patrón y puede expresarse como: w y = y p + r w Teniendo en cuenta que g(y p ) = 0 : ) g(y) = w t y = w (y t w p + r w g(y) = r w 2 w = r w Entonces, la distancia del patrón y k al plano es: r = g(y k) w

11 Definición Como hay varios vectores w que generan el mismo plano, seleccionaremos uno con el siguiente criterio: El vector de pesos w es llamado forma canonica del hiperplano w t y = 0 con respecto a los patrones y 1, y 2,..., y n, si se escala de manera que: min i=1,...,n < w, y i > = 1 Este plano asegura que: z k g(y k ) 1

12 Hiperplano Figura: Forma canónica del hiperplano. La margen medida 1 perpendicularmente al hiperplano es w

13 Outline

14 Funcion ϕ El conocimiento del diseñador en dominio de aplicación Funciones polinomiales o gausianas Otras funciones base (kernel trick)

15 Propósito El propósito del entrenamiento de un SVM es maximizar la distancia entre los patrones y k y el hiperplano de separación. max : r = z kg(y k ) w

16 Optimización Esto se logra minimzando w dado que es inversamente proporcional a r: sujeto a la restricción: minimizar : τ(w) = 1 2 w 2 g(y k ) = z k w t y k 1

17 Optimización Se utilizan los multiplicadores de Lagrange para minimizar w: L(w, α) = 1 n 2 w 2 α k (z k w t y k 1) k=1

18 Encontrando el mínimo Si existe un mínimo local, entonces: δ L(w, α) = 0 δw ( ) δ 1 n δw 2 w 2 α k (z k w t y k 1) = 0 δ δw (1 2 w 2 ) w k=1 n k=1 α k δ δw (z kw t y k 1) = 0 n α k z k y k = 0 k=1

19 Condiciones KKT Según las condiciones de KKT, α k 0: α k [z k w t y k 1] = 0, k = 0,..., n Esto significa que los vectores de soporte están en la margen. Los demás vectores de entrenamiento son irrelevantes, porque z k g(t k ) 1 y no satisfacen la condición

20 Problema Dual Al reemplazar la solución de w en la fórmula de Lagrange se obtiene la forma dual del problema de optimización, que es el que se resuelve en la práctica: max : W (α) = m α k 1 2 k=1 m m α i α j z i z j < y i, y j > i=1 j=1 Sujeto a: α k 0, k = 1,..., m m α i z i = 0 i=0

21 Funcion de Decisión Utilizando la solución para w tenemos que: ( m ) f (x) = sng z k α k < x, x k > k=1

22 Outline

23 Problema XOR Figura: Este problema no puede resolverse con un clasificador lineal

24 Formulacion Los vectores de entrenamiento son los siguientes: k x 1 x 2 z k ω ω ω ω 2 En primer lugar se mapean a otro espacio.

25 Funcion ϕ Existen varias funciones que pueden aplicarse, se eligió la siguiente expansión de segundo orden: ϕ : R 2 R 6 (x 1, x 2 ) (1, 2x 1, 2x 2, 2x 1 x 2, x 2 1, x 2 2 )

26 Optimizacion Se requiere maximizar: 4 α k 1 2 k=1 n i n j α i α j z i z j y t i y j Sujeto a: α 1 α 2 + α 3 α 4 = 0 α k 0, k = 1, 2, 3, 4

27 Optimizacion La solución puede encontrarse mediante algún procedimiento de optimización como el descenso del gradiente En este problema pequeño se puede encontrar anaĺıticamente La solución óptima es w = (1/8, 1/8, 1/8, 1/8) Todos los patrones se utilizan como vectores de soporte, debido a la simetría del problema, algo que es inusual

28 Discriminante Lineal La función lineal es g(x 1, x 2 ) = x 1 x 2 y el hiperplano de separación es g = 0 La longitud de la margen es r = 1 w = 2 La solución se puede visualizar en un sub-espacio 2d proyectado

29 Solucion

30 Software El método más utilizado para entrenar SVM solucionando el problema dual es SMO (Sequential Minimal Optimization) Está implementado en: SVM-JAVA: Weka:

31 Fin Gracias.

SISTEMAS INTELIGENTES

SISTEMAS INTELIGENTES SISTEMAS INTELIGENTES T11: Métodos Kernel: Máquinas de vectores soporte {jdiez, juanjo} @ aic.uniovi.es Índice Funciones y métodos kernel Concepto: representación de datos Características y ventajas Funciones

Más detalles

MÁQUINA DE VECTORES DE SOPORTE

MÁQUINA DE VECTORES DE SOPORTE MÁQUINA DE VECTORES DE SOPORTE La teoría de las (SVM por su nombre en inglés Support Vector Machine) fue desarrollada por Vapnik basado en la idea de minimización del riesgo estructural (SRM). Algunas

Más detalles

SVM: Máquinas de Vectores Soporte. Carlos Alonso González Grupo de Sistemas Inteligentes Departamento de Informática Universidad de Valladolid

SVM: Máquinas de Vectores Soporte. Carlos Alonso González Grupo de Sistemas Inteligentes Departamento de Informática Universidad de Valladolid SVM: Máquinas de Vectores Soporte Carlos Alonso González Grupo de Sistemas Inteligentes Departamento de Informática Universidad de Valladolid Contenido 1. Clasificación lineal con modelos lineales 2. Regresión

Más detalles

Support Vector Machines

Support Vector Machines Support Vector Machines Separadores lineales Clasificacion binaria puede ser vista como la tarea de separar clases en el espacio de caracteristicas w T x + b > 0 w T x + b = 0 w T x + b < 0 f(x) = sign(w

Más detalles

MÁQUINAS DE VECTORES DE SOPORTE

MÁQUINAS DE VECTORES DE SOPORTE MÁQUINAS DE VECTORES DE SOPORTE Introducción Se tiene información de N individuos codificada de la forma Las variables X son vectores que reúnen información numérica del individuo, las variables Y indican

Más detalles

Comparación de métodos de clasificación aplicados a textos Científicos y No Científicos

Comparación de métodos de clasificación aplicados a textos Científicos y No Científicos I. Barbona - Comparación de métodos de clasificación aplicados a textos Científicos y No Científicos Comparación de métodos de clasificación aplicados a textos Científicos y No Científicos Comparison among

Más detalles

UNIVERSIDAD SIMÓN BOLÍVAR. Sistema para la Detección de Caras en Imágenes de Video

UNIVERSIDAD SIMÓN BOLÍVAR. Sistema para la Detección de Caras en Imágenes de Video UNIVERSIDAD SIMÓN BOLÍVAR Ingeniería de la Computación Sistema para la Detección de Caras en Imágenes de Video por Susan Benzaquen Nahon Proyecto de Grado Presentado ante la Ilustre Universidad Simón Bolívar

Más detalles

Estudio e Implementación de una Máquina de Soporte Vectorial.

Estudio e Implementación de una Máquina de Soporte Vectorial. Estudio e Implementación de una Máquina de Soporte Vectorial. Lázaro Bustio Martínez, Alejandro Mesa Rodríguez lbustio@ccc.inaoep.mx, amesa@ccc.inaoep.mx Resumen. En este trabajo se presentan las Máquinas

Más detalles

Aplicación de Vectores Estadísticos de Características y Ensambles para el Reconocimiento Automático del Llanto de Bebés

Aplicación de Vectores Estadísticos de Características y Ensambles para el Reconocimiento Automático del Llanto de Bebés Aplicación de Vectores Estadísticos de Características y Ensambles para el Reconocimiento Automático del Llanto de Bebés Amaro Camargo Erika, Reyes García Carlos A. Instituto Nacional de Astrofísica, Óptica

Más detalles

INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA

INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA Dentro del campo general de la teoría de la optimización, también conocida como programación matemática conviene distinguir diferentes modelos de optimización.

Más detalles

Clasificación de tráfico en Internet utilizando métodos estadísticos

Clasificación de tráfico en Internet utilizando métodos estadísticos Clasificación de tráfico en Internet utilizando métodos estadísticos Gabriel Gómez Sena Presentado como parte de los requisitos para obtener el título de Magíster en Ingeniería Eléctrica Director Académico:

Más detalles

MINERÍA DE DATOS APLICADA A LA DETECCIÓN DE CLIENTES CON ALTA PROBABILIDAD DE FRAUDES EN SISTEMAS DE DISTRIBUCIÓN ANDRÉS FELIPE RIOS VILLEGAS

MINERÍA DE DATOS APLICADA A LA DETECCIÓN DE CLIENTES CON ALTA PROBABILIDAD DE FRAUDES EN SISTEMAS DE DISTRIBUCIÓN ANDRÉS FELIPE RIOS VILLEGAS MINERÍA DE DATOS APLICADA A LA DETECCIÓN DE CLIENTES CON ALTA PROBABILIDAD DE FRAUDES EN SISTEMAS DE DISTRIBUCIÓN ANDRÉS FELIPE RIOS VILLEGAS KEVIN ALEJANDRO URIBE AGUIRRE DIRECTOR: ING.GUSTAVO ANDRÉS

Más detalles

MAPAS AUTOORGANIZATIVOS Y MODELOS SIMILARES

MAPAS AUTOORGANIZATIVOS Y MODELOS SIMILARES MAPAS AUTOORGANIZATIVOS Y MODELOS SIMILARES José D. Martín Guerrero, Emilio Soria, Antonio J. Serrano PROCESADO Y ANÁLISIS DE DATOS AMBIENTALES Curso 2009-2010 Page 1 of 11 1. Learning Vector Quantization.

Más detalles

Práctica 11 SVM. Máquinas de Vectores Soporte

Práctica 11 SVM. Máquinas de Vectores Soporte Práctica 11 SVM Máquinas de Vectores Soporte Dedicaremos esta práctica a estudiar el funcionamiento de las, tan de moda, máquinas de vectores soporte (SVM). 1 Las máquinas de vectores soporte Las SVM han

Más detalles

CLASIFICACIÓN NO SUPERVISADA

CLASIFICACIÓN NO SUPERVISADA CLASIFICACIÓN NO SUPERVISADA CLASIFICACION IMPORTANCIA PROPÓSITO METODOLOGÍAS EXTRACTORES DE CARACTERÍSTICAS TIPOS DE CLASIFICACIÓN IMPORTANCIA CLASIFICAR HA SIDO, Y ES HOY DÍA, UN PROBLEMA FUNDAMENTAL

Más detalles

Optimización, Solemne 2. Semestre Otoño 2012 Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: 110 min.

Optimización, Solemne 2. Semestre Otoño 2012 Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: 110 min. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. ESCUELA DE INGENIERIA INDUSTRIAL. Optimización, Solemne. Semestre Otoño Profesores: Paul Bosch, Rodrigo López, Fernando Paredes, Pablo Rey Tiempo: min.

Más detalles

MÓDULO 2: TRATAMIENTO DE DATOS CON HOJA DE CÁLCULO. Tema 4: Herramientas de análisis: buscar objetivo, escenarios, Solver

MÓDULO 2: TRATAMIENTO DE DATOS CON HOJA DE CÁLCULO. Tema 4: Herramientas de análisis: buscar objetivo, escenarios, Solver MÓDULO 2: TRATAMIENTO DE DATOS CON HOJA DE CÁLCULO Tema 4: Herramientas de análisis: buscar objetivo, escenarios, Solver Leire Aldaz, Begoña Eguía y Leire Urcola Índice del tema Introducción Buscar Objetivo

Más detalles

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. ESCUELA DE INGENIERIA INDUSTRIAL.

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. ESCUELA DE INGENIERIA INDUSTRIAL. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. ESCUELA DE INGENIERIA INDUSTRIAL. Optimización, Pauta Solemne 2. Semestre Primavera 2011 Profesores: Paul Bosch, Fernando Paredes, Pablo Rey Tiempo:

Más detalles

Problema de Programación Lineal

Problema de Programación Lineal Problema de Programación Lineal Introducción La optimización es un enfoque que busca la mejor solución a un problema. Propósito: Maximizar o minimizar una función objetivo que mide la calidad de la solución,

Más detalles

4.7 Igualación de canal (no ciega)

4.7 Igualación de canal (no ciega) 4.7 Igualación de canal (no ciega) Introducción Clasificaciones Estructuras de Igualación Igualación de secuencias Igualación símbolo a símbolo Igualación como clasificación Igualación adaptativa Modo

Más detalles

Investigación de Operaciones 1

Investigación de Operaciones 1 Investigación de Operaciones 1 Clase 10 Pablo Andrés Maya Mayo, 2014 Pablo Andrés Maya () Investigación de Operaciones 1 Mayo, 2014 1 / 15 Clasificación de los modelos de optimización Pablo Andrés Maya

Más detalles

CLUSTERING MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN)

CLUSTERING MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN) CLASIFICACIÓN NO SUPERVISADA CLUSTERING Y MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN) info@clustering.50webs.com Indice INTRODUCCIÓN 3 RESUMEN DEL CONTENIDO 3 APRENDIZAJE

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Autor: José Arturo Barreto M.A. Páginas web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Capítulo I El Problema 1.1 Planteamiento del problema

Más detalles

UNIDAD 6. Programación no lineal

UNIDAD 6. Programación no lineal UNIDAD 6 Programación no lineal En matemática Programación no lineal (PNL) es el proceso de resolución de un sistema de igualdades y desigualdades sujetas a un conjunto de restricciones sobre un conjunto

Más detalles

MÓNICA ANDREA JIMÉNEZ MORALES

MÓNICA ANDREA JIMÉNEZ MORALES ACERCAMIENTO A LAS MÁQUINAS DE SOPORTE VECTORIAL Y SUS APLICACIONES EN PROYECTOS DE GRADO DEL PROGRAMA DE INGENIERÍA DE SISTEMAS Y COMPUTACION DE LA UNIVERSIDAD TECNOLOGICA DE PEREIRA. MÓNICA ANDREA JIMÉNEZ

Más detalles

CÁLCULO PARA LA INGENIERÍA 1

CÁLCULO PARA LA INGENIERÍA 1 CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!

Más detalles

1. INTRODUCCIÓN AL CONCEPTO DE LA INVESTIGACIÓN DE MERCADOS 1.1. DEFINICIÓN DE INVESTIGACIÓN DE MERCADOS 1.2. EL MÉTODO CIENTÍFICO 2.

1. INTRODUCCIÓN AL CONCEPTO DE LA INVESTIGACIÓN DE MERCADOS 1.1. DEFINICIÓN DE INVESTIGACIÓN DE MERCADOS 1.2. EL MÉTODO CIENTÍFICO 2. 1. INTRODUCCIÓN AL CONCEPTO DE LA INVESTIGACIÓN DE MERCADOS 1.1. DEFINICIÓN DE INVESTIGACIÓN DE MERCADOS 1.2. EL MÉTODO CIENTÍFICO 2. GENERALIDADES SOBRE LAS TÉCNICAS DE INVESTIGACIÓN SOCIAL Y DE MERCADOS

Más detalles

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA

MÉTODOS MATEMÁTICOS DE LA ECONOMÍA UNIVERSIDAD DE VALLADOLID DEPARTAMENTO DE ECONOMÍA APLICADA SUBSECCIÓN DE MATEMÁTICAS MÉTODOS MATEMÁTICOS DE LA ECONOMÍA Economía Derecho Administración y Dirección de Empresas RELACIÓN DE PROBLEMAS DE

Más detalles

ÁLGEBRA LINEAL - Año 2012

ÁLGEBRA LINEAL - Año 2012 UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS ECONÓMICAS ÁLGEBRA LINEAL - Año 0 Notas de Cátedra correspondientes a la UNIDAD SIETE PROGRAMACIÓN LINEAL * INECUACIONES Se denomina inecuación a

Más detalles

Desarrollo de un método de clasificación de edad para imágenes faciales basado en análisis antropométrico y de texturas

Desarrollo de un método de clasificación de edad para imágenes faciales basado en análisis antropométrico y de texturas Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Eléctrica Desarrollo de un método de clasificación de edad para imágenes faciales basado en análisis antropométrico

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES HOJA 5: Optimización 5-1. Hallar los puntos críticos de las siguiente funciones y clasificarlos: a fx, y = x y + xy.

Más detalles

Guía de trabajos prácticos

Guía de trabajos prácticos Guía de trabajos prácticos Curso: Darío Miras Autor: Pedro Baroni Material de distribución gratuita Esta es una versión preliminar por lo que se agradecen los Comentarios y sugerencias vía E-mail a pedrohbaroni@gmail.com.

Más detalles

Ortogonalidad y Series de Fourier

Ortogonalidad y Series de Fourier Capítulo 4 Ortogonalidad y Series de Fourier El adjetivo ortogonal proviene del griego orthos (recto) y gonia (ángulo). Este denota entonces la perpendicularidad entre dos elementos: dos calles que se

Más detalles

APLICACIONES CON SOLVER OPCIONES DE SOLVER

APLICACIONES CON SOLVER OPCIONES DE SOLVER APLICACIONES CON SOLVER Una de las herramientas con que cuenta el Excel es el solver, que sirve para crear modelos al poderse, diseñar, construir y resolver problemas de optimización. Es una poderosa herramienta

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

Dada la dificultad práctica para resolver de forma exacta toda una serie de problemas de

Dada la dificultad práctica para resolver de forma exacta toda una serie de problemas de CAPÍTULO 2 Métodos de solución Dada la dificultad práctica para resolver de forma exacta toda una serie de problemas de programación entera, se han desarrollado algoritmos que proporcionan soluciones factibles

Más detalles

CÁLCULO DE CICLOS DE CONSUMO Y ROTACIÓN DE INVENTARIOS

CÁLCULO DE CICLOS DE CONSUMO Y ROTACIÓN DE INVENTARIOS 4 CÁLCULO DE CICLOS DE CONSUMO Y ROTACIÓN DE INVENTARIOS Al finalizar el capítulo, el alumno calculará los ciclos de consumo y rotación de inventarios de acuerdo con los métodos de valuación, para la determinación

Más detalles

METODOLOGIA DE SUPERFICIES DE RESPUESTA. Esto se logra al determinar las condiciones óptimas de operación del sistema.

METODOLOGIA DE SUPERFICIES DE RESPUESTA. Esto se logra al determinar las condiciones óptimas de operación del sistema. 37 CAPITULO METODOLOGIA DE SUPERFICIES DE RESPUESTA En este capítulo hablaremos de qué es la Metodología de Superficies de Respuesta, su representación gráfica, el procedimiento a seguir hasta encontrar

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Capítulo 8 Espacios vectoriales con producto interno En este capítulo, se generalizarán las nociones geométricas de distancia y perpendicularidad, conocidas en R y en R 3, a otros espacios vectoriales.

Más detalles

Introducción a la Optimización Matemática

Introducción a la Optimización Matemática Introducción a la Optimización Matemática Modelos de Optimización Tienen como propósito seleccionar la mejor decisión de un número de posibles alternativas, sin tener que enumerar completamente todas ellas.

Más detalles

Redalyc CRUZ T., EDUARDO ARTURO; RESTREPO, JORGE HERNAN; SANCHEZ C., JOHN JAIRO

Redalyc CRUZ T., EDUARDO ARTURO; RESTREPO, JORGE HERNAN; SANCHEZ C., JOHN JAIRO Redalyc Sistema de Información Científica Red de Revistas Científicas de América Latina, el Caribe, España y Portugal CRUZ T., EDUARDO ARTURO; RESTREPO, JORGE HERNAN; SANCHEZ C., JOHN JAIRO PORTAFOLIO

Más detalles

Clasificación de grandes conjuntos de datos vía Máquinas de Vectores Soporte y aplicaciones en sistemas biológicos

Clasificación de grandes conjuntos de datos vía Máquinas de Vectores Soporte y aplicaciones en sistemas biológicos CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS DEL INSTITUTO POLITÉCNICO NACIONAL DEPARTAMENTO DE COMPUTACIÓN Clasificación de grandes conjuntos de datos vía Máquinas de Vectores Soporte y aplicaciones

Más detalles

3º Tema.- Síntesis de mecanismos.

3º Tema.- Síntesis de mecanismos. Universidad de Huelva ESCUELA POLITECNICA SUPERIOR Departamento de Ingeniería Minera, Mecánica y Energética Asignatura: Ingeniería de Máquinas [570004027] 5º curso de Ingenieros Industriales 3º Tema.-

Más detalles

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Investigación de Operaciones. Carrera: Ingeniería en Sistemas Computacionales

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Investigación de Operaciones. Carrera: Ingeniería en Sistemas Computacionales 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: (Créditos) SATCA 1 Investigación de Operaciones SCC-1013 2-2 - 4 Ingeniería en Sistemas Computacionales 2.- PRESENTACIÓN

Más detalles

Juegos Cooperativos. Core

Juegos Cooperativos. Core Curso : Juegos Cooperativos Core J. Oviedo Universidad Nacional de San Luis 1. Juegos Cooperativos En estos juegos se permite la comunicación entre los jugadores, también pueden firmar contratos de cooperación.

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

Detección de bordes: metodos lineales de cálculo de gradientesk, etc. Detección de bordes. Métodos basados en operadores lineales de gradiente

Detección de bordes: metodos lineales de cálculo de gradientesk, etc. Detección de bordes. Métodos basados en operadores lineales de gradiente Detección de bordes Métodos basados en operadores lineales de gradiente 1 Bordes Variaciones fuertes de la intensidad que corresponden a las fronteras de los objetos visualizados Métodos basados en el

Más detalles

Unidad III: Programación no lineal

Unidad III: Programación no lineal Unidad III: Programación no lineal 3.1 Conceptos básicos de problemas de programación no lineal Programación no lineal (PNL) es el proceso de resolución de un sistema de igualdades y desigualdades sujetas

Más detalles

UNIVERSIDAD DE ANTIOQUIA FACULTAD NACIONAL DE SALUD PÚBLICA DEPARTAMENTO DE CIENCIAS BÁSICAS INFORMACION COMPLEMENTARIA PROGRAMA DE CÁLCULO

UNIVERSIDAD DE ANTIOQUIA FACULTAD NACIONAL DE SALUD PÚBLICA DEPARTAMENTO DE CIENCIAS BÁSICAS INFORMACION COMPLEMENTARIA PROGRAMA DE CÁLCULO UNIVERSIDAD DE ANTIOQUIA FACULTAD NACIONAL DE SALUD PÚBLICA DEPARTAMENTO DE CIENCIAS BÁSICAS INFORMACION GENERAL PROGRAMA DE CÁLCULO Código de la materia GSI - 232 Semestre 01 2010 Área Ciencias Básicas

Más detalles

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD

Más detalles

Modelos y Optimización I

Modelos y Optimización I Modelos y Optimización I María Inés Parnisari 7 de enero de 2012 Índice 1. Deniciones 2 2. Método Simplex 2 3. Problemas 4 4. Modelización 10 5. Heurísticas 10 1 1 Deniciones Investigación operativa: aplicación

Más detalles

Si el comando Solver no aparece en el menú Herramientas, deberá instalar la macro automática Solver como sigue:

Si el comando Solver no aparece en el menú Herramientas, deberá instalar la macro automática Solver como sigue: El Solver de Excel El Solver se utiliza para determinar el valor máximo o mínimo de una celda modificando otras celdas; por ejemplo, el beneficio máximo que puede generarse modificando los gastos de publicidad.

Más detalles

Interacción persona-computador basada en el reconocimiento visual de manos

Interacción persona-computador basada en el reconocimiento visual de manos FACULTAD DE INFORMÁTICA PROYECTO SISTEMAS INFORMÁTICOS Interacción persona-computador basada en el reconocimiento visual de manos Arranz Aranda, Francisco Liu Yin, Qi López Cámara, Jose M. Dirigido por:

Más detalles

Regulación Económica

Regulación Económica Regulación Económica Instrumentos regulatorios con información simétrica Leandro Zipitría 1 1 Departamento de Economía Facultad de Ciencias Sociales y Universidad de Montevideo La Habana, Cuba. Junio -

Más detalles

Análisis aplicado. Ax = b. Gradiente conjugado.

Análisis aplicado. Ax = b. Gradiente conjugado. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2009. Cuadráticas estrictamente convexas. φ(x) = 1 2 xt Ax b T x, A R n n minimizar φ(x) Ax = b. Cuadráticas estrictamente

Más detalles

Tema 5. Reconocimiento de patrones

Tema 5. Reconocimiento de patrones Tema 5. Reconocimiento de patrones Introducción al reconocimiento de patrones y a la clasificación de formas Un modelo de general de clasificador Características discriminantes Tipos de clasificación Clasificadores

Más detalles

3. Selección y Extracción de características. Selección: Extracción: -PCA -NMF

3. Selección y Extracción de características. Selección: Extracción: -PCA -NMF 3. Selección y Extracción de características Selección: - óptimos y subóptimos Extracción: -PCA - LDA - ICA -NMF 1 Selección de Características Objetivo: Seleccionar un conjunto de p variables a partir

Más detalles

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.

Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación. UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos

Más detalles

Programación Entera. P.E pura: Todas las variables de decisión tienen valores enteros.

Programación Entera. P.E pura: Todas las variables de decisión tienen valores enteros. Clase # 7 Programación Entera. Programación entera es programación lineal con la restricción adicional de que los valores de las variables de decisión sean enteros. P.E pura: Todas las variables de decisión

Más detalles

1. Juegos de suma cero con dos jugadores

1. Juegos de suma cero con dos jugadores Teoría de juegos Jesús López Fidalgo Esta teoría está íntimamente relacionada con la teoría de la decisión. Lo que diferencia una de otra es el rival contra el que se entra en juego. En la teoría de la

Más detalles

Con el fin de obtener los datos, se procede con las siguientes instrucciones:

Con el fin de obtener los datos, se procede con las siguientes instrucciones: Capitulo 3. La predicción de beneficios del mercado bursátil Este segundo caso de estudio va más allá en el uso de técnicas de minería de datos. El dominio específico utilizado para ilustrar estos problemas

Más detalles

Máquinas de Vectores de Soporte

Máquinas de Vectores de Soporte Máquinas de Vectores de Soporte Support Vector Machines (SVM) Introducción al Reconocimiento de Patrones IIE - FING - UdelaR 2015 Bishop, Cap. 7 Schölkopf & Smola, Cap 7 Motivación Limitantes del perceptrón:

Más detalles

Predicción de Fugas de Clientes para una Institución Financiera mediante Support Vector Machines

Predicción de Fugas de Clientes para una Institución Financiera mediante Support Vector Machines Revista Ingeniería de Sistemas Volumen XIX, Octubre 2005 Predicción de Fugas de Clientes para una Institución Financiera mediante Support Vector Machines Jaime Miranda * Pablo Rey * Richard Weber * Resumen

Más detalles

1. Breve resumen de optimización sin restricciones en varias variables.

1. Breve resumen de optimización sin restricciones en varias variables. MATEMÁTICAS EMPRESARIALES G.A.D.E. CURSO 202/203 Práctica 2: Aplicaciones a la Optimización. En esta práctica se introducen las herramientas que nos ofrece el programa Mathematica para optimizar funciones

Más detalles

Investigación Operativa

Investigación Operativa Programa de la Asignatura: Investigación Operativa Código: 104 Carrera: Ingeniería en Computación Plan: 2008 Carácter: Obligatoria Unidad Académica: Secretaría Académica Curso: Segundo Año Segundo cuatrimestre

Más detalles

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función TEMA 3 FUNCIONES 3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función Una función es una relación establecida entre dos variables que asocia a cada valor de la primera variable

Más detalles

Sistema de localización en redes Wi-Fi con Weka

Sistema de localización en redes Wi-Fi con Weka Sistema de localización en redes Wi-Fi con Weka RESUMEN Elena Jiménez Vázquez Ingeniería de Telecomunicación Universidad Carlos III de Madrid Madrid, España elena.jvazquez@alumnos.uc3m.es En este trabajo

Más detalles

1. Derivadas parciales

1. Derivadas parciales Análisis Matemático II. Curso 2009/2010. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 3. ABLES DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARI- 1. Derivadas parciales Para

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS 2 Í N D I C E CAPÍTULO MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES MATRICES. MATRIZ. DEFINICIÓN 2. ALGUNOS

Más detalles

LAS máquinas de vectores de soporte (SVM, por sus

LAS máquinas de vectores de soporte (SVM, por sus XI SIMPOSIO DE TRATAMIENTO DE SEÑALES, IMÁGENES Y VISIÓN ARTIFICIAL. STSIVA 2006 Adaptive Support Vector Machines para predicción de series de tiempo Elkin Eduardo García Díaz, Pedro Andrés Rangel, y Fernando

Más detalles

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez Curso de Análisis de investigaciones con programas Informáticos 1 UNIVERSIDAD DE JAÉN Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos

Más detalles

METAHEURISTICAS Ideas, Mitos, Soluciones

METAHEURISTICAS Ideas, Mitos, Soluciones METAHEURISTICAS Ideas, Mitos, Soluciones OPTIMIZACION COMBINATORIA Qué es un problema de optimización combinatoria? Cómo se modela matemáticamente un problema de optimización combinatoria? Minimizar (o

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS BASICAS, HUMANIDADES Y CURSOS COMPLEMENTARIOS

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS BASICAS, HUMANIDADES Y CURSOS COMPLEMENTARIOS UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS BASICAS, HUMANIDADES Y CURSOS COMPLEMENTARIOS SILABO P.A. 2012-1 1. INFORMACION GENERAL Nombre del

Más detalles

4.1 El espacio dual de un espacio vectorial

4.1 El espacio dual de un espacio vectorial Capítulo 4 Espacio dual Una de las situaciones en donde se aplica la teoría de espacios vectoriales es cuando se trabaja con espacios de funciones, como vimos al final del capítulo anterior. En este capítulo

Más detalles

Optimización y la Programación Lineal: Una Introducción

Optimización y la Programación Lineal: Una Introducción Reporte de Investigación 2007-07 Optimización y la Programación Lineal: Una Introducción Responsables: Marchena Williams Ornelas Carlos Supervisor: Francisco M. González-Longatt Línea de Investigación:

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Concepto de aplicación lineal T : V W Definición: Si V y W son espacios vectoriales con los mismos escalares (por ejemplo, ambos espacios vectoriales reales o ambos espacios vectoriales

Más detalles

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2.

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2. PROBLEMA. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica en Diseño Industrial Fundamentos Matemáticos de la Ingeniería Soluciones correspondientes a los problemas del Primer Parcial 7/8.

Más detalles

MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13. Carlos Ivorra

MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13. Carlos Ivorra MATEMÁTICAS II APUNTES DE TEORÍA CURSO ACADÉMICO 2012-13 Carlos Ivorra Índice 1 Introducción a la optimización 1 2 Programación entera 18 3 Introducción a la programación lineal 24 4 El método símplex

Más detalles

Programación lineal (+ extensiones). Ejemplos.

Programación lineal (+ extensiones). Ejemplos. Departamento de Matemáticas. ITAM. 2012. Forma estándar de un PPL PPL minimizar x c T x sujeta a Ax = b, x 0, en donde x 0 indica x i 0, i = 1, 2,..., n. c es el vector de costos. c R n. A es una matriz

Más detalles

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0 PRUEBAS DE ACCESO A LA UNIVERSIDAD PROBLEMAS DE PROGRAMACIÓN LINEAL JUNIO 2000. OPCIÓN B. Una empresa especializada en la fabricación de mobiliario para casas de muñecas, produce cierto tipo de mesas y

Más detalles

MATEMÁTICAS EMPRESARIALES II:

MATEMÁTICAS EMPRESARIALES II: MATEMÁTICAS EMPRESARIALES II: FUNCIÓN REAL DE VARIAS VARIABLES ÓPTIMOS DE UNA FUNCIÓN ESCALAR MATERIAL DIDÁCTICO DE SOPORTE González-Vila Puchades, Laura Ortí Celma, Francesc J. Sáez Madrid, José B. Departament

Más detalles

Entrenamiento en Gestión de Minería de Datos Aplicada a la Inteligencia en los Negocios

Entrenamiento en Gestión de Minería de Datos Aplicada a la Inteligencia en los Negocios Entrenamiento en Gestión de Minería de Datos Aplicada a la Inteligencia en los Negocios Elaborado por: Luis Francisco Zaldívar, MSE Director www.modelacionderiesgos.com l.zaldivar@modelacionderiesgos.com

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................

Más detalles

Extracción de Información con Algoritmos de Clasificación

Extracción de Información con Algoritmos de Clasificación Extracción de Información con Algoritmos de Clasificación Por ALBERTO TÉLLEZ VALERO Tesis sometida como requisito parcial para obtener el grado de Maestro en Ciencias en la especialidad de Ciencias Computacionales

Más detalles

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................

Más detalles

Cómo ahorrar en la factura energética?

Cómo ahorrar en la factura energética? Cómo ahorrar en la factura energética? Cruz Enrique Borges Hernández cruz.borges@deusto.es Tercer Encuentro de Jóvenes Investigadores en Matemáticas La Laguna, 18 de octubre de 2013 This work is licensed

Más detalles

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas

BLOQUE IV. Funciones. 10. Funciones. Rectas y parábolas 11. Funciones racionales, irracionales, exponenciales y logarítmicas 12. Límites y derivadas BLOQUE IV Funciones 0. Funciones. Rectas y parábolas. Funciones racionales, irracionales, exponenciales y logarítmicas. Límites y derivadas 0 Funciones. Rectas y parábolas. Funciones Dado el rectángulo

Más detalles

Desarrollo de un nuevo algoritmo para resolver programas lineales enteros y su aplicación práctica en el desarrollo económico.

Desarrollo de un nuevo algoritmo para resolver programas lineales enteros y su aplicación práctica en el desarrollo económico. Desarrollo de un nuevo algoritmo para resolver programas lineales enteros y su aplicación práctica en el desarrollo económico. 7071 Febrero, 2014 Resumen Es importante señalar que en un entorno social

Más detalles

Evaluación, limpieza y construcción de los datos: un enfoque desde la inteligencia artificial

Evaluación, limpieza y construcción de los datos: un enfoque desde la inteligencia artificial Universidad del Cauca Facultad de Ingeniería Electrónica y Telecomunicaciones Programas de Maestría y Doctorado en Ingeniería Telemática Seminario de Investigación Evaluación, limpieza y construcción de

Más detalles

Tema 9: ESPACIO AFÍN EUCLÍDEO. MOVIMIENTOS RÍGIDOS

Tema 9: ESPACIO AFÍN EUCLÍDEO. MOVIMIENTOS RÍGIDOS Tema 9: ESPACIO AFÍN EUCLÍDEO. MOVIMIENTOS RÍGIDOS Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría I. Curso

Más detalles

Fascículo 2. Álgebra Lineal. Cursos de grado. Gabriela Jeronimo Juan Sabia Susana Tesauri. Universidad de Buenos Aires

Fascículo 2. Álgebra Lineal. Cursos de grado. Gabriela Jeronimo Juan Sabia Susana Tesauri. Universidad de Buenos Aires Fascículo 2 Cursos de grado ISSN 1851-1317 Gabriela Jeronimo Juan Sabia Susana Tesauri Álgebra Lineal Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 2008

Más detalles

Capítulo 1. Introducción

Capítulo 1. Introducción Capítulo 1. Introducción El WWW es la mayor fuente de imágenes que día a día se va incrementando. Según una encuesta realizada por el Centro de Bibliotecas de Cómputo en Línea (OCLC) en Enero de 2005,

Más detalles

Contenido Orientativo Matemáticas 21 EE-EA-EC, Libre Escolaridad FACES-ULA

Contenido Orientativo Matemáticas 21 EE-EA-EC, Libre Escolaridad FACES-ULA Contenido Orientativo Matemáticas 1 EE-EA-EC, Libre Escolaridad FACES-ULA El siguiente documento tiene como objetivo proporcionar a los alumnos del curso de matemáticas 1, por la modalidad de libre escolaridad,

Más detalles

CLASIFICACIÓN NO SUPERVISADA CLASIFICACIÓN NO SUPERVISADA N. QUEIPO, S. PINTOS COPYRIGHT 2005 FUNDAMENTOS DE DATA MINING Y SUS APLICACIONES

CLASIFICACIÓN NO SUPERVISADA CLASIFICACIÓN NO SUPERVISADA N. QUEIPO, S. PINTOS COPYRIGHT 2005 FUNDAMENTOS DE DATA MINING Y SUS APLICACIONES DEFINICIÓN: AGRUPAR UN CONJUNTO DE n OBJETOS, DEFINIDOS POR p VARIABLES, EN c CLASES, DONDE EN CADA CLASE LOS ELEMENTOS POSEAN CARACTERÍSTICAS AFINES Y SEAN MÁS SIMILARES ENTRE SÍ QUE RESPECTO AELEMENTOS

Más detalles

OPTIMIZACIÓN EN MANTENIMIENTO

OPTIMIZACIÓN EN MANTENIMIENTO OPTIMIZACIÓN EN MANTENIMIENTO Entrenamiento en técnicas avanzadas para optimizar el remplazo de componentes e inspección de equipos Driven by knowledge info@apsoluti.es 2015 1 OPTIMIZACIÓN DE MANTENIMIENTO

Más detalles

Búsqueda Local. cbea (LSI-FIB-UPC) Inteligencia Artificial Curso 2011/2012 1 / 33

Búsqueda Local. cbea (LSI-FIB-UPC) Inteligencia Artificial Curso 2011/2012 1 / 33 Introducción Búsqueda Local A veces el camino para llegar a la solución no nos importa, buscamos en el espacio de soluciones Queremos la mejor de entre las soluciones posibles alcanzable en un tiempo razonable

Más detalles

Ingeniería en Informática

Ingeniería en Informática Departamento de Informática Universidad Carlos III de Madrid Ingeniería en Informática Aprendizaje Automático Junio 2007 Normas generales del examen El tiempo para realizar el examen es de 3 horas No se

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Optimización sin restricciones Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Optimización sin restricciones 1 / 32 Formulación del problema

Más detalles

Universidad Nacional de La Matanza Departamento de Ingeniería e Investigaciones Tecnológicas

Universidad Nacional de La Matanza Departamento de Ingeniería e Investigaciones Tecnológicas PR-08-A3 FICHA CURRICULAR Universidad Nacional de La Matanza Departamento de Ingeniería e Investigaciones Tecnológicas Departamento: Ingeniería e Investigaciones Tecnológicas Carrera/s: Ingeniería Informática

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales Natalia Boal María Luisa Sein-Echaluce Universidad de Zaragoza 1 Concepto de espacio vectorial y propiedades 1.1 Definición Se llama espacio vectorial sobre K (IR o C a toda terna

Más detalles