ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS"

Transcripción

1 ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS EtsiIngenio Inteligencia Artificial 1 Raposo López Alejandro Sánchez Palacios Manuel

2 Resumen dibujo de grafos mediante algoritmos genéticos Este trabajo busca dibujar de un modo vistoso y claro un grafo buscando el corte mínimo de aristas, la separación de los puntos etc. haciendo uso de algoritmos genéticos. Su implementación aprovecha ventajas de lenguajes funcionales tales como lisp a la vez que incorpora una interfaz realizada con un lenguaje imperativo java. Ambos se comunican mediante archivos xml. EtsiIngenio Inteligencia Artificial 1 Raposo López Alejandro Sánchez Palacios Manuel

3 Descripción extensa del trabajo Este trabajo pretende aplicar técnicas de algoritmos genéticos para el dibujo de grafos. Dado un grafo mediante su matriz de adyacencia, existen numerosas maneras de disponer sus nodos en el plano, de manera que el dibujo resulte adecuado respecto a ciertos criterios "estéticos". Por ejemplo, una disposición de los nodos con una gran cantidad de cruces entre sus aristas puede resultar demasiado confusa para captar visualmente las relaciones entre los nodos. O la fabricación de circuitos integrados con miles o millones de componentes puede verse favorecida si existe una buena disposición de esos componentes sobre la placa base. Así, el estudio de algoritmos para dibujar grafos tiene aplicaciones en: Ingeniería de software, diseño de circuitos VLSI, análisis de redes sociales, criptografía, bioinformática,... En general, el dibujo de un grafo optimizando ciertos criterios estéticos (como por ejemplo, el número de cruces entre aristas) es un problema computacionalmente complejo. Un método aproximado que podría encontrar una disposición aceptable de los nodos en un tiempo razonable consiste en usar un algoritmo genético para minimizar algunas de las características que consideramos "malas" en el dibujo. Este trabajo pretende que se aplique esta idea. El trabajo consta esencialmente de dos partes: Implementación de un algoritmo genético concreto y resolución de algunos problemas sencillos de carácter numérico. Modificación de dicho algoritmo para aplicarlo al dibujo de grafos. En su mayor parte, este trabajo está descrito en el libro de Z. Michalewicz "Genetic Algorithms + Data Structures = Evolution Programs" ([GADSEP] en adelante). En concreto, bastará con leer el Tema 2 y la primera Sección del Tema 11 de la primera edición del libro para comprender el mismo. En la biblioteca de la Escuela está disponible para su consulta y préstamo la tercera edición. En esta tercera edición se puede consultar el tema 2 pero no aparece el tema 11 de la primera edición. Pueden acudir al despacho del profesor José Luis Ruiz Reina para consultar la primera edición. PARTE I: Implementación de un algoritmo genético En líneas generales, la descripción en pseudocódigo del algoritmo es: ENTRADA: S (tamaño de la población), N (número de generaciones), p_c (probabilidad de cruce), p_m (probabilidad de mutación). SALIDA: El fenotipo del mejor indivíduo de todas las generaciones, junto con su valor de función objetivo. ALGORITMO: Calcular una población inicial de tamaño S, P(0) y hacer t:= 0. Repetir un número de veces igual a N el cálculo de P(t+1) a partir de P(t) de la siguiente manera: Se seleccionan S individuos de P(t), siguiendo el método de la ruleta probabilística, obteniendo una población P'. Por cada individuo de P', sortear, con probabilidad p_c, si va a ser cruzado o no. De esa manera se seleccionan C individuos, con C<=S. Si C fuera impar, eliminar uno de los individuos. Con esos C individuos, hacer C/2 parejas y cruzarlas para obtener como resultado C nuevos individuos resultado de los cruces. La población P'' se obtiene a partir de P' reemplazando los C individuos que han sido seleccionados para ser cruzados, por el

4 resultado de sus cruces. La generación P(t+1) se obtiene como resultado de aplicar (a P'') mutaciones con probabilidad p_m. Hacer t:= t+1 Las poblaciones se almacenarán como un array de cromosomas. Además almacenamos cada cromosoma con su valor de función objetivo, y la suma parcial acumulada de las funciones objetivo de los anteriores cromosomas (esto último es útil para la implementación del método de selección por ruleta probabilística que se describe en el libro). En general obtenemos un algoritmo bastante eficiente. Por tanto, las optimizaciones en las estructuras de datos usadas y en los procedimientos implementados son importantes. En particular, buscamos minimizar el número de "recorridos" que el algoritmo necesite hacer sobre una población dada. También se ha tenido en cuenta la modularidad de la implementación, de manera que no haya que hacer muchos cambios si se cambia el problema sobre el que se aplica, la representación cromosómica, o el método se selección. Uno de los primeros problemas implementados es el cálculo de PI: Tal y como se describe en el tema 2 de [GADSEP], aplicarlo para encontrar el máximo de la función f(x,y) = x sen(4 pi x) + y sen(20 pi y), con -3 <= x <= 12.1, 4.1 <= y <= 5.8 El máximo debe ser calculado con una precisión de 4 decimales, tanto para x como para y. Encontrar los 10 primeros decimales del número pi (NOTA: en el intervalo [3,4] la función sen(x/2) tiene un máximo en pi). PARTE II: Aplicación para el dibujo de grafos En la Sección 11.1 de [GADSEP] se describe cómo aplicar técnicas basadas en algoritmos genéticos para el dibujo de grafos. La idea básica es la siguiente: Un cromosoma representa una disposición concreta de los nodos del grafo mediante sus coordenadas. La función objetivo cuantifica una serie de características "no estéticas" que tendría el dibujo del grafo disponiendo los nodos en dichas coordenadas. El algoritmo genético debe encontrar un cromosoma (o lo que es lo mismo, una disposición de los nodos del grafo en el plano) que tenga un valor mínimo de función objetivo (y por tanto su dibujo sea "estético"). En concreto, lo que implementamos está basado en la descripción del algoritmo GRAPH-2 de la Subsección , y partimos como base de la implementación del algoritmo genético de la primera parte, aplicando esta técnica sobre algunos grafos para tratar de encontrar de manera automática una buena disposición de sus nodos. Además introdujimos los parámetros propios de un algoritmo genético (tamaño de la población, probabilidades de cruce y mutación, generaciones, etc..) el algoritmo recibe el número de nodos del grafo, su matriz de adyacencia y las dimensiones de la cuadrícula donde se quiere dibujar. Se puede porbar el algoritmo con algunos grafos sencillos. Por ejemplo, con grafos que representan un ciclo simple (A1 -> A2 ->... -> An -> A1) o bien un ciclo simple con un nodo "central" (A1 -> A2 ->... -> An -> A1, Ai -> B (i=1,...,n)). Y podrá comprobar que el algoritmo es capaz de encontrar el dibujo más intuitivo para esos grafos. Además de la implementación incorporamos un método para visualizar el dibujo que representa el mejor cromosoma de cada generación, dando así una idea intuitiva de la evolución del algoritmo mediante una intuitiva interfaz gráfica implementada en Java. 1. Una de las características a calcular en la función objetivo es el número de cruces entre aristas en el dibujo que representa un cromosoma. Se implementó de la siguiente forma: Si

5 tenemos dos nodos P y Q entre los que hay una arista PQ y otro par de nodos R y S entre los que hay otra arista RS, se puede calcular la ecuación de la recta que pasa por P y Q, sustituir las coordenadas de R y de S en la ecuación y ver si dan algo de distinto signo (por ejemplo comprobando si es negativo su producto). Si ese producto da negativo, es que R y S están cada uno a un lado de la recta que pasa por P y Q. Si ocurre lo mismo sustituyendo ahora P y Q en la ecuación de la recta que pasa por R y S, entonces es que las aristas PQ y RS se cortan. En cualquier caso, nótese que un calculo eficiente del número total de cruces es fundamental para la eficiencia del algoritmo. 2. Nótese que la matriz de adyacencia no forma parte de la representación cromosómica, ya que es fija para todo el problema. Lo que buscamos es optimizar la disposición de los nodos. 3. La manera de seleccionar (por el método de la ruleta) que tiene el algoritmo que se pide en la primera parte tiene sentido cuando se buscar maximizar una función objetivo positiva. En este caso, se trata de un problema de minimización de una función F(x). Habrá por tanto que transformar el problema en un problema de maximización; esto se consigue fácilmente tomando como nueva función objetivo F'(x) = C - F(x), donde C es una cota superior de F (que puede ser calculada, por ejemplo, en función del número de nodos del grafo). 4. En cualquier caso, puede que el método de selección por ruleta no sea el más adecuado para este problema. Por ello hemos experimentado con otros métodos de selección. Una buena descripción de estos métodos usados se puede encontrar en esta página (http://lear.inforg.uniovi.es/ia/genetico-tsp/seleccion.htm)

Algoritmos Genéticos Y

Algoritmos Genéticos Y Algoritmos Genéticos Y Optimización n Heurística Dr. Adrian Will Grupo de Aplicaciones de Inteligencia Artificial Universidad Nacional de Tucumán awill@herrera.unt.edu.ar Operadores de Mutación El operador

Más detalles

Introducción a los Algoritmos Genéticos. Tomás Arredondo Vidal 17/4/09

Introducción a los Algoritmos Genéticos. Tomás Arredondo Vidal 17/4/09 Introducción a los Algoritmos Genéticos Tomás Arredondo Vidal 17/4/09 Esta charla trata de lo siguiente: Introducción a algunos aspectos de los algoritmos genéticos. Introducción a algunas aplicaciones

Más detalles

Desarrollo de un sistema capaz de optimizar rutas de entrega utilizando algoritmos genéticos

Desarrollo de un sistema capaz de optimizar rutas de entrega utilizando algoritmos genéticos MT 6 Desarrollo de un sistema capaz de optimizar rutas de entrega utilizando algoritmos genéticos Rosario Baltazar 1 Judith Esquivel Vázquez 2 Andrea Rada 3 Claudia Díaz 4 Resumen Durante los últimos 15

Más detalles

Algoritmos Genéticos Y

Algoritmos Genéticos Y Algoritmos Genéticos Y Optimización n Heurística Dr. Adrian Will Grupo de Aplicaciones de Inteligencia Artificial Universidad Nacional de Tucumán awill@herrera.unt.edu.ar Algoritmos Genéticos - Operadores

Más detalles

INFORMÁTICA. Práctica 5. Programación en C. Grado en Ingeniería en Electrónica y Automática Industrial. Curso 2013-2014. v1.0 (05.03.

INFORMÁTICA. Práctica 5. Programación en C. Grado en Ingeniería en Electrónica y Automática Industrial. Curso 2013-2014. v1.0 (05.03. INFORMÁTICA Práctica 5. Programación en C. Grado en Ingeniería en Electrónica y Automática Industrial Curso 2013-2014 v1.0 (05.03.14) A continuación figuran una serie de ejercicios propuestos, agrupados

Más detalles

!!!!!!!! !!!!! Práctica!4.! Programación!básica!en!C.! ! Grado!en!Ingeniería!!en!Electrónica!y!Automática!Industrial! ! Curso!2015H2016!

!!!!!!!! !!!!! Práctica!4.! Programación!básica!en!C.! ! Grado!en!Ingeniería!!en!Electrónica!y!Automática!Industrial! ! Curso!2015H2016! INFORMÁTICA Práctica4. ProgramaciónbásicaenC. GradoenIngenieríaenElectrónicayAutomáticaIndustrial Curso2015H2016 v2.1(18.09.2015) A continuación figuran una serie de ejercicios propuestos, agrupados por

Más detalles

Algoritmos genéticos como métodos de aproximación analítica y búsqueda de óptimos locales

Algoritmos genéticos como métodos de aproximación analítica y búsqueda de óptimos locales Algoritmos genéticos como métodos de aproximación analítica y búsqueda de óptimos locales Jorge Salas Chacón A03804 Rubén Jiménez Goñi A93212 Juan Camilo Carrillo Casas A91369 Marco Vinicio Artavia Quesada

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura Índice Dada una función f : D R R y un intervalo I D

Más detalles

c) ( 1 punto ). Hallar el dominio de definición de la función ( ). Hallar el conjunto de puntos en los que la función tiene derivada.

c) ( 1 punto ). Hallar el dominio de definición de la función ( ). Hallar el conjunto de puntos en los que la función tiene derivada. Materiales producidos en el curso: Curso realizado por Escuelas Católicas del 7 de noviembre al 19 de diciembre de 2011 Título: Wiris para Matemáticas de ESO y Bachilleratos. Uso de Pizarra Digital y Proyector

Más detalles

Propuesta de una arquitectura para la generación de mutantes de orden superior en WS-BPEL

Propuesta de una arquitectura para la generación de mutantes de orden superior en WS-BPEL Propuesta de una arquitectura para la generación de mutantes de orden superior en WS-BPEL Emma Blanco Muñoz, Antonio García Domínguez, Juan José Domínguez Jiménez, Inmaculada Medina Bulo Escuela Superior

Más detalles

Procesamiento Digital de Imágenes. Compresión de imágenes

Procesamiento Digital de Imágenes. Compresión de imágenes FICH, UNL - Departamento de Informática - Ingeniería Informática Procesamiento Digital de Imágenes Guía de Trabajos Prácticos 8 Compresión de imágenes 2010 1. Objetivos Analizar las características y el

Más detalles

Búsqueda Local. cbea (LSI-FIB-UPC) Inteligencia Artificial Curso 2011/2012 1 / 33

Búsqueda Local. cbea (LSI-FIB-UPC) Inteligencia Artificial Curso 2011/2012 1 / 33 Introducción Búsqueda Local A veces el camino para llegar a la solución no nos importa, buscamos en el espacio de soluciones Queremos la mejor de entre las soluciones posibles alcanzable en un tiempo razonable

Más detalles

1. (1.5 puntos) Cuántos árboles no isomorfos con exactamente 6 vértices hay? Justifica la

1. (1.5 puntos) Cuántos árboles no isomorfos con exactamente 6 vértices hay? Justifica la Matemática Discreta 2 o de Ingeniería Informática Curso 2009-2010 7 de septiembre de 2010 Examen de septiembre Apellidos y Nombre DNI: Grupo: El examen dura tres horas. No se pueden usar calculadoras,

Más detalles

El Álgebra Lineal detrás de Google

El Álgebra Lineal detrás de Google I Congreso Nacional de Estudiantes de Matemática Corrientes, Julio 2012 Facultad de Matemáticas Universidad de Barcelona Licenciatura en Matemática Master en Matemática Avanzada Doctorado en Matemática

Más detalles

Temario III Algoritmos Combinatorios y Metaheurísticas

Temario III Algoritmos Combinatorios y Metaheurísticas Temario III Algoritmos Combinatorios y Metaheurísticas Verificación y Validación de Software UNCo 1 Contenidos Combinación de Datos de Test Algoritmos Combinatorios Metaheurísticas Búsqueda Tabú Algoritmos

Más detalles

Algoritmos. Autor: José Ángel Acosta Rodríguez

Algoritmos. Autor: José Ángel Acosta Rodríguez Autor: 2006 ÍNDICE Página Índice 1 Problema 1. Movimiento de figuras geométricas.2 Problema 2. Conversión decimal a binario....3 Problema 3. Secuencias binarias..4 Problema 4. Conversión a binario a octal...

Más detalles

ETS Caminos Santander. Curso 2012. Ejercicios de introducción a la programación.

ETS Caminos Santander. Curso 2012. Ejercicios de introducción a la programación. Ejercicio 1. Saludo. El programa preguntará el nombre al usuario y a continuación le saludará de la siguiente forma "Hola, NOMBRE" donde NOMBRE es el nombre del usuario. Ejercicio 2. Suma. El programa

Más detalles

Resumen. 1. Introducción. 2. Objetivos

Resumen. 1. Introducción. 2. Objetivos Propuesta para la Asignatura Sistemas Industriales en las Titulaciones de Informática F.A. Pujol, F.J. Ferrández, J.L. Sánchez, J. M. García Chamizo Dept. de Tecnología Informática y Computación Universidad

Más detalles

Introducción. Estadística 1. 1. Introducción

Introducción. Estadística 1. 1. Introducción 1 1. Introducción Introducción En este tema trataremos de los conceptos básicos de la estadística, también aprenderemos a realizar las representaciones gráficas y a analizarlas. La estadística estudia

Más detalles

Tema 10. Estimación Puntual.

Tema 10. Estimación Puntual. Tema 10. Estimación Puntual. Presentación y Objetivos. 1. Comprender el concepto de estimador y su distribución. 2. Conocer y saber aplicar el método de los momentos y el de máxima verosimilitud para obtener

Más detalles

Generación de números aleatorios

Generación de números aleatorios Generación de números aleatorios Marcos García González (h[e]rtz) Verano 2004 Documento facilitado por la realización de la asignatura Métodos informáticos de la física de segundo curso en la universidad

Más detalles

Generador de casos de prueba genético

Generador de casos de prueba genético Generador de casos de prueba genético Álvaro Galán Piñero Ingeniería Técnica en Informática de Sistemas, Universidad de Cádiz 24 de Septiembre 2012 1 / 42 Índice 1 Motivación y contexto 2 Planificación

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Función exponencial y Logaritmos

Función exponencial y Logaritmos Eje temático: Álgebra y funciones Contenidos: Función exponencial y Logaritmos Nivel: 4 Medio Función exponencial y Logaritmos 1. Funciones exponenciales Existen numerosos fenómenos que se rigen por leyes

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

Comparar las siguientes ecuaciones, y hallar sus soluciones:

Comparar las siguientes ecuaciones, y hallar sus soluciones: TEMA. Iteraciones. % Hemos aprendido que para resolver una ecuación en x, se despeja la x y se evalúa la expresión que resulta. El siguiente ejemplo nos hará revisar ese esquema. Ejemplo. Comparar las

Más detalles

CONTENIDOS. 2. Entidades primitivas para el desarrollo de algoritmos.

CONTENIDOS. 2. Entidades primitivas para el desarrollo de algoritmos. Introducción a la ciencia de la computación y a la programación 1. La computadora CONTENIDOS 2. Entidades primitivas para el desarrollo de algoritmos. 3. Metodología a seguir para la resolución de problemas

Más detalles

Apuntes de Matemática Discreta 7. Relaciones de Orden

Apuntes de Matemática Discreta 7. Relaciones de Orden Apuntes de Matemática Discreta 7. Relaciones de Orden Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 7 Relaciones de Orden Contenido

Más detalles

1. (2 puntos) En la V Caminata Madrileño Manchega, los participantes caminan de Madrid

1. (2 puntos) En la V Caminata Madrileño Manchega, los participantes caminan de Madrid Matemática Discreta Segundo de Ingeniería Informática UAM Curso 2006-2007 Solucionario del examen final del 26-1-2007 Nota bene: A continuación exhibimos algunas de las distintas maneras de abordar los

Más detalles

Algoritmos Genéticos. Introduccion a la Robótica Inteligente

Algoritmos Genéticos. Introduccion a la Robótica Inteligente Algoritmos Genéticos Introduccion a la Robótica Inteligente 7 Marzo 2014 (IRIN) AGs 7/03/2014 1 / 43 Índice 1 Introducción 2 Algoritmos Genéticos 3 Algunos Fundamentos Matemáticos 4 Conclusiones (IRIN)

Más detalles

Arquitectura de Aplicaciones

Arquitectura de Aplicaciones 1 Capítulo 13: Arquitectura de aplicaciones. - Sommerville Contenidos del capítulo 13.1 Sistemas de procesamiento de datos 13.2 Sistemas de procesamiento de transacciones 13.3 Sistemas de procesamiento

Más detalles

1 Agencia de viajes: enunciado

1 Agencia de viajes: enunciado 1 AGENCIA DE VIAJES: ENUNCIADO 1 1 Agencia de viajes: enunciado Una agencia de viajes mantiene una base de datos con exactamente N clientes y M destinos turísticos. En una situación real, estos valores

Más detalles

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión... Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación

Más detalles

1. Ecuaciones no lineales

1. Ecuaciones no lineales 1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar

Más detalles

LECCIÓN 8: CIRCUITOS Y ALGORITMOS DE MULTIPLICACIÓN DE ENTEROS

LECCIÓN 8: CIRCUITOS Y ALGORITMOS DE MULTIPLICACIÓN DE ENTEROS ESTRUCTURA DE COMPUTADORES Pag. 8.1 LECCIÓN 8: CIRCUITOS Y ALGORITMOS DE MULTIPLICACIÓN DE ENTEROS 1. Circuitos de multiplicación La operación de multiplicar es mas compleja que la suma y por tanto se

Más detalles

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán

Capítulo 4 MEDIDA DE MAGNITUDES. Autor: Santiago Ramírez de la Piscina Millán Capítulo 4 MEDIDA DE MAGNITUDES Autor: Santiago Ramírez de la Piscina Millán 4 MEDIDA DE MAGNITUDES 4.1 Introducción El hecho de hacer experimentos implica la determinación cuantitativa de las magnitudes

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

Ejercicios de Programación Lineal

Ejercicios de Programación Lineal Ejercicios de Programación Lineal Investigación Operativa Ingeniería Informática, UCM Curso 8/9 Una compañía de transporte dispone de camiones con capacidad de 4 libras y de 5 camiones con capacidad de

Más detalles

1. Definición 2. Operaciones con funciones

1. Definición 2. Operaciones con funciones 1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de

Más detalles

? 50 30 20 20 emplear NA 0,788 0,367879 se queda s a 150 275 70-125 se pone s en s a 15 58 200-43 se pone s en s a

? 50 30 20 20 emplear NA 0,788 0,367879 se queda s a 150 275 70-125 se pone s en s a 15 58 200-43 se pone s en s a 350 MR Versión 1 1 Prueba Parcial 1/5 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA: INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Computación Evolutiva CÓDIGO: 350 MOMENTO: Primera Parcial VERSIÓN:

Más detalles

L A P R O G R A M A C I O N

L A P R O G R A M A C I O N L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer

Más detalles

Límites. Definición de derivada.

Límites. Definición de derivada. Capítulo 4 Límites. Definición de derivada. 4.1. Límites e indeterminaciones Hemos visto en el capítulo anterior que para resolver el problema de la recta tangente tenemos que enfrentarnos a expresiones

Más detalles

ADECUACIÓN PARA FABRICACIÓN DE ESTRUCTURAS ÓPTIMAS BASADO EN ESQUELETONIZACIÓN

ADECUACIÓN PARA FABRICACIÓN DE ESTRUCTURAS ÓPTIMAS BASADO EN ESQUELETONIZACIÓN Congresso de Métodos Numéricos em Engenharia 2015 Lisboa, 29 de Junho a 2 de Julho, 2015 APMTAC, Portugal, 2015 ADECUACIÓN PARA FABRICACIÓN DE ESTRUCTURAS ÓPTIMAS BASADO EN ESQUELETONIZACIÓN Mendoza-San-Agustín,

Más detalles

DISEÑO DE FUNCIONES (TRATAMIENTOS)

DISEÑO DE FUNCIONES (TRATAMIENTOS) DISEÑO DE FUNCIONES (TRATAMIENTOS) Diseño Estructurado. Estrategias para Derivar el Diagrama de Estructura. Diseño de Módulos Programables. 1. DISEÑO ESTRUCTURADO El Diseño es el proceso por el cual se

Más detalles

Cuatro maneras de representar una función

Cuatro maneras de representar una función Cuatro maneras de representar una función Una función f es una regla que asigna a cada elemento x de un conjunto A exactamente un elemento, llamado f(x), de un conjunto B. Una función f es una regla que

Más detalles

Estructuras de Control - Diagrama de Flujo

Estructuras de Control - Diagrama de Flujo RESOLUCIÓN DE PROBLEMAS Y ALGORITMOS Ingeniería en Computación Ingeniería en Informática UNIVERSIDAD NACIONAL DE SAN LUIS DEPARTAMENTO DE INFORMÁTICA AÑO 2015 Índice 1. Programación estructurada 2 1.1.

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

Polinomios y Ecuaciones

Polinomios y Ecuaciones Ejercicios de Cálculo 0 Prof. María D. Ferrer G. Polinomios y Ecuaciones.. Polinomios: Un polinomio o función polinómica es una epresión de la forma: n n n P a a a a a a = n + n + n + + + + 0 () Los números

Más detalles

todas especialidades Soluciones de las hojas de problemas

todas especialidades Soluciones de las hojas de problemas Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Ingeniería Técnica Industrial Métodos estadísticos de la ingeniería Métodos estadísticos de la ingeniería Ingeniería Técnica

Más detalles

Introducción a los Algoritmos Genéticos

Introducción a los Algoritmos Genéticos Introducción a los Algoritmos Genéticos Francisco José Ribadas Pena INTELIGENCIA ARTIFICIAL 5 Informática ribadas@uvigo.es 17 de octubre de 2005 c FJRP 2005 ccia IA Métodos de 8 < : 1 Introducción 9 =

Más detalles

Proyecto 3 Programación de aplicaciones Cliente/Servidor

Proyecto 3 Programación de aplicaciones Cliente/Servidor Universidad Simón Bolívar Departamento de Computación y T.I. Taller de Redes de Computadoras I Enero-Marzo 2010 Proyecto 3 Programación de aplicaciones Cliente/Servidor Objetivos: Modificar el proyecto

Más detalles

Aplicación de la inteligencia artificial a la resolución del problema de asignación de estudiantes del departamento de PDI

Aplicación de la inteligencia artificial a la resolución del problema de asignación de estudiantes del departamento de PDI Aplicación de la inteligencia artificial a la resolución del problema de asignación de estudiantes del departamento de PDI Ricardo Köller Jemio Departamento de Ciencias Exactas e Ingeniería, Universidad

Más detalles

TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL

TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL TEMA I: INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 1. Electrónica Digital Antes de empezar en el tema en cuestión, vamos a dar una posible definición de la disciplina que vamos a tratar, así como su ámbito

Más detalles

Tutorial de intercambio de apuestas

Tutorial de intercambio de apuestas Tutorial de intercambio de apuestas Una publicación de iapuestas Portal de Apuestas Todos los derechos reservados. Prohibida la reproducción parcial o total sin el consentimiento expreso de iapuestas.

Más detalles

EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE

EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE AUTORÍA MARÍA FRANCISCA OJEDA EGEA TEMÁTICA EXPERIMENTO FÍSICA Y QUÍMICA, APLICACIÓN MÉTODO CIENTÍFICO ETAPA EDUCACIÓN

Más detalles

Búsqueda heurística Prof. Constantino Malagón

Búsqueda heurística Prof. Constantino Malagón Búsqueda heurística Prof. Constantino Malagón Area de Computación e Inteligencia Artificial 1 Búsqueda heurística Los métodos de búsqueda heurística disponen de alguna información sobre la proximidad de

Más detalles

ARCHIVOS CON SERIES DEL BOLETÍN ESTADÍSTICO Manual de Usuario

ARCHIVOS CON SERIES DEL BOLETÍN ESTADÍSTICO Manual de Usuario Dirección General del Servicio de Estudios 04.09.2007 ARCHIVOS CON SERIES DEL BOLETÍN ESTADÍSTICO Manual de Usuario Departamento de Estadística Hoja de Control Título Autor Versión Fecha Registro de Cambios

Más detalles

INTRODUCCIÓN. Dado a que internamente la computadora trabaja con datos en binario, texto, imágenes y sonidos deben traducirse a este formato.

INTRODUCCIÓN. Dado a que internamente la computadora trabaja con datos en binario, texto, imágenes y sonidos deben traducirse a este formato. INTRODUCCIÓN La comunicación consta de lenguaje, imágenes y sonido. Las computadoras prefieren el tratamiento de la información en binario. Nosotros la del lenguaje natural. INTRODUCCIÓN Antes, el procesamiento

Más detalles

A partir de este capítulo se introducen términos, probablemente nuevos para el

A partir de este capítulo se introducen términos, probablemente nuevos para el CAPITULO 3. PSP 0 Y PSP 0.1 A partir de este capítulo se introducen términos, probablemente nuevos para el lector que tienen que ver en su totalidad con PSP. También se dan a conocer los formatos, "scripts

Más detalles

IV. Implantación del sistema.

IV. Implantación del sistema. IV. Implantación del sistema. Para hablar sobre el proceso de desarrollo del sistema de Recuperación de Información Visual propuesto, empezaremos hablando del hardware utilizado, las herramientas de software

Más detalles

ESTRATEGIAS DE CÁLCULO MENTAL

ESTRATEGIAS DE CÁLCULO MENTAL ESTRATEGIAS DE CÁLCULO MENTAL El cálculo mental consiste en realizar cálculos matemáticos utilizando sólo el cerebro sin ayudas de otros instrumentos como calculadoras o incluso lápiz y papel. Las operaciones

Más detalles

Apuntes de Grafos. 1. Definiciones

Apuntes de Grafos. 1. Definiciones Apuntes de Grafos Un grafo es una entidad matemática introducida por Euler en 736 para representar entidades (vértices) que pueden relacionarse libremente entre sí, mediante el concepto de arista Se puede

Más detalles

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL

UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL IES PABLO RUIZ PICASSO EL EJIDO (ALMERÍA) CURSO 2013-2014 UNIDAD DIDÁCTICA: ELECTRÓNICA DIGITAL ÍNDICE 1.- INTRODUCCIÓN A LA ELECTRÓNICA DIGITAL 2.- SISTEMA BINARIO 2.1.- TRANSFORMACIÓN DE BINARIO A DECIMAL

Más detalles

Primer Parcial de Programación 3 (1/10/2009)

Primer Parcial de Programación 3 (1/10/2009) Primer Parcial de Programación (/0/009) Instituto de Computación, Facultad de Ingeniería Este parcial dura horas y contiene carillas. El total de puntos es 0. En los enunciados llamamos C* a la extensión

Más detalles

7. Conclusiones. 7.1 Resultados

7. Conclusiones. 7.1 Resultados 7. Conclusiones Una de las preguntas iniciales de este proyecto fue : Cuál es la importancia de resolver problemas NP-Completos?. Puede concluirse que el PAV como problema NP- Completo permite comprobar

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 2 Programación Lineal

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 2 Programación Lineal OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 2 Programación Lineal ORGANIZACIÓN DEL TEMA Sesiones: Introducción, definición y ejemplos Propiedades y procedimientos de solución Interpretación económica

Más detalles

INTERPRETACION ECONOMICA DEL ANALISIS DE SENSIBILIDAD

INTERPRETACION ECONOMICA DEL ANALISIS DE SENSIBILIDAD ESCOLA UNIVERSITÀRIA D ESTUDIS EMPRESARIALS DEPARTAMENT D ECONOMIA I ORGANITZACIÓ D EMPRESES INTERPRETACION ECONOMICA DEL ANALISIS DE SENSIBILIDAD Dunia Durán Juvé Profesora Titular 1ª Edición de 1995:

Más detalles

INTERVENCIÓN EDUCATIVA: MODIFICACIÓN DE CONDUCTA

INTERVENCIÓN EDUCATIVA: MODIFICACIÓN DE CONDUCTA INTERVENCIÓN EDUCATIVA: MODIFICACIÓN DE CONDUCTA TEMA 3 REFORZAMIENTO Y CASTIGO INTERVENCIÓN EDUCATIVA: MODIFICACIÓN DE CONDUCTA 1. QUÉ ES EL REFUERZO 2. TIPOS DE REFUERZO 3. PROGRAMAS DE REFUERZO a) Programas

Más detalles

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth

Más detalles

LICEO BRICEÑO MÉNDEZ S0120D0320 DEPARTAMENTO DE CONTROL Y EVALUACIÓN CATEDRA: FISICA PROF.

LICEO BRICEÑO MÉNDEZ S0120D0320 DEPARTAMENTO DE CONTROL Y EVALUACIÓN CATEDRA: FISICA PROF. LICEO BRICEÑO MÉNDEZ S0120D0320 CATEDRA: FISICA PROF. _vwéa gxâw á atätá GRUPO # 4to Cs PRACTICA DE LABORATORIO #2 CALCULADORA CIENTIFICA OBJETIVO GENERAL: Comprender la importancia del cálculo haciendo

Más detalles

Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales.

Precio del alquiler de pisos durante una serie de meses. Evolución del índice del precio del trigo con mediciones anuales. Series Temporales Introducción Una serie temporal se define como una colección de observaciones de una variable recogidas secuencialmente en el tiempo. Estas observaciones se suelen recoger en instantes

Más detalles

Programación Genética

Programación Genética Programación Genética Programación Genética consiste en la evolución automática de programas usando ideas basadas en la selección natural (Darwin). No sólo se ha utilizado para generar programas, sino

Más detalles

T E C N O L O G Í A OPTIMIZACIÓN DE MATERIALES MEDIANTE PATRONES DE CORTE EFICIENTE. Aplicación. a la INDUSTRIA

T E C N O L O G Í A OPTIMIZACIÓN DE MATERIALES MEDIANTE PATRONES DE CORTE EFICIENTE. Aplicación. a la INDUSTRIA OPTIMIZACIÓN DE MATERIALES MEDIANTE PATRONES DE CORTE EFICIENTE Aplicación a la INDUSTRIA de la construcción 1 El presente estudio propone el uso de un algoritmo comúnmente utilizado en la rama de investigación

Más detalles

TABLAS DE CONTINGENCIA (CROSS-TAB): BUSCANDO RELACIONES DE DEPENDENCIA ENTRE VARIABLES CATEGÓRICAS 1

TABLAS DE CONTINGENCIA (CROSS-TAB): BUSCANDO RELACIONES DE DEPENDENCIA ENTRE VARIABLES CATEGÓRICAS 1 TABLAS DE CONTINGENCIA (CROSS-TAB): BUSCANDO RELACIONES DE DEPENDENCIA ENTRE VARIABLES CATEGÓRICAS 1 rafael.dearce@uam.es El objeto de las tablas de contingencia es extraer información de cruce entre dos

Más detalles

Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas).

Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas). TEMA 5.- GRAFOS 5.1.- DEFINICIONES BÁSICAS Un grafo G es un par (V,E) donde V es un conjunto (llamado conjunto de vértices) y E un subconjunto de VxV (conjunto de aristas). Gráficamente representaremos

Más detalles

DESARROLLANDO TÉCNICAS Y RUTINAS DE PROGRAMACIÓN EN EL GEÓMETRA.

DESARROLLANDO TÉCNICAS Y RUTINAS DE PROGRAMACIÓN EN EL GEÓMETRA. IV CIEMAC J.J Fallas, J. Chavarría 1 DESARROLLANDO TÉCNICAS Y RUTINAS DE PROGRAMACIÓN EN EL GEÓMETRA. Juan José Fallas Monge 1 Jeffry Chavarría Molina. Resumen Frecuentemente al Geómetra se le relaciona

Más detalles

Introducción a Matlab.

Introducción a Matlab. Introducción a Matlab. Ejercicios básicos de manipulación de imágenes. Departamento de Ingeniería electrónica, Telecomunicación y Automática. Área de Ingeniería de Sistemas y Automática OBJETIVOS: Iniciación

Más detalles

Práctica 5. Curso 2014-2015

Práctica 5. Curso 2014-2015 Prácticas de Seguridad Informática Práctica 5 Grado Ingeniería Informática Curso 2014-2015 Universidad de Zaragoza Escuela de Ingeniería y Arquitectura Departamento de Informática e Ingeniería de Sistemas

Más detalles

Una heurística para la asignación de máquinas a trabajos fijos

Una heurística para la asignación de máquinas a trabajos fijos VIII Congreso de Ingeniería de Organización Leganés, 9 y 10 de septiembre de 2004 Una heurística para la asignación de máquinas a trabajos fijos José Manuel García Sánchez, Marcos Calle Suárez, Gabriel

Más detalles

Adobe Dreamweaver CS3 - Curso online Creación profesional de sitios web

Adobe Dreamweaver CS3 - Curso online Creación profesional de sitios web Adobe Dreamweaver CS3 - Curso online Creación profesional de sitios web Índice Conceptos básicos En este capítulo se enseñan los conceptos básicos de trabajo en Adobe Dreamveaver CS3. También se describen

Más detalles

OPTIMIZACIÓN DE TRANSFORMACIONES LINEALES DE DATOS MEDIANTE BUSQUEDA LOCAL

OPTIMIZACIÓN DE TRANSFORMACIONES LINEALES DE DATOS MEDIANTE BUSQUEDA LOCAL OPTIMIZACIÓN DE TRANSFORMACIONES LINEALES DE DATOS MEDIANTE BUSQUEDA LOCAL INGENIERIA INFORMATICA AUTOR: FRANCISCO GODOY MUÑOZ-TORRERO TUTOR: JOSE MARIA VALLS FERRAN CO-DIRECTOR: RICARDO ALER MUR Contenidos

Más detalles

Capítulo 1. MANUAL DE USUARIO

Capítulo 1. MANUAL DE USUARIO Capítulo 1. MANUAL DE USUARIO 1.1 SUCESIONES GRÁFICAS Lo primero que se hará es mostrar la pantalla que se encontrará el usuario cuando ejecute la aplicación, indicando las zonas en las que se divide esta:

Más detalles

Ingeniería en Informática

Ingeniería en Informática Departamento de Informática Universidad Carlos III de Madrid Ingeniería en Informática Aprendizaje Automático Junio 2007 Normas generales del examen El tiempo para realizar el examen es de 3 horas No se

Más detalles

DESIGUALDADES E INECUACIONES

DESIGUALDADES E INECUACIONES DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia

Más detalles

SIMULACIÓN EN TIEMPO REAL DE UNA ESTACION DE TRABAJO INDUSTRIAL ROBOTIZADA.

SIMULACIÓN EN TIEMPO REAL DE UNA ESTACION DE TRABAJO INDUSTRIAL ROBOTIZADA. SIMULACIÓN EN TIEMPO REAL DE UNA ESTACION DE TRABAJO INDUSTRIAL ROBOTIZADA. Mora Sánchez José Antonio, López Flores Miguel Eduardo, Bustillo Díaz Mario Benemérita Universidad Autónoma de Puebla 14 sur

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

Inteligencia Artificial para desarrolladores Conceptos e implementación en C#

Inteligencia Artificial para desarrolladores Conceptos e implementación en C# Introducción 1. Estructura del capítulo 19 2. Definir la inteligencia 19 3. La inteligencia de los seres vivos 22 4. La inteligencia artificial 24 5. Dominios de aplicación 26 6. Resumen 28 Sistemas expertos

Más detalles

Equivalencia financiera

Equivalencia financiera Equivalencia financiera 04 En esta Unidad aprenderás a: 1. Reconocer la equivalencia de capitales en distintas operaciones financieras a interés simple. 2. Calcular a interés simple los vencimientos común

Más detalles

Sistemas de vectores deslizantes

Sistemas de vectores deslizantes Capítulo 1 Sistemas de vectores deslizantes 1.1. Vectores. Álgebra vectorial. En Física, se denomina magnitud fsica (o simplemente, magnitud) a todo aquello que es susceptible de ser cuantificado o medido

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMÉRICA) SYLLABO

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMÉRICA) SYLLABO UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMÉRICA) FACULTAD DE INGENIERIA DE SISTEMAS E INFORMATICA Escuela Académico Profesional de Ingeniería de Sistemas 1. ESPECIFICACIONES

Más detalles

Práctica 1ª: Introducción a Matlab. 1er curso de Ingeniería Industrial: Ingeniería de Control

Práctica 1ª: Introducción a Matlab. 1er curso de Ingeniería Industrial: Ingeniería de Control 1er curso de Ingeniería Industrial: Ingeniería de Control Práctica 1ª: Introducción a Matlab Departamento de Ingeniería electrónica, Telecomunicación y Automática. Área de Ingeniería de Sistemas y Automática

Más detalles

Tema 10: Límites y continuidad de funciones de varias variables

Tema 10: Límites y continuidad de funciones de varias variables Tema 10: Límites y continuidad de funciones de varias variables 1 Funciones de varias variables Definición 1.1 Llamaremos función real de varias variables atodafunciónf : R n R. Y llamaremos función vectorial

Más detalles

DESIGUALDADES página 1

DESIGUALDADES página 1 DESIGUALDADES página 1 1.1 CONCEPTOS Y DEFINICIONES Una igualdad en Álgebra es aquella relación que establece equivalencia entre dos entes matemáticos. Es una afirmación, a través del signo =, de que dos

Más detalles

PRÁCTICA 4: IDENTIFICACIÓN Y CONTROL DE UN SERVOMECANISMO DE POSICIÓN CURSO 2007/2008

PRÁCTICA 4: IDENTIFICACIÓN Y CONTROL DE UN SERVOMECANISMO DE POSICIÓN CURSO 2007/2008 PRÁCTICA 4: IDENTIFICACIÓN Y CONTROL DE UN SERVOMECANISMO DE POSICIÓN CURSO 2007/2008 LABORATORIO DE CONTROL AUTOMÁTICO. 3 er CURSO ING. TELECOMUNICACIÓN 1. OBJETIVOS En esta práctica se pretende que el

Más detalles

Análisis de los datos

Análisis de los datos Universidad Complutense de Madrid CURSOS DE FORMACIÓN EN INFORMÁTICA Análisis de los datos Hojas de cálculo Tema 6 Análisis de los datos Una de las capacidades más interesantes de Excel es la actualización

Más detalles

PRÁCTICA II: ADQUISICIÓN DE DATOS CON LABVIEW

PRÁCTICA II: ADQUISICIÓN DE DATOS CON LABVIEW SISTEMAS ELECTRÓNICOS Y DE CONTROL LABORATORIO SISTEMAS ELECTRÓNICOS DE CONTROL PRÁCTICA II: ADQUISICIÓN DE DATOS CON LABVIEW Curso 05/06 - 2 - PRÁCTICA II ADQUISICIÓN DE DATOS CON LABVIEW II.1. INTRODUCCIÓN

Más detalles

INGENIERIA EN INGENIERÍA EN SISTEMAS COMPUTACIONALES CLAVE MATERIA OBJETIVO

INGENIERIA EN INGENIERÍA EN SISTEMAS COMPUTACIONALES CLAVE MATERIA OBJETIVO INGENIERIA EN INGENIERÍA EN SISTEMAS COMPUTACIONALES CLAVE MATERIA OBJETIVO SCE - 0418 SCM - 0414 SCC-0428 ACM - 0403 SCB - 0421 SCV - 0407 ACU-0402 Introducción a la ingeniería en sistemas computacionales

Más detalles