? emplear NA 0,788 0, se queda s a se pone s en s a se pone s en s a

Tamaño: px
Comenzar la demostración a partir de la página:

Download "? 50 30 20 20 emplear NA 0,788 0,367879 se queda s a 150 275 70-125 se pone s en s a 15 58 200-43 se pone s en s a"

Transcripción

1 350 MR Versión 1 1 Prueba Parcial 1/5 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA: INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Computación Evolutiva CÓDIGO: 350 MOMENTO: Primera Parcial VERSIÓN: 1 FECHA DE APLICACIÓN: 09 /05 /2015 MOD. I, UND. 1, OBJ.1 CRITERIO DE DOMINIO 1/1 1- Método del Recocido Simulado a) Aplicación del método f(s a ) f(s) Temp. actual δ= f(s a )- f(s) Acción a tomar u e- δ/t u < e δ/t? emplear NA 0,788 0, se queda s a se pone s en s a se pone s en s a b) La característica fundamental de este método, que lo considera heurístico es que eventualmente, de acuerdo al empleo de un cálculo de probabilidad y a la generación de números aleatorios, una solución que tenga mal desempeño puede ser aceptada (decisión estocástica). La aceptación de soluciones con mal desempeño decrece a medida que la temperatura baja. Todo esto impide que el proceso quede atrapado prematuramente en un óptimo local. Criterio de corrección: se logra el objetivo si se responde correctamente las dos secciones de la pregunta.

2 350 MR Versión 1 1 Prueba Parcial 2/5 MOD. I, UND. 2, OBJ.2 CRITERIO DE DOMINIO 1/1 a) Ruleta: Para elaborar la ruleta es necesario determinar el porcentaje de fitness que le corresponde a cada individuo dentro de la totalidad de fitness de la población. Para ello se calcula el porcentaje de participación de cada individuo, como se expresa en la siguiente tabla: Individuo Fitness % Fitness x 1 x 2 f(x,y) Total fitness: : Ruleta. Porcentajes de fitness (redondeados) b) Selección de individuos dados los números aleatorios. Para calcular los rangos de valores que corresponden a cada sector de la ruleta creada, se puede emplear el cálculo de las frecuencias. A continuación se presenta en una tabla.

3 350 MR Versión 1 1 Prueba Parcial 3/5 x 1 x 2 f(x,y) Frecuencia Frec Acum. Rango de Valores , , , , , , , , , , , , , , , , , , , , , , , , , , Total fit Nota: se entiende que el rango de valores son intervalos con el extremo derecho abierto y el izquierdo cerrado. El NA = 0,468, corresponde al número 46,8, por lo tanto se selecciona al individuo 2 (fitness 884); el NA = 40 selecciona al individuo 6 y el NA = 0,827, corresponde al número 82,7, por lo tanto se selecciona al individuo 8 (fitness 914). c) El método de la Ruleta se basa en la partición en segmentos contiguos sobre la base de la evaluación o fitness que tiene cada individuo. El método consiste en que al generarse números al azar, como existe una correspondencia de estos segmentos con un intervalo real, se seleccionan los individuos asociados al intervalo al que pertenezca el número. De tal manera que a mayor valor de fitness, existe mayor probabilidad que el individuo sea seleccionado, es por ello que tiende a seleccionar individuos cuya evaluación resulte con mayor valor, que es lo que se requiere en un problema de maximización. Criterio de corrección: se logra el objetivo si se obtiene una correcta distribución basada en la evaluación de cada individuo de la población y se responde correctamente las secciones b) y c) de la pregunta. MOD. II, UND. 3, OBJ. 3 CRITERIO DE DOMINIO 1/1 3- Algoritmo genético a) Función de fitness. Una manera de obtener una expresión para la función de fitness es considerando el número de aciertos entre cada bit i de la mitad del cromosoma con respecto al bit (n-1) i. Considerando que x es el número de aciertos, la función podría ser f = 2x, como también podría ser f = x. Como se trata de un problema de maximización, a mayor fitness, mayor número de aciertos y por lo tanto estaría más cercano a ser simétrico espejo.

4 350 MR Versión 1 1 Prueba Parcial 4/5 Otra manera de obtener la función de fitness, es considerando el número de desaciertos y, dado que n es el número de genes(bits) del cromosoma, f = n - y. A continuación se presenta una tabla con los cálculos de la función de fitness, para n= 10 en ambos casos. x: número e y: número de f = 2x f = n - y aciertos desaciertos b) Población y cruce de los dos mejores individuos N Individuo Fitness f = 2x Los dos individuos con mejor fitness son el N 2 y N 3, por lo tanto realizaremos un cruce simple en el punto medio entre ambos individuos, como se observa en la Figura N 1. El individuo obtenido del primer cruce tiene el mayor valor de fitness y es un individuo perfectamente simétrico espejo.

5 350 MR Versión 1 1 Prueba Parcial 5/5 Figura 1 c) Es posible que al realizar el cruce se obtengan individuos con simetría mas baja. Un ejemplo de ello es el segundo individuo obtenido, el cual siendo producto del cruce de dos individuos con fitness = 8, tiene menor simetría (fitness = 6). Criterio de corrección: se logra el objetivo se obtiene una expresión matemática apropiada para la función de fitness y se responde correctamente las secciones b) y c) de la pregunta. FIN DEL MODELO DE RESPUESTA

Algoritmos genéticos como métodos de aproximación analítica y búsqueda de óptimos locales

Algoritmos genéticos como métodos de aproximación analítica y búsqueda de óptimos locales Algoritmos genéticos como métodos de aproximación analítica y búsqueda de óptimos locales Jorge Salas Chacón A03804 Rubén Jiménez Goñi A93212 Juan Camilo Carrillo Casas A91369 Marco Vinicio Artavia Quesada

Más detalles

Introducción a la Computación Evolutiva

Introducción a la Computación Evolutiva Introducción a la Computación Evolutiva Sección de Computación CINVESTAV-IPN Av. IPN No. 2508 Col. San Pedro Zacatenco México, D.F. 07300 email: ccoello@cs.cinvestav.mx http: //delta.cs.cinvestav.mx/~ccoello

Más detalles

Mod. I, Unid. 1, Obj. 1 Criterio de Dominio 1/1

Mod. I, Unid. 1, Obj. 1 Criterio de Dominio 1/1 M.R. 333 VERSION 1 Prueba Integral 1/5 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERIA MODELO DE RESPUESTA ASIGNATURA: ARQUITECTURA DEL COMPUTADOR CÓDIGO: 333 MOMENTO: PRUEBA INTEGRAL

Más detalles

Algoritmos Genéticos

Algoritmos Genéticos Introducción a la Computación Evolutiva Tercera Clase: Algoritmos Genéticos Algoritmos Genéticos Desarrollados en USA durante los años 70 Autores principales: J. Holland, K. DeJong, D. Goldberg Aplicados

Más detalles

Algoritmos Genéticos. Algoritmos Genéticos. Introducción a la Computación Evolutiva. Tercera Clase: Algoritmos Genéticos

Algoritmos Genéticos. Algoritmos Genéticos. Introducción a la Computación Evolutiva. Tercera Clase: Algoritmos Genéticos Introducción a la Computación Evolutiva Tercera Clase: Algoritmos Genéticos Algoritmos Genéticos Desarrollados en USA durante los años 70 Autores principales: J. Holland, K. DeJong, D. Goldberg Aplicados

Más detalles

Algoritmos Genéticos Y

Algoritmos Genéticos Y Algoritmos Genéticos Y Optimización n Heurística Dr. Adrian Will Grupo de Aplicaciones de Inteligencia Artificial Universidad Nacional de Tucumán awill@herrera.unt.edu.ar Algoritmos Genéticos - Operadores

Más detalles

Introducción a los Algoritmos Genéticos. Tomás Arredondo Vidal 17/4/09

Introducción a los Algoritmos Genéticos. Tomás Arredondo Vidal 17/4/09 Introducción a los Algoritmos Genéticos Tomás Arredondo Vidal 17/4/09 Esta charla trata de lo siguiente: Introducción a algunos aspectos de los algoritmos genéticos. Introducción a algunas aplicaciones

Más detalles

ESTADÍSTICA (ING.INFORMÁTICA/ING.TI)

ESTADÍSTICA (ING.INFORMÁTICA/ING.TI) ASIGNATURA DE GRADO: ESTADÍSTICA (ING.INFORMÁTICA/ING.TI) Curso 2015/2016 (Código:7190105-) 1.PRESENTACIÓN DE LA ASIGNATURA Esta asignatura es una introducción a la Modelización probabilística, la Inferencia

Más detalles

Mod. I, Unid. 1, Obj. 1 CRITERIO DE DOMINIO 1/1

Mod. I, Unid. 1, Obj. 1 CRITERIO DE DOMINIO 1/1 MR. 316 Versión 1 Prueba Integral 1/5 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERIA MODELO DE RESPUESTA ASIGNATURA: MICROPROCESADORES CÓDIGO: 316 MOMENTO: INTEGRAL VERSIÓN: 01 FECHA

Más detalles

Computación Evolutiva: Técnicas de Selección

Computación Evolutiva: Técnicas de Selección Computación Evolutiva: Técnicas de Selección Dr. Gregorio Toscano Pulido Laboratorio de Tecnologías de Información Centro de Investigación y de Estudios Avanzados del IPN Cinvestav-Tamaulipas Dr. Gregorio

Más detalles

SIMULACION. Formulación de modelos: solución obtenida de manera analítica

SIMULACION. Formulación de modelos: solución obtenida de manera analítica SIMULACION Formulación de modelos: solución obtenida de manera analítica Modelos analíticos: suposiciones simplificatorias, sus soluciones son inadecuadas para ponerlas en práctica. Simulación: Imitar

Más detalles

Simulación Monte Carlo

Simulación Monte Carlo Simulación Monte Carlo Modelado estocástico Cuando se realiza un análisis estático a un proyecto, una serie de supuestos y variables producen un resultado de valor único. Mientras que un análisis estocástico

Más detalles

FORMULACIÓN DE UN ALGORITMO GENÉTICO PARA EL PROBLEMA DE PROGRAMACIÓN DE ÓRDENES DE TRABAJO DE UNA EMPRESA DE ARTES GRÁFICAS

FORMULACIÓN DE UN ALGORITMO GENÉTICO PARA EL PROBLEMA DE PROGRAMACIÓN DE ÓRDENES DE TRABAJO DE UNA EMPRESA DE ARTES GRÁFICAS FORMULACIÓN DE UN ALGORITMO GENÉTICO PARA EL PROBLEMA DE PROGRAMACIÓN DE ÓRDENES DE TRABAJO DE UNA EMPRESA DE ARTES GRÁFICAS PROYECTO DE GRADO Javier mauricio gamboa salgado Código: 544004 John alexander

Más detalles

Métodos evolutivos de Optimización. Prof. Cesar de Prada Dpto. Ingeneiria de Sitemas y Automática Universidad de Valladolid

Métodos evolutivos de Optimización. Prof. Cesar de Prada Dpto. Ingeneiria de Sitemas y Automática Universidad de Valladolid Métodos evolutivos de Optimización Prof. Cesar de Prada Dpto. Ingeneiria de Sitemas y Automática Universidad de Valladolid Indice Introducción Método de Montecarlo Algoritmos genéticos Tabú Search Simulated

Más detalles

A L G O R I T M O S E VO L U T I VO S A P L I C A D O S A L A G E N E R AC I Ó N D E H O R A R I O S PA R A C O L E G I O

A L G O R I T M O S E VO L U T I VO S A P L I C A D O S A L A G E N E R AC I Ó N D E H O R A R I O S PA R A C O L E G I O E S C U E L A P O L I T É C N I C A N A C I O N A L F A C U L T A D D E C I E N C I A S D E P A R T A M E N T O D E M A T E M Á T I C A S A L G O R I T M O S E VO L U T I VO S A P L I C A D O S A L A G

Más detalles

Algoritmos Genéticos.

Algoritmos Genéticos. Algoritmos Genéticos. Miguel Cárdenas Montes, Antonio Gómez Iglesias Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, Madrid, Spain miguel.cardenas@ciemat.es 15-19 de Octubre de 2011

Más detalles

Desarrollo de un sistema capaz de optimizar rutas de entrega utilizando algoritmos genéticos

Desarrollo de un sistema capaz de optimizar rutas de entrega utilizando algoritmos genéticos MT 6 Desarrollo de un sistema capaz de optimizar rutas de entrega utilizando algoritmos genéticos Rosario Baltazar 1 Judith Esquivel Vázquez 2 Andrea Rada 3 Claudia Díaz 4 Resumen Durante los últimos 15

Más detalles

Algoritmos Genéticos. Introduccion a la Robótica Inteligente

Algoritmos Genéticos. Introduccion a la Robótica Inteligente Algoritmos Genéticos Introduccion a la Robótica Inteligente 7 Marzo 2014 (IRIN) AGs 7/03/2014 1 / 43 Índice 1 Introducción 2 Algoritmos Genéticos 3 Algunos Fundamentos Matemáticos 4 Conclusiones (IRIN)

Más detalles

FECHA DE ENTREGA DE LAS ESPECIFICACIONES AL ESTUDIANTE: Adjunto a la primera parcial

FECHA DE ENTREGA DE LAS ESPECIFICACIONES AL ESTUDIANTE: Adjunto a la primera parcial 348 -TP Lapso 2009/2 1/7 TRABAJO PRÁCTICO ASIGNATURA: INVESTIGACIÓN DE OPERACIONES III CÓDIGO: 348 FECHA DE ENTREGA DE LAS ESPECIFICACIONES AL ESTUDIANTE: Adjunto a la primera parcial FECHA DE DEVOLUCIÓN

Más detalles

Desarrollo de algoritmos genéticos, de recocido simulado e híbridos para la planificación de un taller flexible

Desarrollo de algoritmos genéticos, de recocido simulado e híbridos para la planificación de un taller flexible X Congreso de Ingeniería de Organización Valencia, 7 y 8 de septiembre de 2006 Desarrollo de algoritmos genéticos, de recocido simulado e híbridos para la planificación de un taller flexible Sara Lumbreras

Más detalles

[ Guía para recién llegados a los ALGORITMOS GENÉTICOS]

[ Guía para recién llegados a los ALGORITMOS GENÉTICOS] UVa Dpto. de Organización de Empresas Escuela de Ingenierías Industriales Elena Pérez www.eis.uva.es/elena [ Guía para recién llegados a los ALGORITMOS GENÉTICOS] El propósito de esta guía es dar soporte

Más detalles

SISI / TS / AG / SR SIMULADOR DE SISTEMAS DE INVENTARIOS ESTOCASTICOS

SISI / TS / AG / SR SIMULADOR DE SISTEMAS DE INVENTARIOS ESTOCASTICOS 62 CAPITULO 3 SISI / TS / AG / SR SIMULADOR DE SISTEMAS DE INVENTARIOS ESTOCASTICOS En este capítulo se describe de manera general lo que es SISI / TS / AG / SR y se explica cada una de las opciones que

Más detalles

ESCUELA POLITÉCNICA NACIONAL

ESCUELA POLITÉCNICA NACIONAL ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA OPTIMIZACIÓN DE CONTROLADORES DIGITALES PID EN SISTEMAS DINÁMICOS USANDO ALGORITMOS GENÉTICOS PROYECTO PREVIO A LA OBTENCIÓN

Más detalles

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 22. Algoritmos Genéticos. prb@2007 2

Procesamiento Digital de Imágenes. Pablo Roncagliolo B. Nº 22. Algoritmos Genéticos. prb@2007 2 Procesamiento Digital de Imágenes Pablo Roncagliolo B. Nº 22 prb@2007 2 1 El núcleo de cada célula humana contiene una base de datos química. Esta base de datos contiene todas las instrucciones que la

Más detalles

Revista Facultad de Ingeniería Universidad de Antioquia ISSN: 0120-6230 revista.ingenieria@udea.edu.co Universidad de Antioquia Colombia

Revista Facultad de Ingeniería Universidad de Antioquia ISSN: 0120-6230 revista.ingenieria@udea.edu.co Universidad de Antioquia Colombia Revista Facultad de Ingeniería Universidad de Antioquia ISSN: 0120-6230 revista.ingenieria@udea.edu.co Universidad de Antioquia Colombia Tabares, Héctor; Hernández, Jesús Pronóstico puntos críticos de

Más detalles

CONTENIDOS NECESARIOS PARA MATEMATICAS, 1.

CONTENIDOS NECESARIOS PARA MATEMATICAS, 1. Elaboración de Materiales para Pruebas Libres de Educación Secundaria CONTENIDOS NECESARIOS PARA MATEMATICAS, 1. Números: suma, resta, multiplicación y división de números; operaciones combinadas de números

Más detalles

Ingeniería Energética E-ISSN: 1815-5901 orestes@cipel.ispjae.edu.cu. Instituto Superior Politécnico José Antonio Echeverría. Cuba

Ingeniería Energética E-ISSN: 1815-5901 orestes@cipel.ispjae.edu.cu. Instituto Superior Politécnico José Antonio Echeverría. Cuba Ingeniería Energética E-ISSN: 1815-5901 orestes@cipel.ispjae.edu.cu Instituto Superior Politécnico José Antonio Echeverría Cuba Carvajal- Pérez, Raúl Nicolás Un Algoritmo Genético Especializado en Planeamiento

Más detalles

Representación, Codificación en un AG Población Inicial. Aptitud. Estrategia de Selección. Cruce, Mutación, Reemplazo. Condición de Parada.

Representación, Codificación en un AG Población Inicial. Aptitud. Estrategia de Selección. Cruce, Mutación, Reemplazo. Condición de Parada. Computación n Evolutiva: Algoritmos Genéticos 1.- Metaheurísticos. Computación Evolutiva: Algoritmos Genéticos 2.- Conceptos principales de un Algoritmo Genético 3.- Estructura de un Algoritmo Genético

Más detalles

ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS

ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS ETSIINGENIO 2009 DIBUJO DE GRAFOS MEDIANTE ALGORITMOS GENÉTICOS EtsiIngenio Inteligencia Artificial 1 Raposo López Alejandro Sánchez Palacios Manuel Resumen dibujo de grafos mediante algoritmos genéticos

Más detalles

Un algoritmo genético híbrido para resolver el EternityII. Rico, Martin; Ros, Rodrigo Directora: Prof. Dra. Irene Loiseau

Un algoritmo genético híbrido para resolver el EternityII. Rico, Martin; Ros, Rodrigo Directora: Prof. Dra. Irene Loiseau Un algoritmo genético híbrido para resolver el EternityII Rico, Martin; Ros, Rodrigo Directora: Prof. Dra. Irene Loiseau Temas Temas Introducción Eternity II Historia Descripción Demo Metaheurísticas Algoritmos

Más detalles

Algoritmos Genéticos Y

Algoritmos Genéticos Y Algoritmos Genéticos Y Optimización n Heurística Dr. Adrian Will Grupo de Aplicaciones de Inteligencia Artificial Universidad Nacional de Tucumán awill@herrera.unt.edu.ar Operadores de Mutación El operador

Más detalles

Métodos Markov Chain Monte Carlo

Métodos Markov Chain Monte Carlo Métodos Markov Chain Monte Carlo David J. Rios Optimización Combinatoria 19 de mayo del 2008 MCMC Introducción Que son Cadenas de Markov? Que es Monte Carlo? Que es Markov Chain Monte Carlo? Algoritmo

Más detalles

OPTIMIZACIÓN DE TRANSFORMACIONES LINEALES DE DATOS MEDIANTE BUSQUEDA LOCAL

OPTIMIZACIÓN DE TRANSFORMACIONES LINEALES DE DATOS MEDIANTE BUSQUEDA LOCAL OPTIMIZACIÓN DE TRANSFORMACIONES LINEALES DE DATOS MEDIANTE BUSQUEDA LOCAL INGENIERIA INFORMATICA AUTOR: FRANCISCO GODOY MUÑOZ-TORRERO TUTOR: JOSE MARIA VALLS FERRAN CO-DIRECTOR: RICARDO ALER MUR Contenidos

Más detalles

ASIGNATURA: ÁMBITO CIENTÍFICO-TECNOLÓGICO 4º ESO

ASIGNATURA: ÁMBITO CIENTÍFICO-TECNOLÓGICO 4º ESO 1. CONTENIDOS MÍNIMOS DE LA ASIGNATURA los contenidos mínimos para el Ámbito científico-tecnológico los podemos agrupar así: Contenidos mínimos de ámbito científico tecnológico MATEMÁTICAS UNIDAD 1: Números

Más detalles

CAPITULO II. MARCO TEÓRICO. Actualmente todas las personas que tengan un capital considerable pueden invertir en

CAPITULO II. MARCO TEÓRICO. Actualmente todas las personas que tengan un capital considerable pueden invertir en CAPITULO II. MARCO TEÓRICO II.1. Mercados Financieros II.1.1 Marco histórico Actualmente todas las personas que tengan un capital considerable pueden invertir en acciones a fin de obtener ganancias rápidas

Más detalles

TestGIP (Software para la realización de Exámenes Test - Multimedia para Ingeniería de Organización Industrial)

TestGIP (Software para la realización de Exámenes Test - Multimedia para Ingeniería de Organización Industrial) I Workshop de Ingeniería en Organización Bilbao, 21-22 de Septiembre de 2000 TestGIP (Software para la realización de Exámenes Test - Multimedia para Ingeniería de Organización Industrial) Rodríguez A.

Más detalles

&$3Ì78/2 $/*25,7026 (92/87,926 $9$1=$'26 3$5$ 763 6.1. INTRODUCCIÓN

&$3Ì78/2 $/*25,7026 (92/87,926 $9$1=$'26 3$5$ 763 6.1. INTRODUCCIÓN &$3Ì78/2 6.1. INTRODUCCIÓN Los primeros avances para solucionar el TSP, por medio de Algoritmos Evolutivos han sido introducidos por Goldberg y Lingle en [68] y Grefenstette en [72]. En éste área muchos

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMÉRICA) SYLLABO

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMÉRICA) SYLLABO UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS (Universidad del Perú, DECANA DE AMÉRICA) FACULTAD DE INGENIERIA DE SISTEMAS E INFORMATICA Escuela Académico Profesional de Ingeniería de Sistemas 1. ESPECIFICACIONES

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.E. CURSO 2013-2014 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumno debe elegir sólo una de las pruebas (A o B). - Cada una de las preguntas

Más detalles

Análisis del juego televisivo QUIÉN QUIERE SER MILLONARIO? R

Análisis del juego televisivo QUIÉN QUIERE SER MILLONARIO? R Análisis del juego televisivo QUIÉN QUIERE SER MILLONARIO? R Federico Perea Justo Puerto * MaMaEuSch ** Management Mathematics for European Schools 94342 - CP - 1-2001 - DE - COMENIUS - C21 * Universidad

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES. Junio, Ejercicio 1, Opción B

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES. Junio, Ejercicio 1, Opción B PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 1: MATRICES Junio, Ejercicio 1, Opción B 3 Sean las matrices A 0 3, B y C 0 1 1 5 1 3 0 a) Calcule las

Más detalles

FECHA DE ENTREGA AL ESTUDIANTE: Adjunto a la primera Prueba Parcial. FECHA DE DEVOLUCIÓN POR PARTE DEL ESTUDIANTE: Adjunto a la Prueba Integral

FECHA DE ENTREGA AL ESTUDIANTE: Adjunto a la primera Prueba Parcial. FECHA DE DEVOLUCIÓN POR PARTE DEL ESTUDIANTE: Adjunto a la Prueba Integral TP338 Lapso 2015-1 1/6 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO AREA: INGENIERÍA TRABAJO PRÁCTICO ASIGNATURA: Sistema de Información III CÓDIGO: 338 FECHA DE ENTREGA AL ESTUDIANTE: Adjunto

Más detalles

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD

Más detalles

Examen funciones 4º ESO 12/04/13

Examen funciones 4º ESO 12/04/13 Examen funciones 4º ESO 12/04/13 1) Calcula el dominio de las siguientes funciones: a. b. c. d. Calculamos las raíces del numerador y del denominador: Construimos la tabla para ver los signos: - - 0 +

Más detalles

Metaheurísticas: una visión global *

Metaheurísticas: una visión global * Metaheurísticas: una visión global * Belén Melián, José A. Moreno Pérez, J. Marcos Moreno Vega DEIOC. Universidad de La Laguna 38271 La Laguna {mbmelian,jamoreno,jmmoreno}@ull.es Resumen Las metaheurísticas

Más detalles

UTgeNes - Framework para Implementación y Estudio de Algoritmos

UTgeNes - Framework para Implementación y Estudio de Algoritmos UTgeNes - Framework para Implementación y Estudio de Algoritmos Genéticos Abstract UTgeNes es un framework para la implementación y estudio de algoritmos genéticos propuesto para la realización de trabajos

Más detalles

Métodos Heurísticos en Inteligencia Artificial

Métodos Heurísticos en Inteligencia Artificial Métodos Heurísticos en Inteligencia Artificial Javier Ramírez rez-rodríguez Ana Lilia Laureano-Cruces Universidad Autónoma Metropolitana Métodos Heurísticos en Inteligencia Artificial Los problemas de

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A a) (1 punto) Dada la matriz a 1 A, calcule el valor de a para que A a 0 sea la matriz nula. 1 1 t b) ( puntos) Dada la matriz M, calcule la matriz M M. 1 1 x 1 Sea la función f definida mediante f ( x).

Más detalles

OBJETIVOS DE APRENDIZAJE

OBJETIVOS DE APRENDIZAJE PLAN DE ESTUDIOS: SEGUNDO CICLO ESPECIALIDAD COMPUTACIÓN 4 to AÑO CAMPO DE FORMACIÓN: ESPECIALIZACIÓN ÁREA DE ESPECIALIZACIÓN: EQUIPOS, INSTALACIONES Y SISTEMAS UNIDAD CURRICULAR: ADMINISTRACIÓN DE SISTEMAS

Más detalles

Investigación Operativa

Investigación Operativa Programa de la Asignatura: Investigación Operativa Código: 104 Carrera: Ingeniería en Computación Plan: 2008 Carácter: Obligatoria Unidad Académica: Secretaría Académica Curso: Segundo Año Segundo cuatrimestre

Más detalles

Nombre del documento: Procedimiento para la Evaluación Docente. Referencia a la Norma ISO 9001:2008 : 7.2.3, 8.2.1 y 8.2.3

Nombre del documento: Procedimiento para la Evaluación Docente. Referencia a la Norma ISO 9001:2008 : 7.2.3, 8.2.1 y 8.2.3 Página 1 de 5 1. Propósito Evaluar el desempeño del docente, para obtener información que permita mejorar el proceso educativo a través de los instrumentos de Evaluación Docente del SNEST, que se encuentran

Más detalles

NIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL

NIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL NIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL PROGRAMA: MATEMÁTICA I CÓDIGO ASIGNATURA: 1215-101 PRE-REQUISITO:

Más detalles

Evaluación de la disponibilidad de los servicios desplegados sobre Volunteer Computing

Evaluación de la disponibilidad de los servicios desplegados sobre Volunteer Computing Evaluación de la disponibilidad de los servicios desplegados sobre Volunteer Computing Antonio Escot Praena Enginyeria Informàtica i Tècnica de Gestió Dirección del TFC Ángel A. Juan, PhD. Eva Vallada

Más detalles

IES Fco Ayala de Granada Junio de 2012 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 01 MODELO 4 (COMÚN) OPCIÓN A EJERCICIO 1 (A) Sea el recinto determinado

Más detalles

Universidad del CEMA Master en Finanzas 2006

Universidad del CEMA Master en Finanzas 2006 Universidad del CEMA Master en Finanzas 2006 La Simulación como una herramienta para el manejo de la incertidumbre Fabián Fiorito ffiorito@invertironline.com Tel.: 4000-1400 Hoy en día la simulación es

Más detalles

Scoring: Construcción y Aplicación

Scoring: Construcción y Aplicación Scoring: Construcción y Aplicación Agosto de 2014 2014 Experian Information Solutions, Inc. All rights reserved. Experian and the marks used herein are service marks or registered trademarks of Experian

Más detalles

DISEÑO Y DESARROLLO DE UNA PRACTICA DE LABORATORIO CONCEPTOS BÁSICOS DE RESONANCIA ESTOCÁSTICA

DISEÑO Y DESARROLLO DE UNA PRACTICA DE LABORATORIO CONCEPTOS BÁSICOS DE RESONANCIA ESTOCÁSTICA DISEÑO Y DESARROLLO DE UNA PRACTICA DE LABORATORIO CONCEPTOS BÁSICOS DE RESONANCIA ESTOCÁSTICA L. Álvarez Miño, D. Fajardo Fajardo Universidad Nacional de Colombia, Sede Manizales A. A. 127 RESUMEN En

Más detalles

Universidad Tecnológica Nacional Facultad Regional Tucumán

Universidad Tecnológica Nacional Facultad Regional Tucumán Categoría: Trabajos Finales de Carreras de Grado Título del trabajo: Optimización de la Toma de Decisiones en Gestión, utilizando Algoritmos Genéticos y Sistemas Expertos Difusos Autores: Director y Asignatura:

Más detalles

Solemne I Profesor: Marcelo Leseigneur P. Ayudante: Renzo Lüttges C.

Solemne I Profesor: Marcelo Leseigneur P. Ayudante: Renzo Lüttges C. Solemne I Profesor: Marcelo Leseigneur P. Ayudante: Renzo Lüttges C. Pregunta 1 Hallar el dominio y recorrido de las siguientes funciones, dibújelas, y estudie su paridad, imparidad, crecimiento y decrecimiento,

Más detalles

Distribución Óptima de Horarios de Clases utilizando la técnica de Algoritmos Genéticos

Distribución Óptima de Horarios de Clases utilizando la técnica de Algoritmos Genéticos Distribución Óptima de Horarios de Clases utilizando la técnica de Algoritmos Genéticos Tesis Profesional Que para obtener el Título de Ingeniero en Computación Presenta CARLA LENINCA PACHECO AGÜERO Acatlima,

Más detalles

Búsqueda Local. cbea (LSI-FIB-UPC) Inteligencia Artificial Curso 2011/2012 1 / 33

Búsqueda Local. cbea (LSI-FIB-UPC) Inteligencia Artificial Curso 2011/2012 1 / 33 Introducción Búsqueda Local A veces el camino para llegar a la solución no nos importa, buscamos en el espacio de soluciones Queremos la mejor de entre las soluciones posibles alcanzable en un tiempo razonable

Más detalles

PROGRAMA Ingeniería Mecatrónica PLAN DE ESTUDIOS ACTA DE CONSEJO DE FACULTAD/DEPTO./CENTRO: 1. DATOS GENERALES CRÉDITOS ACADÉMICO S: 3 CÓDIGO: 924044

PROGRAMA Ingeniería Mecatrónica PLAN DE ESTUDIOS ACTA DE CONSEJO DE FACULTAD/DEPTO./CENTRO: 1. DATOS GENERALES CRÉDITOS ACADÉMICO S: 3 CÓDIGO: 924044 Página 1 de 5 PROGRAMA Ingeniería Mecatrónica PLAN DE ESTUDIOS ACTA DE CONSEJO DE FACULTAD/DEPTO./CENTRO: V 077 1. DATOS GENERALES ASIGNATURA/MÓDULO/SEMINARIO: RESISTENCIA DE MATERIALES CÓDIGO: 924044

Más detalles

Laboratorio de Señales y Comunicaciones (LSC) 3 er curso, Ingeniería de Telecomunicación. Curso 2005 2006. (1 sesión)

Laboratorio de Señales y Comunicaciones (LSC) 3 er curso, Ingeniería de Telecomunicación. Curso 2005 2006. (1 sesión) Transmisión Digital en Banda Base PRÁCTICA 8 (1 sesión) Laboratorio Señales y Comunicaciones (LSC) 3 er curso, Ingeniería Telecomunicación Curso 2005 2006 Javier Ramos, Fernando Díaz María y David Luengo

Más detalles

Introducción a los Algoritmos Genéticos

Introducción a los Algoritmos Genéticos Marcos Gestal Pose Depto. Tecnologías de la Información y las Comunicaciones Universidade da Coruña http://sabia.tic.udc.es/ mgestal mgestal@udc.es Índice 1. Introducción 2 2. Orígenes 2 3. Bases Biológicas

Más detalles

Problemas resueltos del Tema 3.

Problemas resueltos del Tema 3. Terma 3. Distribuciones. 9 Problemas resueltos del Tema 3. 3.1- Si un estudiante responde al azar a un examen de 8 preguntas de verdadero o falso Cual es la probabilidad de que acierte 4? Cual es la probabilidad

Más detalles

Selección usando Algoritmos

Selección usando Algoritmos Capítulo 3 Selección usando Algoritmos Genéticos 3.1. Introducción En esta sección se aborda el uso de Algoritmos Genéticos (GA del inglés Genetic Algorithms) para selección de características. Así como

Más detalles

UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO AREA: INGENIERÍA. FECHA DE ENTREGA AL ESTUDIANTE: Adjunto a la Primera Prueba Parcial.

UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO AREA: INGENIERÍA. FECHA DE ENTREGA AL ESTUDIANTE: Adjunto a la Primera Prueba Parcial. 333-TP Lapso 2015-1 - 1/5 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO AREA: INGENIERÍA ASIGNATURA: Arquitectura del Computador CÓDIGO: 333 FECHA DE ENTREGA AL ESTUDIANTE: Adjunto a la Primera

Más detalles

GRÁFICOS DE CONTROL PARA LA MEDIA DE UN PROCESO EN POBLACIONES CON DISTRIBUCIÓN ASIMÉTRICA

GRÁFICOS DE CONTROL PARA LA MEDIA DE UN PROCESO EN POBLACIONES CON DISTRIBUCIÓN ASIMÉTRICA Revista Colombiana de Estadística Volumen 23 (2000) N 2, páginas 29 a 44 GRÁFICOS DE CONTROL PARA LA MEDIA DE UN PROCESO EN POBLACIONES CON DISTRIBUCIÓN ASIMÉTRICA EMERSON A. CHAPARRO S. * JOSE A. VARGAS

Más detalles

III Conferencia Interuniversitaria sobre el Grado en Estadística Universidad de la Coruña 16 Abril 2010. Grado en Estadística

III Conferencia Interuniversitaria sobre el Grado en Estadística Universidad de la Coruña 16 Abril 2010. Grado en Estadística III Conferencia Interuniversitaria sobre el Grado en Universidad de la Coruña 16 Abril 2010 Grado en Universidad de Extremadura Estudios actuales de en la Universidad de Extremadura Contexto en el que

Más detalles

Integración de Monte Carlo Técnicas Avanzadas de Gráficos en 3D

Integración de Monte Carlo Técnicas Avanzadas de Gráficos en 3D Integración de Monte Carlo Técnicas Avanzadas de Gráficos en 3D Miguel Ángel Otaduy 26 Abril 2010 Contexto Cálculo de la integral de radiancia reflejada en la ecuación de rendering Cálculo de la integral

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Marzo 2013) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Marzo 2013) Selectividad-Opción A Tiempo: 90 minutos Eamen de Matemáticas Aplicadas a las CC. Sociales II (Marzo 2013) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos)dado el sistema a+ y+ 3z = 0 + ay+ 2z = 1 + ay+ 3z = 1 a) (2 puntos). Discutir

Más detalles

TÉCNICAS HEURÍSTICAS Y METAHEURÍSTICAS DE OPTIMIZACIÓN

TÉCNICAS HEURÍSTICAS Y METAHEURÍSTICAS DE OPTIMIZACIÓN TÉCNICAS HEURÍSTICAS Y METAHEURÍSTICAS DE OPTIMIZACIÓN RAMÓN ALFONSO GALLEGO RENDÓN ANTONIO ESCOBAR ZULUAGA ELIANA MIRLEDY TORO OCAMPO Universidad Tecnológica de Pereira Pereira - Risaralda - Colombia

Más detalles

Matemáticas Evolutivas: Algoritmos Genéticos

Matemáticas Evolutivas: Algoritmos Genéticos Matemáticas Evolutivas: Algoritmos Genéticos María Teresa Iglesias Otero Departamento de Matemáticas Universidade da Coruña Cuál es la mejor forma de...? cuál es el camino más corto a...? cuál es la más

Más detalles

Segunda Parcial Lapso 2013-1 175-176-177 1/8

Segunda Parcial Lapso 2013-1 175-176-177 1/8 Segunda Parcial Lapso 2013-1 175-176-177 1/8 Universidad Nacional Abierta Matemática I (175-176-177) Vicerrectorado Académico Cód. Carrera: 126 236 280 508 521 542 610 611 612 613 Área De Matemática Fecha:

Más detalles

PROGRAMA COCURRICULAR DE COMPUTACIÓN

PROGRAMA COCURRICULAR DE COMPUTACIÓN PROGRAMA COCURRICULAR DE COMPUTACIÓN Nivel Intermedio VICERRECTORADO ACADÉMICO 15/02/2010 Descripción de contenidos y capacidades para el curso cocurricular de computación en el nivel Intermedio. Este

Más detalles

METAHEURISTICAS Ideas, Mitos, Soluciones

METAHEURISTICAS Ideas, Mitos, Soluciones METAHEURISTICAS Ideas, Mitos, Soluciones OPTIMIZACION COMBINATORIA Qué es un problema de optimización combinatoria? Cómo se modela matemáticamente un problema de optimización combinatoria? Minimizar (o

Más detalles

SEPTIEMBRE 2005. Opción A

SEPTIEMBRE 2005. Opción A Selectividad Septiembre 005 SEPTIEMBRE 005 Opción A 4 5.- Calcula dos matrices cuadradas A y B sabiendo que A + 3B = y que A B =..- Se considera la parábola p (x) = 0,5 x +,5 x y sea s (x) la línea poligonal

Más detalles

Temario III Algoritmos Combinatorios y Metaheurísticas

Temario III Algoritmos Combinatorios y Metaheurísticas Temario III Algoritmos Combinatorios y Metaheurísticas Verificación y Validación de Software UNCo 1 Contenidos Combinación de Datos de Test Algoritmos Combinatorios Metaheurísticas Búsqueda Tabú Algoritmos

Más detalles

Algoritmos Genéticos. Angel Kuri Centro de Investigación en Computación

Algoritmos Genéticos. Angel Kuri Centro de Investigación en Computación Algoritmos Genéticos Angel Kuri Centro de Investigación en Computación Mayo de 2000 Algoritmos Genéticos 1 LA NATURALEZA COMO OPTIMIZADORA AUNQUE EL INGENIO HUMANO PUEDE LOGRAR INFINIDAD DE INVENTOS, NUNCA

Más detalles

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 1: Introducción

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 1: Introducción Curso: Métodos de Monte Carlo. Unidad 1, Sesión 1: Introducción Departamento de Investigación Operativa Instituto de Computación, Facultad de Ingeniería Universidad de la República, Montevideo, Uruguay

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática. Investigación Operativa Práctica 6: Simulación

UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática. Investigación Operativa Práctica 6: Simulación UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Investigación Operativa Práctica 6: Simulación Guión práctico: Generación de Números Aleatorios y Simulación Monte Carlo Curso 08/09 Objetivo: Aprender

Más detalles

AZAR, PROBABILIDAD Y ESTADÍSTICA EXPERIENCIAS DE AZAR

AZAR, PROBABILIDAD Y ESTADÍSTICA EXPERIENCIAS DE AZAR AZAR, PROBABILIDAD Y ESTADÍSTICA EXPERIENCIAS DE AZAR Hay situaciones en la vida diaria en las que no podemos saber qué resultado va a salir, pero sí sabemos los posibles resultados; son situaciones que

Más detalles

Unidad II: Números pseudoaleatorios

Unidad II: Números pseudoaleatorios Unidad II: Números pseudoaleatorios 2.1 Métodos de generación de números Pseudoaleatorio Métodos mecánicos La generación de números aleatorios de forma totalmente aleatoria, es muy sencilla con alguno

Más detalles

UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA T.S.U. EN MANTENIMIENTO EN SISTEMAS INFÓRMATICOS

UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA T.S.U. EN MANTENIMIENTO EN SISTEMAS INFÓRMATICOS 1era. Prueba Integral 1/7 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA T.S.U. EN MANTENIMIENTO EN SISTEMAS INFÓRMATICOS MODELO DE RESPUESTA ASIGNATURA: FUNDAMENTOS DEL COMPUTADOR

Más detalles

Implementación del algoritmo UEGO sobre el entorno Matlab como alternativa al toolbox de optimización

Implementación del algoritmo UEGO sobre el entorno Matlab como alternativa al toolbox de optimización Implementación del algoritmo UEGO sobre el entorno Matlab como alternativa al toolbox de optimización Victoria Plaza Leiva Universidad de Almería Abstract Global optimization algorithms are widely used

Más detalles

Análisis espectral de señales periódicas con FFT

Análisis espectral de señales periódicas con FFT Análisis espectral de señales periódicas con FFT 1 Contenido 7.1 Introducción a la Transformada Discreta de Fourier 3-3 7.2 Uso de la Transformada Discreta de Fourier 3-5 7.3 Método de uso de la FFT 3-8

Más detalles

FORMATO BINARIO DE NÚMEROS NEGATIVOS

FORMATO BINARIO DE NÚMEROS NEGATIVOS FORMATO BINARIO DE NÚMEROS NEGATIVOS Introducción: Como sabemos, con un número n determinado de bits se pueden manejar 2 n números binarios distintos. Hasta ahora hemos trabajado con números binarios puros,

Más detalles

ALGORITMOS GENÉTICOS

ALGORITMOS GENÉTICOS Arranz de la Peña, Jorge Universidad Carlos III 100025106@alumnos.uc3m.es ALGORITMOS GENÉTICOS Parra Truyol, Antonio Universidad Carlos III 100023822@alumnos.uc3m.es En este documento se pretende analizar

Más detalles

Problemas. Variables Aleatorias. Modelos de Probabilidad

Problemas. Variables Aleatorias. Modelos de Probabilidad Problemas. Variables Aleatorias. Modelos de Probabilidad Ejemplos resueltos y propuestos Variables Aleatorias Discretas Una variable aleatoria discreta X de valores x 1, x 2,..., x k con función de probabilidad

Más detalles

Asignatura: Econometría. Conceptos MUY Básicos de Estadística

Asignatura: Econometría. Conceptos MUY Básicos de Estadística Asignatura: Econometría Conceptos MUY Básicos de Estadística Ejemplo: encuesta alumnos matriculados en la UMH Estudio: Estamos interesados en conocer el nivel de renta y otras características de los estudiantes

Más detalles

Simulación Computacional. Tema 1: Generación de números aleatorios

Simulación Computacional. Tema 1: Generación de números aleatorios Simulación Computacional Tema 1: Generación de números aleatorios Irene Tischer Escuela de Ingeniería y Computación Universidad del Valle, Cali Typeset by FoilTEX 1 Contenido 1. Secuencias pseudoaleatorias

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

GRADO EN MATEMÁTICAS

GRADO EN MATEMÁTICAS GRADO EN MATEMÁTICAS Cuarto curso: ITINERARIO DE CIENCIAS DE LA COMPUTACIÓN ITINERARIOS DE MATEMÁTICA PURA Y APLICADA 60 ECTS 60 ECTS Itinerario I Itinerario II GRADO EN MATEMÁTICAS Cuarto curso: ITINERARIO

Más detalles

Diseño e Implementación de Algoritmos Genéticos Celulares para Problemas Complejos

Diseño e Implementación de Algoritmos Genéticos Celulares para Problemas Complejos TESIS DOCTORAL Diseño e Implementación de Algoritmos Genéticos Celulares para Problemas Complejos Autor Bernabé Dorronsoro Díaz Director Dr. Enrique Alba Torres Departamento Lenguajes y Ciencias de la

Más detalles

Algoritmos Genéticos. Aplicación al Juego de las N Reinas.

Algoritmos Genéticos. Aplicación al Juego de las N Reinas. Algoritmos Genéticos. Aplicación al Juego de las N Reinas. Juan Carlos Pozas Bustos NIA: 100025154 Univ.Carlos III de Madrid Ing.Telecomunicación España 100025154@alumnos.uc3m.es Términos generales En

Más detalles

TRABAJO DE GRADUACIÓN INGENIERO EN COMPUTACIÓN ESPECIALIZACIÓN SISTEMAS DE INFORMACIÓN

TRABAJO DE GRADUACIÓN INGENIERO EN COMPUTACIÓN ESPECIALIZACIÓN SISTEMAS DE INFORMACIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Facultad de Ingeniería en Electricidad y Computación Sistema de Planificación Avanzada aplicado a la Evaluación de Inversiones en Activos utilizando herramientas

Más detalles

ETS Caminos Santander. Curso 2012. Ejercicios de introducción a la programación.

ETS Caminos Santander. Curso 2012. Ejercicios de introducción a la programación. Ejercicio 1. Saludo. El programa preguntará el nombre al usuario y a continuación le saludará de la siguiente forma "Hola, NOMBRE" donde NOMBRE es el nombre del usuario. Ejercicio 2. Suma. El programa

Más detalles

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES

4.2 CÓMO SE NOS PRESENTAN LAS FUNCIONES Tema 4 Funciones. Características - Matemáticas B 4º E.S.O. 1 TEMA 4 FUNCIONES. CARACTERÍSTICAS 4.1 CONCEPTOS BÁSICOS 3º 4.1.1 DEFINICIONES 3º Una función liga dos variables numéricas a las que, habitualmente,

Más detalles

ANÁLISIS DE FUNCIONES RACIONALES

ANÁLISIS DE FUNCIONES RACIONALES ANÁLISIS DE FUNCIONES RACIONALES ( x 9) Dada la función f( x) = x 4 DETERMINE: Dominio, asíntotas, intervalos de crecimiento, intervalos de concavidad, extremos relativos y puntos de inflexión, representar

Más detalles

Halla dominio e imagen de las funciones

Halla dominio e imagen de las funciones Tema 1 Las Funciones y sus Gráficas Ejercicios Resueltos Ejercicio 1 Halla dominio e imagen de las funciones y Como no está definido si, es decir, si El recorrido o imagen será el conjunto de todos los

Más detalles