Integración por el método de Monte Carlo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Integración por el método de Monte Carlo"

Transcripción

1 Integración por el método de Monte Carlo Georgina Flesia FaMAF 7 de abril 2015

2 El método de Monte Carlo El método de Monte Carlo es un procedimiento general para estudiar procesos mediante la seleccion de muestras aleatorias de una población. La denominación Monte Carlo fue popularizado por los científicos Stanislaw Ulam, Enrico Fermi, John von Neumann, y Nicholas Metropolis, entre otros, quienes ya trabajaban sobre muestreo estadístico. Hace referencia al Casino de Montecarlo en Mónaco, dado que uno de los primero sistemas estudiados fue el de la ruleta de dicho casino.

3 Aplicación en cálculos matemáticos Este método se utiliza para calcular numéricamente expresiones matemáticamente complejas y difíciles de evaluar con exactitud, o que no pueden resolverse analíticamente. Algunos ejemplos son: Cálculo de integrales definidas Aproximaciones al valor de π. y el número de Euler e

4 Cálculo de integrales definidas Se tienen en cuenta los siguientes resultados: Si X es una variable aleatoria con densidad f y g : R R es una función, entonces el valor esperado de la v. a. g(x) es E[g(X)] = g(x) f (x) dx. Ley Fuerte de los Grandes Números: Si X 1, X 2,... es una sucesión de v. a. i. i. d., todas con media µ, entonces lim n X 1 + X 2 + X n n = µ.

5 Integración sobre (0, 1) Ejemplo Calcular θ = 1 0 g(x) dx. Si U U(0, 1), entonces θ = E[g(U)]. Si U 1, U 2,... v.a.i.i.d., uniformes en (0, 1), entonces g(u 1 ), g(u 2 ),... son v.a.i.i.d., con media θ. Luego lim n n i=1 por la ley de los grandes numeros g(u i ) n = θ.

6 g(x) = (1 x 2 ) 3/2 n = 20, Área=

7 g(x) = (1 x 2 ) 3/2 n = 100, Área=

8 g(x) = (1 x 2 ) 3/2 n = 300, Área=

9 g(x) = (1 x 2 ) 3/2 Analíticamente, comenzamos usando la sustitución x = sen(θ), dx = cos(θ)dθ. Entonces (1 x 2 ) 3/2 dx = (1 sen(θ) 2 ) 3/2 cos(θ)dθ = = (cos(θ) 2 ) 3/2 cos(θ)dθ = (cos(θ) 4 )dθ Aplicando las fórmulas trigonométricas: cos(θ) 2 = (1 + cos(2θ))/2 (1) cos(2θ) 2 = (1 + cos(4θ))/2 (2)

10 g(x) = (1 x 2 ) 3/2 Se puede reducir la integral a integrales de términos constantes y términos de cosenos: cos(θ) 4 dθ = ((1 + cos(2θ))/2) 2 )dθ = = (1/4)dθ + (1/4) cos(2θ) 2 dθ + (1/2) cos(2θ)dθ y se vuelve a aplicar la relación trigonométrica (2) al segundo término, las otras dos son inmediatas: cos(2θ) 2 dθ = (1 + cos(4θ))/2)dθ

11 g(x) = (1 x 2 ) 3/2 Así,pues, te queda: (cos(θ) 4 )dθ = (1/4)dθ + (1/4)(1 + cos(4θ))/2)dθ+ aplicando que: + (1/2) cos(2θ)dθ = (1/4)θ + (1/8)(θ + (1/4)sen(4θ)) + (1/4)sen(2θ) = (3/8)θ + (1/32)sen(4θ)) + (1/4)sen(2θ) cos(aθ)dθ = (1/a)sen(aθ)

12 g(x) = (1 x 2 ) 3/2 Analíticamente: 1 0 g(x) dx = π/2 0 (cos(θ) 4 )dθ = (3/8) π 2 +(1/4).sen(π)+(1/32).sen(2π) = 3 π Por Monte Carlo n Aproximación

13 Integración sobre (a, b) Ejemplo Calcular θ = b a g(x) dx, con a < b. Realizamos el cambio de variables y = x a b a, dy = 1 b a dx b g(x) dx = 1 a 0 g(a + (b a)y)(b a) dy = 1 0 h(y) dy.

14 Integración en (a, b) g(x) = e x+x 2 en ( 1, 1)

15 Integración en (a, b) g(x) = sen(x) en (0, 2π)

16 Integración en (a, b) g(x) = cos(x) en (π, 3π)

17 Integración sobre (0, ) Ejemplo Calcular θ = 0 g(x) dx. Realizamos el cambio de variables 0 y = 1 x + 1, dy = 1 (x + 1) 2 dx = y 2 dx g(x) dx = 0 1 g( 1 y 1) 1 g( 1 y y 2 dy = 1) 0 y 2 dy = 1 0 h(y) dy.

18 Integración sobre (0, ) g(x) = e x

19 Integración sobre (0, ) g(x) = 1 (2 + x 2 )

20 Integración sobre (0, ) g(x) = x (1 + x 2 ) 2

21 Integración sobre (0, ) Si usamos el siguiente cambio de variables y = 1 1 x + 1, dy = (y 1)2, entonces la transformación está dada por una función creciente y : [0, ] [0, 1). Se tienen entonces los siguientes gráficos:

22 Integración sobre (0, ) g(x) = e x

23 Integración sobre (0, ) g(x) = 1 (2 + x 2 )

24 Integración sobre (, ) Para resolverla tenemos que identificar la paridad de la función. 1. Si la función es par, la integral en el rango (, ) es dos veces la integral en (0, ). 2. Si la función no es par, entonces debo partir el rango (, ) en 2.1 (0, ) hacer cambio de variables al [0, 1] 2.2 (, 0), por ejemplo, mandar al (0, ) usando el negativo de la función y luego al [0, 1] con un cambio de variables

25 Integrales múltiples El método de Monte Carlo para el cálculo de integrales en una variable no es muy eficiente, comparado con otros métodos numéricos que convergen más rápidamente al valor de la integral. Pero sí cobra importancia en el caso del cálculo numérico de integrales múltiples: g(x 1,..., x l ) dx 1... dx l

26 Integrales múltiples Para calcular la cantidad θ = g(x 1,..., x l ) dx 1... dx l utilizamos el hecho que θ = E[g(U 1,..., U l )] con U 1,..., U l independientes y uniformes en (0, 1).

27 Si U 1 1,..., U 1 l U 2 1,..., U 2 l. U n 1,..., U n l son n muestras independientes de estas l variables, podemos estimar n g(u1 i θ,..., Ui l ) n i=1

28 g(x, y) = e (x+y) en (0, 1) (0, 1)

29 Calculo aproximado del valor del numero de Euler e El número de Euler aparece como resultado de muchas ecuaciones, en especial e = n=0 Si vemos que este límite como la esperanza de una variable aleatoria, podemos estimarlo por Monte Carlo 1 n!

30 Calculo aproximado del valor del numero de Euler e Supongamos que U 1, U 2,..., U n son v.a. uniformemente distribuidas n en el (0, 1), definimos como S n = U i. y como N a la variable i=1 aleatoria dada por { } n N = min n : U i > 1 = min {n : S n > 1}. i=1 La variable N cumple que E[N] = e. Por lo cual, el valor de e puede ser aproximado por Monte Carlo. e N min { n : Sn i > 1 } i=1 N

31 Calculo aproximado del valor del numero de Euler e U 1, U 2,..., U n i.i.d. U(0, 1), S n = n U i., N = min {n : S n > 1}. i=1 E[N] = n P[N = n]. n=2 P[S n > 1] = P[S n 1 > 1] + P[N = n], por lo cual P[N = n] = P[S n > 1] P[S n 1 > 1].

32 Cálculo de P[S n > 1] Sea f n la función de densidad de la variable aleatoria S n, n 1. Entonces f n (x) = x n 1 (n 1)! para todo 0 < x < 1 EJERCICIO DEL PRACTICO!!!!!!

33 Cálculo de E[N] Tenemos que P[S n > 1] = 1 P[S n 1] = 1 P[N = n] = E[N] = n=2 1 0 f n (t)dt = 1 1 n!. ( 1 1 ) ( ) 1 1 = n 1 n! (n 1)! n! n n 1 n! = n=2 1 (n 2)! = 1 n! = e. n=0

34 Cálculo aproximado el valor de π Recordemos que el área de un círculo de radio r es π r 2, y por lo tanto π es el área del circulo de radio 1 centrado en el cero. Supongamos elegir un punto de coordenadas (X, Y ) al azar en el cuadrado, la probabilidad de que dicho punto este dentro del circulo es P((X; Y )este en el circulo = P(X 2 + Y 2 < 1) = area del circulo areadelcuadrado = π 4

35 Cálculo aproximado el valor de π Por lo cual si simulamos puntos al azar en el cuadrado, podemos aproximar esta probabilidad por la fraccion de puntos simulados que caen dentro del circulo.

36 Cálculo aproximado el valor de π Si X e Y son v.a.i.i.d., uniformes en ( 1, 1), ambas con densidad f (x) = 1 en ( 1, 1), entonces su densidad conjunta será: 2 f (x, y) = f (x)f (y) = 1, en ( 1, 1) ( 1, 1). 4 Por lo tanto (X, Y ) es un vector con distribución uniforme en ( 1, 1) ( 1, 1).

37 Cálculo de π Si U 1, U 2 U(0, 1) independientes entonces X = 2U 1 1 Y = 2U 2 1 son independientes con distribucion X, Y U( 1, 1). La variable indicadora { 1 si X 2 + Y 2 1 I = 0 c.c. cumple E[I] = P(X 2 + Y 2 1) = π 4.

38 Algoritmo para el cálculo de π Algorithm 1: Generar π PI 0; for i = 0 to n do Generar U, V U(0, 1); X 2U 1; Y 2V 1; if X 2 + Y 2 1 then PI PI + 1 end end PI 4 PI/n

39 La aguja de Buffon Un problema planteado en el s. XVIII por Georges Louis Leclerc, conde de Buffon, fue la siguiente: Se tienen rectas paralelas equidistantes entre sí, y se arroja una aguja de longitud mayor o igual a la distancia entre dos rectas. Cuál es la probabilidad que una aguja corte a una de las rectas?

40 La aguja de Buffon

41 La aguja de Buffon θ l x l 2 sen(θ) t

42 La aguja de Buffon t la distancia entre las rectas. l la longitud de la aguja. θ la medida del ángulo agudo entre la aguja (o su prolongación) y una de las rectas. x la distancia entre el punto medio de la aguja y la recta más cercana x y θ son v.a. uniformes con distribución f (x) y g(θ): f (x) = 2 t, g(θ) = 2 π.

43 La aguja de Buffon Una aguja cortará la recta si y sólo si la distancia de su centro a una de las rectas es menor que l 2 sen(θ), es decir x < l 2 sen(θ). P(la aguja corte la recta) = π/2 0 l 2 sen(θ) P(la aguja corte la recta) = 2l π t. Tomando l = t, obtenemos aproximaciones a 2 π dx dθ t π

Integración por el método de Monte Carlo

Integración por el método de Monte Carlo Integración por el método de Monte Carlo Georgina Flesia FaMAF 29 de marzo, 2012 El método de Monte Carlo El método de Monte Carlo es un procedimiento general para seleccionar muestras aleatorias de una

Más detalles

Funciones de varias variables reales

Funciones de varias variables reales Capítulo 6 Funciones de varias variables reales 6.1. Introducción En muchas situaciones habituales aparecen funciones de dos o más variables, por ejemplo: w = F D (Trabajo realizado por una fuerza) V =

Más detalles

13. Técnicas de simulación mediante el método de Montecarlo

13. Técnicas de simulación mediante el método de Montecarlo 13. Técnicas de simulación mediante el método de Montecarlo Qué es la simulación? Proceso de simulación Simulación de eventos discretos Números aleatorios Qué es la simulación? Simulación = técnica que

Más detalles

1. Funciones de varias variables

1. Funciones de varias variables Análisis Matemático II. Curso 2008/2009. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 2: CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES 1. Funciones de varias variables

Más detalles

Ejercicios de Modelos de Probabilidad

Ejercicios de Modelos de Probabilidad Ejercicios de Modelos de Probabilidad Elisa M. Molanes-López, Depto. Estadística, UC3M Binomial, Poisson, Exponencial y Uniforme Ejercicio. Se dispone de un sistema formado por dos componentes similares

Más detalles

ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS

ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS ESTADÍSTICA 2OO7/2OO8 TEMA 10: SIMULACIÓN DE VARIABLES ALEATORIAS DESCRIPCIÓN DEL TEMA: 10.1. Introducción. 10.2. Método de las transformaciones. 10.3. Método de inversión. 10.4. Método de aceptación-rechazo.

Más detalles

Tarea 1 - Vectorial 201420

Tarea 1 - Vectorial 201420 Tarea - Vectorial 040. Part :. - 3... Hacer parametrización de la curva de intersección del cilindro x + y = 6 y el plano x + z = 5. Encontrar las coordenadas de los puntos de la curva donde la curvatura

Más detalles

UNIVERSIDAD AUTÓNOMA DE TAMAULIPAS UNIDAD ACADÉMICA MULTIDISCIPLINARIA REYNOSA-RODHE SIMULACIÓN DE SISTEMAS

UNIVERSIDAD AUTÓNOMA DE TAMAULIPAS UNIDAD ACADÉMICA MULTIDISCIPLINARIA REYNOSA-RODHE SIMULACIÓN DE SISTEMAS UNIDAD MÉTODOS DE MONTECARLO II 2.1 Definición Los métodos de Montecarlo abarcan una colección de técnicas que permiten obtener soluciones de problemas matemáticos o físicos por medio de pruebas aleatorias

Más detalles

Fundamentos Básicos de Monte Carlo N-Particle.

Fundamentos Básicos de Monte Carlo N-Particle. Capítulo. Fundamentos Básicos de Monte Carlo -Particle.. Historia. El método de Monte Carlo debe su nombre a la cuidad de Montecarlo en Mónaco donde se juega la ruleta, el juego de azar que genera números

Más detalles

CÁLCULO PARA LA INGENIERÍA 1

CÁLCULO PARA LA INGENIERÍA 1 CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!

Más detalles

ANALISIS MATEMATICO II Grupo Ciencias 2015

ANALISIS MATEMATICO II Grupo Ciencias 2015 ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno

Más detalles

1. Derivadas parciales

1. Derivadas parciales Análisis Matemático II. Curso 2009/2010. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 3. ABLES DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARI- 1. Derivadas parciales Para

Más detalles

Unidad 3 Generación de números aleatorios.

Unidad 3 Generación de números aleatorios. Unidad 3 Generación de números aleatorios. Ejercicio 1. Generadores de números aleatorios. La implementación de un buen generador de números aleatorios uniformemente distribuidos sobre el intervalo (0,

Más detalles

Alvaro J. Riascos Villegas Universidad de los Andes y Quantil. Marzo 14 de 2012

Alvaro J. Riascos Villegas Universidad de los Andes y Quantil. Marzo 14 de 2012 Contenido Motivación Métodos computacionales Integración de Montecarlo Muestreo de Gibbs Rejection Muestreo Importante Metropolis - Hasting Markov Chain Montecarlo Method Complemento ejemplos libro: Bayesian

Más detalles

Resumen TEMA 3: Cinemática del movimiento plano

Resumen TEMA 3: Cinemática del movimiento plano TEM 3: Cinemática del movimiento plano Resumen TEM 3: Cinemática del movimiento plano 1. Condiciones del movimiento plano Definición: un sólido rígido se mueve con un movimiento plano si todos sus puntos

Más detalles

Probabilidad y Simulación

Probabilidad y Simulación Probabilidad y Simulación Estímulo del Talento Matemático Real Academia de Ciencias 4 de febrero de 2006 Entendiendo el azar Queremos entender un fenómeno aleatorio (azar, incertidumbre). Entenderlo lo

Más detalles

2. Vector tangente y gráficas en coordenadas polares.

2. Vector tangente y gráficas en coordenadas polares. GRADO DE INGENIERÍA AEROESPACIAL CURSO 0 Vector tangente y gráficas en coordenadas polares De la misma forma que la ecuación cartesiana y = yx ( ) define una curva en el plano, aquella formada por los

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

SIMULACIÓN MCMC. Dr. Holger Capa Santos

SIMULACIÓN MCMC. Dr. Holger Capa Santos SIMULACIÓN MCMC Dr. Holger Capa Santos Septiembre, 2009 CONTENIDO Integración Montecarlo Problema con la Integración Montecarlo Muestreo de Importancia Algoritmos de Metropolis y Metropolis-Hastings Muestreador

Más detalles

Simulación, Método de Montecarlo

Simulación, Método de Montecarlo Simulación, Método de Montecarlo Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Marzo 2011 Introducción 2 Introducción............................................................

Más detalles

CAPITULO 8. INTRODUCCION AL MÉTODO DE SIMULACIÓN MONTE CARLO

CAPITULO 8. INTRODUCCION AL MÉTODO DE SIMULACIÓN MONTE CARLO CAPITULO 8. INTRODUCCION AL MÉTODO DE SIMULACIÓN MONTE CARLO Objetivos del Capítulo Introducir los conceptos e ideas clave de la simulación Monte Carlo. Introducirse en las capacidades que ofrece Excel

Más detalles

Problemas resueltos. La integral de línea. 1. Halle la longitud de la curva dada por la parametrización. Solución:

Problemas resueltos. La integral de línea. 1. Halle la longitud de la curva dada por la parametrización. Solución: Problemas resueltos 1. Halle la longitud de la curva dada por la parametrización α(t) t ı + 4 3 t3/ j + 1 t k, t [, ]. α (t) (1, t 1/, 1 ), t [, ]. La curva α es de clase C 1 y, por tanto, es rectificable.

Más detalles

Departamento de Matematicas UNIVERSIDAD DE LOS ANDES. Precálculo. (2Cos(2w) 1)(2Sen(3w) 2) = 0. hallar β en el intervalo [0, 2π]

Departamento de Matematicas UNIVERSIDAD DE LOS ANDES. Precálculo. (2Cos(2w) 1)(2Sen(3w) 2) = 0. hallar β en el intervalo [0, 2π] Departamento de Matematicas UNIVERSIDAD DE LOS ANDES. Precálculo Parcial III 15 % Estudiante: Tiempo: 1 h. Fecha: 1 Resolver la ecuación para w en 0 w 2π. (2Cos(2w) 1)(2Sen(3w) 2) = 0 2 Hallar los ceros

Más detalles

Unidad I Funciones Expresar una función. Dominios

Unidad I Funciones Expresar una función. Dominios Unidad I Funciones Epresar una función 1. Un rectángulo tiene un perímetro de 0m. Eprese el área del rectángulo como función de la longitud de uno de sus lados.. Un rectángulo tiene un área de 16 m. Eprese

Más detalles

Probabilidades y Estadística (Computación) Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ana M. Bianco y Elena J.

Probabilidades y Estadística (Computación) Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Ana M. Bianco y Elena J. Generación de Números Aleatorios Números elegidos al azar son útiles en diversas aplicaciones, entre las cuáles podemos mencionar: Simulación o métodos de Monte Carlo: se simula un proceso natural en forma

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN Después

Más detalles

FUNCIONES 1. DEFINICION DOMINIO Y RANGO

FUNCIONES 1. DEFINICION DOMINIO Y RANGO 1. DEFINICION DOMINIO Y RANGO FUNCIONES Antes de definir función, uno de los conceptos fundamentales y de mayor importancia de todas las matemáticas, plantearemos algunos ejercicios que nos eran de utilidad

Más detalles

1.1Razones trigonométricas -Son las distintas proporciones que se establecen entre los lados de un triángulo rectángulo:

1.1Razones trigonométricas -Son las distintas proporciones que se establecen entre los lados de un triángulo rectángulo: --ÍNDICE-- Trigonometría 5 Razones trigonométricas 5 Coordenadas trigonométricas de un punto del plano 5 Consecuencias de esta fórmula 5 Razones exactas de ángulos 6 Otras fórmulas 6 Aplicaciones de la

Más detalles

1. Empleando sustitución universal, calcular: dx.

1. Empleando sustitución universal, calcular: dx. Escuela Superior Politécnica del Litoral Práctica 1.4 de Cálculo Integral 1. Empleando sustitución universal, calcular: a) b) 1 sen(x) + cos(x) dx. 1 3 + 5cos(x) dx. c) d) sen(x) 1 sen(x) dx. dx 8 4sen(x)

Más detalles

5 Demostrar cada una de las siguientes afirmaciones empleando la definición de

5 Demostrar cada una de las siguientes afirmaciones empleando la definición de Hallar el dominio de las siguientes funciones: x 3 a) x +ln(x ) b) ln x + 6 x + c) x x d) ln x x + e) cos x + ln(x 5π) + 8π x Graficar la función sen(x π ). Hallar para que valores de x es 3 Hallar las

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

Integración de Monte Carlo Técnicas Avanzadas de Gráficos en 3D

Integración de Monte Carlo Técnicas Avanzadas de Gráficos en 3D Integración de Monte Carlo Técnicas Avanzadas de Gráficos en 3D Miguel Ángel Otaduy 26 Abril 2010 Contexto Cálculo de la integral de radiancia reflejada en la ecuación de rendering Cálculo de la integral

Más detalles

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL SISTEMAS DE COORDENADAS En la vida diaria, nos encontramos con el problema de ordenar algunos objetos; de tal manera que es necesario agruparlos, identificarlos, seleccionarlos, estereotiparlos, etc.,

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

COORDENADAS CURVILINEAS

COORDENADAS CURVILINEAS CAPITULO V CALCULO II COORDENADAS CURVILINEAS Un sistema de coordenadas es un conjunto de valores que permiten definir unívocamente la posición de cualquier punto de un espacio geométrico respecto de un

Más detalles

EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES

EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES Ramón Bruzual Marisela Domínguez Caracas,

Más detalles

INSTITUTO TECNOLÓGICO DE APIZACO DEPARTAMENTO DE CIENCIAS BÁSICAS PRIMER CONGRESO DE CIENCIAS BÁSICAS

INSTITUTO TECNOLÓGICO DE APIZACO DEPARTAMENTO DE CIENCIAS BÁSICAS PRIMER CONGRESO DE CIENCIAS BÁSICAS INSTITUTO TECNOLÓGICO DE APIZACO DEPARTAMENTO DE CIENCIAS BÁSICAS PRIMER CONGRESO DE CIENCIAS BÁSICAS LA ENSEÑANZA Y APLICACIÓN DE LAS CIENCIAS BÁSICAS Bosquejo de funciones con apoyo de calculadoras graficadoras

Más detalles

3º Tema.- Síntesis de mecanismos.

3º Tema.- Síntesis de mecanismos. Universidad de Huelva ESCUELA POLITECNICA SUPERIOR Departamento de Ingeniería Minera, Mecánica y Energética Asignatura: Ingeniería de Máquinas [570004027] 5º curso de Ingenieros Industriales 3º Tema.-

Más detalles

b1ct Propuesta Actividades Recuperación Matemáticas

b1ct Propuesta Actividades Recuperación Matemáticas b1ct Propuesta Actividades Recuperación Matemáticas Bloque Números 1 Resuelve: a. Si tomas como valor de 11. 1 la aproximación. 1, qué errores absoluto y relativo has cometido?. Solución: 0. 000; 0. 0%

Más detalles

La derivada. 5.2 La derivada de una función

La derivada. 5.2 La derivada de una función Capítulo 5 La derivada 5. La derivada de una función A continuación trataremos uno de los conceptos fundamentales del Cálculo, que es el de la derivada. Este concepto es un ite que está estrecamente ligado

Más detalles

PROGRAMAS DE ESTUDIO EN MATEMÁTICAS TRANSICIÓN 2014

PROGRAMAS DE ESTUDIO EN MATEMÁTICAS TRANSICIÓN 2014 República de Costa Rica Ministerio de Educación Pública PROGRAMAS DE ESTUDIO EN MATEMÁTICAS TRANSICIÓN 2014 Basado en los programas de estudio en Matemáticas aprobados por el Consejo Superior de Educación

Más detalles

Cap. 24 La Ley de Gauss

Cap. 24 La Ley de Gauss Cap. 24 La Ley de Gauss Una misma ley física enunciada desde diferentes puntos de vista Coulomb Gauss Son equivalentes Pero ambas tienen situaciones para las cuales son superiores que la otra Aquí hay

Más detalles

2.1.5 Teoremas sobre derivadas

2.1.5 Teoremas sobre derivadas si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la

Más detalles

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11 1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el

Más detalles

Matemáticas. Segundo de Bachillerato. I.E.S. Los Boliches. Departamento de Matemáticas

Matemáticas. Segundo de Bachillerato. I.E.S. Los Boliches. Departamento de Matemáticas Matemáticas. Segundo de Bachillerato. I.E.S. Los Boliches. Departamento de Matemáticas Relación. Geometría en el espacio (II) 1. Estudiar la posición relativa de los siguientes conjuntos de planos: (a)

Más detalles

CONVERGENCIA DE LAS SERIES DE FOURIER

CONVERGENCIA DE LAS SERIES DE FOURIER CONVERGENCIA DE LAS SERIES DE FOURIER Sea f(x) una función definida para todo x, con periodo. Entonces, bajo condiciones muy generales, la serie de Fourier de f converge a f(x) para todo x. Describiremos

Más detalles

Unidad II: Números pseudoalealeatorios

Unidad II: Números pseudoalealeatorios 1 Unidad II: Números pseudoalealeatorios Generación de números aleatorios Un Número Aleatorio se define como un número al azar comprendido entre cero y uno. Su característica principal es que puede suceder

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 ( Modelo 3) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 ( Modelo 3) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Granada Sobrantes de 11 ( Modelo 3) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 del 11 [ 5 puntos] Dada la función f : R R definida por f(x) ax 3 + bx +cx, determina

Más detalles

Apuntes sobre algunos teoremas fundamentales de análisis complejo, con 20 ejemplos resueltos (2007-08)

Apuntes sobre algunos teoremas fundamentales de análisis complejo, con 20 ejemplos resueltos (2007-08) Variable Compleja I (3 o de Matemáticas) Apuntes sobre algunos teoremas fundamentales de análisis complejo, con ejemplos resueltos (7-8) En estos apuntes, consideraremos las funciones anaĺıticas (holomorfas)

Más detalles

JAVIER ORDUÑA FLORES Red Tercer Milenio

JAVIER ORDUÑA FLORES Red Tercer Milenio 1 Geometría analítica JAVIER ORDUÑA FLORES Red Tercer Milenio GEOMETRÍA ANALÍTICA GEOMETRÍA ANALÍTICA JAVIER ORDUÑA FLORES RED TERCER MILENIO AVISO LEGAL Derechos Reservados 2012, por RED TERCER MILENIO

Más detalles

ELIJA CUATRO DE LOS SEIS BLOQUES PROPUESTOS.

ELIJA CUATRO DE LOS SEIS BLOQUES PROPUESTOS. PRUEBAS DE ACCESO A LA UNIVERSIDAD Curso 008-009 MATEMÁTICAS II ELIJA CUATRO DE LOS SEIS BLOQUES PROPUESTOS. Bloque 1. Dado el número real a, se considera el sistema a) Discuta el sistema según los valores

Más detalles

Modelización de Sistemas Biológicos

Modelización de Sistemas Biológicos Modelización de Sistemas Biológicos Simulación de Monte Carlo 1 Simulación de Monte Carlo 2 Contenidos 1. Introducción. 2. Aplicaciones: Integración de Monte Carlo Análisis de escenarios. 3. Metodología

Más detalles

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS.

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN. Es toda aplicación entre dos conjuntos A y B formados ambos por números. f A --------> B Al conjunto A se le llama campo de existencia de la función

Más detalles

4.1 EL SISTEMA POLAR 4.2 ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS

4.1 EL SISTEMA POLAR 4.2 ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS 4 4.1 EL SISTEMA POLAR 4. ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS POLARES: RECTAS, CIRCUNFERENCIAS, PARÁBOLAS, ELIPSES, HIPÉRBOLAS, LIMACONS, ROSAS, LEMNISCATAS, ESPIRALES.

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

DOCUMENTO DE APOYO AL PLAN DE TRANSICIÓN 2014 MATEMÁTICAS

DOCUMENTO DE APOYO AL PLAN DE TRANSICIÓN 2014 MATEMÁTICAS DOCUMENTO DE APOYO AL PLAN DE TRANSICIÓN 2014 MATEMÁTICAS Basado en los Programas de Estudio en Matemáticas aprobados por el Consejo Superior de Educación el 21 de mayo del 2012 y en el Plan de Transición

Más detalles

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17

http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 http://www.cepamarm.es ACFGS - Matemáticas ESG - 05/2013 Pág. 1 de 17 1 CONCEPTOS BÁSICOS 1.1 DEFINICIONES Una función liga dos variables numéricas a las que, habitualmente, se les llama x e y. x es la

Más detalles

Las funciones trigonométricas

Las funciones trigonométricas Las funciones trigonométricas Las funciones trigonométricas Las funciones trigonométricas son las funciones derivadas de las razones trigonométricas de un ángulo. En general, el ángulo sobre el cual se

Más detalles

Ejercicios 2.2 Usando aritmética de cuatro dígitos de precisión, sume la siguiente expresión

Ejercicios 2.2 Usando aritmética de cuatro dígitos de precisión, sume la siguiente expresión CAPÍTULO EJERCICIOS RESUELTOS: ARITMÉTICA DE ORDENADORES Y ANÁLISIS DE ERRORES Ejercicios resueltos Ejercicios.1 Calcula la suma y la resta de los números a = 0.453 10 4, y b = 0.115 10 3, con una aritmética

Más detalles

Índice de contenidos

Índice de contenidos Índice de contenidos Portada. 0 Índice. I Plan de Trabajo.... II Introducción 1 Capítulo I: Isoclinas y Campos de Direcciones... 2 Isoclinas... 2 Representación gráfica de campo de direcciones. 4 Aplicación

Más detalles

Modelos matemáticos de simulación

Modelos matemáticos de simulación Modelos matemáticos de simulación Andrés Ramos Andres.Ramos@iit.icai.upcomillas.es Universidad Pontificia Comillas Begoña Vitoriano bvitoriano@mat.ucm.es Universidad Complutense de Madrid Índice Sistemas,

Más detalles

Polinomios de Taylor.

Polinomios de Taylor. Tema 7 Polinomios de Taylor. 7.1 Polinomios de Taylor. Definición 7.1 Recibe el nombre de polinomio de Taylor de grado n para la función f en el punto a, denotado por P n,a, el polinomio: P n,a (x) = f(a)

Más detalles

Opción A Ejercicio 1 opción A, modelo Junio 2013 x cos(x) + b sen(x) [2 5 puntos] Sabiendo que lim

Opción A Ejercicio 1 opción A, modelo Junio 2013 x cos(x) + b sen(x) [2 5 puntos] Sabiendo que lim IES Fco Ayala de Granada Junio de 013 (Modelo ) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 013 x cos(x) + b sen(x) [ 5 puntos] Sabiendo que lim es finito, calcula b

Más detalles

Variables aleatorias. Función de distribución y características asociadas

Variables aleatorias. Función de distribución y características asociadas Índice 3 Variables aleatorias. Función de distribución y características asociadas 3.1 3.1 Introducción.......................................... 3.1 3.2 Concepto de variable aleatoria................................

Más detalles

Bachillerato Internacional Matemáticas II. Curso 2014-2015 Problemas

Bachillerato Internacional Matemáticas II. Curso 2014-2015 Problemas Bachillerato Internacional Matemáticas II. Curso 04-05 Problemas REGLAS DE DERIVACIÓN. Reglas de derivación Obtener la derivada de las siguientes funciones:. y = (x 7x + ). y = (4x + 5). y = (x 4x 5x

Más detalles

VECTORES COORDENADOS (R n )

VECTORES COORDENADOS (R n ) VECTORES COORDENADOS (R n ) Cómo puede ser representado un número Real? Un número real puede ser representado como: Un punto de una línea recta. Una pareja de números reales puede ser representado por

Más detalles

DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA

DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA (Apuntes en revisión para orientar el aprendizaje) DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA f( t) f: ; t a, b y g() t De la regla de la cadena dy dy dt d dt d En donde dt se puede calcular

Más detalles

2º Tema.- Ampliación de análisis cinemático de mecanismos planos mediante métodos analíticos.

2º Tema.- Ampliación de análisis cinemático de mecanismos planos mediante métodos analíticos. Universidad de Huelva ESCUELA POLITECNICA SUPERIOR Departamento de Ingeniería Minera, Mecánica y Energética Asignatura: Ingeniería de Máquinas [570004027] 5º curso de Ingenieros Industriales 2º Tema.-

Más detalles

LA PARABOLA. R(-a, y) P (x, y) con el origen del sistema de coordenadas cartesianas y el eje de la parábola con el

LA PARABOLA. R(-a, y) P (x, y) con el origen del sistema de coordenadas cartesianas y el eje de la parábola con el LA PARABOLA Señor... cuando nos equivoquemos, concédenos la voluntad de rectificar; y cuando tengamos razón... no permitas que nos hagamos insufribles para el prójimo. Marshall En la presente entrega,

Más detalles

El Método de Monte Carlo. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas

El Método de Monte Carlo. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas El Método de Monte Carlo Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas El método de Monte Carlo es una técnica numérica para calcular probabilidades y otras cantidades relacionadas, utilizando secuencias

Más detalles

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 UNIDAD 1: LOS NÚMEROS NATURALES. OPERACIONES Y RELACIONES El sistema de numeración decimal Estimación y redondeo de un número natural Las operaciones con números

Más detalles

March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO

March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO March 25, 2010 CAPÍTULO 2: LÍMITE Y CONTINUIDAD DE FUNCIONE EN EL EPACIO EUCLÍDEO 1. Producto Escalar en R n Definición 1.1. Dado x = (x 1,..., x n ), y = (y 1,..., y n ) R n, su producto escalar está

Más detalles

Hallar gráfica y analíticamente la resultante de los siguientes desplazamientos: hacia el Noroeste), B. (35 m Sur)

Hallar gráfica y analíticamente la resultante de los siguientes desplazamientos: hacia el Noroeste), B. (35 m Sur) VECTORES: OPERACIONES BÁSICAS Hallar gráfica y analíticamente la resultante de los siguientes desplazamientos: hacia el Noroeste), B (0 m Este 30º Norte) y C (35 m Sur) Solución: I.T.I. 94, I.T.T. 05 A

Más detalles

Tema 10: Límites y continuidad de funciones de varias variables

Tema 10: Límites y continuidad de funciones de varias variables Tema 10: Límites y continuidad de funciones de varias variables 1 Funciones de varias variables Definición 1.1 Llamaremos función real de varias variables atodafunciónf : R n R. Y llamaremos función vectorial

Más detalles

Integrales y ejemplos de aplicación

Integrales y ejemplos de aplicación Integrales y ejemplos de aplicación I. PROPÓSITO DE ESTOS APUNTES Estas notas tienen como finalidad darle al lector una breve introducción a la noción de integral. De ninguna manera se pretende seguir

Más detalles

Generación de números aleatorios

Generación de números aleatorios Generación de números aleatorios Marcos García González (h[e]rtz) Verano 2004 Documento facilitado por la realización de la asignatura Métodos informáticos de la física de segundo curso en la universidad

Más detalles

PROBLEMAS DE CINEMÁTICA DE MECANISMOS

PROBLEMAS DE CINEMÁTICA DE MECANISMOS TEORÍA DE MÁQUINAS PROBLEMAS DE CINEMÁTICA DE MECANISMOS Antonio Javier Nieto Quijorna Área de Ingeniería Mecánica E.T.S. Ingenieros Industriales Capítulo 1 GRADOS DE LIBERTAD. 1.1. PROBLEMA. En la figura

Más detalles

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.)

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) 1.1 Definiciones Se llama ecuación diferencial a toda ecuación que contiene las derivadas de una o más variables dependientes respecto

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial

Más detalles

ETS Caminos Santander. Curso 2012. Ejercicios de introducción a la programación.

ETS Caminos Santander. Curso 2012. Ejercicios de introducción a la programación. Ejercicio 1. Saludo. El programa preguntará el nombre al usuario y a continuación le saludará de la siguiente forma "Hola, NOMBRE" donde NOMBRE es el nombre del usuario. Ejercicio 2. Suma. El programa

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 7 Inducción electromagnética Ejercicio 1 Una varilla conductora, de 20 cm de longitud y 10 Ω de resistencia eléctrica, se desplaza paralelamente a sí misma y sin rozamiento,

Más detalles

MODELADO CON VARIABLES ALEATORIAS EN SIMULINK UTILIZANDO SIMULACION MONTECARLO MODELING WITH RANDOM VARIABLES IN SIMULINK USING MONTECARLO SIMULATIONS

MODELADO CON VARIABLES ALEATORIAS EN SIMULINK UTILIZANDO SIMULACION MONTECARLO MODELING WITH RANDOM VARIABLES IN SIMULINK USING MONTECARLO SIMULATIONS MODELADO CON VARIABLES ALEATORIAS EN SIMULINK UTILIZANDO SIMULACION MONTECARLO Velásquez, Sergio 1 Velásquez, Ronny 1 (Recibido enero 2012, Aceptado junio 2012) 1 Dpto. de Ingeniería Electrónica, UNEXPO

Más detalles

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1).

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1). INTEGRALES DE LÍNEA. 15. alcular las siguientes integrales: (a) (x + y) ds donde es el borde del triángulo con vértices (, ), (1, ), (, 1). (b) x + y ds donde es la circunferencia x + y ax (a > ). (a)

Más detalles

Unidad II: Números pseudoaleatorios

Unidad II: Números pseudoaleatorios Unidad II: Números pseudoaleatorios 2.1 Métodos de generación de números Pseudoaleatorio Métodos mecánicos La generación de números aleatorios de forma totalmente aleatoria, es muy sencilla con alguno

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 21

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 21 SIGNTU: MTEMTI EN IOLOGI DOENTE: LI.GUSTO DOLFO JUEZ GUI DE TJO PTIO Nº ES: POFESODO Y LIENITU EN IOLOGI _PGIN Nº 4_ GUIS DE TIIDDES Y TJO PTIO Nº OJETIOS: Lograr que el lumno: Interprete la información

Más detalles

Estadística aplicada y modelización. 10 de septiembre de 2005

Estadística aplicada y modelización. 10 de septiembre de 2005 Estadística aplicada y modelización. 10 de septiembre de 005 SOLUCIÓN MODELO A 1. Una persona se está preparando para obtener el carnet de conducir, repitiendo un test de 0 preguntas. En la siguiente tabla

Más detalles

LA CIRCUNFERENCIA EN EL PLANO CARTESIANO

LA CIRCUNFERENCIA EN EL PLANO CARTESIANO LA CIRCUNFERENCIA EN EL PLANO CARTESIANO Si un hombre es perseverante, aunque sea duro de entendimiento se hará inteligente; y aunque sea débil se transformará en fuerte Leonardo Da Vinci TRASLACION DE

Más detalles

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Workshop de Investigadores en Ciencias de la Computación WICC 2002 Aplicación del Método de Montecarlo para el cálculo de integrales definidas López, María Victoria y Mariño, Sonia Itatí Departamento de Informática Facultad de Ciencias Exactas y Naturales y Agrimensura

Más detalles

5. PLANTEAMIENTO DEL MODELO ANÁLISIS-PLAZO

5. PLANTEAMIENTO DEL MODELO ANÁLISIS-PLAZO 5. PLATEAMIETO DEL MODELO AÁLISIS-PLAZO 5.1. COCEPTOS PREVIOS Previamente a cualquier descripción se presentan aquí una serie de definiciones aclaratorias: Simulación: Es el proceso de diseñar y desarrollar

Más detalles

SUPERFICIES. También construiremos el plano tangente, usando una parametrización o una

SUPERFICIES. También construiremos el plano tangente, usando una parametrización o una SUPERFICIES El objetivo de este tema es el estudio de superficies regulares en el espacio. Definiremos de forma rigurosa lo que es una superficie, veremos formas de expresar una superficie, esencialmente

Más detalles

(x + y) + z = x + (y + z), x, y, z R N.

(x + y) + z = x + (y + z), x, y, z R N. TEMA 1: EL ESPACIO R N ÍNDICE 1. El espacio vectorial R N 1 2. El producto escalar euclídeo 2 3. Norma y distancia en R N 4 4. Ángulo y ortogonalidad en R N 6 5. Topología en R N 7 6. Nociones topológicas

Más detalles

Cálculo elemental de límites...

Cálculo elemental de límites... Capítulo 5 Cálculo elemental de ites... Vamos a dedicar este capítulo a tratar de mejorar nuestra relación con los ites, desarrollando el método que ya hemos anunciado, que nos permitirá calcular el ite

Más detalles

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx. Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque

Más detalles

Métodos Numéricos: Resumen y ejemplos Tema 4: Resolución aproximada de EDO s

Métodos Numéricos: Resumen y ejemplos Tema 4: Resolución aproximada de EDO s Métodos Numéricos: Resumen y ejemplos Tema 4: Resolución aproximada de EDO s Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Marzo 2008, versión

Más detalles

Máster Universitario en Ingeniería de Caminos, Canales y Puertos Introducción al Análisis Numérico

Máster Universitario en Ingeniería de Caminos, Canales y Puertos Introducción al Análisis Numérico Máster Universitario en Ingeniería de Caminos, Canales y Puertos Introducción al Análisis Numérico Departamento de Matemática Aplicada Universidad Granada Introducción El Cálculo o Análisis Numérico es

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

PROBLEMAS DE EQUILIBRIO

PROBLEMAS DE EQUILIBRIO PROBLEMAS DE EQUILIBRIO NIVEL BACHILLERATO Con una honda Curva con peralte Tomar una curva sin volcar Patinador en curva Equilibrio de una puerta Equilibrio de una escalera Columpio Cuerda sobre cilindro

Más detalles

Aplicaciones de la Integral Definida

Aplicaciones de la Integral Definida CAPITULO 7 Aplicaciones de la Integral Definida 1 Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)

Más detalles

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES CAPÍTULO II. CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES SECCIONES 1. Dominios y curvas de nivel. 2. Cálculo de ites. 3. Continuidad. 55 1. DOMINIOS Y CURVAS DE NIVEL. Muchos problemas geométricos y físicos

Más detalles