NORMA DE CARACTER GENERAL N

Tamaño: px
Comenzar la demostración a partir de la página:

Download "NORMA DE CARACTER GENERAL N"

Transcripción

1 NORMA DE CARACTER GENERAL N REF.: MODIFICA EL TÍTULO III DEL LIBRO IV, SOBRE VALORIZACIÓN DE LAS INVERSIONES DEL FONDO DE PENSIONES Y DEL ENCAJE, DEL COMPENDIO DE NORMAS DEL SISTEMA DE PENSIONES. Saiago, E uso de las faculades legales que cofiere la Ley a esa Superiedecia e paricular lo dispueso e el úmero 3 del arículo 94 del D.L. Nº 3.500, de 1980; e el arículo 47 úmero 6 de la Ley Nº , se iroduce las modificacioes coeidas e la presee Norma de Carácer Geeral e el Tíulo III del Libro IV del Compedio de Normas del Sisema de Pesioes. I. Modifícase el umeral II.3.1. Valoració de opcioes, del Capíulo II. VALORACIÓN DE INSTRUMENTOS, OPERACIONES Y CONTRATOS NACIONALES Y EXTRANJEROS DE LOS FONDOS DE PENSIONES, de acuerdo a lo siguiee: 1. Iercálase e la lera b), deomiada Valoració de opcioes sobre divisas si rasacció e los mercados secudarios formales, a coiuació de la variable : Volailidad del acivo objeo, cosigada e la euciació de las fórmulas para deermiar el precio de ua opció call (de compra) y ua opció pu (de vea), la siguiee defiició y fórmula: Se calculará mediae la volailidad hisórica del precio diario de los úlimos 12 meses, del acivo objeo, de acuerdo co la siguiee fórmula: :

2 / S 1). Para esos efecos la variable S debe eederse como el precio de mercado exisee e el día del acivo objeo a ser eregada e T. : Número de días de los úlimos 12 meses (cosiderado odos los días caledario). 2. Iercálase e la lera c), deomiada Valoració de opcioes sobre accioes si rasacció e los mercados secudarios formales, a coiuació de la variable : Volailidad de la acció, cosigada e la euciació de las fórmulas para deermiar el precio de ua opció call (de compra) y ua opció pu (de vea), la siguiee defiició y fórmula: Se calculará mediae la volailidad hisórica del precio diario de la acció de los úlimos 12 meses, uilizado la siguiee fórmula: : / S 1). Para esos efecos la variable S debe eederse como el precio de mercado exisee e el día de la acció a ser eregada e T. : Número de días de los úlimos 12 meses (cosiderado odos los días caledario). 3. Iercálase e la lera d), deomiada Valoració de opcioes sobre ídices si rasacció e los mercados secudarios formales, a coiuació de la variable : Volailidad del acivo objeo, cosigada e la euciació de las fórmulas para deermiar el precio de ua opció call (de compra) y ua opció pu (de vea), la siguiee defiició y fórmula: Se calculará mediae la volailidad hisórica del precio diario de los úlimos 12 meses, del acivo objeo, de acuerdo co la siguiee fórmula: 2

3 : / S 1). Para esos efecos la variable S debe eederse como el precio de mercado exisee e el día del acivo objeo a ser eregada e T. : Número de días de los úlimos 12 meses (cosiderado odos los días caledario). 4. Iercálase e la lera e), deomiada Valoració de opcioes sobre asas de ierés si rasacció e los mercados secudarios formales, a coiuació de la variable : Volailidad del acivo objeo, cosigada e la euciació de las fórmulas para deermiar el precio de ua opció call (de compra) y ua opció pu (de vea), la siguiee defiició y fórmula: Se calculará mediae la volailidad hisórica del precio diario de los úlimos 12 meses, del acivo objeo, de acuerdo co la siguiee fórmula: : / S 1). Para esos efecos la variable S debe eederse como el precio de mercado exisee e el día del acivo objeo a ser eregada e T. : Número de días de los úlimos 12 meses (cosiderado odos los días caledario). II. Agrégase e el úmero 3., del umeral II.3.3. Valoració de Forward, a coiuació de la lera b), deomiada Deermiació del precio forward de mercado para forwards de asa de ierés, las siguiees uevas leras c) y d): 3

4 c) Deermiació del precio forward de mercado para forwards sobre accioes El precio forward de mercado de u corao forward sobre accioes, se calculará uilizado la siguiee fórmula geeral: S : Precio de mercado exisee e el día de la acció a ser eregada e T. : Fecha de valoració del corao forward. T : Correspode a la fecha e que vece el corao forward. : Número de días ere la fecha de valoració () y la fecha de vecimieo del corao (T). m : Número de días e la cual esá expresada la asa de ierés. q : Tasa de reabilidad por dividedos de la acció. r,t : Tasa de ierés relevae de la moeda e la cual esa expresado el acivo objeo para el período ere y T de composició coiua (expoecial) expresada e base m. Dicha asa se obedrá ierpolado las asas deermiadas por esa Superiedecia, de plazos relevaes uilizado la siguiee fórmula geeral: r,t : r1 ( r2 r1 )* i r,t : Tasa ajusada al plazo (T-), que correspode al plazo de la opció que se esá valorado. r 1 : Tasa de ierés promedio de mercado deermiada por esa Superiedecia, para el plazo meor o igual a (T-) más cercao. r 2 : Tasa de ierés promedio de mercado deermiada por esa Superiedecia, para el plazo mayor a (T-) más cercao. 4

5 i : Plazo exisee ere la fecha de valoració y la fecha de vecimieo T. 1 : Plazo relevae asociado a la asa r 1. 2 : Plazo relevae asociado a la asa r 2. Cuado o exisa dos asas para realizar la ierpolació, se aplicará la asa más cercaa exisee. d) Deermiació del precio forward de mercado para forwards sobre ídices accioarios El precio forward de mercado de u corao forward sobre ídices de accioes, se calculará uilizado la siguiee fórmula geeral: Idice -1 : Precio de mercado exisee e el día (-1) del ídice accioario. : Fecha de valoració del corao forward. T : Correspode a la fecha e que vece el corao forward. : Número de días ere la fecha de valoració () y la fecha de vecimieo del corao (T). m : Número de días e la cual esá expresada la asa de ierés. q : Tasa de reabilidad por dividedos del ídice accioario. r,t : Tasa de ierés relevae de la moeda e la cual esa expresado el acivo objeo para el período ere y T de composició coiua (expoecial) expresada e base m. Dicha asa se obedrá ierpolado las asas deermiadas por esa Superiedecia, de plazos relevaes uilizado la siguiee fórmula geeral: r,t : r1 ( r2 r1 )* i

6 r,t : Tasa ajusada al plazo (T-), que correspode al plazo del forward que se esá valorado. r 1 : Tasa de ierés promedio de mercado deermiada por esa Superiedecia, para el plazo meor o igual a (T-) más cercao. r 2 : Tasa de ierés promedio de mercado deermiada por esa Superiedecia, para el plazo mayor a (T- )más cercao. i : Plazo exisee ere la fecha de valoració y la fecha de vecimieo T. 1 : Plazo relevae asociado a la asa r 1. 2 : Plazo relevae asociado a la asa r 2. Cuado o exisa dos asas para realizar la ierpolació, se aplicará la asa más cercaa exisee.. III. Agrégase e el Capíulo II.5 INFORMACION SOBRE EL PRECIO DE LOS INSTRUMENTOS FINANCIEROS, a coiuació del párrafo primero, el párrafo segudo uevo: Co relació a lo aerior, cuado el precio de u isrumeo fiaciero o de ua operació co isrumeos derivados, deermiado segú las meodologías de valoració descrias e los umerales aeriores, o fuere represeaivo del valor ecoómico o de mercado del ciado íulo u operació, esa Superiedecia podrá cosiderar iformació adicioal dispoible e el mercado para su reesimació. IV. VIGENCIA Las modificacioes iroducidas por la presee Norma de Carácer Geeral erará e vigecia a coar de esa fecha. SOLANGE M. BERSTEIN JÁUREGUI Superiedea de Pesioes 6

Tema 8B El análisis fundamental y la valoración de títulos

Tema 8B El análisis fundamental y la valoración de títulos PARTE III: Decisioes fiacieras y mercado de capiales Tema 8B El aálisis fudameal y la valoració de íulos 8B.1 Iroducció. 8B.2 El aálisis fudameal y la valoració de íulos. 8B.3 Modelos para la valoració

Más detalles

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y Capíulo 3 Marco eórico CAPÍTULO 3 MARCO TEÓRICO A lo largo de ese capíulo se explica los cocepos básicos que se debiero eer y cosiderar para la elaboració de la clasificació de maerias primas, los modelos

Más detalles

FUNCIONES EXPONENCIALES

FUNCIONES EXPONENCIALES 1 FUNCIONES EXPONENCIALES Las fucioes epoeciales iee muchas aplicacioes, e especial ellas describe el crecimieo de muchas caidades de la vida real. Defiició.-La fució co domiio odos los reales y defiida

Más detalles

ANÁLISIS DE LA RENTABILIDAD

ANÁLISIS DE LA RENTABILIDAD ANÁLISIS DE LA RENTABILIDAD DE LOS FONDOS DE PENSIÓN COMISIÓN TÉCNICA DE INVERSIONES DE LA AIOS. INTRODUCCION El documeo cosa del aálisis de cico aspecos écicos referidos al ema de reabilidad: El cálculo

Más detalles

TEMA 10. La autofinanciación o financiación interna de la empresa

TEMA 10. La autofinanciación o financiación interna de la empresa Iroducció a las Fiazas TEM La auofiaciació o fiaciació iera de la empresa La fiaciació iera y sus compoees La auofiaciació esá formada por los recursos fiacieros que afluye a la empresa desde ella misma

Más detalles

Mercado de Capitales. Tema 6. Valoración n de bonos. Gestión n de carteras de renta fija

Mercado de Capitales. Tema 6. Valoración n de bonos. Gestión n de carteras de renta fija Mercado de Capiales Tema 6. Valoració de boos. Gesió de careras de rea fija Liceciaura e Admiisració y Direcció de Empresas Cuaro Curso Liceciaura e Derecho y Admiisració y Direcció de Empresas Sexo Curso

Más detalles

FUNCIONES ACTUARIALES COMO VARIABLES ALEATORIAS SOBRE UNA SOLA VIDA Por Oscar Aranda Martínez Nadia Araceli Castillo García Abril 2010

FUNCIONES ACTUARIALES COMO VARIABLES ALEATORIAS SOBRE UNA SOLA VIDA Por Oscar Aranda Martínez Nadia Araceli Castillo García Abril 2010 FUNCIONES ACUARIALES COMO VARIABLES ALEAORIAS SOBRE UNA SOLA VIDA Por Oscar Arada Maríez Nadia Araceli Casillo García Abril E ese primer documeo se presea el ueo efoque del cálculo acuarial, e dode las

Más detalles

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN TEMA 5: CAPITALIZACIÓN COMPUESTA 1- INTRODUCCIÓN Llamamos capializació compuesa a la ley fiaciera segú la cual los iereses producidos por u capial e cada periodo se agrega al capial para calcular los iereses

Más detalles

Un modelo para el cálculo de la pérdida esperada en una cartera de préstamos hipotecarios

Un modelo para el cálculo de la pérdida esperada en una cartera de préstamos hipotecarios U modelo para el cálculo de la pérdida esperada e ua carera de présamos hipoecarios Jua Bazerque a Jorge ader b BCU F Depo. Esudios BCU F Depo. Esudios Resume E ese rabao se aaliza u aspeco deado de lado

Más detalles

PERÍODO INFORMADO: Enero a Junio 2009 $ 395.182.780 $ 200.000.000

PERÍODO INFORMADO: Enero a Junio 2009 $ 395.182.780 $ 200.000.000 FORMATO No 4 PLANES DE ACCIÓN U OPERATIVOS Promover el uso de la Irae Guberameal. PERÍODO INFORMADO: Eero a Juio 009 NUMERO ÁREAS INVOLUCRADAS ACTIVIDADES RECURSOS RESPONSABLES TIEMPO PROGRAMADO INDICADORES

Más detalles

Para las comparaciones hay que tener en cuenta dos aspectos importantes:

Para las comparaciones hay que tener en cuenta dos aspectos importantes: Esadísica Descriiva: Números Ídices Faculad Ciecias Ecoómicas y Emresariales Dearameo de Ecoomía Alicada Profesor: Saiago de la Fuee Ferádez NÚMEROS ÍNDCES Los úmeros ídices so ua medida esadísica que

Más detalles

REVISTA INVESTIGACION OPERACIONAL Vol. 24, No. 1, 2003

REVISTA INVESTIGACION OPERACIONAL Vol. 24, No. 1, 2003 REVITA IVETIGACIO OPERACIOAL Vol. 4, o., 3 TEORIA DE LA VALORACIO MEDIATE MODELO FIACIERO ETOCATICO, E TIEMPO DICRETO Y E TIEMPO COTIUO Josefia Maríez arbeio, Uiversidade de A Coruña, España Julio García

Más detalles

I. Derogar el Instructivo No. SAP-12/98: Valorización de Instrumentos Financieros adquiridos con los Recursos de los Fondos de Pensiones.

I. Derogar el Instructivo No. SAP-12/98: Valorización de Instrumentos Financieros adquiridos con los Recursos de los Fondos de Pensiones. RESOLUCION No. A-DO-AF 028/99 9 de Marzo de 1999 LA SUPERINTENDENTE DE PENSIONES CONSIDERANDO: I. Que mediate resolució No. A-DO-AF-013/98, de fecha 3 de Marzo de 1998, se emitió el Istructivo No. SAP-12/98:

Más detalles

DATOS GENERALES DE LA REPÚBLICA DE PANAMÁ

DATOS GENERALES DE LA REPÚBLICA DE PANAMÁ DATOS GENERALES DE LA REPÚBLICA DE PANAMÁ Superficie: Toal de la República: 75,57 km 2 Població Toal: Segú proyeccioes de la Coraloría Geeral de la República la població oal al º de Julio de 2005 es de

Más detalles

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS UNIVERSIDAD DE LOS ANDES FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES ESCUELA DE ADMINISTRACIÓN Y CONTADURÍA PUBLICA DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS ADMINISTRACIÓN DE LA PRODUCCIÓN Y LAS OPERACIONES

Más detalles

2. MATRICES Y DETERMINANTES

2. MATRICES Y DETERMINANTES Marices y Deermiaes 2. MTRICES Y DETERMINNTES SUMRIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRIC 1.- Marices. 2.- Operacioes co Marices. 3.- Equivalecia de Marices. Trasformacioes Elemeales de Marices.

Más detalles

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción CAPÍTULO UNO SEÑALES Y SISTEMAS. Iroducció Los cocepos de señales y sisemas surge e ua gra variedad de campos y las ideas y écicas asociadas co esos cocepos juega u papel imporae e áreas a diversas de

Más detalles

SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO

SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO CAPÍTULO DOS SISTEMAS LINEALES E INVARIANTES EN EL TIEMPO. Iroducció E ese capíulo se iroduce y discue varias propiedades básicas de los sisemas. Dos de ellas, la liealidad y la ivariabilidad e el iempo,

Más detalles

CAPÍTULO 1: ESTIMACIÓN DE LOS INTERESES FUTUROS MEDIANTE NÚMEROS BORROSOS

CAPÍTULO 1: ESTIMACIÓN DE LOS INTERESES FUTUROS MEDIANTE NÚMEROS BORROSOS Pare II: Esimació de la esrucura emporal de los ipos de ierés a ravés de subcojuos borrosos y esimació de los ipos de ierés fuuros APÍTULO : ESTIMAIÓN DE LOS INTERESES FUTUROS MEDIANTE NÚMEROS BORROSOS

Más detalles

ANÁLISIS DE FOURIER. m(el asterisco indica el conjugado complejo), se desea expandir una función arbitraria f (t) en una serie infinita de la forma

ANÁLISIS DE FOURIER. m(el asterisco indica el conjugado complejo), se desea expandir una función arbitraria f (t) en una serie infinita de la forma CAPÍULO RES ANÁLISIS DE FOURIER IEMPO CONINUO Iroducció La represeació de la señal de erada a u sisema (eediedo como sisema u cojuo de elemeos o bloques fucioales coecados para alcazar u objeivo deseado)

Más detalles

Manual del índice de precios de inmuebles residenciales (IPIR)

Manual del índice de precios de inmuebles residenciales (IPIR) Para la mayor pare de los ciudadaos, la compra de u imueble residecial ua vivieda es la operació más imporae de oda la vida. Los imuebles resideciales hogares y, al mismo iempo, el acivo más valioso. Los

Más detalles

Modelo De Simulación de Ingresos para el Agro

Modelo De Simulación de Ingresos para el Agro Modelo De Simulación de Ingresos para el Agro Basado en el programa AgRisk desarrollado en Ohio Sae Universiy hp://www-agecon.ag.ohio-sae.edu/programs/agrisk/defaul.hm CP. Menichini Amilcar 1 Lic. Lazzai

Más detalles

PLANEACIÓN Y CONTROL DE LA PRODUCCIÓN

PLANEACIÓN Y CONTROL DE LA PRODUCCIÓN PLANEACIÓN Y CONTROL E LA PROUCCIÓN GRUPO: 0 M. I. Silvia Herádez García M. I. Susaa Casy Téllez Balleseros TEMARIO: I. Iroducció. II. Programació y corol de la producció. III. Balaceo de líea. IV. Sisemas

Más detalles

José Morón SEÑALES Y SISTEMAS

José Morón SEÑALES Y SISTEMAS SEÑALES Y SISTEMAS José Moró SEÑALES Y SISTEMAS Uiversidad Rafael Urdaea Auoridades Recorales Dr. Jesús Esparza Bracho, Recor Ig. Maulio Rodríguez, Vicerrecor Académico Ig. Salvador Code, Secreario Lic.

Más detalles

Valor de Rescate. Elementos Actuariales para su Determinación Por: Pedro Aguilar Beltrán. Octubre de 2008

Valor de Rescate. Elementos Actuariales para su Determinación Por: Pedro Aguilar Beltrán. Octubre de 2008 alor de escae Elemeos Acuariales ara su Deermiació Por: Pedro Aguilar Belrá Ocubre de 28 El alor de rescae es u coceo que se refiere al moo que le oorgará la aseguradora al asegurado o beeficiario, e caso

Más detalles

Una de las herramientas más utilizadas por los analistas técnicos es la llamada media móvil.

Una de las herramientas más utilizadas por los analistas técnicos es la llamada media móvil. Medias Móviles Ua de las herramietas más utilizadas por los aalistas técicos es la llamada media móvil. La media móvil de u istrumeto fiaciero es simplemete el promedio de u úmero, predetermiado, de valores

Más detalles

REGLAMENTO DE INVERSIONES PARA EL SISTEMA DE AHORRO PARA PENSIONES

REGLAMENTO DE INVERSIONES PARA EL SISTEMA DE AHORRO PARA PENSIONES DECRETO N 21 EL PRESIDENTE DE LA REPUBLICA DE EL SALVADOR CONSIDERANDO: I. Que de coformidad co la Ley Orgáica de la Superitedecia de Pesioes, correspode a la Superitedecia fiscalizar, vigilar, y cotrolar

Más detalles

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida

CADENAS DE MARKOV. Métodos Estadísticos en Ciencias de la Vida CADENAS DE MARKOV Itroducció U proceso o sucesió de evetos que se desarrolla e el tiempo e el cual el resultado e cualquier etapa cotiee algú elemeto que depede del azar se deomia proceso aleatorio o proceso

Más detalles

PLANIFICACIÓN DOCENTE OBJETIVOS DE CALIDAD AÑO 2012 PLANIFICACIÓN DOCENTE OBJETIVOS DE CALIDAD AÑO 2012

PLANIFICACIÓN DOCENTE OBJETIVOS DE CALIDAD AÑO 2012 PLANIFICACIÓN DOCENTE OBJETIVOS DE CALIDAD AÑO 2012 ANEXO XII PLANIFICACIÓN DOCENTE 1- Mateer el valor de la desviació típica del cojuto de las ratios de las áreas por debajo de 0,5 A la vista de la evolució de este valor e los años ateriores se cosidera

Más detalles

TRANSFORMADA z Y DE FOURIER

TRANSFORMADA z Y DE FOURIER Uiversidad de Medoa Dr Ig Jesús Rubé Aor Mooya Aálisis de Señales OBJEIVOS: RANSFORMADA Y DE FOURIER - Expoer los cocepos de fucioes discreas e cuao a la visió del proceso de raamieo de señales que pare

Más detalles

*ñ-i$i*,'-;5\u,x*,,' \

*ñ-i$i*,'-;5\u,x*,,' \ ffi$pfrh%.-t[3trtrdene* 26. SET.2A12' 63 NORMA DE CARACTER GENERAL N' REF.: MOD F CA r. rlru.o ilt DEt LTBRO tv, sobre va -on zec óru DE [As INVERSIONES DEt FONDO DE PENSTONES Y DEt ENCA E, DEL COMPENDIO

Más detalles

COMUNICACIÓN A 5272 27/01/2012

COMUNICACIÓN A 5272 27/01/2012 2012 Año de Homeaje al doctor D. Mauel Belgrao A LAS ENTIDADES FINANCIERAS: COMUNICACIÓN A 5272 27/01/2012 Ref.: Circular LISOL 1-545 CONAU 1-962 Exigecia de capital míimo por riesgo operacioal. Determiació

Más detalles

Análisis de flujos en lámina libre y su interacción con sólidos y estructuras por el método de partículas y elementos finitos (PFEM)

Análisis de flujos en lámina libre y su interacción con sólidos y estructuras por el método de partículas y elementos finitos (PFEM) Aálisis de flujos e lámia libre y su ieracció co sólidos y esrucuras por el méodo de parículas y elemeos fiios (PFEM) E. Oñae B. Suárez F. Salazar R. Morá M.A. Celiguea S. Laorre Publicació CIMNE Nº-365,

Más detalles

Resolución numérica de problemas de valor inicial (versión preliminar)

Resolución numérica de problemas de valor inicial (versión preliminar) (versió prelimiar) Cocepos iiciales.- Sea la ecuació diferecial de primer orde co las codició iicial x = f(,x) x( 0 ) = x 0 Para resolverla uméricamee será ecesario previamee comprobar si hay solució y

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES Las medidas de PML a ser implemetadas, se recomieda e base a las opcioes de PML calificadas como ecoómicamete factibles.

Más detalles

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier Series de Fourier. Traamieo Digial de Señal. Series de Fourier Series de Fourier. Preámbulo El aálisis de Fourier fue iroducido e 8 e la Théorie aalyiique de la chaleur para raar la solució de problemas

Más detalles

FORMULAS PARA EL PRODUCTO: CREDITO A LA MICROEMPRESA

FORMULAS PARA EL PRODUCTO: CREDITO A LA MICROEMPRESA FORMULAS PARA EL PRODUCTO: CREDITO A LA MICROEMPRESA DEFINICIONES: CRÉDITO A LA MICROEMPRESA: So aquellos créditos que se otorga a persoas aturales y jurídicas que realiza algua actividad ecoómica por

Más detalles

Una recomendación para cuantificar el riesgo operativo en entidades financieras en Colombia

Una recomendación para cuantificar el riesgo operativo en entidades financieras en Colombia Ua recomedació para cuaificar el riesgo operaivo e eidades fiacieras e Colombia Adrés Mora* RESUMEN Ese arículo presea dos efoques para cuaificar riesgo operaivo e eidades fiacieras. U efoque es el propueso

Más detalles

Macroeconomía y pobreza: Lecciones desde Latinoamérica *

Macroeconomía y pobreza: Lecciones desde Latinoamérica * Macroecoomía y obreza: Leccioes desde Laioamérica * Versió 1.2 Luis F. Lóez-Calva Uiversidad de las Américas, Puebla Dearameo de Ecoomía y Mabel A. Adaló Lóez Cero de Aálisis Esraégico y Tecologías de

Más detalles

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2)

Transformada Z. Transformada Z. Señales y sistemas discretos (1) Señales y sistemas discretos (2) Trasformada Z La trasformada Z es u método tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas cotiuos

Más detalles

Señales y sistemas discretos (1) Transformada Z. Definiciones

Señales y sistemas discretos (1) Transformada Z. Definiciones Trasformada Z La trasformada Z es u método para tratar fucioes discretas e el tiempo El papel de la trasformada Z e sistemas discretos e el tiempo es similar al de la trasformada de Laplace e sistemas

Más detalles

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES 4. VARIABLES ALEATORIAS Y SUS PROPIEDADES Dr. hp://mah.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ 4. Variables Aleaorias Ua variable aleaoria es ua fucio que asume sus

Más detalles

Apuntes Sistemas Lineales Dinámicos - 543 214

Apuntes Sistemas Lineales Dinámicos - 543 214 Uiversidad de Cocepció Faculad de Igeiería Depo. de Igeiería Elécrica Apues Sisemas Lieales Diámicos - 543 4. f () = si(5) f (kt) = f (kt) f () = si() kt -..5..5. 4 ava edició Prof. José R. Espioza C.

Más detalles

UNIVERSIDAD AUTÓNOMA CHAPINGO CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES

UNIVERSIDAD AUTÓNOMA CHAPINGO CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES UNIVERSIDAD AUTÓNOMA CHAPINGO PREPARATORIA AGRÍCOLA ÁREA DE MATEMÁTICAS CÁLCULO MULTIVARIADO Y ECUACIONES DIFERENCIALES f : R R ( ) h p AUTOR Vícor Rafael Valdovios Chávez Ooño de AUTOR Vícor Rafael Valdovios

Más detalles

Ingeniería Económica Tema 4.1. Modelos de depreciación

Ingeniería Económica Tema 4.1. Modelos de depreciación Igeiería Ecoómica Tema 4.. Moelos e epreciació UNIDAD IV. DEPRECIACIÓN Y ANÁLISIS DE IMPUESTOS Objeivo e apreizaje: usar los méoos clásicos y aprobaos por el gobiero para reucir el valor e la iversió e

Más detalles

A todas las entidades aseguradoras y reaseguradoras

A todas las entidades aseguradoras y reaseguradoras ORMA DE CARÁCTER GEERAL 00 REF.: ESTABLECE ORMAS SOBRE OPERACIOES DE COBERTURA DE RIESGOS FIACIEROS, IVERSIÓ E PRODUCTOS DERIVADOS FIACIEROS Y OPERACIOES DE PRÉSTAMO DE ACCIOES. DEROGA ORMA DE CARÁCTER

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTIAS FINANIERAS Secció: 1 Profesores: ristiá Bargsted Adrés Kettlu oteido Matemáticas Fiacieras: Iterés Simple vs Iterés ompuesto Valor Presete y Valor Futuro Plaificació estratégica Matemáticas

Más detalles

Tema 5. DIAGONALIZACIÓN DE MATRICES

Tema 5. DIAGONALIZACIÓN DE MATRICES José Maía Maíe Mediao Tema DGONLZCÓN DE MTRCES oducció Poecia de ua mai Sea Supogamos que se desea calcula : 7 7 8 8 Deemia ua egla paa o esula imediao Compobemos, aes de segui adelae, que MDM, siedo M

Más detalles

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables :

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables : 1 1. LEY FINANCIERA DE CAPITALIZACIÓN SIMPLE. 1.- Calcular los itereses producidos por u capital de 1800 colocado 10 días al 7% de iterés aual simple. a) Cosiderado el año civil. b) Cosiderado el año comercial.

Más detalles

Reglas para el manejo de los índices de deuda de la BNV. Bolsa Nacional de Valores Version 4.4 13/07/2005

Reglas para el manejo de los índices de deuda de la BNV. Bolsa Nacional de Valores Version 4.4 13/07/2005 Reglas para el maejo de los ídces de deuda de la BV Bolsa acoal de Valores Verso 4.4 3/07/005 ága de 6 COTEIDO ITRODUCCIÓ... 4. erspecva geeral... 4 MAEJO DE LOS ÍDICES... 6. Comé de Ídces de íulos de

Más detalles

Capítulo 2. Operadores

Capítulo 2. Operadores Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática

Más detalles

(PROBABILIDAD) (tema 15 del libro)

(PROBABILIDAD) (tema 15 del libro) (PROBABILIDAD) (tema 15 del libro) 1. EXPERIMENTOS ALEATORIOS. ESPACIO MUESTRAL. SUCESOS Defiició: U feómeo o experiecia se dice aleatorio cuado al repetirlo e codicioes aálogas o se puede predecir el

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

Tema 9 Teoría de la formación de carteras

Tema 9 Teoría de la formación de carteras Parte III Decisioes fiacieras y mercado de capitales Tema 9 Teoría de la formació de carteras 9.1 El problema de la selecció de carteras. 9. Redimieto y riesgo de ua cartera. 9.3 El modelo de la media-variaza.

Más detalles

TEMA 3.- OPERACIÓN FINANCIERA

TEMA 3.- OPERACIÓN FINANCIERA . DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

Registro del Contrato de Seguro de Vida Ley

Registro del Contrato de Seguro de Vida Ley Fuete: www.caballerobustamate.com.pe Registro del Cotrato de Seguro de Vida Ley Ha sido implemetado el Registro del Cotrato de Seguro de Vida Ley. A cotiuació, desarrollaremos las pricipales disposicioes

Más detalles

Metodología de cálculo del diferencial base

Metodología de cálculo del diferencial base Meodología de cálculo del diferencial base El diferencial base es el resulado de expresar los gasos generales promedio de operación de las insiuciones de seguros auorizadas para la prácica de los Seguros

Más detalles

Tema 6. Sucesiones y Series. Teorema de Taylor

Tema 6. Sucesiones y Series. Teorema de Taylor Nota: Las siguietes líeas so u resume de las cuestioes que se ha tratado e clase sobre este tema. El desarrollo de todos los tópicos tratados está recogido e la bibliografía recomedada e la Programació

Más detalles

MATRIZ DE INDICADORES DEL PROGRAMA TRANSPORTE ESCOLAR

MATRIZ DE INDICADORES DEL PROGRAMA TRANSPORTE ESCOLAR 7 Compoetes 6 5 4 3 2 1 2 Propósito 1 Fi 1 Objetivo del Eje de Política Pública del Pla Querétaro: Objetivo Istitucioal, Especial o Regioal: Objetivo Estratégico de la Depedecia o Etidad: Programa Presupuestario:

Más detalles

CAPÍTULO 1 CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA.

CAPÍTULO 1 CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA. APÍTULO UTOS EN EL DOMNO DE LA FEUENA... SSTEMAS LNEALES NAANTES. roducció. U iema lieal ivariae e repreea uualmee mediae u bloque e el que e muera ao la exciació como la repuea Exciació x ( Siema lieal

Más detalles

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida.

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida. UNIDAD 8 MODELO DE ASIGNACIÓN características de asigació. método húgaro o de matriz reducida. Ivestigació de operacioes Itroducció U caso particular del modelo de trasporte es el modelo de asigació,

Más detalles

REPORTE ECONOMICO MENSUAL

REPORTE ECONOMICO MENSUAL Geera Boeoño 1156 - eef. 441-3212 / 441-2971 / 221-9693 RPOR CONOMCO MNSUAL Acosro 1995 Prohibida a rqrroducció oa o parcia de documeo si auorizació expresa de Macrocosu S.A. NDC GNRAL Resrprru curwo Rporr

Más detalles

Página 1 de 34. FILTROS ADAPTIVOS LMS RMS Filtro Kalman INTRODUCCION

Página 1 de 34. FILTROS ADAPTIVOS LMS RMS Filtro Kalman INTRODUCCION Págia de 34 Uiversidad Nacioal de Cordoba FILTROS ADAPTIVOS LMS RMS Filro Kalma INTRODUCCION El cocepo de filro adapaivo, sugiere el de u disposiivo que iea modelizar la relació ere señales e iempo real

Más detalles

Media aritmética, media geométrica y otras medias Desigualdades Korovkin

Media aritmética, media geométrica y otras medias Desigualdades Korovkin Media aritmética, media geométrica y otras medias Desigualdades Korovki Media geométrica y media aritmética Si,,, so úmeros positivos, los úmeros + + + a = g = formados a base de ellos, se deomia, respectivamete,

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

Planes Médicos para Grupos Pequeños 2-50

Planes Médicos para Grupos Pequeños 2-50 A p é d i c e d e A e t a I l l i o i s C o m m u i t y P l a S M Plaes Médicos para Grupos Pequeños 2-50 Opcioes de Pla Beeficios para Miembros (No requiere de remisió) Red Comuitaria IL Commuity Pla

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la

Más detalles

b) Cuál es el volumen de fondos que podrá obtener la empresa con la ampliación? En qué caso no tendrá éxito la operación?

b) Cuál es el volumen de fondos que podrá obtener la empresa con la ampliación? En qué caso no tendrá éxito la operación? Supuesto 9 La empresa ESTANTERÍAS METÁLICAS, S.A., tiee 0.000 accioes e circulació co u alor omial de 5 euros. E el mometo actual se está plateado realizar ua iersió e su plata productia de estaterías

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

INDICE DE PRECIOS IMPLICITO PARA EL SEGURO DE ENFERMEDAD Y MATERNIDAD

INDICE DE PRECIOS IMPLICITO PARA EL SEGURO DE ENFERMEDAD Y MATERNIDAD INDICE DE PRECIOS IMPLICITO PARA EL SEGURO DE ENFERMEDAD Y MATERNIDAD lit.!iiú GfIi/úr.o /ÁffZ 1..,.. LitmeiGdo 1ft EcortOlflÍJI., ' dtt Dtparl(J1fltfflo d, PfQ"ificaciótt ECOllOfrlicfI yfiqiicltra DimciMAca"arial,

Más detalles

RESOLUCIÓN DE CIRCUITOS APLICANDO TRANSFORMADA DE LAPLACE

RESOLUCIÓN DE CIRCUITOS APLICANDO TRANSFORMADA DE LAPLACE A.4. TEORÍA DE CIRCUITOS I CAPÍTUO RESOUCIÓN DE CIRCUITOS APICANDO TRANSFORMADA DE APACE Cáedra de Teoría de Circuio I Edició 03 RESOUCION DE CIRCUITOS APICANDO TRANSFORMADA DE APACE.. Iroducció El cálculo

Más detalles

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS Curso Preparació y Evaluació Social de Proyectos Sistema Nacioal de Iversioes Divisió de Evaluació Social de Iversioes MINISTERIO DE DESARROLLO SOCIAL

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

RESOLUCIÓN 34-03 SOBRE COMISIONES DE LAS ADMINISTRADORAS DE FONDOS DE PENSIONES

RESOLUCIÓN 34-03 SOBRE COMISIONES DE LAS ADMINISTRADORAS DE FONDOS DE PENSIONES RESOLUCIÓN 34-03 SOBRE COMISIONES DE LAS ADMINISTRADORAS DE FONDOS DE PENSIONES CONSIDERANDO: Que el arículo 86 de la Ley 87-01 de fecha 9 de mayo de 2001, que crea el Sisema Dominicano de Seguridad Social,

Más detalles

El traspaso de tasas de interés en el sistema bancario uruguayo

El traspaso de tasas de interés en el sistema bancario uruguayo El raspaso de asas de ierés e el sisea bacario uruguayo Diego Giaelli - 688-7565 Absrac Bakig ieres raes are closely relaed o oeary policy rasissio ha overigh ieres raes. Sice overigh ieres raes are used

Más detalles

Valoración de permutas financieras de intereses (IRS) *

Valoración de permutas financieras de intereses (IRS) * Valoració de permutas fiacieras de itereses (IRS) * JOSÉ E. ROMERO FERNÁNDEZ Agecia Estatal de Admiistració Tributaria SUMARIO 1. INTRODUCCIÓN. 2. INSTRUMENTOS FINANCIEROS DERIVADOS. 3. LOS MERCADOS. 4.

Más detalles

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción

LA TRANSFORMADA Z { } CAPÍTULO SEIS. T n n. 6.1 Introducción CAPÍTULO SEIS LA TRANSFORMADA Z 6. Itroducció E el Capítulo 5 se itrodujo la trasformada de Laplace. E este capítulo presetamos la trasformada Z, que es la cotraparte e tiempo discreto de la trasformada

Más detalles

CONVERSORES D/A Y A/D

CONVERSORES D/A Y A/D Uiversidad Nacioal de osario Faculad de iecias Exacas, Igeiería y Agrimesura Escuela de Igeiería Elecróica eparameo de Elecróica ELETÓNIA III ONVESOES /A Y A/ Federico Miyara A / 11010110 00001011 11000110

Más detalles

Cómo escoger medicamentos para la presión arterial alta. Revisión de las investigaciones sobre IECA, BRA e IDR

Cómo escoger medicamentos para la presión arterial alta. Revisión de las investigaciones sobre IECA, BRA e IDR Cómo escoger medicametos para la presió arterial alta Revisió de las ivestigacioes sobre IECA, BRA e IDR Es apropiada si: Es esta iformació apropiada para mí? Su médico dice que usted tiee presió arterial

Más detalles

Muestreo. Tipos de muestreo. Inferencia Introducción

Muestreo. Tipos de muestreo. Inferencia Introducción Germá Jesús Rubio Lua Catedrático de Matemáticas del IES Fracisco Ayala Muestreo. Tipos de muestreo. Iferecia Itroducció Nota.- Puede decirse que la Estadística es la ciecia que se preocupa de la recogida

Más detalles

La Conducción de la Política Monetaria del Banco de México a través del Régimen de Saldos Diarios

La Conducción de la Política Monetaria del Banco de México a través del Régimen de Saldos Diarios La Conducción de la Políica Monearia del Banco de México a ravés del Régimen de Saldos Diarios INDICE I. INTRODUCCIÓN...2 II. LA OPERACIÓN DEL BANCO DE MÉXICO EN EL MERCADO DE DINERO...3 III. IV. II.1.

Más detalles

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco

MEDIDAS DE RESUMEN. Jorge Galbiati Riesco MEDIDAS DE RESUMEN Jorge Galbiati Riesco Las medidas de resume sirve para describir e forma resumida u cojuto de datos que costituye ua muestra tomada de algua població. Podemos distiguir cuatro grupos

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema 3. rasformacioes Lieales. QUÉ ES UN RNSFORMCIÓN? E térmios geerales, ua trasformació es ua fució que permite trasformar u vector que perteece a u espacio vectorial (domiio)

Más detalles

FORMULAS Y EJEMPLOS PARA EL CÁLCULO DE INTERESES DE UN DEPÓSITO A PLAZO FIJO CONVENCIONAL

FORMULAS Y EJEMPLOS PARA EL CÁLCULO DE INTERESES DE UN DEPÓSITO A PLAZO FIJO CONVENCIONAL FORMULAS Y EJEMLOS ARA EL CÁLCULO DE NERESES DE UN DEÓSO A LAZO FJO CONVENCONAL 1. GLOSARO DE ÉRMNOS a. Depósito a plazo fijo: roducto e el que el cliete podrá depositar ua catidad de diero a ua tiempo

Más detalles

ASIGNATURA: MATEMATICAS FINANCIERAS

ASIGNATURA: MATEMATICAS FINANCIERAS APUNTES DOCENTES ASIGNATURA: MATEMATICAS FINANCIERAS PROFESORES: MARIN JAIMES CARLOS JAVIER SARMIENTO LUIS JAIME UNIDAD 3: EVALUACIÓN ECONÓMICA DE PROYECTOS DE INVERSIÓN EL VALOR PRESENTE NETO VPN Es ua

Más detalles

Medios de Transmisión

Medios de Transmisión 39 Medios de Trasmisió 3. Fibra Optica La fibra óptica trasporta iformació e forma de u haz de luz que fluctúa e su itesidad. Luz es ua oda electromagética que se propaga a ua frecuecia mayor que la que

Más detalles

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 8 Capitalización simple. 14 Capitalización compuesta

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 8 Capitalización simple. 14 Capitalización compuesta MODULO : FUNDAMENTOS DE LA INVERSIÓN Ídice oceptos básicos de la iversió 2 ocepto de apital Fiaciero 3 omparació de capitales fiacieros 3 Ley fiaciera apitalizació 8 apitalizació simple 4 apitalizació

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

Tomado del libro Evaluación Financiera de Proyectos de Jhonny de Jesús Meza Orozco Editorial WAKUSARI Bogotá, Año 2004

Tomado del libro Evaluación Financiera de Proyectos de Jhonny de Jesús Meza Orozco Editorial WAKUSARI Bogotá, Año 2004 SERVICIO NACIONAL DE APRENDIZAJE SENA CENTRO AGROPECUARIO EL PORVENIR MÓDULO FORMULACIÓN Y EVALUACIÓN DE PROYECTOS PRODUCTIVOS TALLER 4 TEMA: Evaluació de proyectos de iversió OBJETIVO: Determiar la retabilidad

Más detalles

CAPÍTULO I CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA

CAPÍTULO I CIRCUITOS EN EL DOMINIO DE LA FRECUENCIA APÍTULO UTOS EN EL DOMNO DE LA FEUENA.. SSTEMAS LNEALES NAANTES roducció U iema lieal ivariae e repreea uualmee mediae u bloque e el que e muera ao la exciació como la repuea Exciació x () Siema lieal

Más detalles

Índice de Precios y Cotizaciones de la Bolsa Mexicana de Valores S.A.B. de C.V. (en adelante IPC y BMV respectivamente).

Índice de Precios y Cotizaciones de la Bolsa Mexicana de Valores S.A.B. de C.V. (en adelante IPC y BMV respectivamente). Auorización SHCP: 09/11/2010 Fecha de publicación úlima modificación: 29/08/2014 Fecha de enrada en vigor: 05/09/2014 Condiciones Generales de Conraación del Conrao de Fuuro sobre el Índice de Precios

Más detalles

Condiciones Generales de Contratación de los Contratos de Futuro sobre Acciones (Liquidación en Especie)

Condiciones Generales de Contratación de los Contratos de Futuro sobre Acciones (Liquidación en Especie) Condiciones Generales de Conraación de los Conraos de Fuuro sobre Acciones (Liquidación en Especie) I. OBJETO. 1. Acivo Subyacene. Las Acciones, Cerificados de Paricipación Ordinarios emiidos sobre Acciones

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 8 Capitalización simple. 14 Capitalización compuesta

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 8 Capitalización simple. 14 Capitalización compuesta MÓDULO : FUNDAMENTOS DE LA INVERSIÓN Ídice Coceptos básicos de la iversió Cocepto de Capital Fiaciero 3 Comparació de capitales fiacieros 3 Ley fiaciera Capitalizació 8 Capitalizació simple 4 Capitalizació

Más detalles

SOLUCIÓN ACTIVIDADES UNIDAD 7

SOLUCIÓN ACTIVIDADES UNIDAD 7 SOLUCIÓN ACTIVIDADES UNIDAD 7 1.- Qué es ua fuete fiaciera?.- Cuál es la diferecia etre los fodos propios y los fodos ajeos? La forma de obteer recursos fiacieros la empresa para llevar a cabo sus iversioes.

Más detalles

4) Calcular el plazo necesario para obtener 20.000 a partir de una inversión

4) Calcular el plazo necesario para obtener 20.000 a partir de una inversión ) alcular el motate o capital fial obteido al ivertir u capital de. al 8% de iterés aual simple durate 8 años.. 8 o i. 8,8 ( i ) 8.( 8,8) ) alcular el capital iicial ecesario para obteer u capital de.

Más detalles