Aproximación a la distribución normal: el Teorema del Límite Central

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Aproximación a la distribución normal: el Teorema del Límite Central"

Transcripción

1 Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda que crece, la suma (y la meda) de estas varables tede a segur ua dstrbucó ormal. El teorema del límte cetral, explcado de forma tutva, afrma que cualquera que sea la dstrbucó comú de u cojuto de varables aleatoras, supoedo que su varaza sea fta, la suma y la meda de u úmero elevado de estas varables tederá a dstrburse de maera smlar a ua varable ormal. Dstrbucó de ua varable que cosste e la suma de las putuacoes obtedas e lazametos de u dado co: (a) =, (b) =, (c) =4 y (d) =3. (a) (b) (c) (d)

2 x S S =,, L = x A x ~ A ~ E N µ, [ x ] = µ VAR[ x ] N ( µ, σ ) σ = σ Dstrbucó de ua varable que cosste e la meda de lazar ua moeda al are (cara, cruz ) obtedas e lazametos: (a) =, (b) =, (c) = y (d) = ,5,,,3,4,5,6,7,8, ,5,,5,,5,3,35,4,45,5,55,6,65,7,75,8,85,9,95 4,5,,5,,5,3,35,4,45,5,55,6,65,7,75,8,85,9,95 ESTIMACIÓN DE PARÁMETROS POBLACIONALES La estmacó cosste e asgar valores a los parámetros problacoales utlado la formacó muestral. Parámetro: U parámetro se puede defr como ua medda de la característca que teresa estudar e la poblacó. El cálculo del valor exacto del parámetro sólo es posble s puede aalzarse todos los elemetos poblacoales, stuacó que o es la habtual.

3 Alteratvamete, se puede obteer ua estmacó del valor del parámetro, es decr, ua aproxmacó a su valor calculada a partr de ua muestra. Para ello se utlza u estmador, que es ua fucó de las observacoes muestrales, f(x, x,...x ), el cual permte obteer estmacoes de u determado parámetro poblacoal. Estmador: Es ua fucó de los elemetos de la muestra utlzada para aproxmar el valor de u parámetro poblacoal descoocdo. Estmacó: Valor de u estmador para ua muerstra dada. U estmador es ua fucó de v.a. (elemetos de la muestra) por lo tato tedrá ua dstrbucó de probabldad y u determado valor esperado y varaza. Tpos de fereca Cuado se hace fereca se debe teer presete que la estmacó realzada es sólo ua aproxmacó del parámetro poblacoal, algo que se tedrá que teer e cueta a la hora de

4 extraer cualquer coclusó sobre la poblacó. Además, hay que teer presete que muestras dsttas estará formadas por dsttos elemetos que presetará valores dferetes, de maera que e fucó de la muestra escogda, el estmador puede tomar dsttos valores proporcoado dferetes estmacoes del valor poblacoal. Esto sgfca que u estmador es ua varable aleatora y, por tato, tee ua dstrbucó de probabldad. ESTIMACIÓN PUNTUAL DE LA MEDIA POBLACIONAL Cuado la muestra ha sdo obteda de ua poblacó cuyos elemetos tee la msma meda y varaza poblacoal. Partmos de E [ x ] = µ y VAR[ x ] = σ =,, L,. Etoces la meda muestral x = x se suele utlzar como estmador de = la meda poblacoal ( µ ) dado que se cumple: E = = [ x] E = µ VAR [ x] x σ = VAR x = = Cuado la muestra ha sdo obteda de ua poblacó Normal cuyos elemetos tee la msma meda y varaza poblacoal. S e la poblacó la varable X sgue ua dstrbucó ormal co meda µ y varaza σ, el estmador x també es ua varable aleatora ormal, es decr, s la varable poblacoal X es ormal la dstrbucó de x es:

5 x N µ, σ S la varable X o es ormal pero se dspoe de ua muestra grade, la dstrbucó de x se puede aproxmar a la dstrbucó ormal gracas a la aplcacó del Teorema dellímte Cetral: x N µ, σ ESTIMACIÓN DE LA PROPORCIÓN POBLACIONAL Se supoe ua poblacó de la que teresa aalzar la proporcó, p, de elemetos que preseta ua determada característca. Puede defrse ua varable X, que toma valor uo s el elemeto preseta la característca e cuestó y valor cero s o la preseta. De esta forma la proporcó poblacoal, p, es el úmero de elemetos que preseta la característca etre el total de elemetos de la poblacó. S o se puede aalzar la preseca de la característca de terés para cada uo de los elemetos de la poblacó se puede utlzar la proporcó muestral,pˆ, como estmador de la proporcó poblacoal. ˆ A p = Dode: A: es el úmero de elemetos que posee la característca de teres. : es el úmero de elemetos totales.

6 Por tato, la proporcó muestral es el cocete etre el úmero de elemetos de la muestra que preseta la característca y el total de observacoes muestrales s la varables toma los valores y es gual que calcular la meda muestral. Para cualquera que sea la dstrbucó de la varable X y para cualquer tamaño muestral, la esperaza y la varaza depˆ so: [ pˆ ] p E = VAR [ pˆ ] = p ( p) Por la aplcacó del Teorema del Límte Cetral, s se dspoe de ua muestra grade, la dstrbucó de pˆ se puede aproxmar por: ( p) p p A ˆ ~ N p,

La inferencia estadística es primordialmente de naturaleza

La inferencia estadística es primordialmente de naturaleza VI. Ifereca estadístca Ifereca Estadístca La fereca estadístca es prmordalmete de aturaleza ductva y llega a geeralzar respecto de las característcas de ua poblacó valédose de observacoes empírcas de la

Más detalles

Inferencia Estadística

Inferencia Estadística Ifereca Estadístca Poblacó y muestra Coceptos y defcoes Muestra Aleatora Smple (MAS) Cosderemos ua poblacó, cuya fucó de dstrbucó esta dada por F(), la cual está costtuda por u úmero fto de posbles valores,

Más detalles

Orden de la tirada. Figura 1: Frecuencia relativa de cara para una sucesión de 400 tiradas.

Orden de la tirada. Figura 1: Frecuencia relativa de cara para una sucesión de 400 tiradas. Estadístca (Q) Dra. Daa M. Kelmasky 99. Teoremas límte Frecueca Relatva 0.5 0.6 0.7 0.8 0.9.0 0 00 00 300 400 Orde de la trada Fgura : Frecueca relatva de cara para ua sucesó de 400 tradas. La fgura muestra

Más detalles

CONTRASTES NO PARAMÉTRICOS: BONDAD DEL AJUSTE Y TABLAS DE CONTINGENCIA

CONTRASTES NO PARAMÉTRICOS: BONDAD DEL AJUSTE Y TABLAS DE CONTINGENCIA CONTRASTES NO PARAMÉTRICOS: BONDAD DEL AJUSTE Y TABLAS DE CONTINGENCIA Atoo Morllas A. Morllas: C. o paramétrcos (I 1 CONTRASTES NO PARAMÉTRICOS: BONDAD DE AJUSTE Y TABLAS DE CONTINGENCIA Ifereca realzada

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad.

( ) = 0 entonces ˆ i i. xy x Y Y xy Y x ˆ. β = = β =.(1) Propiedades Estadísticas de los estimadores MICO. Linealidad. Propedades Estadístcas de los estmadores MICO Lealdad ) y Y Y Y Y = = = β Y Dado que la = 0 etoces β =.) S defmos el poderador k =, co las propedades sguetes: a) No estocástco b) k = 0 c) k = k d) = kx

Más detalles

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II Solucoes de los ejerccos de Selectvdad sobre Ifereca Estadístca de Matemátcas Aplcadas a las Cecas Socales II Atoo Fracsco Roldá López de Herro * Covocatora de 006 Las sguetes págas cotee las solucoes

Más detalles

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ

Dada una sucesión x1, x2, x3,... x n dos a dos independientes, con una misma distribución de probabilidad y con esperanza µ y varianza σ TEOREMA DE BERNOULLI GENERALIZADO > 0 Dada ua sucesó x1, x, x3,... x dos a dos depedetes, co ua msma dstrbucó de probabldad y co esperaza µ y varaza lím Se verfca que P x µ = 1 ó lím P x µ > = 0 El límte,

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

PARTE SEGUNDA: INFERENCIA ESTADÍSTICA

PARTE SEGUNDA: INFERENCIA ESTADÍSTICA ESTADÍSTICA II PARTE SEGUNDA: INFERENCIA ESTADÍSTICA TEMA III: INTRODUCCION A LA INFERENCIA III..- Itroduccó III..- La eleccó de la muestra. Tpos de muestreo III.3.- Muestreo aleatoro smple. Estadístcos

Más detalles

10 MUESTREO. n 1 9/ / σ σ 1

10 MUESTREO. n 1 9/ / σ σ 1 10 MUESTREO 1 Cómo varará la desvacó típca muestral s se multplca por cuatro el tamaño de la muestra? Y s se aumeta el tamaño de la muestra de 16 a 144? S µ y so la meda y la desvacó típca poblacoales,

Más detalles

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A Febrero 20 EAMEN MODELO A Pág. 1 GRADO EN PICOLOGIA INTRODUCCIÓN AL ANÁLII DE DATO Códgo Asgatura: 620137 FEBRERO 20 EAMEN MODELO A Tabla 1: Para estudar la relacó etre las putuacoes e u test () y el redmeto

Más detalles

CAPÍTULO 3 METODOLOGÍA. El objetivo del capítulo 3 es conocer la metodología, por lo cual nos apoyaremos en el

CAPÍTULO 3 METODOLOGÍA. El objetivo del capítulo 3 es conocer la metodología, por lo cual nos apoyaremos en el CAPÍTULO 3 METODOLOGÍA El objetvo del capítulo 3 es coocer la metodología, por lo cual os apoyaremos e el lbro de Smulato modelg ad Aalyss (Law, 000), para estudar alguas pruebas de bodad de ajuste. També

Más detalles

TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO Introducción.

TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO Introducción. TEMA 5.- LA DECISIÓN DE INVERTIR EN UN CONTEXTO DE RIESGO 5..- Itroduccó. Stuacoes segú el vel de formacó: Certeza. Icertdumbre parcal o resgo: (Iversoes co resgo) Icertdumbre total: (Iversoes co certdumbre)

Más detalles

En este capítulo 5 estudiaremos una serie de conceptos básicos, y que serán fundamentales para el posterior desarrollo de la inferencia estadística.

En este capítulo 5 estudiaremos una serie de conceptos básicos, y que serán fundamentales para el posterior desarrollo de la inferencia estadística. TEMA 5. Muestreo y dstrbucoes e el muestreo Nuestro objetvo fudametal es saber qué modelo va a segur la poblacó, y para ello haremos uso de la formacó que obtegamos de ua parte de esa poblacó llamada muestra.

Más detalles

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la

Más detalles

Métodos indirectos de estimación: razón, regresión y diferencia

Métodos indirectos de estimación: razón, regresión y diferencia Métodos drectos de estmacó: razó, regresó dfereca Cotedo. Itroduccó, defcó de estmadores drectos. Estmador de razó, propedades varazas. Límtes de cofaza. 3. Tamaño de la muestra e los estmadores de razó

Más detalles

PARÁMETROS ESTADÍSTICOS ... N

PARÁMETROS ESTADÍSTICOS ... N el blog de mate de ada: ESTADÍSTICA pág. 6 PARÁMETROS ESTADÍSTICOS MEDIDAS DE CENTRALIZACIÓN Las tablas estadístcas y las represetacoes grácas da ua dea del comportameto de ua dstrbucó, pero ese cojuto

Más detalles

C URVA DE L ORENZ C OEFICIENTE DE D ESIGUALDAD DE G INI

C URVA DE L ORENZ C OEFICIENTE DE D ESIGUALDAD DE G INI TESIS DESARROLLO REIONAL C URVA DE L ORENZ C OEFICIENTE DE D ESIUALDAD DE INI D OCUMENTO A UXILIAR N DANIEL CAUAS - 5 JUN 203 LA CURVA DE LORENZ La curva de Lorez (Corado Lorez 905), es u recurso gráfco

Más detalles

Probabilidad ( A) Los axiomas de la probabilidad. φ = el conjunto vacío A B = A y no B C

Probabilidad ( A) Los axiomas de la probabilidad. φ = el conjunto vacío A B = A y no B C Los axomas de la probabldad obabldad El prmer paso para descrbr la certdumbre es cosderar el cojuto de posbles resultados obtedos a partr de u expermeto aleatoro. Este cojuto es llamado espaco muestral

Más detalles

02 ) 2 0 en el resto. Tiempo (meses) Ventilador adicional No No Si No Si Si Si Si No Si Tipo carcasa A C B A B A B C B C

02 ) 2 0 en el resto. Tiempo (meses) Ventilador adicional No No Si No Si Si Si Si No Si Tipo carcasa A C B A B A B C B C Ua empresa motadora de equpos electrócos está realzado u estudo sobre aluos de los compoetes que utlza. E partcular mde el tempo de vda e meses reales de los procesadores que mota, dode a aluos de ellos

Más detalles

UNIDAD DIDÁCTICA 13: Estadística Descriptiva

UNIDAD DIDÁCTICA 13: Estadística Descriptiva Utat d accés accés a la uverstat dels majors de 5 ays Udad de acceso acceso a la uversdad de los mayores de 5 años UNIDAD DIDÁCTICA 13: Estadístca Descrptva ÍNDICE: DESARROLLO DE LOS CONTENIDOS 1 Itroduccó

Más detalles

5.3 Estadísticas de una distribución frecuencial

5.3 Estadísticas de una distribución frecuencial 5.3 Estadístcas de ua dstrbucó frecuecal 5.3. Meddas de tedeca cetral Meddas de tedeca cetral Las meddas de tedeca cetral so descrptores umércos que proporcoa ua dea de los valores de la varable, alrededor

Más detalles

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO C

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO C Febrero 010 EAMEN MODELO C Pág. 1 GRADO EN PICOLOGIA INTRODUCCIÓN AL ANÁLII DE DATO Códgo Asgatura: 6011037 FEBRERO 010 EAMEN MODELO C 1 80 5 3 8 4 1 5 6 6 7 1,0 1,47 38-40 18 35-37 36 3-34 5 9-31 46 6-8

Más detalles

Especialista en Estadística y Docencia Universitaria PRUEBAS DE NORMALIDAD MÉTODO DE KOLMOGOROV SMIRNOV

Especialista en Estadística y Docencia Universitaria PRUEBAS DE NORMALIDAD MÉTODO DE KOLMOGOROV SMIRNOV Especalsta e Estadístca y Doceca Uverstara PRUEBAS DE NORMALIDAD MÉTODO DE KOLMOGOROV SMIRNOV Tal vez el método más recomedable para el caso e que F(x) es ua dstrbucó cotua es el método para ua muestra

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado e Geomátca y Topografía Escuela Técca Superor de Igeeros e Topografía, Geodesa y Cartografía. Uversdad Poltécca de Madrd Capítulo

Más detalles

2. Muestreo Aleatorio Simple. 2. Muestreo Aleatorio Simple

2. Muestreo Aleatorio Simple. 2. Muestreo Aleatorio Simple . Muestreo Aleatoro mple. Muestreo aleatoro smple e poblacoes ftas... Meda, varaza proporcó muestrales: Propedades. Error de estmacó. Poblacó Y (, ). E V Muestra aleatora smple Y,..., Y (..d.) E V ( )

Más detalles

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE)

División de Estadísticas y Proyecciones Económicas (DEPE) Centro de Proyecciones Económicas (CPE) Comsó Ecoómca para Amérca Lata y el Carbe (CEPAL Dvsó de Estadístcas y Proyeccoes Ecoómcas (DEPE Cetro de Proyeccoes Ecoómcas (CPE Estmacó Putual de Parámetros Chrsta A. Hurtado Navarro Mayo, 006 Estmacó

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto:

Respuesta. Si 100 manzanas es una muestra suficientemente grande podemos ocupar el TCL. Por lo tanto: Curso: Estadístca Iferecal (ICO 8306) Profesores: Esteba Calvo, Pablo Huechapa y Omar Ramos Ayudates: José T. Meda, Fabo Salas y Daela Vlches PROBLEMA Cosdere que Ud. es dueño de u campo que produce mazaas,

Más detalles

MEDIDAS DE CENTRALIZACIÓN

MEDIDAS DE CENTRALIZACIÓN Educagua.com MEDIDAS DE CETRALIZACIÓ Las meddas de cetralzacó so estadístcos que releja algú valor global de la sere estadístca. Las prcpales meddas de cetralzacó so: Meda artmétca smple. Meda artmétca

Más detalles

Tema 6: Introducción al muestreo. Estimadores

Tema 6: Introducción al muestreo. Estimadores Facultad de Ecoomía y Empresa Práctcas ema 6.- Itroduccó al muestreo. Estmadores ema 6: Itroduccó al muestreo. Estmadores VARIABLE Certa varable aleatora X se dstrbuye segú la fucó de desdad: sedo E(X)

Más detalles

NOMBRE. para los nuevos datos, incrementando 5 unidades cada calificación. entonces la media sumando 5 unidades a cada calificación es

NOMBRE. para los nuevos datos, incrementando 5 unidades cada calificación. entonces la media sumando 5 unidades a cada calificación es UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

No debe entregar los enunciados

No debe entregar los enunciados Curso 01-13 EAMEN MODELO A ág. 1 INTRODUCCIÓN AL ANÁLII DE DATO ETIEMBRE 013 Códgo asgatura: 6011037 EAMEN TIO TET MODELO A DURACION: HORA Materal: Addeda (Formularo y Tablas) y calculadora (cualquer modelo)

Más detalles

Supongamos que hemos aplicado el test F y hemos rechazado la H0.

Supongamos que hemos aplicado el test F y hemos rechazado la H0. Comparacó de medas tomadas de a pares CONDICION Meda s --------- ---------- ------ ---------- 0.00 3.0000 0.00 3.73 3 97.00 3.0000 4 93.00.44 TOTAL 98.73.6036 Supogamos que hemos aplcado el test F y hemos

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

X / n : proporción de caras ( = frecuencia relativa del suceso A = f A = n A / n ) Se espera que a medida que n crece la frecuencia relativa de cara

X / n : proporción de caras ( = frecuencia relativa del suceso A = f A = n A / n ) Se espera que a medida que n crece la frecuencia relativa de cara 95 Teoremas límte Cosderemos el exermeto aleatoro que cosste e arrojar ua moeda equlbrada veces. Suogamos que se regstra la roorcó de caras. U resultado coocdo es que esta roorcó estará cerca de /. Formalzado

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor árbara Cáovas Coesa Estadístca Descrptva 1 Cálculo de Probabldades Trata de descrbr y aalzar alguos caracteres de los dvduos de u grupo dado, s extraer coclusoes para u grupo mayor Poblacó Idvduo o Udad

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

TEMA 9. Contrastes no paramétricos y bondad de ajuste

TEMA 9. Contrastes no paramétricos y bondad de ajuste TEMA 9. Cotrastes o paramétrcos y bodad de ajuste 9. Al falzar el tema el alumo debe coocer... fereca etre u cotraste parámetrco y uo o paramétrco Característcas de la estmacó utlzado los cotrastes o test

Más detalles

ESTADÍSTICA. Tercera Prueba de Evaluación continua 30 de noviembre de 2015

ESTADÍSTICA. Tercera Prueba de Evaluación continua 30 de noviembre de 2015 Tercera Prueba de Evaluacó cotua 30 de ovembre de 05.- Se ha tomado valores de ua varable físca X, que se supoe ormal, resultado: 30,; 30,8; 9,3; 9; 30,9; 30,8; 9,7; 8,9; 30,5; 3,; 3,3; 8,5. a) Costrur

Más detalles

1 Estadística. Profesora María Durbán

1 Estadística. Profesora María Durbán Tema 5: Estmacó de Parámetros Tema 5: Estmacó de Parámetros 5. Itroduccó y coceptos báscos 5. Propedades de los estmadores 5.4 Dstrbucó de u estmador e el muestreo Objetvos del tema: Al fal del tema el

Más detalles

7. Muestreo con probabilidades desiguales.

7. Muestreo con probabilidades desiguales. 7. Muestreo co probabldades desguales. 7. Itroduccó. 7.. Probabldades de clusó. 7.. Pesos del dseño muestral. 7.. Alguos métodos co probabldades desguales. 7. Estmacó de la meda, proporcó total poblacoales.

Más detalles

3. La distribución normal multivariada

3. La distribución normal multivariada 3. La dstrbucó ormal multvarada Por qué es mportate la dstrbucó ormal multvarada? o Muchas de las téccas multvaradas supoe que los datos fuero geerados de ua dstrbucó ormal multvarada. o E la vda real

Más detalles

Análisis de Regresión

Análisis de Regresión Aálss de Regresó Ig. César Augusto Zapata Urqujo Ig. José Alejadro Marí Del Río Facultad de Igeería Idustral Uversdad Tecológca de Perera 0-05 Modelo de Regresó Leal Smple Y Dados A (, ) =,,. Gráfco o

Más detalles

EXAMEN DE MATEMÁTICAS APLICADAS I Temas 12 a 15

EXAMEN DE MATEMÁTICAS APLICADAS I Temas 12 a 15 1 EXAMEN DE MATEMÁTICAS APLICADAS I Temas 1 a 15 1. Ocho persoas, co smlar destreza e mecaografía, teclearo 0 líeas de teto e u ordeador. El tempo empleado, e mutos, el úmero de errores cometdos, fuero:

Más detalles

Tema 1. La medida en Física. Estadística de la medida Cifras significativas e incertidumbre

Tema 1. La medida en Física. Estadística de la medida Cifras significativas e incertidumbre Tema. La medda e Físca Estadístca de la medda Cfras sgfcatvas e certdumbre Cotedos Herrameta para represetar los valores de las magtudes físcas: los úmeros Sstemas de udades Notacó cetífca Estadístca de

Más detalles

A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A

A I A subconjunto de S A es un Evento s A s es elemento de A Ocurre el evento A Uversdad Técca Federco Sata María Departameto de Iformátca ILI-80 Coceptos áscos Capítulo 5: Modelos de Probabldad Estadístca Computacoal º Semestre 00 Profesor :Héctor llede Pága : www.f.utfsm.cl/~hallede

Más detalles

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD.

INSTITUTO TECNOLÓGICO DE APIZACO PROBABILIDAD AXIOMAS Y TEOREMAS DE LA PROBABILIDAD. NSTTUTO TECNOLÓGCO DE ZCO Estadístca OLDD XOMS Y TEOEMS DE L OLDD. DEFNCONES DE L OLDD. La palabra probabldad se utlza para cuatfcar uestra creeca de que ocurra u acotecmeto determado. Exste tres formas

Más detalles

al nivel de significación α P6: Conclusión: Se debe interpretar la decisión tomada en Paso 5.

al nivel de significación α P6: Conclusión: Se debe interpretar la decisión tomada en Paso 5. 5. NÁLISIS DE VRINZ CONTENIDOS: OBJETIVOS: 5... Prueba de aálss de varaza. 5.. Comparacoes múltples. Determar los pasos a segur al realzar ua prueba de aálss de varaza Platear hpótess para la prueba de

Más detalles

NOMBRE Apellido Paterno Apellido Materno Nombre(s)

NOMBRE Apellido Paterno Apellido Materno Nombre(s) UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

Tema 16: Modelos de distribución de probabilidad: Variables Continuas

Tema 16: Modelos de distribución de probabilidad: Variables Continuas Aálss de Datos I Esquema del Tema 6 Tema 6: Modelos de dstrbucó de robabldad: Varables Cotuas. EL MODELO RECTANGULAR. EL MODELO NORMAL, N(μ, σ) 3. MODELO CHI-CUADRADO DE PEARSON, χ k 4. MODELO t DE STUDENT,

Más detalles

Aplicación de Boostrapping en Regresión I

Aplicación de Boostrapping en Regresión I Aplcacó de Boostrappg e Regresó I U modelo de regresó leal basado e observacoes (x,y ) es de la forma y =x β+e (=,,..) dode y so los valores observados de la varable de respuesta y, y los x so vectores

Más detalles

Definición La distribución de probabilidad de un estadístico recibe el nombre de distribución muestral. La distribución muestral de un estadístico

Definición La distribución de probabilidad de un estadístico recibe el nombre de distribución muestral. La distribución muestral de un estadístico V. Muestreo V.. Dstrbucoes de Muestreo Defcó La dstrbucó de probabldad de u estadístco recbe el ombre de dstrbucó muestral. La dstrbucó muestral de u estadístco depede del tamaño de la poblacó, del tamaño

Más detalles

SEMESTRE DURACIÓN MÁXIMA 2.5 HORAS DICIEMBRE 10 DE 2008 NOMBRE

SEMESTRE DURACIÓN MÁXIMA 2.5 HORAS DICIEMBRE 10 DE 2008 NOMBRE UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS PROBABILIDAD ESTADÍSTICA SEGUNDO EAMEN FINAL RESOLUCIÓN SEMESTRE 009- DURACIÓN

Más detalles

Análisis de Regresión y Correlación Lineal

Análisis de Regresión y Correlación Lineal Aálss de Regresó y Correlacó Leal 2do C. 2018 Mg. Stella Fgueroa Clase Nº 14 Tpos de relacoes etre varables Exste u compoete aleatoro por lo que las predccoes tee asocado u error de predccó. Modelo determsta

Más detalles

PyE_ EF1_TIPO2_

PyE_ EF1_TIPO2_ SEMESTRE 9- TIPO DURACIÓN MÁIMA.5 HORAS JUNIO DE 9 NOMBRE. "Scram" es el térmo que utlza los geeros ucleares para descrbr u rápdo cerre de emergeca de u reactor uclear. La dustra uclear ha hecho esuerzos

Más detalles

Qué es ESTADISTICA? OBJETIVO. Variabilidad de las respuestas. Las mismas condiciones no conducen a resultados exactamente similares PROBLEMA SOLUCIÓN

Qué es ESTADISTICA? OBJETIVO. Variabilidad de las respuestas. Las mismas condiciones no conducen a resultados exactamente similares PROBLEMA SOLUCIÓN Qué es ESADISICA? Es u couto de la rama de las Matemátcas Es algo aburrdo que mplca u motó de cuetas 3 Es u couto de téccas que se puede usar para probar cualquer cosa 4 Es u couto de coocmetos téccas

Más detalles

PRÁCTICA 13: PRUEBA DE HIPÓTESIS DE BONDAD DE AJUSTE E INDEPENDENCIA

PRÁCTICA 13: PRUEBA DE HIPÓTESIS DE BONDAD DE AJUSTE E INDEPENDENCIA PRÁCTICA 3: PRUEBA DE HIPÓTESIS DE BONDAD DE AJUSTE E INDEPENDENCIA E ocasoes ocurre que el ecargado de hacer u trabajo estadístco o está seguro de la dstrbucó de ua determada varable aleatora. Para solucoar

Más detalles

Tema 12: Modelos de distribución de probabilidad: Variables Continuas

Tema 12: Modelos de distribución de probabilidad: Variables Continuas Aálss de Datos I Esquema del Tema Tema : Modelos de dstrbucó de robabldad: Varables Cotuas. EL MODELO RECTANGULAR. EL MODELO NORMAL, N(; ) 3. MODELO CHI-CUADRADO DE PEARSON, k 4. MODELO t DE STUDENT, t

Más detalles

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Estadístca y probabldad 1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL 1.1 DISTRIBUCIONES ESTADÍSTICAS Se usa dagramas de barras, dode la altura de éstas represeta la recueca de cada

Más detalles

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética

Objetivos. Introducción n a las medidas de posición n (tendencia central o tipismo): Moda y Mediana Media aritmética Objetvos Itroduccó a las meddas de poscó (tedeca cetral o tpsmo): Moda y Medaa Meda artmétca tca Cuartles,, decles y percetles Meddas de poscó Defcó: : refereca a u lugar específco de ua dstrbucó, epresado

Más detalles

ESTADÍSTICA. UNIDAD 3 Características de variables aleatorias. Ingeniería Informática TEORÍA

ESTADÍSTICA. UNIDAD 3 Características de variables aleatorias. Ingeniería Informática TEORÍA Uversdad Nacoal del Ltoral Facultad de Igeería y Cecas Hídrcas ESTADÍSTICA Igeería Iformátca TEORÍA Mg.Ig. Susaa Valesberg Profesor Ttular UNIDAD Característcas de varables aleatoras Estadístca - Igeería

Más detalles

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD 1. CONCEPTO DE ESTADÍSTICA : Es la ceca que estuda la terpretacó de datos umércos. a) Proceso estadístco : Es aquél que a partr de uos datos umércos, obteemos

Más detalles

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos

Más detalles

Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGNIFICADO.

Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGNIFICADO. Tema 60.Parámetros estadístcos. Calculo propedades y sgfcado Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGIFICADO.. Itroduccó. Defcó de estadístca. Estadístca descrptva y estadístca ferecal.

Más detalles

En esta sección estudiaremos el caso en que se usa un solo "Predictor" para predecir la variable de interés ( Y )

En esta sección estudiaremos el caso en que se usa un solo Predictor para predecir la variable de interés ( Y ) Regresó Leal mple. REGREIÓN IMPLE El aálss de regresó es ua herrameta estadístca la cual utlza la relacó, etre dos o más varables de modo que ua varable pueda ser predcha desde la (s) otra (s). Por ejemplo

Más detalles

LECTURA 02: DISTRIBUCIONES DE FRECUENCIAS (PARTE I) DISTRIBUCIONES DE FRECUENCIAS EN PUNTOS AISLADOS

LECTURA 02: DISTRIBUCIONES DE FRECUENCIAS (PARTE I) DISTRIBUCIONES DE FRECUENCIAS EN PUNTOS AISLADOS Uversdad Católca Los Ágeles de Cmbote LECTURA 0: DISTRIBUCIONES DE FRECUENCIAS (PARTE I) DISTRIBUCIONES DE FRECUENCIAS EN PUNTOS AISLADOS TEMA : DISTRIBUCIONES DE FRECUENCIAS: DEFINICIÓN Y CLASIFICACIÓN

Más detalles

Colegio Sagrada Familia Matemáticas 4º ESO ESTADÍSTICA DESCRIPTIVA

Colegio Sagrada Familia Matemáticas 4º ESO ESTADÍSTICA DESCRIPTIVA Colego Sagrada Famla Matemátcas 4º ESO 011-01 1.- TERMIOLOGÍA. TABLAS Y GRÁFICOS ESTADÍSTICOS ESTADÍSTICA DESCRIPTIVA La poblacó es el cojuto de de todos los elemetos, que cumpledo ua codcó, deseamos estudar.

Más detalles

ÍNDICE 1. INTRODUCCIÓN A LA PROBABILIDAD... 11

ÍNDICE 1. INTRODUCCIÓN A LA PROBABILIDAD... 11 ÍNDICE 1. INTRODUCCIÓN A LA PROBABILIDAD... 11 1.1. Probabldad, espaco muestral y sucesos... 11 1.1.1. Espaco muestral y sucesos... 11 1.1.. Probabldad... 14 1.1.3. Varable aleatora y fucó de dstrbucó...

Más detalles

Análisis de la Varianza

Análisis de la Varianza Descrpcó breve del tema Aálss de la Varaza Tema. troduccó al dseño de expermetos. El modelo. Estmacó de los parámetros. Propedades de los estmadores 5. Descomposcó de la varabldad 6. Estmacó de la dfereca

Más detalles

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

Test de Hipótesis. Error de tipo I: Rechazar H 0 siendo H 0 Verdadera. Error de tipo II: No rechazar H 0 siendo H 0 Falsa

Test de Hipótesis. Error de tipo I: Rechazar H 0 siendo H 0 Verdadera. Error de tipo II: No rechazar H 0 siendo H 0 Falsa Error tpo I: Rechazar H sedo H Verdara Test Hpótess Error tpo II: No rechazar H sedo H Falsa Nvel Sgfcacó: = P(error tpo I = P(Rechazar H sedo H Verdara Probabldad error tpo II: = P(error tpo II = P(No

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Poblacó: Es u cojuto de elemetos co ua determada característca. Muestra: Es u subcojuto de la poblacó. Muestreo: Es el proceso para elegr ua muestra que sea represetatva de la poblacó.

Más detalles

Cuándo empezó la Estadística? 1.1. El concepto de Estadística. Qué es y para qué sirve?

Cuándo empezó la Estadística? 1.1. El concepto de Estadística. Qué es y para qué sirve? 1.1. El cocepto de Estadístca. Qué es y para qué srve? La Estadístca se ocupa de la recoleccó, agrupacó, presetacó, aálss e terpretacó de datos. A meudo se llama estadístcas a las lstas de estos datos,

Más detalles

Distribuciones Muestrales

Distribuciones Muestrales Estadístca II / Fucoes Varables Aleatoras. Ig. Dey Gozález Dstrbucoes Muestrales Muestreo Aleatoro Poblacó Muestra Herrametas Estadístcas Medaa Muestral ) ) / (( ) / ( ) / ( ; es mpar ; es par = = Meda

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

EJERCICIOS RESUELTOS TEMA 3.

EJERCICIOS RESUELTOS TEMA 3. INTRODUCCIÓN AL ANÁLII DE DATO EJERCICIO REUELTO TEMA 3. 3.1. La ampltud total de la dstrbucó de frecuecas de la tabla 1. es: A) 11; B) 1; C). Tabla 1. Estatura e cetímetros de ños de 1 meses de edad.

Más detalles

ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL

ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL ANÁLISIS DE REGRESIÓN Y CORRELACIÓN LINEAL TIPOS DE RELACIONES ENTRE VARIABLES Dos varables puede estar relacoadas por: Modelo determsta Modelo estadístco Ejemplo: Relacó de la altura co la edad e ños.

Más detalles

Intensificación en Estadística

Intensificación en Estadística GRADO EN VETERINARIA DEPARTAMENTO DE ESTADÍSTICA E IO 0-0 IV Curso Cero Itesfcacó e Estadístca Itroduccó a la fucó Sumatoro Itroduccó Cocepto de fucó sumatoro Aplcacoes Itroduccó Cocepto de fucó sumatoro

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central Meddas de Tedeca Cetral Ua edda de tedeca cetral es u valor que se calcula a partr de u cojuto de datos y que se utlza para descrbr los datos e algua fora. Geeralete quereos que el valor sea represetatvo

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

Regla de Bayes. Pedro J. Rodríguez Esquerdo

Regla de Bayes. Pedro J. Rodríguez Esquerdo Regla de Bayes Pedro J. Rodríguez Esquerdo Isttuto de Estadístca y Sstemas Computadorzados de Iformacó Facultad de Admstracó de Empresas y Departameto de Matemátcas Facultad de Cecas Naturales Recto de

Más detalles

Nociones de Estadística

Nociones de Estadística Químca Aalítca Prof. Aa Galao Jméez Nocoes de Estadístca Las medcoes tee sempre asocadas u error expermetal (herete a la resolucó del equpameto empleado, a errores aleatoros y/o a errores sstemátcos).

Más detalles

Los Histogramas. Histograma simple

Los Histogramas. Histograma simple Los Hstogramas El Hstograma es ua forma de represetacó de datos que permte aalzar fáclmete el comportameto de ua poblacó, ya sea per se, o por medo de ua muestra. U Hstograma se defe como u cojuto de barras

Más detalles

GUÍA DE EJERCICIOS ESTADÍSTICA DESCRIPTIVA

GUÍA DE EJERCICIOS ESTADÍSTICA DESCRIPTIVA GUÍA DE EJERCICIOS ESTADÍSTICA DESCRIPTIVA Área Matemátcas- Aálss Estadístco Módulo Básco de Igeería (MBI) Resultados de apredzaje Apreder el correcto uso de la calculadora cetífca e modo estadístco, además

Más detalles

Colegio Sagrada Familia Matemáticas 4º ESO

Colegio Sagrada Familia Matemáticas 4º ESO Colego Sagrada Famla Matemátcas 4º ESO 00-0 ESTADÍSTICA DESCRIPTIVA.- TERMIOLOGÍA. TABLAS Y GRÁFICOS ESTADÍSTICOS La poblacó es el cojuto de de todos los elemetos, que cumpledo ua codcó, deseamos estudar.

Más detalles

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS Estadístca Tema. Seres Estadístcas. Dstrbucoes de frecuecas. Pág. I. ANÁLISIS DESCIPTIVO DE UN CONJUNTO DE DATOS Seres Estadístcas. Dstrbucoes de frecuecas.. Defcó de Estadístca... Coceptos geerales...2

Más detalles

n p(a ) = n p(a ) = n k Nº de casos favorables de A Nº de casos posibles de E p(a) = Capítulo PROBABILIDAD 1. Introducción

n p(a ) = n p(a ) = n k Nº de casos favorables de A Nº de casos posibles de E p(a) = Capítulo PROBABILIDAD 1. Introducción Capítulo VII PROBABILIDAD 1. Itroduccó Se dcaba e el capítulo ateror que cuado u expermeto aleatoro se repte u gra úmero de veces, los posbles resultados tede a presetarse u úmero muy parecdo de veces,

Más detalles

DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE INCERTIDUMBRE 1 - ELEMENTOS DEL DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE CERTEZA

DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE INCERTIDUMBRE 1 - ELEMENTOS DEL DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE CERTEZA DIAGRAMA DE EQUILIBRIO EN CONDICIONES DE INCERTIDUMBRE - INTRODUCCION Es tecó aalzar e este trabajo las coocdas relacoes costo-volume-utldad para el caso e que sus compoetes sea: w : costo varable utaro

Más detalles

ESTADÍSTICA 4º E.S.O. TERMINOLOGÍA ESTADÍSTICA TERMINOLOGÍA ESTADÍSTICA TERMINOLOGÍA ESTADÍSTICA. Tipos de caracteres.

ESTADÍSTICA 4º E.S.O. TERMINOLOGÍA ESTADÍSTICA TERMINOLOGÍA ESTADÍSTICA TERMINOLOGÍA ESTADÍSTICA. Tipos de caracteres. ESTADÍSTICA UNIDIMENSIONAL 4º E.S.O. TERMINOLOGÍA ESTADÍSTICA Ejemplo: Se quere hacer u estudo estadístco sobre el país de orge de 40 alumos de u Colego. Poblacó: Cojuto de elemetos sobre los que se realza

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TMA D MATMÁTICA (Oposcoes de ecudara) TMA 58 POBLACIO Y MUTRA. CODICIO D RPRTATIVIDAD D UA MUTRA. TIPO D MUTRO. TAMAÑO D UA MUTRA.. Itroduccó.. Tpos de Muestreo. 3. stmacó. 3.. Propedades de u Bue stmador.

Más detalles

CAPÍTULO III TÉCNICAS DE SIMULACIÓN ESTADÍSTICA. Los datos sintéticos son elementos de suma importancia en los sistemas de diseño en

CAPÍTULO III TÉCNICAS DE SIMULACIÓN ESTADÍSTICA. Los datos sintéticos son elementos de suma importancia en los sistemas de diseño en CAPÍTULO III TÉCNICAS DE SIMULACIÓN ESTADÍSTICA 3. Itroduccó Los datos stétcos so elemetos de suma mportaca e los sstemas de dseño e presas de almaceameto, ya que se evalúa el propósto del sstema co sumo

Más detalles

Calificación= (0,4 x Aciertos) - (0,2 x Errores) No debe entregar los enunciados

Calificación= (0,4 x Aciertos) - (0,2 x Errores) No debe entregar los enunciados eptembre 013 EAMEN MODELO B ág. 1 INTRODUCCIÓN AL ANÁLII DE DATO ETIEMBRE 013 Códgo asgatura: 6011037 EAMEN TIO TET MODELO B DURACION: HORA Materal: Addeda (Formularo y Tablas) y calculadora o programable

Más detalles

Regresión lineal simple

Regresión lineal simple Descrpcó breve del tema Regresó leal smple Tema. Itroduccó. El modelo de regresó smple 3. Hpótess del modelo Lealdad, homogeedad, homocedastcdad, depedeca ormaldad 4. Estmacó de los parámetros Mímos cuadrados,

Más detalles

4 METODOLOGIA ADAPTADA AL PROBLEMA

4 METODOLOGIA ADAPTADA AL PROBLEMA 4 MEODOLOGA ADAPADA AL PROBLEMA 4.1 troduccó Báscamete el problema que se quere resolver es ecotrar la actuacó óptma sobre las tesoes de los geeradores, la relacó de tomas de los trasformadores y el valor

Más detalles

Teoría de Muestras e Inferencia

Teoría de Muestras e Inferencia Teoría de Muestras e Ifereca TEORÍA DE MUESTRAS E INFERENCIA. Poblacó y muestra. Métodos de muestreo 3. Dstrbucoes asocadas al proceso de muestreo 3. Dstrbucó de la meda de ua poblacó ormal 3. Dstrbucó

Más detalles