TIRAS DE FRACCIONES. Alumno: Fecha. Señala cada parte de la tira con la fracción que corresponda. Hemos hecho los dos primeros para que te fijes:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TIRAS DE FRACCIONES. Alumno: Fecha. Señala cada parte de la tira con la fracción que corresponda. Hemos hecho los dos primeros para que te fijes:"

Transcripción

1 Señala cada parte de la tira con la fracción que corresponda. Hemos hecho los dos primeros para que te fijes: En cuántas partes iguales está dividida la tira? Qué fracción es cada parte? En cuántas partes iguales está dividida la tira? Qué fracción es cada parte? En cuántas partes iguales está dividida la tira? Qué fracción es cada parte? En cuántas partes iguales está dividida la tira? Qué fracción es cada parte? En cuántas partes iguales está dividida la tira? Qué fracción es cada parte? En cuántas partes iguales está dividida la tira? Qué fracción es cada parte? En cuántas partes iguales está dividida la tira? Qué fracción es cada parte? En cuántas partes iguales está dividida la tira? Qué fracción es cada parte? En cuántas partes iguales está dividida la tira? Qué fracción es cada parte? En cuántas partes iguales está dividida la tira? Qué fracción es cada parte?

2 Cuántas mitades hay en un entero? Cuántos tercios hay en un entero? Cuántos cuartos hay en un entero? Cuántos quintos hay en un entero? Cuántos sextos hay en un entero? Cuántos séptimos hay en un entero? Cuántos octavos hay en un entero? Cuántos novenos hay en un entero? Cuántos décimos hay en un entero? Comparar mitades, tercios, cuartos cual es más grande Cuántos sextos se utilizan para igualar un tercio? Los alumnos deben darse cuenta que algunas fracciones son equivalentes o iguales

3 Reconociendo enteros y sus mitades Busca la tira que no tiene ninguna división Qué número utilizas para representarla numéricamente? Busca la tira que está dividida en dos partes y colócala debajo de la anterior Cuántas partes han formado del entero? Colorea una de esas partes. Qué porción de la tira representa la parte coloreada? Qué porción de la tira representa la parte no coloreada? Cuántas partes son necesarias para formar el entero? Cómo se representan numéricamente cada una de estas partes? Cómo se diría esta representación en palabras? Busca la tira que está dividida en cuatro partes y colócala debajo de las anteriores. Cuántas partes han formado del entero? Colorea una de esas partes. Qué porción de la tira representa la parte coloreada? Qué porción de la tira representa la parte no coloreada? Cuántas partes son necesarias para formar el entero? Cuántas partes son necesarias para formar un medio?

4 Cómo se representan numéricamente cada una de estas partes? Cómo se diría esta representación en palabras? Busca la tira que está dividida en ocho partes y colócala debajo de las anteriores. Cuántas partes han formado del entero? Colorea una de esas partes. Qué porción de la tira representa la parte coloreada? Qué porción de la tira representa la parte no coloreada? Cuántas partes son necesarias para formar el entero? Cuántas partes son necesarias para formar un medio? Cuántas partes son necesarias para formar un cuarto? Cuántas partes son necesarias para formar dos cuartos? Cuántas partes son necesarias para formar tres cuartos? Cómo se representan numéricamente cada una de estas partes? Cómo se diría esta representación en palabras? Colorea en los círculos ½ ¼ 2/4 ¾ 1/8 5/8

5 Reconociendo enteros y sus tercios Busca la tira que está dividida en tres partes y colócala debajo de las anteriores. Cuántas partes han formado el entero? Colorea una de esas partes. Qué porción de la tira representa la parte coloreada? Qué porción de la tira representa la parte no coloreada? Cuántas partes son necesarias para formar el entero? Cómo se representan numéricamente cada una de estas partes? Cómo se diría esta representación en palabras? Explica lo que significa una tercera parte de un entero. Busca la tira que está dividida en seis partes y colócala debajo de las anteriores. Cuántas partes han formado el entero? Colorea una de esas partes.

6 Qué porción de la tira representa la parte coloreada? Qué porción de la tira representa la parte no coloreada? Cuántas partes son necesarias para formar el entero? Cómo se representan numéricamente cada una de estas partes? Cómo se diría esta representación en palabras? Colorea tres de estas partes. Tienes coloreadas tres partes de las seis, compara estas partes con una parte de la tira de las mitades. Qué puedes deducir? Busca la tira que está dividida en nueve partes iguales y colócala debajo de las anteriores. Cuántas partes han formado el entero? Colorea una de esas partes. Qué porción de la tira representa la parte coloreada? Qué porción de la tira representa la parte no coloreada? Cuántas partes son necesarias para formar el entero? Cómo se representan numéricamente cada una de estas partes? Cómo se diría esta representación en palabras?

7 Colorea tres de estas partes. Tienes coloreadas tres partes de las nueve, compara estas partes con una parte de la tira de los tercios. Qué puedes deducir? Busca la tira que está dividida en cinco partes iguales y colócala debajo de las anteriores. Cuántas partes han formado el entero? Colorea una de esas partes. Qué porción de la tira representa la parte coloreada? Qué porción de la tira representa la parte no coloreada? Cuántas partes son necesarias para formar el entero? Cómo se representan numéricamente cada una de estas partes? Cómo se diría esta representación en palabras? Busca la tira que está dividida en diez partes iguales y colócala debajo de las anteriores.

8 Cuántas partes han formado el entero? Colorea una de esas partes. Qué porción de la tira representa la parte coloreada? Qué porción de la tira representa la parte no coloreada? Cuántas partes son necesarias para formar el entero? Cómo se representan numéricamente cada una de estas partes? Cómo se diría esta representación en palabras? Busca la tira que está dividida en siete partes iguales y colócala debajo de las anteriores. Cuántas partes han formado el entero? Colorea una de esas partes. Qué porción de la tira representa la parte coloreada? Qué porción de la tira representa la parte no coloreada? Cuántas partes son necesarias para formar el entero?

9 Cómo se representan numéricamente cada una de estas partes? Cómo se diría esta representación en palabras? Escribe debajo de cada círculo el número que representa la parte que está coloreada:

10 Comparando fracciones. Identificar cada una de las tiras de fracciones y colócalas unas debajo de otras por orden de mayor a menor según el tamaño de las divisiones de cada tira. Busca todas las fracciones que sean iguales a 1/2 Busca todas las fracciones que sean iguales a 1/3 Busca todas las fracciones que sean iguales a 1/5 Las fracciones que representan la misma cantidad se llaman fracciones equivalentes. Fracciones Equivalentes 1 2 = = 5 10 Escribe los números que faltan en cada círculo para que resulten fracciones equivalentes a la del cuadrado central

11 Fracciones impropias y números mixtos Coge dos tiras de enteros y una tira de tercios Cuántos tercios hay en un entero? Y en dos enteros? Cómo representaríamos numéricamente la cantidad dos enteros y un tercio? Los números formados por un entero y una fracción se llaman números mixtos. Colorea 3 enteros y 5/6 Colorea Cuántas tiras de un entero has coloreado? Cuántos tercios hay coloreados en la última tira? Las fracciones que representan cantidades mayores que un entero se llaman fracciones impropias. Identifica en las tiras y colorea en el papel las siguientes fracciones impropias 17/8 9/6

12 Representar los siguientes números mixtos:

13 Sumamos fracciones con el mismo denominador Representa con las tiras las siguientes sumas de fracciones: Escribe las respuestas como fracción impropia y como número mixto.

14 + Fracción impropia Número mixto Es igual el denominador de todas las fracciones que has sumado? Cuál es el denominador de la fracción suma? Cómo se obtiene el numerador de la fracción suma? Explica a tu manera como sumas fracciones que tienen el mismo denominador:

15 Sumamos fracciones con distinto denominador Representa con las tiras las siguientes sumas de fracciones:

16 Explica a tu manera que haces para sumar fracciones que tienen distinto denominador:

17 Restamos fracciones que tienen el mismo denominador I I I I Explica como has restado las fracciones que tienen el mismo denominador.

18 Restamos fracciones que tienen distinto denominador Representa con las tiras las siguientes restas de fracciones:

19 Explica a tu manera que haces para restar fracciones que tienen distinto denominador:

20 Juego con las tiras de fracciones Con el juego podemos trabajar fracciones equivalentes, comparar fracciones y descomponer fracciones. Material necesario: Tablero, dado de fracciones, dado numérico, 10 fichas para cada equipo. Número de jugadores: Dos equipos de hasta 4 jugadores cada uno. Reglas de juego Cada equipo elige la pista que va a utilizar (verde o amarilla) y coloca sus fichas en el 0 de cada tira. Por turno, cada equipo tira los dos dados, sale un número natural y una fracción. Tiene que avanzar el resultado de multiplicar el número por la fracción. Lo puede hacer con una o varias fichas de manera que el total de la longitud recorrida sea igual al resultado de la operación realizada. Mientras que un equipo hace las operaciones y decide por donde avanzar, el otro equipo controla los movimientos. Si no están de acuerdo en que los movimientos han sido los correctos, deben preguntar que le expliquen las acciones realizadas. En caso de no ser correcto el movimiento se vuelve a la posición anterior. Pierde el turno el equipo que no encuentre el movimiento correcto. Gana quien primero lleve 5 fichas hasta la unidad.

Las fracciones son unos números especiales que expresan las partes iguales que tomamos del total en que se ha dividido la unidad.

Las fracciones son unos números especiales que expresan las partes iguales que tomamos del total en que se ha dividido la unidad. UNIDAD 6: FRACCIONES 6. Conocimiento de fracciones Las fracciones son unos números especiales que expresan las partes iguales que tomamos del total en que se ha dividido la unidad. 6.. Términos Los términos

Más detalles

UNIDAD 5. FRACCIONES Y OPERACIONES

UNIDAD 5. FRACCIONES Y OPERACIONES UNIDAD. FRACCIONES Y OPERACIONES. FRACCIONES.. LA FRACCIÓN COMO OPERADOR Y COMO NÚMERO.. FRACCIONES EQUIVALENTES.. REDUCCIÓN DE FRACCIONES A COMÚN DENOMINADOR.. OPERACIONES CON FRACCIONES.. FRACCIONES

Más detalles

Victoria Aguilera Fernández

Victoria Aguilera Fernández Victoria Aguilera Fernández G.T. Elaboración de Materiales y Recursos Didácticos en un Centro TIC. Fracciones.- / 1 FRACCIÓN Una fracción es la expresión numérica que representa la división de un todo

Más detalles

FRACCIONES. FRACCIÓN: es una o varias partes iguales en que se divide la unidad.

FRACCIONES. FRACCIÓN: es una o varias partes iguales en que se divide la unidad. Teoría er Ciclo Primaria Página 9 FRACCIONES FRACCIÓN es una o varias partes iguales en que se divide la unidad. La fracción está formada por dos números naturales a y b colocado uno encima del otro y

Más detalles

UNIDAD 6: FRACCIONES ÍNDICE. 6.1 Conocimiento de fracciones: Términos de las fracciones Representación. 6.1.

UNIDAD 6: FRACCIONES ÍNDICE. 6.1 Conocimiento de fracciones: Términos de las fracciones Representación. 6.1. UNIDAD 6: FRACCIONES ÍNDICE 6. Conocimiento de fracciones: 6.. Términos de las fracciones. 6.. Representación 6.. Interpretación 6. Lectura y escritura de fracciones. 6. Comparación de fracciones. 6..

Más detalles

Las fracciones y sus términos

Las fracciones y sus términos Las fracciones Las fracciones y sus términos Comparación de fracciones con la unidad Comparación de fracciones entre sí Fracciones decimales La fracción de una cantidad Fracciones equivalentes Simplificar

Más detalles

Tema 3. Números racionales

Tema 3. Números racionales Tema 3. Números racionales Primer Parcial en semana del 15 al 19 de noviembre 1 Fracciones Esquema Concepto de Fracción Significados de las fracciones Representaciones y modelos Tipos de fracciones 2 Concepto-definición

Más detalles

Aprendiendo Fracciones Coloreando

Aprendiendo Fracciones Coloreando Alianza para el Aprendizaje de las Ciencias y las Matemáticas (AlACiMa) Actividad de Matemáticas Nivel -3 Guía del Maestro Aprendiendo Fracciones Coloreando TIEMPO: 5 minutos OBJETIVOS: Durante esta actividad

Más detalles

33 ESO. «Es imposible aprender matemáticas sin resolver ejercicios» Godement. Matemático

33 ESO. «Es imposible aprender matemáticas sin resolver ejercicios» Godement. Matemático «Es imposible aprender matemáticas sin resolver ejercicios» ESO Godement. Matemático ÍNDICE: MI QUESITO DIARIO 1. FRACCIONES QUÉ SON?. EQUIVALENCIA Y SIMPLIFICACIÓN. LA FRACCION COMO OPERADOR 4. OPERACIONES

Más detalles

Si partimos una pizza en ocho trozos iguales y comemos dos de ellos, decimos que hemos comido de la pizza dos octavas partes :

Si partimos una pizza en ocho trozos iguales y comemos dos de ellos, decimos que hemos comido de la pizza dos octavas partes : Las fracciones Si partimos una pizza en ocho trozos iguales y comemos dos de ellos, decimos que hemos comido de la pizza dos octavas partes : En un partido de baloncesto, que está dividido en cuatro tiempos

Más detalles

Fracciones numéricas enteras

Fracciones numéricas enteras Números racionales Fracciones numéricas enteras En matemáticas, una fracción numérica entera expresa la división de un número entero en partes iguales. Una fracción numérica consta de dos términos: El

Más detalles

1) Qué fracción de año representan 7 meses? Y 3 meses? Y 6 meses? 3) Cuántas manzanas son 2/5 de una caja que contiene 50 manzanas?

1) Qué fracción de año representan 7 meses? Y 3 meses? Y 6 meses? 3) Cuántas manzanas son 2/5 de una caja que contiene 50 manzanas? FRACCIONES Y DECIMALES ) Qué fracción de año representan meses? Y meses? Y meses? ) Un grifo llena un depósito en horas. Qué parte del depósito llenará: primero, en horas; segundo, en horas, y tercero,

Más detalles

3.- LOS NÚMEROS FRACCIONARIOS

3.- LOS NÚMEROS FRACCIONARIOS 3.1 Las fracciones. 3.- LOS NÚMEROS FRACCIONARIOS Una fracción es la representación de un reparto, y la utilizamos comúnmente más de lo que parece, por ejemplo: en la compra, cuando decimos medio kilo

Más detalles

6º lección TEMA 6.- LAS FRACCIONES

6º lección TEMA 6.- LAS FRACCIONES º lección TEMA.- LAS FRACCIONES -.Los términos de una fracción son el numerador y el denominador. -. El denominador indica el número de partes iguales en que se divide la unidad. -. El numerador indica

Más detalles

MATEMÁTICAS 5. º CURSO UNIDAD 1: SISTEMAS DE NUMERACIÓN

MATEMÁTICAS 5. º CURSO UNIDAD 1: SISTEMAS DE NUMERACIÓN MATEMÁTICAS 5. º CURSO UNIDAD 1: SISTEMAS DE NUMERACIÓN OBJETIVOS Conocer los cuatro primeros órdenes de unidades y las equivalencias entre ellos. Leer, escribir y descomponer números de hasta cuatro cifras.

Más detalles

C.E.I.P. Ignacio Halcón. Proyecto Curricular. Matemáticas

C.E.I.P. Ignacio Halcón. Proyecto Curricular. Matemáticas Fracciones Decimales y Porcentajes - 5º Las Fracciones y los Números Decimales Rocío ha pintado el tablero en franjas de colores. Indica la fracción que representa cada uno de esos colores. Hemos dividido

Más detalles

Actividades de refuerzo

Actividades de refuerzo MATEMÁTICAS 1º SECUNDARIA CUADERNO DE ACTIVIDADES DE REFUERZO Nombre: Curso: Fecha de entrega: 1 Números naturales. Divisibilidad 1. Rodea con una circunferencia los múltiplos de 4, y con un cuadrado los

Más detalles

a, donde a NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE

a, donde a NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE NÚMEROS REALES Dividir y tomar partes de una unidad. FRACIÓN LA FORMA a Como OPERADOR RAZÓN PORCENTAJE COCIENTE Que se pueden escribir de la forma b a, donde a y b son enteros y b 0. Operaciones: suma,

Más detalles

1. El sistema de los números reales

1. El sistema de los números reales 1. El sistema de los números reales Se iniciará definiendo el conjunto de números que conforman a los números reales, en la siguiente figura se muestra la forma en la que están contenidos estos conjuntos

Más detalles

00-A-1/12. Recordamos. Numeración Lectura de un número natural. Nombre:

00-A-1/12. Recordamos. Numeración Lectura de un número natural. Nombre: 00-A-1/12 Recordamos. Numeración Lectura de un número natural Un número de tres o menos cifras se nombra primero la centena, después la decena y por último la unidad. El número 548 se lee quinientos cuarenta

Más detalles

Círculo de fracciones

Círculo de fracciones Gira los dos círculos en ambos sentidos, observa cómo se representan diferentes fracciones. Escribe las fracciones que aparecen en el círculo. En el círculo aparecen las fracciones Por qué no están escritas

Más detalles

1 Números racionales

1 Números racionales 8 _ 0-0.qxd //0 : Página Números racionales INTRODUCCIÓN Esta unidad desarrolla conceptos y técnicas ya conocidos de otros cursos. Sin embargo, es conveniente repasar las distintas interpretaciones que

Más detalles

MATEMÁTICAS 6. º CURSO UNIDAD 6: FRACCIONES

MATEMÁTICAS 6. º CURSO UNIDAD 6: FRACCIONES MATEMÁTICAS 6. º CURSO UNIDAD 6: FRACCIONES OBJETIVOS Concepto de número mixto. Identificar gráficamente fracciones equivalentes y comprobar si dos fracciones son equivalentes. Obtener fracciones equivalentes

Más detalles

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción

Fracciones. 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. 1.b. Definición y elementos de una fracción 1. Concepto de fracción 1.a. Las fracciones en nuestra vida Lee el texto de pantalla. Fracciones Pon, al menos tres ejemplos de 1ª Forma: utilización de fracciones en el lenguaje habitual. Uno original

Más detalles

Conoce y representa fracciones de manera gráfica usando figuras geométricas regulares.

Conoce y representa fracciones de manera gráfica usando figuras geométricas regulares. PARTES DE UN ENTERO 02 1 Conoce y representa fracciones de manera gráfica usando figuras geométricas regulares. En presentación de contenidos repasa las partes de una fracción y representa las figuras

Más detalles

Los números naturales son aquellos números que utilizamos para contar. cosas. Los números naturales empiezan en el 0 y nunca se acaban.

Los números naturales son aquellos números que utilizamos para contar. cosas. Los números naturales empiezan en el 0 y nunca se acaban. DEFINICIÓN Los números naturales son aquellos números que utilizamos para contar cosas. Los números naturales empiezan en el 0 y nunca se acaban. Los números naturales se usan para la el DNI, los números

Más detalles

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones

Más detalles

SISTEMA DE NUMERACIÓN DECIMAL

SISTEMA DE NUMERACIÓN DECIMAL 1 SISTEMA DE NUMERACIÓN DECIMAL 1. Indica los órdenes: centenas = centenas de millar = unidades de millón = millares = decenas de millar = centenas de millón = decena de millón = decenas simples = 2. Escribe

Más detalles

Materia: Matemática de Octavo Tema: Operaciones en Q Adición de fracciones con diferente denominador

Materia: Matemática de Octavo Tema: Operaciones en Q Adición de fracciones con diferente denominador Materia: Matemática de Octavo Tema: Operaciones en Q Adición de fracciones con diferente denominador La adición de fracciones con diferente denominador la podemos definir como: Sean, entonces, donde es

Más detalles

Operaciones con fracciones I

Operaciones con fracciones I Matemáticas.º ESO Unidad Ficha 1 Operaciones con fracciones I La suma y resta de fracciones con igual denominador es otra fracción que tiene por: - Numerador: la suma o resta de los numeradores. - Denominador:

Más detalles

UNIDAD 4. NÚMEROS DECIMALES Y OPERACIONES

UNIDAD 4. NÚMEROS DECIMALES Y OPERACIONES UNIDAD 4. NÚMEROS DECIMALES Y OPERACIONES 1. PARTES DE UN NÚMERO DECIMAL. 2. LECTURA Y ESCRITURA DE DECIMALES. 3. DESCOMPOSICIÓN DE NÚMEROS. DECIMALES Y VALOR RELATIVO DE LAS CIFRAS. 4. COMPARACIÓN Y ORDENACIÓN

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidad 1: Números reales. 1 Unidad 1: Números reales. 1.- Números racionales e irracionales Números racionales: Son aquellos que se pueden escribir como una fracción. 1. Números enteros 2. Números decimales

Más detalles

FRACCIONES. Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador.

FRACCIONES. Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador. FRACCIONES Una fracción, en general, es la expresión de una cantidad dividida por otra, y una fracción propia representa las partes que tomamos de un todo. El ejemplo clásico es el de un queso que partimos

Más detalles

5º lección TEMA 5.- LAS OPERACIONES CON FRACCIONES

5º lección TEMA 5.- LAS OPERACIONES CON FRACCIONES º lección TEMA.- LAS OPERACIONES CON FRACCIONES Para calcular la fracción de una cantidad, dividimos la cantidad entre el denominador y el resultado lo multiplicamos por el numerador. -. Calcula: Ejemplo

Más detalles

LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES. 28,246 = 2D + 8 U + 2d + 4 c + 6 m 28,246 = 20 + 8 + 0,2 + 0,04 + 0,006

LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES. 28,246 = 2D + 8 U + 2d + 4 c + 6 m 28,246 = 20 + 8 + 0,2 + 0,04 + 0,006 LOS NÚMEROS DECIMALES DESCOMPOSICIÓN DE NÚMEROS DECIMALES Los números decimales tienen dos partes separadas por una coma. 28,246 es un número decimal. Parte entera Parte decimal 6º de E. Primaria Decenas

Más detalles

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES TEMA 1: NÚMEROS REALES 3º ESO Matemáticas Apuntes para trabajo del alumnos en el aula. 1. Fracciones. Números racionales Si se multiplican o dividen el numerador y el denominador de una fracción por un

Más detalles

OPERACIONES CON FRACCIONES

OPERACIONES CON FRACCIONES OPERACIONES CON FRACCIONES ADICIÓN Y SUSTRACCIÓN DE FRACCIONES A) Con el mismo denominador º de E. Primaria Para sumar o restar fracciones con el mismo denominador se suman o se restan los numeradores

Más detalles

Fracciones. 5.1. Cuentas y problema del día. 2. Realiza la siguiente operación: 849,37 + 28,395. 1. Realiza la siguiente operación: 530,98 38,923

Fracciones. 5.1. Cuentas y problema del día. 2. Realiza la siguiente operación: 849,37 + 28,395. 1. Realiza la siguiente operación: 530,98 38,923 Fracciones.1. Cuentas y problema del día 1. Realiza la siguiente operación: 2. Realiza la siguiente operación: 849,7 + 28,9 0,98 8,92 8 4 9, 7 0, 9 8 +. Completa la siguiente operación: 8 92,7 Ò 6, 8 9

Más detalles

TEMA 6. LAS FRACCIONES. Fraccionar es dividir en partes iguales. Se puede fraccionar en las partes que se quiera siempre que sean iguales.

TEMA 6. LAS FRACCIONES. Fraccionar es dividir en partes iguales. Se puede fraccionar en las partes que se quiera siempre que sean iguales. 1. LA FRACCIÓN Y SUS TÉRMINOS TEMA 6. LAS FRACCIONES Fraccionar es dividir en partes iguales. Se puede fraccionar en las partes que se quiera siempre que sean iguales. Fracción es una o varias partes iguales

Más detalles

FRACCIONES Y NÚMEROS RACIONALES. obtienen al dividir la unidad en n partes iguales.

FRACCIONES Y NÚMEROS RACIONALES. obtienen al dividir la unidad en n partes iguales. ESCUELA SECUNDARIA No. 264 MIGUEL SERVET GUÍA PARA EL EXAMEN DE MATEMÁTICAS DE 1 A, 1 B, 1 C, 1 D, CORRESPONDIENTE AL PRIMER BIMESTRE. La siguiente información te servirá para que estudies, sólo deberás

Más detalles

SISTEMA DE NUMERACIÓN DECIMAL. 2.533 Ante período

SISTEMA DE NUMERACIÓN DECIMAL. 2.533 Ante período Los números Decimales, esas comas SISTEMA DE NUMERACIÓN DECIMAL Relación Fracción-Nº Decimal. Parte entera Parte decimal 2.533 Ante período Período Toda fracción se puede escribir en forma decimal, para

Más detalles

operaciones inversas Para unificar ambas operaciones, se define la potencia de exponente fraccionario:

operaciones inversas Para unificar ambas operaciones, se define la potencia de exponente fraccionario: Potencias y raíces Potencias y raíces Potencia operaciones inversas Raíz exponente índice 7 = 7 7 7 = 4 4 = 7 base base Para unificar ambas operaciones, se define la potencia de exponente fraccionario:

Más detalles

EJERCICIOS DE NÚMEROS REALES

EJERCICIOS DE NÚMEROS REALES EJERCICIOS DE NÚMEROS REALES 1. Clasifica los siguientes números en racionales o irracionales: 3/5, 0 75, 7, -4, 632, 0 141441114 2. Escribe tres números irracionales que estén dados por raíces y tres

Más detalles

LOS NÚMEROS ENTEROS NÚMEROS POSITIVOS Y NÚMEROS NEGATIVOS

LOS NÚMEROS ENTEROS NÚMEROS POSITIVOS Y NÚMEROS NEGATIVOS LOS NÚMEROS ENTEROS NÚMEROS POSITIVOS Y NÚMEROS NEGATIVOS Para indicar las temperaturas por encima de cero ponemos delante del número el signo más y a las que son por debajo de cero, el signo menos. Para

Más detalles

Fracciones equivalentes

Fracciones equivalentes Fracciones equivalentes Las fracciones equivalentes representan la misma parte de la unidad. Si dos fracciones son equivalentes, los productos de sus términos en cruz son iguales.. En cada caso, escribe

Más detalles

FRACCIONES. Para hallar la fracción de una cantidad se divide la cantidad entre el denominador y el resultado se multiplica por el numerador.

FRACCIONES. Para hallar la fracción de una cantidad se divide la cantidad entre el denominador y el resultado se multiplica por el numerador. FRACCIONES FRACCION Una fracción es una epresión formada por dos números separados por una raa horizontal, al número de abajo se le llama denominador nos indica el número de partes iguales en que se divide

Más detalles

Numerador = Denominador = 2.- Copia y representa la parte coloreada con una fracción, en cada caso. Indica cómo se leen. Numerador = Denominador =

Numerador = Denominador = 2.- Copia y representa la parte coloreada con una fracción, en cada caso. Indica cómo se leen. Numerador = Denominador = TEMA 6 : LAS FRACCIONES Página 1 1.- Escribe estas cantidades con una fracción. Señala el numerador y el denominador. seis novenos = tres octavos = un medio = siete décimos = cuatro quintos = dos treceavos

Más detalles

OPERACIONES CON POTENCIAS. Una potencia es un producto de factores iguales. Está formada por la base y el exponente.

OPERACIONES CON POTENCIAS. Una potencia es un producto de factores iguales. Está formada por la base y el exponente. OPERACIONES CON POTENCIAS Una potencia es un producto de factores iguales. Está formada por la base y el exponente. 3. 3. 3. 3 = 3 4 Exponente Base Se puede leer: tres elevado a cuatro o bien tres elevado

Más detalles

LAS FRACCIONES. Si el numerador es menor que el denominador, la fracción es menor que

LAS FRACCIONES. Si el numerador es menor que el denominador, la fracción es menor que LAS FRACCIONES 1. Las fracciones y sus términos.. Nº mixto.. La fracción de un número.. Cálculo de una cantidad, cuando sabemos la fracción de ella.. Fracciones equivalentes.. Fracción irreducible.. Reducción

Más detalles

Números decimales. 1.1. Lectura de las fracciones decimales

Números decimales. 1.1. Lectura de las fracciones decimales Números decimales 1. Fracción decimal Son de uno muy frecuente y se las representa con la notación particular, que consiste en escribir sólo el numerador y recordar el número de ceros que siguen a la unidad

Más detalles

MATEMÁTICAS 5. º CURSO UNIDAD 6: NÚMEROS DECIMALES

MATEMÁTICAS 5. º CURSO UNIDAD 6: NÚMEROS DECIMALES MATEMÁTICAS 5. º CURSO UNIDAD 6: NÚMEROS DECIMALES OBJETIVOS Reconocer las unidades decimales: décima, centésima y milésima Leer y escribir números decimales. Diferenciar la parte entera y decimal de un

Más detalles

Qué fracción se representa en este conjunto? Tres subconjuntos pintados en un conjunto formado por cuatro subconjuntos: 3 4

Qué fracción se representa en este conjunto? Tres subconjuntos pintados en un conjunto formado por cuatro subconjuntos: 3 4 INTRODUCCIÓN A LAS FRACCIONES Observa el siguiente dibujo: Hay 2 banderas que tienen franjas amarillas en un total de banderas, o sea, Hay 1 bandera verde en un total de banderas: 1 Hay 3 banderas que

Más detalles

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.

Más detalles

TEMA 2. En esta unidad didáctica se da un repaso teórico general y se realizan una serie de actividades sencillas de aplicación.

TEMA 2. En esta unidad didáctica se da un repaso teórico general y se realizan una serie de actividades sencillas de aplicación. FRACCIONES TEMA 2 INTRODUCCIÓN Para aplicar esta unidad didáctica es conveniente que ya se hayan estudiado las fracciones en clase de forma tradicional, es decir, empleando la pizarra, el papel y el lápiz.

Más detalles

Tema 1 Conjuntos numéricos

Tema 1 Conjuntos numéricos Tema 1 Conjuntos numéricos En este tema: 1.1 Números naturales. Divisibilidad 1.2 Números enteros 1.3 Números racionales 1.4 Números reales 1.5 Potencias y radicales 1.7 Logaritmos decimales 1.1 NÚMEROS

Más detalles

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS.

TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEORÍA DE CONJUNTOS. Definiciones. Se define un conjunto como una colección de objetos o cosas, se nombran con letras mayúsculas (A, B...). Cada uno de

Más detalles

Utiliza los números ordinales al resolver problemas planteados de manera oral.

Utiliza los números ordinales al resolver problemas planteados de manera oral. T G CONTENIDOS APRENDIZAJES ESPERADOS ESTÁNDARES 1.2.1 Identificación y uso de los números ordinales para colocar objetos o para indicar el lugar que ocupan dentro de una colección de hasta 10 elementos.

Más detalles

Actividad introductoria: Repartición de dos pasteles en una familia

Actividad introductoria: Repartición de dos pasteles en una familia Grado 6 Matemáticas De los símbolos a la búsqueda del concepto: El conjunto de los números naturales TEMA: USO DE LA FRACCIÓN EN DIFERENTES CONTEXTOS Nombre: Grado: Actividad introductoria: Repartición

Más detalles

CUADERNO DE TRABAJO CLASE 7 MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO

CUADERNO DE TRABAJO CLASE 7 MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO MÓDULO DIDÁCTICO PARA LA ENSEÑANZA Y EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA EN ESCUELAS RURALES MULTIGRADO Conociendo los números Parte I CLASE CUADERNO DE TRABAJO Cuaderno de Trabajo, Matemática

Más detalles

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE 2 ( 12 HORAS)

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE 2 ( 12 HORAS) UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE HORAS) Saberes procedimentales Saberes declarativos Identifica y realiza operaciones básicas con expresiones aritméticas. Jerarquía de las operaciones aritméticas.

Más detalles

Tema 6 Lenguaje Algebraico. Ecuaciones

Tema 6 Lenguaje Algebraico. Ecuaciones Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias

Más detalles

NÚMEROS ENTEROS. En la recta numérica se pueden representar los números naturales, el cero y los números negativos.

NÚMEROS ENTEROS. En la recta numérica se pueden representar los números naturales, el cero y los números negativos. NÚMEROS ENTEROS El conjunto de los números enteros está formado por: Los números positivos (1, 2, 3, 4, 5, ) Los números negativos ( El cero (no tiene signo) Recta numérica En la recta numérica se pueden

Más detalles

Primaria Cuarto Grado Matemáticas (con QuickTables)

Primaria Cuarto Grado Matemáticas (con QuickTables) Primaria Cuarto Grado Matemáticas (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios

Más detalles

Nombre: Geometría Formas 2D. Trabajo para la clase. 1. Colorea las formas. 2. Marca con círculo los trapezoides. 3. Marca con círculo los hexágonos

Nombre: Geometría Formas 2D. Trabajo para la clase. 1. Colorea las formas. 2. Marca con círculo los trapezoides. 3. Marca con círculo los hexágonos Geometría Formas 2D Trabajo para la clase 1. Colorea las formas. Círculos -rojo Rectángulos- verde Triángulos-azul Cuadrado- amarillo 2. Marca con círculo los trapezoides 3. Marca con círculo los hexágonos

Más detalles

UNIDAD 3: NÚMEROS DECIMALES

UNIDAD 3: NÚMEROS DECIMALES UNIDAD 3: NÚMEROS DECIMALES Si dividimos la unidad en 10 partes iguales, cada parte es una DÉCIMA. Cuando necesitamos expresar cantidades más pequeñas que la unidad, utilizamos LAS UNIDADES DECIMALES.

Más detalles

TP N 1 Naturales (N), Enteros (Z) y Racionales (Q)

TP N 1 Naturales (N), Enteros (Z) y Racionales (Q) TP N Naturales (N, Enteros (Z Racionales (Q Si a b pertenecen a los naturales, a + b SIEMPRE pertenece a los naturales?, a - b SIEMPRE pertenece a los naturales? Den ejemplos de cada caso Existen números

Más detalles

3. LA SUMA Y LA RESTA

3. LA SUMA Y LA RESTA 3. LA SUMA Y LA RESTA Para juntar, para aumentar o añadir cantidades, sumamos. Para quitar, para calcular lo que falta o lo que sobra, restamos. La suma y la resta resuelven muchos de los cálculos que

Más detalles

Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima.

Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima. NÚMEROS DECIMALES 1. DÉCIMA, CENTÉSIMA Y MILÉSIMA. 1.1. CONCEPTO. Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima. Si dividimos la unidad en 100 partes iguales, cada una de

Más detalles

EXPRESIONES ALGEBRAICAS. El tripe de un número menos «cinco» en lenguaje algebraico se escribe

EXPRESIONES ALGEBRAICAS. El tripe de un número menos «cinco» en lenguaje algebraico se escribe 1 Álgebral EXPRESIONES ALGEBRAICAS El tripe de un número menos «cinco» en lenguaje algebraico se escribe 3x 5: 3x 5 es una expresión algebraica donde x es la incógnita. La letra x representa un número

Más detalles

Representación de los números naturales

Representación de los números naturales Números naturales El conjunto de los números naturales se representa por la letra, y está formado por: N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...} Los números naturales sirven para contar los elementos de un

Más detalles

Los números racionales: Q

Los números racionales: Q Los números racionales: Q Qué fracción del área total está coloreada en cada una de las figuras de al lado? (a) (b) Juan leyó 2/5 de las páginas de un libro el lunes, el martes estaba ocupado y sólo pudo

Más detalles

Herramienta de Alineación Curricular - Resumen a través de las unidades Departamento de Educación de Puerto Rico Matemáticas 2do Grado

Herramienta de Alineación Curricular - Resumen a través de las unidades Departamento de Educación de Puerto Rico Matemáticas 2do Grado 2.N.1.1 2.N.1.2 2.N.1.3 Numeración y Operación 1.0 Reconoce la relación entre los números cardinales hasta, las cantidades que estos representan y el valor posicional de sus dígitos. Cuenta, ordena, lee

Más detalles

PROBLEMAS DE DIAMANTE 2.1.1

PROBLEMAS DE DIAMANTE 2.1.1 PROBLEMAS DE DIAMANTE 2.1.1 En cada Problema de diamante, el producto de los dos números a los lados (izquierda y derecha) es el número arriba y la suma es el número de abajo. producto ab Los Problemas

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Definición de monomio. Expresión algebraica formada por el producto de un número finito de constantes y variables con exponente natural. Al producto de las constantes

Más detalles

SISTEMA DE NUMERACIÓN DECIMAL

SISTEMA DE NUMERACIÓN DECIMAL SISTEMA DE NUMERACIÓN DECIMAL Se llama decimal o de base diez porque se utilizan diez símbolos para representar todos los números. Los diez símbolos, cifras son: 0, 1, 2,3, 4, 5, 6, 7, 8, 9 La relación

Más detalles

TEMA 2. Números racionales. Teoría. Matemáticas

TEMA 2. Números racionales. Teoría. Matemáticas 1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden

Más detalles

T. P. Números Racionales: Q. a es igual a 1?, cuándo es menor?, cuándo es mayor?

T. P. Números Racionales: Q. a es igual a 1?, cuándo es menor?, cuándo es mayor? T. P. Números Racionales Q Si a b pertenecen a los enteros, a b SIEMPRE pertenece a los enteros? Exploren las distintas posibilidades (positivos negativos. Den ejemplos de acuerdo con cada caso posible.

Más detalles

Los números naturales

Los números naturales Los números naturales Los números naturales Los números naturales son aquellos que sirven para contar. Se suelen representar utilizando las cifras del 0 al 9. signo suma o resultado Suma: 9 + 12 = 21 sumandos

Más detalles

Números mixtos. Juan escribe la relación de alimentos básicos de la siguiente manera: Alimentos básicos. Un kilogramo y un cuarto de kg de sal

Números mixtos. Juan escribe la relación de alimentos básicos de la siguiente manera: Alimentos básicos. Un kilogramo y un cuarto de kg de sal Lección Números mixtos Entre las actividades realizadas por Juan en la tienda se encuentra la de registrar la cantidad de alimentos básicos vendida durante el día. Para ello, necesita representar kilogramos

Más detalles

EXPRESIONES ALGEBRAICAS RACIONALES

EXPRESIONES ALGEBRAICAS RACIONALES Epresiones Algebraicas Racionales EXPRESIONES ALGEBRAICAS RACIONALES Llamaremos epresiones algebraicas racionales a las de la forma A() donde A() y B() son B() polinomios de variable, y B() 0. Por ejemplo,

Más detalles

Actividades. Tangram chino. Alumno Fecha. Grupo CRISPELU. Jugamos con las piezas. Con las piezas del tangram, construye las figuras que quieras.

Actividades. Tangram chino. Alumno Fecha. Grupo CRISPELU. Jugamos con las piezas. Con las piezas del tangram, construye las figuras que quieras. Actividades Jugamos con las piezas. Con las piezas del tangram, construye las figuras que quieras. Dibuja el contorno. Qué figura has formado? A qué se parece lo que has hecho? Dibujamos los contornos

Más detalles

4º Grado. Cálculo de Fracciones. Suma de Fracciones con Común Denominador. Slide 2 / 73. Slide 1 / 73. Slide 4 / 73. Slide 3 / 73.

4º Grado. Cálculo de Fracciones. Suma de Fracciones con Común Denominador. Slide 2 / 73. Slide 1 / 73. Slide 4 / 73. Slide 3 / 73. Slide / New Jersey Centro para Enseñanza y Aprendizaje Iniciativa de Matemática Progresiva Este material está disponible gratuitamente en www.njctl.org y está pensado para el uso no comercial de estudiantes

Más detalles

Fracciones y decimales (páginas 62 66)

Fracciones y decimales (páginas 62 66) A NOMRE FECHA PERÍODO Fracciones y decimales (páginas 6 66) Un decimal que termina, tal como 0, es un decimal terminal Todos los decimales terminales son números racionales 0,000 Un decimal que se repite,

Más detalles

2. EXPRESIONES ALGEBRAICAS

2. EXPRESIONES ALGEBRAICAS 2. EXPRESIONES ALGEBRAICAS Tales como, 2X 2 3X + 4 ax + b Se obtienen a partir de variables como X, Y y Z, constantes como -2, 3, a, b, c, d y cobinadas utilizando la suma, resta, multiplicación, división

Más detalles

83 ESO. 6x 4. «La clave de todo es la paciencia. Un pollo se obtiene empollando el huevo, no rompiéndolo.»

83 ESO. 6x 4. «La clave de todo es la paciencia. Un pollo se obtiene empollando el huevo, no rompiéndolo.» 83 ESO «La clave de todo es la paciencia. Un pollo se obtiene empollando el huevo, no rompiéndolo.» 6 4 10 ÍNDICE: 1. DIVISIÓN DE POLINOMIOS POR MONOMIOS. DIVISIÓN ENTERA DE POLINOMIOS 3. REGLA DE RUFFINI

Más detalles

FRACCIONES. numerador. denominador. Tres cuartos. Cuatro séptimos. Un medio. Once veinteavos. Tres quintos. Cuatro sextos. Ocho décimos.

FRACCIONES. numerador. denominador. Tres cuartos. Cuatro séptimos. Un medio. Once veinteavos. Tres quintos. Cuatro sextos. Ocho décimos. Código Centro 80080 C/ Valderribas, 7 C.P. 8007 Tfno/fax 989 FRACCIONES Una fracción es un número representado por otros dos separados por una línea recta horizontal. Al número de abajo le llamamos denominador

Más detalles

6to GRADO. Operaciones con decimales HOJAS DE TRABAJO

6to GRADO. Operaciones con decimales HOJAS DE TRABAJO 6to GRADO Operaciones con decimales HOJAS DE TRABAJO Multiplicar y dividir por potencias de diez Mueve el punto decimal dependiendo de la cantidad de ceros el punto decimal se mueve a la derecha el punto

Más detalles

Lección 9: Fracciones decimales

Lección 9: Fracciones decimales LECCIÓN 9 Toluca 3º 7º 2º Guadalajara 6º 20º 9º Monterrey 4º 0º 1º Distrito Federal 2º 13º 4º Acapulco 18º 29º 21º a) En cuál ciudad se registró la temperatura más baja a las 7 de la mañana? b) En cuál

Más detalles

3 POTENCIAS Y RAÍZ CUADRADA

3 POTENCIAS Y RAÍZ CUADRADA EJERCICIOS PROPUESTOS 3.1 Indica la base y el exponente de las siguientes potencias y calcula su valor. a) 2 4 c) 4 3 e) 3 5 g) ( 10) 4 b) 3 4 d) 5 3 f) ( 2) 5 h) (6 2 ) a) Base 2, exponente 4; 2 4 16

Más detalles

TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD

TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD Un número es divisible por: TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD - 2 Si es PAR. - 3 Si la suma de sus cifras es divisible por 3. - 4 Si el número formado por sus dos últimas cifras es divisible

Más detalles

Ejercicios resueltos de progresiones aritméticas

Ejercicios resueltos de progresiones aritméticas Ejercicios resueltos de progresiones aritméticas 1) En cada una de las progresiones siguientes, halla los términos que faltan en cada una de ellas: a) 4, 8, 12, 16,, 24,,, 36, 40... b) 1, 3/2,,,,,,,, 11/2...

Más detalles

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía. Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero

Más detalles

UNIDAD DIDÁCTICA PROPUESTA DE ACTIVIDAD DE APRENDIZAJE SOBRE LAS FRACCIONES

UNIDAD DIDÁCTICA PROPUESTA DE ACTIVIDAD DE APRENDIZAJE SOBRE LAS FRACCIONES UNIDAD DIDÁCTICA PROPUESTA DE ACTIVIDAD DE APRENDIZAJE SOBRE LAS FRACCIONES Naturaleza y descripción específica: La matemática se entiende como un medio para aprender a pensar y resolver problemas. Para

Más detalles

La lección de hoy es sobre las expresiones algebraicas. El cuál es la expectativa para el aprendizaje del estudiante LA.1.A1.1

La lección de hoy es sobre las expresiones algebraicas. El cuál es la expectativa para el aprendizaje del estudiante LA.1.A1.1 La lección de hoy es sobre las expresiones algebraicas. El cuál es la expectativa para el aprendizaje del estudiante LA.1.A1.1 Las expresiones algebraicas consisten en uno o más números y variables, junto

Más detalles

UNIDAD 1 Matemáticas. Completa. Descompón en decenas y unidades. 14 decena y unidades. 3 decenas y unidades. 69 decenas y unidades.

UNIDAD 1 Matemáticas. Completa. Descompón en decenas y unidades. 14 decena y unidades. 3 decenas y unidades. 69 decenas y unidades. UNIDAD 1 Completa. D U D U 75 D U 50 Descompón en decenas y unidades. 14 decena y unidades. 3 decenas y unidades. 69 decenas y unidades. 90 decenas y unidades. UNIDAD 1 Coloca y calcula. Sumandos: 64 y

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

Hay dos excepciones: - con el 2, por ejemplo: 1/2: Un medio - con el 3, por ejemplo:1/3: Un tercio

Hay dos excepciones: - con el 2, por ejemplo: 1/2: Un medio - con el 3, por ejemplo:1/3: Un tercio Las FRACCIONES son números que representan trozos o partes de la unidad. Los números enteros y las fracciones forman el conjunto de los NÚMEROS RACIONALES (Q). Se leen comenzando por el número de arriba

Más detalles

Mamut Matemáticas Introducción a fracciones Índice

Mamut Matemáticas Introducción a fracciones Índice Mamut Matemáticas Introducción a fracciones Índice Introducción... 4 Mitades y cuartos... 8 Algunas fracciones... 12 Entender fracciones... 15 Fracciones en una recta numérica... 19 Un entero y sus partes

Más detalles

Representación, escritura y lectura de fracciones

Representación, escritura y lectura de fracciones epresentación escritura lectura de fracciones lumno: Curso: Fecha: Escribe con cifras con letra las fracciones que representan las siguientes figuras. seis octavos un medio doce veinteavos dos sextos 0

Más detalles

Guía de Matemáticas Primer Grado

Guía de Matemáticas Primer Grado Guía de Matemáticas Primer Grado 1 Cómo recibe el nombre de nuestro sistema de numeración y que se agrupa de diez en diez las unidades, centenas, etc.? a) Sistema natural b) Sistema vigesimal c) Sistema

Más detalles