CARACTERISTICAS DEL JFET.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CARACTERISTICAS DEL JFET."

Transcripción

1 Electrónica I. Guía 10 1 / 10 CARACTERISTICAS DEL JFET. Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta, Aula 3.21). Objetivos generales Comparar el comportamiento del Transistor de Efecto de Campo (JFET) con las predicciones que entregan los modelos lineales del dispositivo. Verificar si los datos determinados experimentalmente concuerdan (de forma aceptable) con los que proporcionan los fabricantes (Usar criterios técnicos de comparación). Emplear el equipo de laboratorio y los dispositivos electrónicos utilizando criterios técnicos de seguridad. Objetivos específicos Trazar la familia de curvas características del JFET: ID vrs. VDS e ID vrs VGS. Graficar la relación RDS vrs. VDS cuando VGS = 0.0 V. Determinar de forma experimental la frontera entre la zona de operación Óhmica y la zona de Saturación si VGS = 0.0 V. Determinar de forma experimental el valor de los parámetros IDSS, (VGS)off y transconductancia (Gm) cuando VGS = 0.0 V (Gmo). Identificar las diferentes zonas de operación del JFET en sus curvas características. Materiales y equipo 1 Unidad PU-2000 con PU Placa DEGEM EB Osciloscopio de doble trazo. 2 cables de conexión para osciloscopio. 2 Cables de conexión para el multímetro. 4 Cables de conexión para el PU Introducción Teórica El transistor de efecto de campo (FET) es un dispositivo de tres terminales que se utiliza en varias aplicaciones que coinciden, en gran medida, con las del transistor BJT. Las diferencias principales entre los dos tipos de transistor radican en el hecho de que: El

2 2 / 10 Electrónica I. Guía 10 transistor BJT es un dispositivo controlado por corriente, mientras que el transistor JFET es un dispositivo controlado por voltaje. Así como hay transistores bipolares npn y pnp, también existen transistores de efecto de campo de canal n y de canal p. Sin embargo, es importante tener en cuenta que el transistor BJT es un dispositivo bipolar; el prefijo bi indica que el nivel de conducción es una función de dos portadores de carga, electrones y huecos. El FET es un dispositivo unipolar que depende no sólo tanto de la conducción de electrones (canal n) como de la condición de huecos (canal p). Una de las características más importantes del FET es su alta impedancia de entrada. Figura 1: Transistor de efecto de campo de unión (JFET). La variación de la corriente de entrada, en general, es mucho mayor para los BJT que para los FET con el mismo cambio del voltaje aplicado. Por esta razón: Las ganancias de voltaje de ca típicas para amplificadores de BJT son mucho mayores que para los FET. En general: Los FET son más estables a la temperatura que los BJT, y en general son más pequeños que los BJT, lo que los hace particularmente útiles en chips de circuitos integrados (CI). La corriente máxima se define como IDSS y ocurre cuando VGS _ 0 V y VDS _ Vp. Para los voltajes de la compuerta a la fuente VGS menores que (más negativos que) el nivel de estrangulamiento, la corriente de drenaje es de 0 A (ID = 0 A). Para todos los niveles de VGS entre 0 V y el nivel de estrangulamiento, la corriente ID oscilará entre IDSS y 0 A, respectivamente. Se puede desarrollar una lista similar para JFET de canal p.

3 Electrónica I. Guía 10 3 / 10 Procedimiento PARTE I. CURVAS CARACTERISTICAS DEL JFET. 1. Antes de iniciar la actividad asegúrese que el entrenador PU-2000 se encuentra desactivado, además todos los controles se encuentran apagados o ajustados a su posición mínima. 2. Asegúrese que el osciloscopio está calibrado de forma correcta, para evitar atrasos futuros. 3. Ubique en la placa EB-112 el bloque que contiene al transistor Q1, este se encuentra en la parte izquierda de la placa EB Observe detenidamente la figura 2 y en el espacio en blanco redibuje el circuito que utilizará, pero eliminando todos los componentes que no intervienen en la operación. Figura 2. (a) Circuito de prueba y (b) circuito redibujado. 5. Tome nota del código que identifica al transistor Q1 =. 6. Tome nota del valor teórico y experimental del resistor R4 =. 7. Asegúrese que las fuentes de alimentación PS-1 y PS-2 están calibradas al nivel mínimo. 8. Introduzca la placa EB-112 en el bastidor PU-2000 y déjela firmemente sujeta al conector. 9. Conecte tanto el resistor R4 como la Fuente (surtidor) del JFET a GND.

4 4 / 10 Electrónica I. Guía Conecte el Amperímetro como se muestra en la Figura 2a, utilizando la escala máxima de mili-amperios. 11. Incremente lentamente el valor de PS-1, observando como ld aumenta, continúe hasta que la lectura llegue al máximo (ya no aumente). (I D) max = 12. Incremente el valor de PS-2 (por el lado negativo), observando como l D se reduce, continúe hasta que la lectura llegue al mínimo. NOTA: Será necesario que cambie la escala del Amperímetro mientras hace esta medición. 13. Usando el Osciloscopio mida el valor de VG, como lo indica la figura 2a (canal 1) y tome nota de este valor. V GS = Con qué parámetros del JFET se relacionan las dos mediciones anteriores? 14. Ajuste las fuentes PS-1 y PS-2 al mínimo. 15. Conecte los dos canales del osciloscopio (utilice acople de DC). 16. Utilizando un cable o puente sustituya al amperímetro en el dreno del JFET. 17. Coloque las referencias de voltaje del Osciloscopio (0.0 V) de manera estratégica para hacer lecturas optimas, tomando en cuenta que el voltaje de compuerta (V G) es negativo y el de Dreno (VD) es positivo. 18. Asegúrese que la lectura de VGS es cero, si tiene dificultades consulte con su instructor. 19. Ajuste PS-1 hasta lograr que VDS sea de 2.0 V. 20. Desconecte el osciloscopio, sustituya el puente del dreno por el amperímetro para medir ID y anote el dato en la casilla respectiva de la primera fila de la Tabla Repita los pasos anteriores para los otros valores de VDS indicados en la Tabla1, asegurándose que los medidores NUNCA estén conectados de forma simultánea al circuito (VGS debe mantenerse a 0.0 V). 22. Repita el procedimiento anterior ( desde el paso 17) para los otros valores de VGS hasta completar l Tabla 1. NOTA: Si las lecturas de ID le reportan un valor de 0.0 ma llame a su instructor de laboratorio. 23. Desensamble el circuito calibre PS-1 y PS-2 al mínimo.

5 Electrónica I. Guía 10 5 / 10 VDS(V) VGS(V) ID(mA) Tabla 1. PARTE II. RESISTENCIA DEL CANAL. 24. Observe detenidamente la figura 3 y en el espacio en blanco redibuje el circuito que utilizará, pero eliminando todos los componentes que no intervienen en la operación. 25. Tome nota del valor teórico y experimental del resistor R3 =. 26. Conecte tanto el resistor R4 como la Fuente (surtidor) del JFET a GND, como se muestra en la figura Conecte el resistor R3 a PS-1, tal como se muestra en la figura Conecte los canales del Osciloscopio a la Compuerta y al Dreno del JFET para medir sus voltajes. 29. Ajuste PS-1 a 1.0 V. 30. Mida VDS y anótelo en la casilla correspondiente de la Tabla Ajuste PS-1 para los otros valores de la Tabla 2 y complete la columna VDS. 32. Desensamble el circuito, calibre PS-1 y PS-2 al mínimo. PS-1 (V) VDS (V) RDS (Ω) Tabla 2.

6 6 / 10 Electrónica I. Guía 10 Figura 3. (a) Circuito de prueba y (b) circuito redibujado PARTE III. TRANSCONDUCTACIA Gm. 33. Ajuste el Generador de Señales del PU-2000 para entregar una onda senoidal de 1.0 khz y 100 mvpp. 34. Tome nota del valor teórico y experimental de R2 =. 35. Ajuste PS-2 a 0.0 V y utilizando un puente o un cable conéctela a R Conecte la Fuente (surtidor) del JFET a GND. 37. Utilizando el Amperímetro conecte R2 con el Dreno del JFET (Use la escala máxima de mili- Amperios). 38. Incremente PS-1 hasta que obtenga la corriente máxima de Dreno. 39. Sustituya el Amperímetro por un puente o cable de conexión. 40. Conecte la onda senoidal al capacitor C2, en el borne etiquetado como Vin Conecte los canales del Osciloscopio en Vin2 y en el Dreno del JFET. 42. En el siguiente espacio de la Figura 4 dibuje el circuito que ha implementado.

7 Electrónica I. Guía 10 7 / 10 Figura 4. Circuito de prueba para determinar la Transconductancia Gm. 43. Observe (solo) la señal en el Dreno del JFET, realizando TODOS los ajustes necesarios para obtener información útil, pero no cambie el Acople de DC. 44. Dibuje la señal que observa en el Osciloscopio a partir de la figura 5a, indicando en el trazo la posición de la referencia de voltaje (0.0 V), así como los valores máximos y mínimos de la señal que observa. NOTA: Si no incluye esta información el trazo se considerará incorrecto. 45. Cambie el acople del Osciloscopio a AC y reajuste el instrumento para obtener información útil. 46. Mida el valor del Voltaje pico a pico en el Dreno del JFET. (VDS)pp = 47. En el Osciloscopio observe, de forma simultánea, las señales de entrada y del Dreno de JFET (realice los ajustes necesarios). 48. En la Figura 5b dibuje las señales que observa, indicando en el trazo la posición de la referencia de voltaje (0.0 V), así como los valores máximos y mínimos de la señal que observa. NOTA: Si no incluye esta información el trazo se considerará incorrecto. 49. Desconecte el circuito y deje ordenado su puesto de trabajo.

8 8 / 10 Electrónica I. Guía 10 (a) (Canal 1) VOLT/DIV = (Canal 2) VOLT/DIV = TIME/DIV = (b) (Canal 1) VOLT/DIV = (Canal 2) VOLT/DIV = TIME/DIV = Figura 5. (a) Voltaje en el Dreno del JFET con acople de DC y (b) Señales de entrada y Dreno con acople de AC. Investigación complementaria Tomar nota de los datos técnicos que provee el manual impreso ECG ó NTE del JFET utilizado en la sesión de práctica. La manera de determinar Gmo con la información que le proporciona la tercera parte del procedimiento. Análisis de Resultados 1. Utilizando los datos de la Tabla 1 trace (en un mismo gráfico) la familia de curvas del JFET. 2. Complete la información de la Tabla 2 dejando constancia de los cálculos que realiza (por lo menos un ejemplo representativo). 3. Tomando datos de la Tabla 1 complete la Tabla 3.

9 Electrónica I. Guía 10 9 / 10 VGS(V) VDS(V) Tabla 3. ID(mA) 4. Utilizando los datos de la Tabla 3 trace gráficas de ID vrs. VGS, para valores diferentes de VDS (por lo menos dos). 5. Utilizando los datos de la Tabla 2 trace la gráfica RDS vrs. VDS. 6. Usando los datos de la tercera parte del procedimiento determine el valor de Gm. 7. Utilizando un modelo lineal del JFET calcule datos útiles para comparar con las mediciones realizadas. 8. Realice la simulación en Qucs para obtener las familias de curvas de la parte I de la guía de laboratorio. Figura 6. Circuito a simular.

10 10 / 10 Electrónica I. Guía Simule en Qucs el circuito amplificador a transistor JFET de canal P, mostrado en la figura 6. Calcule: Ganancia de corriente (Ai) Resistencia de entrada (Rin) La máxima excursión de voltaje a la salida y El voltaje máximo a la entrada del amplificador para que no exista distorsión en la salida. Bibliografía Hayt, W. Kemmely, J. Análisis de circuitos en ingeniería, séptima edición, MCGRAW HILL Boylestad, R - Nashelsky, L, Electrónica: Teoría de Circuitos y dispositivos electrónicos, sexta edición. PRENTICE HALL Enlaces electrónicos: plications.pdf

CARACTERISTICAS DEL JFET.

CARACTERISTICAS DEL JFET. Electrónica I. Guía 4 1 / 1 CARACTERISTICAS DEL JFET. Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta, Aula 3.21).

Más detalles

Objetivo general. Objetivos específicos. Materiales y equipos. Introducción Teórica CARACTERISTICAS DEL JFET.

Objetivo general. Objetivos específicos. Materiales y equipos. Introducción Teórica CARACTERISTICAS DEL JFET. Electrónica I. Guía 9 1 / 9 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales o Automatización (Ed.3). CARACTERISTICAS DEL JFET. Objetivo

Más detalles

CARACTERÍSTICAS DEL FET EN DC.

CARACTERÍSTICAS DEL FET EN DC. Electrónica I. Guía 10 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). CARACTERÍSTICAS DEL FET EN DC. Objetivos

Más detalles

CIRCUITOS RECTIFICADORES

CIRCUITOS RECTIFICADORES Electrónica I. Guía 2 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). CIRCUITOS RECTIFICADORES Objetivos generales

Más detalles

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION Electrónica I. Guía 1 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). DIODO DE UNION Objetivos generales Identificar

Más detalles

PARTE I. CURVA CARACTERISTICA

PARTE I. CURVA CARACTERISTICA 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). DIODO ZENER Objetivos generales Analizar el comportamiento del

Más detalles

EL AMPLIFICADOR CON BJT

EL AMPLIFICADOR CON BJT 1 Facultad: Estudios Tecnologicos. Escuela: Electrónica. Asignatura: Electronica Analogica Discresta. EL AMPLIFICADOR CON BJT Objetivos específicos Determinar la ganancia de tensión, corriente y potencia

Más detalles

Electrónica II. Guía 2

Electrónica II. Guía 2 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). SUMADOR Y RESTADOR Objetivo general Verificar el correcto funcionamiento

Más detalles

RECTIFICACIÓN. Objetivos específicos. Materiales y equipo. Procedimiento

RECTIFICACIÓN. Objetivos específicos. Materiales y equipo. Procedimiento Electrónica I. Guía 3 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). RECTIFICACIÓN Objetivos específicos Observar

Más detalles

DIODO DE UNION. Objetivo General. Objetivos específicos. Materiales y equipo. Introducción teórica. Electrónica I. Guía 2 1 / 7

DIODO DE UNION. Objetivo General. Objetivos específicos. Materiales y equipo. Introducción teórica. Electrónica I. Guía 2 1 / 7 Electrónica I. Guía 2 1 / 7 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales o Automatización (Ed.3) DIODO DE UNION Objetivo General Comprobar

Más detalles

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION. Electrónica I. Guía 2 1

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción Teórica DIODO DE UNION. Electrónica I. Guía 2 1 Electrónica I. Guía 2 1 DIODO DE UNION Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). Objetivos generales

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO : RESISTIVIDAD ELÉCTRICA Determinar la resistividad eléctrica

Más detalles

AMPLIFICADOR INVERSOR Y NO INVERSOR

AMPLIFICADOR INVERSOR Y NO INVERSOR 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). AMPLIFICADOR INVERSOR Y NO INVERSOR Objetivo general Determinar

Más detalles

OSCILADORES SENOIDALES

OSCILADORES SENOIDALES 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). OSCILADORES SENOIDALES Objetivo general Verificar el correcto

Más detalles

COMPARADORES. Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica

COMPARADORES. Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica Electrónica II. Guía 4 1/1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta, Aula 3.21). COMPARADORES. Objetivos

Más detalles

1.3 Describa brevemente como opera el 74123 y realice un diagrama interno de éste circuito integrado.

1.3 Describa brevemente como opera el 74123 y realice un diagrama interno de éste circuito integrado. ITESM, Campus Monterrey Laboratorio de Electrónica Industrial Depto. de Ingeniería Eléctrica Práctica 1 Instrumentación y Objetivos Particulares Conocer las características, principio de funcionamiento

Más detalles

UNIVERSIDAD DON BOSCO

UNIVERSIDAD DON BOSCO CICLO 02-2015 UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA GUÍA DE LABORATORIO Nº 02 NOMBRE DE LA PRACTICA: Diodo de Unión Bipolar LUGAR DE EJECUCIÓN:

Más detalles

1. Conecte la tarjeta EB-111 introduciéndola por las guías del PU-2000 hasta el conector.

1. Conecte la tarjeta EB-111 introduciéndola por las guías del PU-2000 hasta el conector. 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). DIODO ZENER Objetivos específicos Trazar la curva característica

Más detalles

Laboratorio N 3: TERMOMETRÍA

Laboratorio N 3: TERMOMETRÍA 1 Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Laboratorio N 3: TERMOMETRÍA Objetivos Conocer el principio de funcionamiento del termómetro analógico. Emplear

Más detalles

Objetivo general. Objetivos específicos. Materiales y equipo CIRCUITOS RECTIFICADORES. Electrónica I. Guía 3 1 / 9

Objetivo general. Objetivos específicos. Materiales y equipo CIRCUITOS RECTIFICADORES. Electrónica I. Guía 3 1 / 9 Electrónica I. Guía 3 1 / 9 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). CIRCUITOS RECTIFICADORES

Más detalles

CARACTERISTICAS DE LOS DIODOS DE PROPÓSITO GENERAL CIRCUITOS RECTIFICADORES DE MEDIA ONDA Y ONDA COMPLETA

CARACTERISTICAS DE LOS DIODOS DE PROPÓSITO GENERAL CIRCUITOS RECTIFICADORES DE MEDIA ONDA Y ONDA COMPLETA UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LABORATORIO DE ELECTRÓNICA EC2014 PRACTICA Nº 1 CARACTERISTICAS DE LOS DIODOS DE PROPÓSITO GENERAL CIRCUITOS RECTIFICADORES DE MEDIA ONDA Y ONDA

Más detalles

AMPLIFICADOR INVERSOR Y NO INVERSOR. Objetivo general. Objetivos específicos. Prelaboratorio. Materiales y equipo

AMPLIFICADOR INVERSOR Y NO INVERSOR. Objetivo general. Objetivos específicos. Prelaboratorio. Materiales y equipo Electrónica II. Guía 3 1 AMPLIFICADOR INVERSOR Y NO INVERSOR Objetivo general Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.21

Más detalles

AMPLIFICADOR INVERSOR Y NO INVERSOR. Objetivo general. Objetivos específicos. Prelaboratorio. Materiales y equipo

AMPLIFICADOR INVERSOR Y NO INVERSOR. Objetivo general. Objetivos específicos. Prelaboratorio. Materiales y equipo Electrónica II. Guía 3 1 AMPLIFICADOR INVERSOR Y NO INVERSOR Objetivo general Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.21

Más detalles

Verificar experimentalmente la operación teórica de dos tipos de reguladores de voltaje.

Verificar experimentalmente la operación teórica de dos tipos de reguladores de voltaje. Electrónica II. Guía 9 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). REGULADORES DE VOLTAJE Objetivo

Más detalles

Ley de Ohm: Determinación de la resistencia eléctrica de un resistor óhmico

Ley de Ohm: Determinación de la resistencia eléctrica de un resistor óhmico Ley de Ohm: Determinación de la resistencia eléctrica de un resistor óhmico 1. Objetivos Comprobación experimental de la ley de Ohm a través de la determinación del valor de una resistencia comercial.

Más detalles

FILTROS ACTIVOS DE SEGUNDO ORDEN

FILTROS ACTIVOS DE SEGUNDO ORDEN Electrónica II. Guía 5 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). FILTROS ACTIVOS DE SEGUNDO ORDEN Objetivo

Más detalles

INTEGRADOR Y DERIVADOR

INTEGRADOR Y DERIVADOR 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). INTEGRADOR Y DERIVADOR Objetivo general Verificar el funcionamiento

Más detalles

Objetivo general. Objetivos específicos. Materiales y equipo CIRCUITOS RECTIFICADORES. Electrónica I. Guía 3 1 / 8

Objetivo general. Objetivos específicos. Materiales y equipo CIRCUITOS RECTIFICADORES. Electrónica I. Guía 3 1 / 8 Electrónica I. Guía 3 1 / 8 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales o Automatización (Ed.3) CIRCUITOS RECTIFICADORES Objetivo general

Más detalles

PRACTICA 5: FUERZA ELECTROMOTRIZ Y RESISTENCIA INTERNA DE UNA PILA

PRACTICA 5: FUERZA ELECTROMOTRIZ Y RESISTENCIA INTERNA DE UNA PILA 1 PRCTIC 5: FUERZ ELECTROMOTRIZ Y REITENCI INTERN DE UN PIL 1.1 OBJETIVO GENERL Utilizar un circuito resistivo sencillo para medir la resistencia interna de una fuente de voltaje y diferenciar los conceptos

Más detalles

CONSULTA PREVIA La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias.

CONSULTA PREVIA La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias. OBJETIVOS 1. Evaluar e interpretar características fundamentales de transistores JFET. 2. Familiarizar al estudiante con el uso de los manuales de los fabricantes de transistores FET para entender y manejar

Más detalles

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica CARACTERISTICAS DEL BJT. Electrónica I.

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica CARACTERISTICAS DEL BJT. Electrónica I. Electrónica I. Guía 6 1 / 9 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). CARACTERISTICAS DEL BJT

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN DEPARTAMENTO DE INGENIERÍA SECCIÓN ELÉCTRICA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN DEPARTAMENTO DE INGENIERÍA SECCIÓN ELÉCTRICA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN DEPARTAMENTO DE INGENIERÍA SECCIÓN ELÉCTRICA LABORATORIO DE: TRANSFORMADORES Y MOTORES DE INDUCCIÓN. GRUPO: PROFESOR ALUMNO

Más detalles

Amplificador inversor y no inversor

Amplificador inversor y no inversor Facultad Escuela Lugar de Ejecución : Ingeniería. : Electrónica : Fundamentos Generales (Edificio 3, 2da planta) Amplificador inversor y no inversor Objetivo General Implementar los circuitos amplificadores

Más detalles

Verificar experimentalmente la operación teórica de dos tipos de reguladores de voltaje.

Verificar experimentalmente la operación teórica de dos tipos de reguladores de voltaje. Electrónica II. Guía 8 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). REGULADORES DE VOLTAJE Objetivo

Más detalles

Elemento de Control. Elemento de Muetreo. Figura 1 Estructura Básica Regulador de Voltaje

Elemento de Control. Elemento de Muetreo. Figura 1 Estructura Básica Regulador de Voltaje INTRODUCCIÓN: La región activa de un transistor es la región de operación intermedia entre corte y saturación y por lo tanto dependiendo de las polarizaciones el transistor se comportará como un amplificador.

Más detalles

FILTROS ACTIVOS DE PRIMER ORDEN

FILTROS ACTIVOS DE PRIMER ORDEN Electrónica II. Guía 4 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). FILTROS ACTIVOS DE PRIMER ORDEN Objetivo

Más detalles

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 2

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 2 Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 2 CARACTERÍSTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA

Más detalles

Práctica PF4 AMPLIFICACIÓN DE VOLTAJE CON TRANSISTORES DE EFECTO DE CAMPO

Práctica PF4 AMPLIFICACIÓN DE VOLTAJE CON TRANSISTORES DE EFECTO DE CAMPO elab, Laboratorio Remoto de Electrónica ITESM, epto. de Ingeniería Eléctrica Práctica PF4 AMPLIFICACIÓN E VOLTAJE CON TRANSISTORES E EFECTO E CAMPO OBJETIVOS Conocer y entender el funcionamiento de circuitos

Más detalles

FILTROS ACTIVOS DE PRIMER ORDEN. Objetivo general. Objetivos específicos. Materiales y equipo

FILTROS ACTIVOS DE PRIMER ORDEN. Objetivo general. Objetivos específicos. Materiales y equipo Electrónica II. Guía 4 FILTROS ACTIVOS DE PRIMER ORDEN Objetivo general Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.2 (Edificio

Más detalles

TRABAJO PRÁCTICO Nº 6 EL TRANSISTOR BIPOLAR CURVAS CARACTERÍSTICAS

TRABAJO PRÁCTICO Nº 6 EL TRANSISTOR BIPOLAR CURVAS CARACTERÍSTICAS 1) Introducción Teórica a) Generalidades TRABAJO PRÁCTICO Nº 6 EL TRANSISTOR BIPOLAR CURVAS CARACTERÍSTICAS El transistor bipolar es un dispositivo de tres terminales (emisor, base y colector), que, atendiendo

Más detalles

UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LAB. DE CIRCUITOS ELECTRÓNICOS (ING. ELÉCTRICA) EC 1181 PRACTICA Nº 9

UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LAB. DE CIRCUITOS ELECTRÓNICOS (ING. ELÉCTRICA) EC 1181 PRACTICA Nº 9 UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LAB. DE CIRCUITOS ELECTRÓNICOS (ING. ELÉCTRICA) EC 1181 PRACTICA Nº 9 El VATIMETRO DIGITAL CARACTERISTICAS DEL TRANSFORMADOR MONOFASICO

Más detalles

DIODOS Y TRANSISTORES.

DIODOS Y TRANSISTORES. INSTITUTO TECNOLÓGICO DE MORELIA Práctica. 2.0.0. DIODOS Y TRANSISTORES. Características del Transistor BJT. Cliente: Ingeniería Electrónica. Autor: Ing. Miguel.Angel Mendoza Mendoza. 26 de Agosto del

Más detalles

Electrónica II. Guía 4

Electrónica II. Guía 4 Electrónica II. Guía 4 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). COMPARADORES Objetivo General Verificar

Más detalles

PRACTICA Nº 4 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA

PRACTICA Nº 4 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS LAB. CIRCUITOS ELECTRONICOS EC3192 PRACTICA Nº 4 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA OBJETIVO * Familiarizar al estudiante

Más detalles

FILTROS ACTIVOS DE PRIMER ORDEN. Objetivo general. Objetivos específicos. Materiales y equipo

FILTROS ACTIVOS DE PRIMER ORDEN. Objetivo general. Objetivos específicos. Materiales y equipo Electrónica II. Guía 4 FILTROS ACTIVOS DE PRIMER ORDEN Objetivo general Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.2 (Edificio

Más detalles

MEDICIONES DE RESISTENCIA Y POTENCIA DC

MEDICIONES DE RESISTENCIA Y POTENCIA DC PRACTICA Nº 3 MEDICIONES DE RESISTENCIA Y POTENCIA DC Objetivos Analizar el funcionamiento del Puente de Wheatstone y efectuar mediciones de resistencias aplicando el método de detección de cero. Efectuar

Más detalles

Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas Departamento de Tecnología Área de Electrónica

Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas Departamento de Tecnología Área de Electrónica Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas Departamento de Tecnología Área de Electrónica Prof. Tony Castillo Símbolos Electrónicos Símbolo de un FET de canal

Más detalles

Práctica PB2 MODOS DE OPERACIÓN DEL TRANSISTOR BIPOLAR

Práctica PB2 MODOS DE OPERACIÓN DEL TRANSISTOR BIPOLAR elab, Laboratorio Remoto de Electrónica ITESM, Depto. de Ingeniería Eléctrica Práctica PB2 MODOS DE OPERACIÓN DEL TRANSISTOR BIPOLAR OBJETIVOS Conocer los diferentes modos de operación del transistor bipolar

Más detalles

Verificar experimentalmente la operación teórica del oscilador basado en el puente de Wien.

Verificar experimentalmente la operación teórica del oscilador basado en el puente de Wien. Electrónica II. Guía 6 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). OSCILADOR DE PUENTE DE WIEN

Más detalles

USO DE INSTRUMENTOS DEL LABORATORIO. Objetivo general. Objetivos específicos. Materiales y equipo. Introducción Teórica

USO DE INSTRUMENTOS DEL LABORATORIO. Objetivo general. Objetivos específicos. Materiales y equipo. Introducción Teórica Electrónica I. Guía 1 1 USO DE INSTRUMENTOS DEL LABORATORIO Objetivo general Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales, aula 3.21

Más detalles

PRACTICA Nº 2 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA. 1.-Explique como opera el osciloscopio en la modalidad X-Y.

PRACTICA Nº 2 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA. 1.-Explique como opera el osciloscopio en la modalidad X-Y. UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRONICOS I EC1177 PRACTICA Nº 2 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA OBJETIVO Familiarizar al estudiante

Más detalles

Verificar el cumplimiento de las leyes de Kirchhoff. Calcular la potencia disipada en el circuito.

Verificar el cumplimiento de las leyes de Kirchhoff. Calcular la potencia disipada en el circuito. 1 Leyes de Kirchhoff Objetivo Verificar el cumplimiento de las leyes de Kirchhoff. Calcular la potencia disipada en el circuito. Material 2 Amperímetro Osciloscopio Fluke Generador de onda Computador Fuente

Más detalles

Práctica 11. El JFET y la distorsión alineal

Práctica 11. El JFET y la distorsión alineal 2011 MI. Mario Alfredo Ibarra Carrillo 2011 26/02/2011 Práctica 11. El JFET y la distorsión alineal MI. Mario Alfredo Ibarra Carrillo 26/02/2011 2 3 Objetivos: 1. Obtener experimentalmente la curva corriente

Más detalles

Facultad: Ingeniería Escuela: Ingeniería eléctrica Asignatura: Conversión de energía electromecánica II. Curvas V de los motores síncronos.

Facultad: Ingeniería Escuela: Ingeniería eléctrica Asignatura: Conversión de energía electromecánica II. Curvas V de los motores síncronos. Facultad: Ingeniería Escuela: Ingeniería eléctrica Asignatura: Conversión de energía electromecánica II Tema: Curvas V de los motores síncronos Contenidos Puntos de operación para el motor síncrono. Objetivos

Más detalles

F. Hugo Ramírez Leyva Circuitos Eléctricos I Ley de ohm

F. Hugo Ramírez Leyva Circuitos Eléctricos I Ley de ohm Práctica No. 1 Ley de Ohm Objetivo. Comprobar en forma experimental la ley de Ohm y hacer la comparación entre una resistencia lineal y no lineal Material y Equipo 1 Diodo semiconductor (1N1 o similar)

Más detalles

Práctica No. 1 Medición de voltajes, corrientes y resistencias con el multímetro digital y comprobación de la Ley de Ohm.

Práctica No. 1 Medición de voltajes, corrientes y resistencias con el multímetro digital y comprobación de la Ley de Ohm. Práctica No. 1 Medición de voltajes, corrientes y resistencias con el multímetro digital y comprobación de la Ley de Ohm. Objetivos: 1.- Conocer y utilizar el protoboard para implementar circuitos sencillos.

Más detalles

PRÁCTICA DE LABORATORIO No. 1 MEDICIONES ELÉCTRICAS

PRÁCTICA DE LABORATORIO No. 1 MEDICIONES ELÉCTRICAS 1. INTRODUCCIÓN PRÁCTIC DE LBORTORIO No. 1 MEDICIONES ELÉCTRICS Para el desarrollo exitoso de todas las prácticas de Física III es necesario conocer y operar correctamente los instrumentos de mediciones

Más detalles

Estudio de las condiciones de equilibrio de un puente de Wheatstone. Empleo de un método de precisión para medir resistencias eléctricas.

Estudio de las condiciones de equilibrio de un puente de Wheatstone. Empleo de un método de precisión para medir resistencias eléctricas. Estudio de las condiciones de equilibrio de un puente de Wheatstone. Empleo de un método de precisión para medir resistencias eléctricas. :: NTODUCCÓN [9.] El puente de Wheatstone deriva su nombre del

Más detalles

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ELECTRÓNICA Y BIOMÉDICA

UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ELECTRÓNICA Y BIOMÉDICA UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS ELECTRÓNICA Y BIOMÉDICA CICLO: I/215 GUIA DE LABORATORIO #8 Nombre de la Practica: Circuitos Rectificadores de Onda Lugar de Ejecución: Fundamentos

Más detalles

TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC DIVISIÓN DE INGENIERÍA ELECTRÓNICA Y TELEMÁTICA PRÁCTICAS DE LABORATORIO

TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC DIVISIÓN DE INGENIERÍA ELECTRÓNICA Y TELEMÁTICA PRÁCTICAS DE LABORATORIO TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC DIVISIÓN DE INGENIERÍA ELECTRÓNICA Y TELEMÁTICA PRÁCTICAS DE LABORATORIO ASIGNATURA: ELECTRÓNICA ANALÓGICA I REALIZÓ: DANIEL JAIMES SERRANO SEPTIEMBRE 2009.

Más detalles

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica CIRCUITOS RECTIFICADORES

Objetivos generales. Objetivos específicos. Materiales y equipo. Introducción teórica CIRCUITOS RECTIFICADORES Electrónica I. Guía 4 1 / 14 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). CIRCUITOS RECTIFICADORES

Más detalles

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 3

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 3 Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 3 DIODO ZENER, RECTIFICADOR DE ONDA COMPLETA Y REGULADOR CON ZENER

Más detalles

Modelado de un motor de corriente continua.

Modelado de un motor de corriente continua. Sistemas de Control Automático. Guía 8 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Sistemas Control Automático. Lugar de ejecución: Instrumentación y Control (Edificio 3, 2da planta). Modelado

Más detalles

UNIDAD 3: TRANSITORES DE UNION BIPOLAR (BJT S) 1.-OPERACIÓN DEL TRANSISTOR BIPOLAR

UNIDAD 3: TRANSITORES DE UNION BIPOLAR (BJT S) 1.-OPERACIÓN DEL TRANSISTOR BIPOLAR UNIDAD 3: TRANSITORES DE UNION BIPOLAR (BJT S) 1.-OPERACIÓN DEL TRANSISTOR BIPOLAR El transistor de unión bipolar (del inglés Bipolar Junction Transistor, o sus siglas BJT) es un dispositivo electrónico

Más detalles

PRÁCTICA N 6. Cómo influye el factor de atenuación X1 y X10 cuando se realiza una medida?

PRÁCTICA N 6. Cómo influye el factor de atenuación X1 y X10 cuando se realiza una medida? REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DE EDUCACIÓN SUPERIOR INSTITUTO UNIVERSITARIO EXPERIMENTAL DE TECNOLOGÍA DE LA VICTORIA LA VICTORIA ESTADO ARAGUA DEPARTAMENTO DE ELECTRICIDAD LABORATORIO

Más detalles

Tema: Tiristores. Objetivos. Recomendaciones. Introducción. Radiología. GUÍA 01 Pág. 1

Tema: Tiristores. Objetivos. Recomendaciones. Introducción. Radiología. GUÍA 01 Pág. 1 Tema: Tiristores Facultad Escuela Lugar de Ejecución : Ingeniería. : Biomédica : Laboratorio de Biomédica Objetivos SCR Determinar las características de un Tiristor Conectar el SCR para que conduzca en

Más detalles

USO DE INSTRUMENTOS DE LABORATORIO

USO DE INSTRUMENTOS DE LABORATORIO 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). USO DE INSTRUMENTOS DE LABORATORIO Objetivo General Obtener

Más detalles

Centro de Nanociencias y Nanotecnología Licenciatura en Nanotecnología

Centro de Nanociencias y Nanotecnología Licenciatura en Nanotecnología PROGRAMA DE ASIGNATURA 3 CLAVE DENOMINACIÓN DE LA ASIGNATURA SEMESTRE CIRCUITOS ELÉCTRICOS MODALIDAD CARÁCTER HORAS CURSO, LABORATORIO ETÁPA TIPO ÁREA DE CONOCIMIENTO SEMESTR E HORAS/SEMANA TEÓRICAS PRÁCTICAS

Más detalles

OSCILADOR DE RELAJACIÓN

OSCILADOR DE RELAJACIÓN Electrónica II. Guía 7 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). OSCILADOR DE RELAJACIÓN Objetivos específicos

Más detalles

Tema: Parámetros del Cableado Coaxial

Tema: Parámetros del Cableado Coaxial Tema: Parámetros del Cableado Coaxial Contenidos Impedancia característica. Velocidad de propagación. Onda reflejada. Línea de transmisión terminada con cargas. Objetivos Específicos Fundamentos de Cableado

Más detalles

LABORATORIO DE MAQUINAS ELECTRICAS. Guía de Practica N 01: CONCEPTOS Y PRUEBAS BASICAS DE TRANSFORMADORES

LABORATORIO DE MAQUINAS ELECTRICAS. Guía de Practica N 01: CONCEPTOS Y PRUEBAS BASICAS DE TRANSFORMADORES Universidad Nacional del Santa Facultad de Ingeniería E.A.P. Ingeniería En Energía Departamento Académico de Energía y Física LABORATORIO DE MAQUINAS ELECTRICAS Guía de Practica N 01: CONCEPTOS Y PRUEBAS

Más detalles

LABORATORIO DE DISPOSITIVOS ELECTRÓNICOS PRÁCTICA N 6

LABORATORIO DE DISPOSITIVOS ELECTRÓNICOS PRÁCTICA N 6 LABORATORIO DE DISPOSITIVOS ELECTRÓNICOS 1. TEMA PRÁCTICA N 6 ANÁLISIS AC Y DC DE UN TRANSISTOR BIPOLAR DE JUNTURA EN CONFIGURACIÓN EMISOR COMÚN, BASE COMÚN Y COLECTOR COMÚN 2. OBJETIVOS 2.1. Analizar

Más detalles

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 4

Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 4 Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 4 CARACTERISTICAS DEL MOSFET, AMPLIFICADOR SOURCE COMUN Objetivo:

Más detalles

Práctica 2 - Circuitos, instrumentos de medición, elementos de protección y detección de equipos en falla

Práctica 2 - Circuitos, instrumentos de medición, elementos de protección y detección de equipos en falla VIII curso de EEIBS -Práctica 2- Núcleo de Ingeniería Biomédica Facultades de Medicina e Ingeniería UdelaR. Práctica 2 - Circuitos, instrumentos de medición, elementos de protección y detección de equipos

Más detalles

Práctica 04. Diodo zener

Práctica 04. Diodo zener 2011 MI. Mario Alfredo Ibarra Carrillo Facultad de ingeniería 11/03/2011 2 3 Objetivos: 1. Que el alumno estudie las propiedades y comportamientos del diodo zener. 2. Que el alumno implemente un circuito

Más detalles

Práctica 1: Circuitos de corriente continua. Manejo de la fuente de alimentación y el multímetro

Práctica 1: Circuitos de corriente continua. Manejo de la fuente de alimentación y el multímetro Tecnología Electrónica Práctica 1 GRUPO (día y hora): PUESTO: Práctica 1: Circuitos de corriente continua. Manejo de la fuente de alimentación y el multímetro Medidas de resistencias Identificar, mediante

Más detalles

MÁQUINAS ELÉCTRICAS LABORATORIO No. 3

MÁQUINAS ELÉCTRICAS LABORATORIO No. 3 Nivel: Departamento: Facultad de Estudios Tecnológicos. Eléctrica. Materia: Maquinas Eléctricas I. Docente de Laboratorio: Lugar de Ejecución: Tiempo de Ejecución: G u í a d e L a b o r a t o r i o N o.

Más detalles

INTRODUCCIÓN A LOS AMPLIFICADORES OPERACIONALES. Objetivo general. Objetivos específicos. Materiales y equipo. Introducción Teórica

INTRODUCCIÓN A LOS AMPLIFICADORES OPERACIONALES. Objetivo general. Objetivos específicos. Materiales y equipo. Introducción Teórica Electrónica II. Guía 2 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). INTRODUCCIÓN A LOS AMPLIFICADORES

Más detalles

Práctica 4. LABORATORIO

Práctica 4. LABORATORIO Práctica 4. LABORATORIO Electrónica de Potencia Convertidor DC/DC Cúk 1. Diagrama de Bloques En esta práctica, el alumnado debe implementar un convertidor DC/DC tipo Cúk. En la Fig1 se muestra el diagrama

Más detalles

TEMA 17: Polarización de FETs 17.1

TEMA 17: Polarización de FETs 17.1 Índice TEMA 17: Polarización de FETs 17.1 18.1. INTRODUCCIÓN 17.1 18.2. CIRCUITO DE AUTOPOLARIZACIÓN DE FUENTE 17.3 18.3. CIRCUITO PARA UN FET DE ACUMULACIÓN 17.4 18.4. CIRCUITO DE POLARIZACIÓN CON CUATRO

Más detalles

TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) Generalidades Clasificación Principio de Funcionamiento y Simbología Característica V-I

TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) Generalidades Clasificación Principio de Funcionamiento y Simbología Característica V-I TRANSITORES DE EFECTO DE CAMPO (Field effect transistor, FET) Generalidades Clasificación Principio de Funcionamiento y Simbología Característica V-I de Salida Característica de Transferencia Circuitos

Más detalles

Transmisión/recepción analógica y digital a través de fibra óptica, utilizando el entrenador B4530 y B4530Y

Transmisión/recepción analógica y digital a través de fibra óptica, utilizando el entrenador B4530 y B4530Y Práctica 1 Transmisión/recepción analógica y digital a través de fibra óptica, utilizando el entrenador B4530 y B4530Y OBJETIVOS 1. Mostrar al alumno las partes elementales de un sistema de comunicaciones

Más detalles

INSTRUCTOR: Manuel Eduardo López

INSTRUCTOR: Manuel Eduardo López INSTRUCTOR: Manuel Eduardo López RESULTADOS EN BRUTO MEDICIÓN DE VOLTAJE PARTES I. USO DE ESCALAS DEL VOLTÍMETRO Se identifica la terminal (+) y (-) del medidor y se conecta a la fuente de alimentación,

Más detalles

1 Tablero maestro 1 Tarjeta de circuito impreso EB Multímetro 1 Osciloscopio 1 Generador de funciones Tabla 1.1. Materiales y equipo.

1 Tablero maestro 1 Tarjeta de circuito impreso EB Multímetro 1 Osciloscopio 1 Generador de funciones Tabla 1.1. Materiales y equipo. Contenido Facultad: Estudios Tecnologicos Escuela: Electronica y Biomedica Asignatura: Electrónica de Potencia Curvas de operación del PUT y Osciladores de Relajación. Objetivos Específicos Analizar el

Más detalles

1. El Generador de Inducción Trifásico

1. El Generador de Inducción Trifásico Generador de Inducción Trifásico Curva Par-Velocidad y Operación Aislada Curso: Laboratorio de Máquinas Eléctricas I Sigla: IE-0416 Documento: ie0416.practica #14.2007-2.doc Elaborado por: Ing. Mauricio

Más detalles

IG = 0 A ID = IS. ID = k (VGS - VT) 2

IG = 0 A ID = IS. ID = k (VGS - VT) 2 INTRODUCCION El transistor de efecto de campo (FET) es un ejemplo de un transistor unipolar. El FET tiene más similitudes con un transistor bipolar que diferencias. Debido a esto casi todos los tipos de

Más detalles

Práctica No. 4 del Curso "Meteorología y Transductores". "Comparadores y generador PWM"

Práctica No. 4 del Curso Meteorología y Transductores. Comparadores y generador PWM Objetivos. Práctica No. 4 del Curso "Meteorología y Transductores". "Comparadores y generador PWM" Comprobar en forma experimental el funcionamiento de los comparadores con Histéresis, así como el circuito

Más detalles

Figura Amplificador inversor

Figura Amplificador inversor UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 9 MEDICIONES SOBRE CIRCUITOS ELECTRÓNICOS CIRCUITOS BÁSICOS DEL AMPLIFICADOR OPERACIONAL

Más detalles

Formato para prácticas de laboratorio

Formato para prácticas de laboratorio CARRERA Ingeniero en Computación PRÁCTICA No. 4 PLAN DE ESTUDIO LABORATORIO DE NOMBRE DE LA PRÁCTICA 1 INTRODUCCIÓN CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA 2003-1 5039 Mediciones Eléctricas y Electrónicas

Más detalles

2. GALGAS EXTENSOMÉTRICAS

2. GALGAS EXTENSOMÉTRICAS Manual de Prácticas Pag.: 3-1 2. GALGAS EXTENSOMÉTRICAS 2.1. INTRODUCCIÓN. Esta sesión de prácticas tiene como objetivo profundizar en el conocimiento y manejo de las galgas extensométricas, sensores especialmente

Más detalles

Filtros Activos de Segundo Orden

Filtros Activos de Segundo Orden Facultad Escuela Lugar de Ejecución : Ingeniería. : Electrónica : Fundamentos Generales (Edificio 3, 2da planta) Filtros Activos de Segundo Orden Objetivos Específicos Medir las tensiones de entrada y

Más detalles

Tema: USO DE MEMORIAS RAM Y ROM

Tema: USO DE MEMORIAS RAM Y ROM Sistemas Digitales. Guía 10 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas digitales Lugar de Ejecución: Fundamentos Generales. Edificio 3. Tema: USO DE MEMORIAS RAM Y ROM Objetivo general

Más detalles

APLICACIONES DEL AMPLIFICADOR OPERACIONAL

APLICACIONES DEL AMPLIFICADOR OPERACIONAL UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE CIRCUITOS EC 1282 PRACTICA Nº 9 APLICACIONES DEL AMPLIFICADOR OPERACIONAL Objetivos Familiarizar al estudiante con distintas

Más detalles

LEY DE OHM EXPERIMENTO 1. CIRCUITOS, TARJETAS DE EXPERIMENTACIÓN

LEY DE OHM EXPERIMENTO 1. CIRCUITOS, TARJETAS DE EXPERIMENTACIÓN LEY DE OHM EXPERIMENTO 1. CIRCUITOS, TARJETAS DE EXPERIMENTACIÓN Objetivos. Estudiar y familiarizarse con el tablero de conexiones (Protoboard ) y la circuitería experimental. Aprender a construir circuitos

Más detalles

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER OBJETIVOS 1. Evaluar e interpretar características fundamentales de transistores BJT. 2. Obtener la ganancia del circuito a partir del modelo en pequeña señal del transistor BJT. 3. Observar como varían

Más detalles

Experiencia P56: Transistores: ganancia de corriente: Amplificador NPN seguidor de emisor Sensor de voltaje, salida de potencia

Experiencia P56: Transistores: ganancia de corriente: Amplificador NPN seguidor de emisor Sensor de voltaje, salida de potencia Experiencia P56: Transistores: ganancia de corriente: Amplificador NPN seguidor de emisor Sensor de voltaje, salida de potencia Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Semiconductores

Más detalles

1 Tablero maestro 1 Tarjeta de circuito impreso EB Multímetro 1 Osciloscopio 1 Generador de funciones Tabla 1.1. Materiales y equipo.

1 Tablero maestro 1 Tarjeta de circuito impreso EB Multímetro 1 Osciloscopio 1 Generador de funciones Tabla 1.1. Materiales y equipo. Contenido Facultad: Ingeniería Escuela: Ingeniería Electrónica Asignatura: Electrónica industrial Curvas de operación del PUT y osciladores de relajación. Objetivos Específicos Analizar el funcionamiento

Más detalles

:: OBJETIVOS [1.1] :: PREINFORME [1.2]

:: OBJETIVOS [1.1] :: PREINFORME [1.2] Manejo de aparatos de medida. Identificación de componentes eléctricos de un circuito. Comparación entre los valores registrados por instrumentos de medidas eléctricas, uno análogo y otro digital. :: OBJETIVOS

Más detalles

1 Tablero maestro 1 Tarjeta de circuito impreso EB Multímetro 1 Osciloscopio 1 Generador de funciones Tabla 1.1. Materiales y equipo.

1 Tablero maestro 1 Tarjeta de circuito impreso EB Multímetro 1 Osciloscopio 1 Generador de funciones Tabla 1.1. Materiales y equipo. Contenido Facultad: ingeniería Escuela: Ingeniería Electrónica Asignatura: Electrónica industrial Curvas de operación del SCR. Objetivos Específicos Determinar las características físicas y eléctricas

Más detalles