Guía 6 - Integrales. Integrales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Guía 6 - Integrales. Integrales"

Transcripción

1 Guía 6 - Integrales 2014 Bienvenido a la serie de guías resueltas de Exapuni! Esta serie de guías resueltas fue hecha por estudiantes de la comunidad Exapuni para facilitar el estudio y con la mejor intención de ayudar. Esperamos que te sean útiles. Podés buscar todo el material, responder tus dudas y mucho más durante toda tu carrera en sumate! Integrales Ejercicio 1. Hallar, utilizando Comenzamos con el último tema de la materia, integrales. Tené en cuenta que integrar es la operación inversa a derivar. Se va entender mejor a medida que resolvemos los ejercicios. Al igual que con derivadas para las integrales también hay reglas para aplicar y obtener el resultado. a) i) Nos dan una función derivada y nos piden que obtengamos la función. Antes teníamos la función y nos pedían que obtengamos la función derivada. Es por esto que les comentaba que es la operación inversa. Tenemos la función: La regla que más vas a usar en integrales es la siguiente:

2 Vamos a explicar un poco lo que escribimos. El símbolo se usa para denotar que estamos integrando. El término es el exponente al que esta elevado la. El término se coloca para aclarar que lo que estamos integrando es la variable. Esto se hace debido a que podemos tener más de una variable en la integración y es importante aclarar que estamos integrando. El término no es más que una constante. Recordá que cuando derivábamos una constante obteníamos como resultado. Ponemos una constante porque no sabemos si la función primitiva, en este caso tenía una constante que fue derivada y quedo como resultado. Siempre recordar escribir la constante. Ya podemos resolver el ejercicio: ii) Al integrar una constante únicamente tenemos que agregar la variable. Recordar que la derivada de es y estamos realizando la operación inversa. iii) Recordar que la derivada del es. La derivada del es. Necesitamos la integral de. Se entendió? Fíjate que si derivas obtenés la función que nos da el enunciado. iv)

3 v) No olvides que la derivada de es. La integral por lo tanto tampoco varía. vi) Es como el ejercicio i pero cambia el exponente: vii) viii)

4 b) i) Los ejercicios son similares a los anteriores pero con algunas nuevas reglas: Usamos las mismas reglas que ya vimos para resolver. ii) ( ) Recordá que la derivada de es iii) Para integrar lo vamos a expresar como. ( ) ( ) iv)

5 a) Ejercicio 2. Hallar la función Nos dan el valor, reemplazamos: Ya tenemos la función completa: b) Nos dan el valor, reemplazamos:

6 c) Nos dan el valor ( ), reemplazamos: ( ) ( ) ( ) a) Ejercicio 3. Calcular las b) c) ( ) ( ) d)

7 ( ) e) f) ( ) ( ) ( ) g) ( ) h) ( ) a) Ejercicio 4. Calcular aplicando No todos los ejercicios se pueden resolver con las reglas que venimos usando, existen casos en que no es posible aplicarlas. Se usan diferentes métodos en esos casos. El primero que vamos a ver es el método de sustitución. La sustitución consiste en hacer un cambio de variable para poder resolver el ejercicio llevando una situación que no se puede resolver con las reglas de integración a una situación en la que si se puede. Resolvamos este ejercicio para entender mejor, al principio seguramente te va a parecer rara la resolución, es hasta que resuelvas ejercicios y vayas entendiendo como funciona. Vamos a hacer un cambio de variable. Ahora derivamos: Expresamos en función de.

8 Ahora podemos remplazar en la función original: se reemplaza con y con. Nos quedo una función en función de. Ahora si podemos resolver con las reglas clásicas de integración: Volvemos a reemplazar para que nos quede en función de. Se entendió? Ahora con el resto de ejercicios va a quedar más claro. b) El problema es lo que está dentro del, si fuese podría haberse resuelto directamente, pero como dice necesitamos hacer una sustitución. No hace falta despejar en función de ya que podemos reemplazar por directamente. Ahora ya podemos resolver:

9 Volvemos a reemplazar : c) Muy similar al anterior así que no explicamos mucho: d) Hacemos la sustitución: Volvemos a reemplazar: e)

10 Hacemos la sustitución: Despejamos : Ya podemos integrar: Volvemos a reemplazar: f) No siempre es obvia la sustitución que tenes que aplicar. A veces la sustitución no funciona y tenes que cambiarla. Es normal! En éste ejercicio por ejemplo primero intentamos la sustitución y no funciono. Quedo la integral en función de y de. Por lo tanto no pudimos integrar. Vamos a probar con :

11 ( ) Volvemos a reemplazar: g) Hacemos la sustitución: Ya podemos integrar: Volvemos a reemplazar: h)

12 Hacemos la sustitución: Ya podemos integrar: Volvemos a reemplazar: i) Hacemos la sustitución: ( ) Ya podemos integrar:

13 Volvemos a reemplazar: j) Hacemos la sustitución: Volvemos a reemplazar: k) Hacemos la sustitución:

14 Volvemos a reemplazar: l) Hacemos la sustitución: Volvemos a reemplazar: m) Hacemos la sustitución:

15 ( ) ( ) Volvemos a reemplazar: n) Hacemos la sustitución: Volvemos a reemplazar: o)

16 Hacemos la sustitución: ( ) Integramos: Volvemos a reemplazar: p) Hacemos la sustitución: ( ) Integramos: Volvemos a reemplazar:

17 q) Hacemos la sustitución: Integramos: Volvemos a reemplazar: r) Hacemos la sustitución:

18 Integramos: Volvemos a reemplazar: a) Ejercicio 5. Calcular aplicando Ahora vamos a ver un segundo método para resolver integrales, se llama método de integración por partes. No siempre es posible aplicar éste método. Es necesario que haya dos funciones para poder hacer la integración. La fórmula que hay que aplicar es la siguiente: Vamos a resolver el ejercicio para que se entienda mejor, primero hacemos cambios de variable: y Tenemos que determinar y : Ya podemos resolver: Notar que transformamos una integral difícil de resolver. Si no queda una integral sencilla hay que cambiar y. a una sencilla

19 Resolvemos: b) Ya tenemos y Tenemos que determinar y : Ya podemos resolver: c) Ya tenemos y Tenemos que determinar y : Ya podemos resolver: d)

20 Ya tenemos y Tenemos que determinar y : Ya podemos resolver: e) ( ) Ya tenemos ( ) y Tenemos que determinar y : ( ) Ya podemos resolver: ( ) ( ) ( ) ( ) f) Ya tenemos y Tenemos que determinar y :

21 Ya podemos resolver: Aún no se puede resolver la integral de manera sencilla. Tenemos que aplicar nuevamente integral por partes para la integral: Tenemos y Tenemos que determinar y : Ya podemos resolver: Ya tenemos el resultado: g) Ya tenemos y Tenemos que determinar y : Ya podemos resolver:

22 Aún no se puede resolver, necesitamos resolver la integral : Ya tenemos y Tenemos que determinar y : Ya podemos resolver: Ya tenemos el resultado: h) Ya tenemos y Tenemos que determinar y : Ya podemos resolver: ( ) ( )

23 Aún no se puede resolver, tenemos que resolver la integral. Ya tenemos y Tenemos que determinar y : Ya podemos resolver: [ ] [ ] Ya tenemos el resultado: [ ] Ejercicio 6. Calcular a) En estos ejercicios no nos dicen si usar el método de integración por partes o el de sustitución. Éste ejercicio es un gran candidato para aplicar el método de integración por partes ya que se trata de la multiplicación de dos funciones y al analizarlo no hay un cambio de variable apropiado para aplicar el método de sustitución. Resolvamos: Ya tenemos y

24 Tenemos que determinar y : Ya podemos resolver: ( ) ( ) Necesitamos resolver la integral ( ), aplicamos el método de integración por partes: Ya tenemos y Tenemos que determinar y : Ya podemos resolver: ( ) ( ) ( ) ( ) ( ) Ya tenemos el resultado: ( ) [ ( ) ] ( ) ( ) b) En éste ejercicio podemos aplicar sustitución, recordar que la derivada de es.

25 Volvemos a reemplazar: c) En éste ejercicio no es necesario aplicar ningún método. La intensión es confundir. Se resuelve el trinomio cuadrado perfecto normalmente. Ya podemos resolver con las reglas clásicas: d) Tenemos que resolver con el método de sustitución: Ya podemos reemplazar: Volvemos a reemplazar:

26 e) ( ) ( ) Lo resolvemos con sustitución: Volvemos a reemplazar: f) ( ) Tenemos que aplicar el método de integración por partes para resolver Tenemos y Tenemos que obtener y : Resolvemos:

27 Tenemos que resolver, aplicamos integración por partes: Tenemos y Tenemos que obtener y : Resolvemos: ( ) Ya podemos armar el resultado: [ ] Si la integral no te sale directamente podes usar el método de sustitución, como hicimos en el ejercicio 4.i. Ejercicio 7. Hallar la a) El ejercicio es similar al 4.n Resolvemos con sustitución:

28 Podemos determinar el valor de ya que nos dan el dato Por lo tanto: b) Es posible resolverlo con sustitución o con integral por partes. Es más sencillo con sustitución: Ya podemos calcular.

29 Por lo tanto: c) Lo resolvimos en el 5.b El resultado es: Ya podemos calcular. Por lo tanto: d) Vamos a expresarlo de otra manera: Ya podemos resolver con una sustitución:

30 No sabemos la integral de. La podés aprender de memoria como regla, es pero la vamos a sacar con lo que vinimos aprendiendo usando el método de integración por partes: Tenemos y Vamos a obtener y : Ya podemos resolver: Llegamos al resultado deseado: Ya podemos obtener c: Ejercicio 8. La aceleración

31 Nos dan la aceleración y nos piden la velocidad. Para resolver necesitamos integrar la aceleración (recordar que la derivada de la velocidad es la aceleración). Integramos: [ ] ( ) Sino entendiste nada no te preocupes, lo que estamos haciendo ahora es calculando una integral definida. Hasta el momento veníamos calculando integrales indefinidas. Se aplican las mismas propiedades que en las indefinidas. La gran diferencia es que nos da un valor. Es por eso que tiene más sentido para problemas matemáticos y además se usa para el cálculo de área (el último tema que vamos a ver de matemática). Veamos paso por paso. Normalmente hubiésemos escrito: No hay un gran cambio con la nueva forma de escribir: La resolución si cambia un poco más. La idea es obtener la integral de y reemplazar la variable por el último valor del intervalo (el número de arriba), o sea para luego restar la integral reemplazando el primer valor del intervalo (el número de abajo), o sea 1. Veamos la formula de lo que estamos haciendo: Tené en cuenta que es la integral (la primitiva) de. Se entiende mejor? Mirá bien el ejercicio y cualquier cosa consulta en Exapuni. También podés mirar los ejercicios que siguen que se resuelven de la misma manera. Otra cosa a tener en cuenta es que la velocidad nos está dando negativa. Esto significa que el móvil esta yendo para el lado contrario del que venía. No hace la diferencia para el ejercicio pero es un dato que no está de más.

32 El resultado por lo tanto es que la velocidad para es. Ejercicio 9. Un cohete Integramos la aceleración para obtener la velocidad. En éste caso no usamos Barrow porque no nos dan un intervalo. Nos piden la velocidad en un instante en particular. Tenemos el dato de que en el instante el cohete se encuentra en reposo. La velocidad por lo tanto es. Aprovechamos éste dato para obtener. Por lo tanto la formula de la velocidad es: Veamos que pasa en : Ahora nos piden la distancia en La integral de la velocidad nos da como resultado la ecuación de la posición. Obtenemos usando el dato de que en el cohete se encuentra en reposo:

33 Por lo tanto la formula de la posición es: Veamos que pasa en : a) Ejercicio 10. Usando la regla Vamos a resolver éstos ejercicios como hicimos en el ejercicio. Recordá la formula de la regla de Barrow: Resolvamos: [ ] b) [ ] c) [ ] ( ) d)

34 [ ] e) [ ] f) [ ] a) Ejercicio 11. Usando la regla Ahora los ejercicios se complican un poco más porque hay que aplicar la regla de Barrow y para resolver las integrales vamos a necesitar de los métodos de integración (sustitución y por partes). Resolvamos: Tenemos y Vamos a obtener y : Ya podemos resolver: Tenemos que resolver, aplicamos el método de integración por partes: Tenemos y Vamos a obtener y :

35 Ya podemos resolver: Nos queda por lo tanto: Aplicamos Barrow: [ ] b) En éste ejercicio no necesitamos aplicar un método, resolvemos directamente: [ ] c) Resolvemos con el método de integración por partes: Tenemos y Vamos a obtener y : Resolvemos: ( ) ( )

36 Tenemos que resolver : Tenemos y Vamos a obtener y : Resolvemos: ( ) Nos queda por lo tanto: ( ) Ahora podemos aplicar Barrow: [ ] ( )

37 d) Vamos a resolver usando sustitución: [ ] [ ] [( ) ( )] [ ] e) Vamos a resolver usando sustitución: [ ]

38 [ ] ( ) f) Podemos resolver directamente: [ ] [ ] ( ) ( ) g) ( ) Resolvemos con sustitución: [ ] [ ] [ ] ( ) h) Necesitamos resolver con el método de integración por partes:

39 Tenemos y Vamos a obtener y : Resolvemos: Aplicamos Barrow: [ ] [ ] ( ) ( ) a) Ejercicio 12. Tenemos que resolver: Nos dan el dato Resolvemos: [ ] b) Tenemos que calcular

40 [ ] a) Ejercicio 13. [ ] ( ) b) [ ]

41 [ ]

Unidad 5 - Trabajo Práctico 5 Parte 1 Elementos de Matemática

Unidad 5 - Trabajo Práctico 5 Parte 1 Elementos de Matemática 06 Unidad 5 - Trabajo Práctico 5 Parte Unidad 5 Integral indefinida. Primitivas inmediatas. Uso de tablas de integrales. Integración por descomposición, por sustitución y por partes. Integral definida:

Más detalles

Parciales Matemática CBC Parciales Resueltos - Exapuni.

Parciales Matemática CBC Parciales Resueltos - Exapuni. Parciales Matemática CBC 2012 Parciales Resueltos - Exapuni www.exapuni.com.ar Compilado de primeros parciales del 2012 Parcial 1 1) Sea. Hallar todos los puntos de la forma, tales que la distancia entre

Más detalles

Lección 5: Ecuaciones con números naturales

Lección 5: Ecuaciones con números naturales GUÍA DE MATEMÁTICAS I Lección 5: Ecuaciones con números naturales Observe la siguiente tabla y diga cuáles son los números que faltan. 1 2 3 4 5 6 7 8 9 10 11 12 3 6 9 12 Es sencillo encontrar la regla

Más detalles

Resolver las siguientes integrales aplicando fracciones parciales,

Resolver las siguientes integrales aplicando fracciones parciales, Tu pregunta es, Resolver las siguientes integrales aplicando fracciones parciales, 1- x+1 (x 3) 2 dx 2- x+1 (x 1) 2 dx 3- x (x 3) 2 dx 4- x 2 dx (x 3)(x+2) 2 Bien, para la primera, x + 1 (x 3) 2 dx Ésta

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales Teóricas de Análisis Matemático (8) Práctica 0 Ecuaciones Diferenciales Práctica 0 Parte Ecuaciones Diferenciales Si un fenómeno está representado por una función f, la derivada de f representa la variación

Más detalles

= lim. Por lo tanto, sí que tenemos una asíntota oblicua. Ahora nos falta encontrar el punto de corte con el eje y, es decir:

= lim. Por lo tanto, sí que tenemos una asíntota oblicua. Ahora nos falta encontrar el punto de corte con el eje y, es decir: 1.- Considerad la función: f(x) x + 3x + 1 x + 3 a) Determinad si la función tiene una asíntota oblicua y, en caso de tenerla, calculad su ecuación. b) Calculad la recta tangente a la función en el punto

Más detalles

Sistema de ecuaciones

Sistema de ecuaciones Sistema de ecuaciones Escribimos en lenguaje simbólico el siguiente problema: Hallar dos números sabiendo que el duplo del primero menos el triplo del segundo es 10 y que la diferencia entre el primero

Más detalles

CÁLCULO DE PRIMITIVAS

CÁLCULO DE PRIMITIVAS 2 CÁLCULO DE PRIMITIVAS REFLEXIONA Y RESUELVE Concepto de primitiva NÚMEROS Y POTENCIAS SENCILLAS a) b) 2 c) 2 a) 2x b) x c) 3x 3 a) 7x b) c) x 4 a) 3x2 b) x2 c) 2x2 5 a) 6x 5 b) x5 c) 3x5 x 3 2 2 POTENCIAS

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN EJERCICIOS RESUELTOS Calcula una función real f : que cumple las condiciones siguientes: f (0) = 5, f (0) =, f (0) = 0 y f () = + Como f () = +, integremos esta

Más detalles

400 = -625 a +312,5 a 400 = - 312,5 a 400/-312,5 = a a= - 1,28 m/s 2

400 = -625 a +312,5 a 400 = - 312,5 a 400/-312,5 = a a= - 1,28 m/s 2 1. Un cohete parte del reposo con aceleración constante y logra alcanzar en 30 s una velocidad de 588 m/s. Calcular: a) Aceleración. Aplicamos la ecuación de la velocidad: v 0 = 0 m/s (parte del reposo).

Más detalles

Teorema del Seno. Teorema del Coseno

Teorema del Seno. Teorema del Coseno Para ver una explicación de cada Teorema y algunos ejemplos de solución de triángulos y problemas de aplicación, haga Click sobre el nombre: Teorema del Seno Teorema del Coseno Teorema del Seno Para aclarar

Más detalles

Guía de Ejercicios: Métodos de Integración

Guía de Ejercicios: Métodos de Integración Guía de Ejercicios: Métodos de Integración Área Matemática Resultados de aprendizaje Resolver integrales usando diferentes métodos de integración Contenidos 1. Método de sustitución simple 2. Método de

Más detalles

2.1 Reglas básicas de derivación y ritmos o velocidades de cambio

2.1 Reglas básicas de derivación y ritmos o velocidades de cambio PRIMER BIMESTRE Guía didáctica: Cálculo La ecuación de la velocidad instantánea es la derivada de la función posición: La velocidad instantánea para t = 2s, es 8 m/s Esperamos, que con los ejemplos resueltos

Más detalles

open green road Guía Matemática POTENCIAS DE EXPONENTE RACIONAL profesor: Nicolás Melgarejo .cl

open green road Guía Matemática POTENCIAS DE EXPONENTE RACIONAL profesor: Nicolás Melgarejo .cl Guía Matemática POTENCIAS DE EXPONENTE RACIONAL profesor: Nicolás Melgarejo.cl . Introducción Hemos escuchado muchas veces que una potencia es la multiplicación abreviada de un término por sí mismo un

Más detalles

MATEMATICA. Segundo Año Módulo 3

MATEMATICA. Segundo Año Módulo 3 Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional Dirección de Capacitación No Docente Dirección General de Cultura y Educación Provincia de Buenos Aires MATEMATICA Segundo

Más detalles

CONSTRUCCIÓN DE FÓRMULAS DE FUNCIONES LINEALES

CONSTRUCCIÓN DE FÓRMULAS DE FUNCIONES LINEALES CONSTRUCCIÓN DE FÓRMULAS DE FUNCIONES LINEALES En este apartado aprenderemos a construir la fórmula de una función lineal, a partir de tener algunas características de ellas como datos. Veremos, cómo armamos

Más detalles

open green road Guía Matemática ECUACIONES NO ALGEBRAICAS profesor: Nicolás Melgarejo .cl

open green road Guía Matemática ECUACIONES NO ALGEBRAICAS profesor: Nicolás Melgarejo .cl Guía Matemática ECUACIONES NO ALGEBRAICAS profesor: Nicolás Melgarejo.cl 1. Ecuaciones no algebraicas Se le denomina a aquellas igualdades con incógnitas que no están descritas mediante polinomios. Por

Más detalles

duv = udv + vdu udv = uv vdu

duv = udv + vdu udv = uv vdu I. INTEGRACIÓN POR PARTES. Si la integración de una función no es posible encontrarla por alguna de las fórmulas conocidas, es posible que se pueda integrar utilizando el método conocido como integración

Más detalles

Para ver una explicación detallada de cada gráfica, haga Click sobre el nombre.

Para ver una explicación detallada de cada gráfica, haga Click sobre el nombre. Para ver una explicación detallada de cada gráfica, haga Click sobre el nombre. La Parábola La Circunferencia La Elipse La Hipérbola La Parábola La parábola se define como: el lugar geométrico de los puntos

Más detalles

CLAVES DE CORRECCIÓN PRIMER EXAMEN PARCIAL DE MATEMÁTICA PARA AGRONOMÍA Y CIENCIAS AMBIENTALES 07/05/2018 TEMA 1

CLAVES DE CORRECCIÓN PRIMER EXAMEN PARCIAL DE MATEMÁTICA PARA AGRONOMÍA Y CIENCIAS AMBIENTALES 07/05/2018 TEMA 1 TEMA 1 Ejercicio 1 (2 puntos) Sea la función lineal cua gráfica pasa por los puntos. Hallar analíticamente los valores de siendo Para empezar, comenzamos determinando la expresión analítica de la función

Más detalles

Ecuaciones de Primer Grado

Ecuaciones de Primer Grado Ecuaciones de Primer Grado Juan José Cervilla Sáez 1 o ESO Nombre: Objetivos: 1. Conocer qué es una ecuación de primer grado. 2. Conocer y aplicar las distintas etapas para resolver una ecuación de primer

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Expresiones algebraicas. Ecuaciones de primer grado

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Expresiones algebraicas. Ecuaciones de primer grado lasmatemáticaseu Pedro Castro Ortega Epresiones algebraicas Ecuaciones de primer grado 1 Epresiones algebraicas 11 Definición de epresión algebraica Una epresión algebraica es un conjunto de números letras

Más detalles

Por qué enseñamos a integrar f(x) dx?

Por qué enseñamos a integrar f(x) dx? Por qué enseñamos a integrar f(x)? Eliseo Martínez 1. La integral como solución de una ecuación diferencial En la matemática aplicada a la Ingeniería, a los procesos de la física, con cierta frecuencia

Más detalles

Prof. J. Contreras S. Prof. C. del Pino O. Método de cambio de variable. U de Talca

Prof. J. Contreras S. Prof. C. del Pino O. Método de cambio de variable. U de Talca Sesión Temas Método de sustitución o cambio de variable.. Introducción Capacidades Conocer y comprender el método de cambio de variable. Calcular integrales indefinidas que se pueden obtener aplicando

Más detalles

Coordinación de Matemática II (MAT022)

Coordinación de Matemática II (MAT022) Coordinación de Matemática II (MAT022) Segundo semestre de 2011 Semana 3: Lunes 28 de Noviembre al Sábado 3 de Diciembre. CÁLCULO Contenidos Clase 1: Cálculo de Antiderivadas. Sustitución. Clase 2: Integración

Más detalles

SISTEMAS DE ECUACIONES LINEALES MÉTODO DE LA MATRIZ INVERSA

SISTEMAS DE ECUACIONES LINEALES MÉTODO DE LA MATRIZ INVERSA MÉTODO DE LA MATRIZ INVERSA Índice Presentación... 3 Método de la matriz inversa... 4 Observaciones... 5 Ejemplo I.I... 6 Ejemplo I.II... 7 Ejemplo II... 8 Sistemas compatibles indeterminados... 9 Método

Más detalles

xy si corresponde a la diferencial de alguna función f ( x, y ). Una ecuación diferencial de primer orden de la forma

xy si corresponde a la diferencial de alguna función f ( x, y ). Una ecuación diferencial de primer orden de la forma E.D.O para Ingenieros CAPITULO ECUACIONES EXACTAS La sencilla ecuación d + d 0 es separable, pero también equivale a la diferencial del producto de por ; esto es, d + d d( ) 0 Al integrar obtenemos de

Más detalles

Módulo 10 Solución de ecuaciones. OBJETIVO Resolverá ecuaciones de primer grado con una incógnita.

Módulo 10 Solución de ecuaciones. OBJETIVO Resolverá ecuaciones de primer grado con una incógnita. Módulo 0 Solución de ecuaciones OBJETIVO Resolverá ecuaciones de primer grado con una incógnita. Una proposición del tipo: x - 6 x + se llama ecuación. La ecuación se caracteriza por contener algunos números

Más detalles

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice 1. ECUACIONES... 2 1.1. Ecuaciones de primer grado... 2 1.2. Ecuaciones de segundo grado... 3 1.2.1. Ecuación de segundo grado completa...

Más detalles

TEMA 3. Algebra. Teoría. Matemáticas

TEMA 3. Algebra. Teoría. Matemáticas 1 1 Las expresiones algebraicas Las expresiones algebraicas son operaciones aritméticas, de suma, resta, multiplicación y división, en las que se combinan letras y números. Para entenderlo mejor, vamos

Más detalles

Cómo resolver ecuaciones y sistemas de ecuaciones en congruencias?

Cómo resolver ecuaciones y sistemas de ecuaciones en congruencias? Cómo resolver ecuaciones y sistemas de ecuaciones en congruencias? Álgebra I Mayo de 2018 Marcelo Rubio Abstract En estas notas ofrecemos una guía para resolver ecuaciones y sistemas lineales de ecuaciones

Más detalles

INICIACIÓN A LAS INTEGRALES

INICIACIÓN A LAS INTEGRALES 9 INICIACIÓN A LAS INTEGRALES Esta unidad no da para muchas explicaciones. En ella estudiamos cómo calcular primitivas y cómo calcular áreas. Y ya está. Ahora solo queda escribir bien la expresión de la

Más detalles

La integral indefinida. Formulas y ejemplos Autor: jose maria guzman perez

La integral indefinida. Formulas y ejemplos Autor: jose maria guzman perez La integral indefinida. Formulas y ejemplos Autor: jose maria guzman perez 1 Presentación del curso En el siguiente curso que te presentamos a continuación tendrás la posibilidad de tener una guía sobre

Más detalles

1. Concepto general. 2. Propiedades de la radicación. Raíz de un producto (multiplicación) Raíz de un cociente (división) Raíz de una raíz

1. Concepto general. 2. Propiedades de la radicación. Raíz de un producto (multiplicación) Raíz de un cociente (división) Raíz de una raíz Haga Click sobre la opción que desee ver: 1. Concepto general 2. Propiedades de la radicación Raíz de un producto (multiplicación) Raíz de un cociente (división) Raíz de una raíz 3. Simplificación de radicales

Más detalles

SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES

SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES En esta sección se estudiaran los sistemas de ecuaciones diferenciales lineales de primer orden, así como los de orden superior, con dos o más funciones desconocidas,

Más detalles

UNIDAD 2. La Recta. Características de la Recta

UNIDAD 2. La Recta. Características de la Recta UNIDAD 2. La Recta Características de la Recta Juan Adolfo Álvarez Martínez Autor 1 CONCEPTOS BASICOS. Como ya has podido observar, existen muchos ejemplos donde la línea recta es de utilidad, y uno de

Más detalles

CM2 ENRICH CREUS CARNICERO Nivel 2

CM2 ENRICH CREUS CARNICERO Nivel 2 CM ENRICH CREUS CARNICERO Nivel Unidad Cónicas Conocimientos previos CONOCIMIENTOS PREVIOS PARA CÓNICAS Antes de comenzar con el Trabajo Práctico, necesitás repasar algunas cuestiones como: ) graficar

Más detalles

Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma

Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma Estamos acostumbrados a trabajar con números naturales o enteros en la vida cotidiana pero en algunas ocasiones tendrás

Más detalles

1 of 13 10/25/2011 6:31 AM

1 of 13 10/25/2011 6:31 AM Prof. Anneliesse SánchezDepartamento de MatemáticasUniversidad de Puerto Rico en AreciboEn esta unidad discutiremos tres métodos para resolver ecuaciones cuadráticas. Método de factorización Método de

Más detalles

Matemáticas de 2º de bachillerato página 1 Integral indefinida. Integral indefinida

Matemáticas de 2º de bachillerato página 1 Integral indefinida. Integral indefinida Matemáticas de º de bachillerato página Integral indefinida Integral indefinida.introducción.- La integración es el proceso recíproco de la derivación, es decir, en la derivación se trata de hallar la

Más detalles

k. 100 y la ecuación que se tiene que resolver ahora es: t

k. 100 y la ecuación que se tiene que resolver ahora es: t Ejemplo 1) Un esqueleto contiene la centésima parte de su cantidad original de carbono 14 ( 4 C). Calcula la antigüedad del esqueleto, con precisión de1000años. (La vida media del 14 C es de aproximadamente

Más detalles

Desigualdades con Valor absoluto

Desigualdades con Valor absoluto Resolver una desigualdad significa encontrar los valores para los cuales la incógnita cumple la condición. Para ver ejemplos de las diferentes desigualdades que hay, haga Click sobre el nombre: Desigualdades

Más detalles

La ecuación de segundo grado.

La ecuación de segundo grado. La ecuación de segundo grado. Sean números reales Se denomina ecuación de segundo grado (o ecuación cuadrática) en la variable a la ecuación cuya forma canónica es Ejemplos. Son ecuaciones cuadráticas:

Más detalles

Ecuaciones e Inecuaciones

Ecuaciones e Inecuaciones 5 Ecuaciones e Inecuaciones Objetivos En esta quincena aprenderás a: Resolver ecuaciones de primer y segundo grado. Resolver ecuaciones bicuadradas y factorizadas. Identificar y resolver inecuaciones de

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Sistemas de ecuaciones Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces,

Más detalles

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores). UNIVERSIDAD REY JUAN CARLOS, MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS MATEMÁTICAS II AÑO 2010 OPCIÓN A Ejercicio 1 a) (1 punto) Hallar los valores del parámetro para los que la siguiente matriz

Más detalles

La Lección de Hoy es sobre Líneas Perpendiculares y Paralelas. El cuál es la expectativa para el aprendizaje del estudiante del estudiante LF.3.A1.

La Lección de Hoy es sobre Líneas Perpendiculares y Paralelas. El cuál es la expectativa para el aprendizaje del estudiante del estudiante LF.3.A1. LF.3.A1.7-Tara Walker-Parallel and Perpendicular Lines- La Lección de Hoy es sobre Líneas Perpendiculares y Paralelas. El cuál es la expectativa para el aprendizaje del estudiante del estudiante LF.3.A1.7

Más detalles

ECUACIONES DIFERENCIALES Julián de la Horra Departamento de Matemáticas U.A.M.

ECUACIONES DIFERENCIALES Julián de la Horra Departamento de Matemáticas U.A.M. Introducción ECUACIONES DIFERENCIALES Julián de la Horra Departamento de Matemáticas U.A.M. En diferentes situaciones que aparecen con frecuencia en las Ciencias Experimentales, es complicado poder escribir

Más detalles

INTEGRACIÓN DE RACIONALES. Siendo p(x) y q(x) dos polinomios. Nos podemos encontrar dos casos:

INTEGRACIÓN DE RACIONALES. Siendo p(x) y q(x) dos polinomios. Nos podemos encontrar dos casos: INTEGRACIÓN DE RACIONALES Nos hallamos ante una racional cuando estamos atacando un problema y nos encontramos con un cociente de polinomios que tenemos que integrar. Hemos de resolver: f(x) = p(x) q(x)

Más detalles

CURSO DE MATEMÁTICA. Repartido Teórico 4

CURSO DE MATEMÁTICA. Repartido Teórico 4 CURSO DE MATEMÁTICA. Repartido Teórico 4 Mariana Pereira Noviembre, 2007 1. Ecuaciones Diferenciales Una ecuación diferencial es una ecuación donde la incógnita es una fución de una variable, y la ecuación

Más detalles

Sistemas de ecuaciones diferenciales y el uso de operadores

Sistemas de ecuaciones diferenciales y el uso de operadores Sistemas de ecuaciones diferenciales y el uso de operadores En la clase anterior resolvimos algunos sistemas de ecuaciones diferenciales sacándole provecho a la notación matricial. Sin embrago, algunos

Más detalles

EJERCICIOS RESUELTOS SOBRE BINOMIO AL CUBO EN PRODUCTOS NOTABLES EXPLICACIONES CON EJEMPLOS

EJERCICIOS RESUELTOS SOBRE BINOMIO AL CUBO EN PRODUCTOS NOTABLES EXPLICACIONES CON EJEMPLOS CUBO DE UN BINOMIO EJERCICIOS RESUELTOS SOBRE BINOMIO AL CUBO EN PRODUCTOS NOTABLES EXPLICACIONES CON EJEMPLOS Comentar Para calcular el cubo de un binomio, se suma: el cubo del primer término, con el

Más detalles

MÓDULO 10. Resolución de ecuaciones de segundo grado

MÓDULO 10. Resolución de ecuaciones de segundo grado MÓDULO 0 Resolución de ecuaciones de segundo grado Objetivo El estudiante será capaz de resolver ecuaciones de segundo grado por medio de técnicas de factorización y por la fórmula general en el conteto

Más detalles

INSTITUCIÓN EDUCATIVA INSTITUTO AGRICOLA JORNADA DIURNA GUÍA DE TRABAJO # 6 AREA: MATEMÁTICAS AGISNATURA: ARITMÉTICA GRADO: SEXTO

INSTITUCIÓN EDUCATIVA INSTITUTO AGRICOLA JORNADA DIURNA GUÍA DE TRABAJO # 6 AREA: MATEMÁTICAS AGISNATURA: ARITMÉTICA GRADO: SEXTO AREA: MATEMÁTICAS AGISNATURA: ARITMÉTICA GRADO: SEXTO Instrucciones. Lee cuidadosamente los conceptos, los ejemplos y desarrolla los ejercicios propuestos. No olvides guardar esta guía de trabajo en tu

Más detalles

, se denomina primitiva de esta función a otra F(x)

, se denomina primitiva de esta función a otra F(x) 1. CONCEPTO DE INTEGRAL INDEFINIDA Definición: Dada una función f (x), se denomina primitiva de esta función a otra F(x) tal que F '( x) = f ( x) Esta definición indica que el cálculo de primitivas constituye

Más detalles

Expresión C. numérico Factor literal 9abc 9 abc

Expresión C. numérico Factor literal 9abc 9 abc GUÍA DE REFUERZO DE ÁLGEBRA Un término algebraico es el producto de una o más variables (llamado factor literal) y una constante literal o numérica (llamada coeficiente). Ejemplos: 3xy ; 45 ; m Signo -

Más detalles

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5 Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual

Más detalles

Radicales y sus operaciones MATEMÁTICAS 2º CICLO E.S.O.

Radicales y sus operaciones MATEMÁTICAS 2º CICLO E.S.O. Radicales y sus operaciones MATEMÁTICAS º CICLO E.S.O. Objetivos: Simplificar radicales Efectuar operaciones de suma, resta, multiplicación y división con radicales Racionalizar parte de una fracción Notación:

Más detalles

TEMA: 5 ÁLGEBRA 3º ESO

TEMA: 5 ÁLGEBRA 3º ESO TEMA: 5 ÁLGEBRA º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x

Más detalles

Resuelve: Solución: 180x 60 96x 16 27x 180x x 96x 27x 108x x Resuelve la ecuación: Solución: 9x 9 8x 4 4x 18x 9

Resuelve: Solución: 180x 60 96x 16 27x 180x x 96x 27x 108x x Resuelve la ecuación: Solución: 9x 9 8x 4 4x 18x 9 Urb. La Cantera, s/n. 958586 http:/www.mariaauxiliadora.com Resuelve: x 6x 1 9x x 5 3 1 9 5 4 3 16 8 x 6x 1 9x x 5 3 1 9 5 4 3 16 8 15x 5 6x 1 9x 18x 10 4 3 16 8 180x 60 96x 16 7x 108x 60 48 48 48 48 180x

Más detalles

Derivadas por Definición

Derivadas por Definición Derivadas por Deinición Nota: (x es una unción cualquiera a es un valor cualquiera del eje x Δx es una distancia cualquiera entre dos valores del eje x Introducción Ya vimos como hallar la pendiente de

Más detalles

Sistemas de Ecuaciones Exponenciales y Logarítmicas

Sistemas de Ecuaciones Exponenciales y Logarítmicas Sistemas de Ecuaciones Exponenciales y Logarítmicas Siguiendo con los s de ecuaciones veremos a continuación aquellos que están compuestos por ecuaciones exponenciales y logarítmicas. I. Sistemas de Ecuaciones

Más detalles

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función.

Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función. Integral indefinida 1. Integración Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones F(x) que al ser derivadas conducen a f(x). Se dice, entonces,

Más detalles

LECCIÓN 2: SOLUCION DE UNA ECUACIÓN DIFERENCIAL.

LECCIÓN 2: SOLUCION DE UNA ECUACIÓN DIFERENCIAL. 7 LECCIÓN : SOLUCION DE UNA ECUACIÓN DIFERENCIAL. JUSTIFICACIÓN: Ya que uno de los objetivos generales del curso de Ecuaciones Diferenciales es el de hallar las funciones desconocidas que satisfacen la

Más detalles

Integrales indenidas

Integrales indenidas Integrales indenidas Adriana G. Duarte 7 de agosto de 04 Resumen Antiderivación. Integrales indenidas, propiedades. Técnicas de integración: inmediatas,por sustitución, por partes. Ejemplos y ejercicios.

Más detalles

UNIDAD DE APRENDIZAJE III

UNIDAD DE APRENDIZAJE III MATEMÁTICAS I ALGEBRA Unidad de Aprendizaje III UNIDAD DE APRENDIZAJE III Saberes procedimentales Saberes declarativos Expresa un polinomio en sus factores primos A Concepto de factores primos algebraicos

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-107-1-V-1-00-2018 CURSO: CÓDIGO DEL CURSO: 107 SEMESTRE: Primer Semestre JORNADA: Vespertina TIPO DE EXAMEN:

Más detalles

( ) " f $ ( x) integramos a ambos

( )  f $ ( x) integramos a ambos Guia No Calculo Integral Grupo UNAD Escuela de Ciencias Básicas Tecnologías e Ingeniería Métodos de Integración Integración por partes Funciones trigonometricas Sustitución trigonometricas Fracciones parciales

Más detalles

Ecuaciones de primer grado y de segundo grado

Ecuaciones de primer grado y de segundo grado Ecuaciones de primer grado y de segundo grado La forma reducida de una ecuación de primer grado con una incógnita es una igualdad del tipo a b 0, donde a y b son números reales con a 0. Para resolverla

Más detalles

Resuelve: Solución: 180x x + 16 = 27x + 180x x 96x + 27x 108x = x = x = 3. Resuelve la ecuación: Solución: = +

Resuelve: Solución: 180x x + 16 = 27x + 180x x 96x + 27x 108x = x = x = 3. Resuelve la ecuación: Solución: = + Urb. La Cantera, s/n. 958586 http:/www.mariaauxiliadora.com Resuelve: ( x + ) 6x 1 9x ( x + ) 5 3 1 9 5 + 4 3 16 8 ( x + ) 6x 1 9x ( x + ) 53 1 9 5 + 4 3 16 8 15x + 5 6x 1 9x 18x + 10 + 4 3 16 8 180x +

Más detalles

x(t) = 2t 3 6t t 10, donde x se expresa en metros y t en segundos. Calcular:

x(t) = 2t 3 6t t 10, donde x se expresa en metros y t en segundos. Calcular: 1.3 Una partícula realiza un movimiento rectilíneo definido por la ecuación: x(t) = 2t 3 6t 2 + 28t 1, donde x se expresa en metros y t en segundos. Calcular: (a) Es este un movimiento uniformemente acelerado?

Más detalles

Hallar las raíces enteras de los siguientes polinomios:

Hallar las raíces enteras de los siguientes polinomios: Hallar las raíces enteras de los siguientes polinomios: 1) x 3 + 2x 2 - x - 2 Las raíces enteras se encuentran entre los divisores del término independiente del polinomio: ±1 y ±2. P(1) = 1 3 + 2 1 2-1

Más detalles

Ecuaciones exponenciales y logaritmicas

Ecuaciones exponenciales y logaritmicas Ecuaciones exponenciales y logaritmicas Cuando hacemos preguntas relacionadas a funciones exponenciales o logaritmicas generalmente obtendremos una ecuación logarimica o exponencial. Elevé el número 3

Más detalles

Tema 4: Ecuaciones, inecuaciones y sistemas.

Tema 4: Ecuaciones, inecuaciones y sistemas. Tema 4: Ecuaciones, inecuaciones y sistemas. Ejercicio 1. Resolver la ecuación x 3x 4 0 y representar la parábola y x 3x 4 Solución: Resolución: 3 x 9 16 3 5 x1 4, x 1 Representación de la parábola: (

Más detalles

Introducción al Análisis Matemático

Introducción al Análisis Matemático La guia resuelta Introducción al Análisis Matemático Para Ciencias Económicas A = A1 + A2 = b f ( x) dx + g( x) dx a c b Por consultas comunicate al 4582 0485 o sino enviá un mail a laguia@arg.net.ar 1

Más detalles

Las soluciones son los valores que deben tomar las letras para que la igualdad sea cierta.

Las soluciones son los valores que deben tomar las letras para que la igualdad sea cierta. TEMA ECUACIONES, INECUACIONES Y SISTEMAS- 1. ECUACIONES Una ecuación es una igualdad matemática entre dos epresiones algebraicas, denominadas miembros, en las que aparecen valores conocidos o datos, desconocidos

Más detalles

El coeficiente del monomio es el número que aparece multiplicando a las variables. PARTE LITERAL

El coeficiente del monomio es el número que aparece multiplicando a las variables. PARTE LITERAL TEMA 0 ÁLGEBRA Y FRACCIONES ALGEBRAICAS - 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente

Más detalles

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE Por cálculo integral sabemos que cuando vamos a determinar una integral impropia de la forma,su desarrollo se obtiene realizando un cambio de variable en el límite superior de

Más detalles

Prof. Karina G. Rizzo

Prof. Karina G. Rizzo MATEMÁTICA Ecuaciones Guía Nº 8 APELLIDO: Prof. Karina G. Rizzo. 3. Recordar la resolución de ecuaciones de la guía Nº Trabajar igual que en el ejerc. de la guía anterior Luego despejar la incógnita y

Más detalles

Sistemas de ecuaciones Ecuaciones lineales con dos incógnitas

Sistemas de ecuaciones Ecuaciones lineales con dos incógnitas Sistemas de ecuaciones Ecuaciones lineales con dos incógnitas 1. Método de sustitución 1) a + b = 9 a b = 1 } Despejamos cualquiera de las incógnitas que tiene como coeficiente 1, ya que son el caso más

Más detalles

3º ESO ECUACIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa ECUACIONES

3º ESO ECUACIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa ECUACIONES º ESO ECUACIONES DEPARTAMENTO DE MATEMÁTICAS. ECUACIONES.- ECUACIONES Una ecuación es una igualdad donde se desconoce el valor de una letra (incógnita o variable). El valor de la variable que hace que

Más detalles

CM2 ENRICH CREUS CARNICERO Nivel 2

CM2 ENRICH CREUS CARNICERO Nivel 2 CM ENRICH CREUS CARNICERO Nivel Unidad Cónicas Conocimientos previos CONOCIMIENTOS PREVIOS PARA CÓNICAS Antes de comenzar con el Trabajo Práctico N, necesitás repasar algunas cuestiones como: ) graficar

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II NÚMEROS RACIONALES Jerarquía de Operaciones En matemáticas una operación es una acción realizada sobre un número (en el caso de la raíz y potencia) o donde se involucran dos números

Más detalles

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 1.) Resuelve las siguientes derivadas: a) b) c) d) e) f) g) h) i) j) k) l) m) n) o) p) q) r) f(x) = arcsen 2.) Resuelve la siguiente derivada, simplificando

Más detalles

Ecuaciones de primer grado o lineales

Ecuaciones de primer grado o lineales CATÁLOGO MATEMÁTICO POR JUAN GUILLERMO BUILES GÓMEZ BASE 8: ECUACIONES DE PRIMER Y DE SEGUNDO GRADO RESOLUCIÓN DE PROBLEMAS ECUACIONES DE PRIMER GRADO O LINEALES CON UNA SOLA INCÓGNITA: Teoría tomada de

Más detalles

OBTENCIÓN DE LA ECUACIÓN DIFERENCIAL ASOCIADA A UN HAZ DE CURVAS

OBTENCIÓN DE LA ECUACIÓN DIFERENCIAL ASOCIADA A UN HAZ DE CURVAS 60 LECCIÓN 3: OBTENCIÓN DE LA ECUACIÓN DIFERENCIAL ASOCIADA A UN HAZ DE CURVAS JUSTIFICACIÓN: En el curso de Análisis Matemático II, cuando se resuelven integrales indefinidas se obtienen primitivas o

Más detalles

Por ejemplo para la ecuación x + y = 3 podríamos conseguir sin mucho esfuerzo varias parejas de valores de x e y que verifiquen esta ecuación, así:

Por ejemplo para la ecuación x + y = 3 podríamos conseguir sin mucho esfuerzo varias parejas de valores de x e y que verifiquen esta ecuación, así: PARTE 1 ECUACIONES CON MÁS DE UNA INCÓGNITA Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas, en la que intervienen una o más letras llamadas incógnitas (cuyo valor hay

Más detalles

Tema 9: Funciones II. Funciones Elementales.

Tema 9: Funciones II. Funciones Elementales. Tema 9: Funciones II. Funciones Elementales. Finalizamos con este tema el bloque de análisis, estudiando los principales tipos de funciones con sus respectivas características. Veremos también una ligera

Más detalles

5. Funciones, parte I

5. Funciones, parte I Matemáticas I, 01-I Hay varios nociones claves en las matemáticas. Una de ella es la de función. A lo largo del año volveremos a ver este concepto bajo diferentes puntos de vista. Empezaremos con una idea

Más detalles

Respuesta: Resolver la ecuación aplicando completación de cuadrados En donde a=1,b=6,c=8. Para ello se siguen los siguientes pasos.

Respuesta: Resolver la ecuación aplicando completación de cuadrados En donde a=1,b=6,c=8. Para ello se siguen los siguientes pasos. RESOLUCIÓN DE ECUACIONES DE SEGUNDO GRADO. INTRODUCCIÓN En el campo laboral tiene utilidad como por ejemplo en química, cinética química para describir la variación en la concentración de reactantes respecto

Más detalles

open green road Guía Matemática SISTEMAS DE ECUACIONES DE PRIMER GRADO profesor: Nicolás Melgarejo .cl

open green road Guía Matemática SISTEMAS DE ECUACIONES DE PRIMER GRADO profesor: Nicolás Melgarejo .cl Guía Matemática SISTEMAS DE ECUACIONES DE PRIMER GRADO profesor: Nicolás Melgarejo.cl 1. Sistema de ecuaciones Considera que tienes dos variables v y t que se relacionan de cierta manera particular mediante

Más detalles

Problema de Valor Inicial (PVI):

Problema de Valor Inicial (PVI): Problema de Valor Inicial (PVI): Con frecuencia nos interesan problemas en los que se busca la solución y () de una ecuación diferencial de modo que y () satifaga condiciones adicionales impuestas a la

Más detalles

ECUACIONES MATRICIALES. Docente: Sergio Andrés Nieto Duarte

ECUACIONES MATRICIALES. Docente: Sergio Andrés Nieto Duarte ECUACIONES MATRICIALES Docente: Sergio Andrés Nieto Duarte En sesiones anteriores se ha discutido sobre las operaciones básicas con matrices, sin embargo, la división matricial no fue abordada de una manera

Más detalles

Para calcular las asíntotas, empezaremos por las verticales, precisamente en ese punto donde no está definida la función.

Para calcular las asíntotas, empezaremos por las verticales, precisamente en ese punto donde no está definida la función. 1.- Dada la función: f(x) = x + 1 a) Calculad el dominio de f(x). Encontrar también sus asíntotas verticales, horizontales y oblicuas. b) Encontrad la recta tangente a f(x) en el punto x= 0. c) Calculad

Más detalles

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2 Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,

Más detalles

TEMA 4: Ecuaciones y sistemas de ecuaciones. Tema 4: Ecuaciones y sistemas de ecuaciones 1

TEMA 4: Ecuaciones y sistemas de ecuaciones. Tema 4: Ecuaciones y sistemas de ecuaciones 1 TEMA : Ecuaciones sistemas de ecuaciones Tema : Ecuaciones sistemas de ecuaciones ESQUEMA DE LA UNIDAD.- Ecuaciones de primer grado..- Ecuaciones de segundo grado completas..- Ecuaciones de segundo grado

Más detalles

TEMA 4: Ecuaciones y sistemas de ecuaciones. Tema 4: Ecuaciones y sistemas de ecuaciones 1

TEMA 4: Ecuaciones y sistemas de ecuaciones. Tema 4: Ecuaciones y sistemas de ecuaciones 1 TEMA : Ecuaciones sistemas de ecuaciones Tema : Ecuaciones sistemas de ecuaciones Tema : Ecuaciones sistemas de ecuaciones .- Ecuaciones de primer grado..- Ecuaciones de segundo grado completas..- Ecuaciones

Más detalles

Universidad Nacional Experimental Sur del Lago Jesús María Semprum Programa de Contaduría Pública Prof. Pedro Quintela Matemática II

Universidad Nacional Experimental Sur del Lago Jesús María Semprum Programa de Contaduría Pública Prof. Pedro Quintela Matemática II Universidad Nacional Experimental Sur del Lago Jesús María Semprum Programa de Contaduría Pública Prof. Pedro Quintela Matemática II Ejercicios Resueltos Ejercicio : Encontrar la pendiente de la recta

Más detalles

INSTEC PENSAMIENTO NUMERICO VARIACIONAL GUIA 1 - GRADO 11

INSTEC PENSAMIENTO NUMERICO VARIACIONAL GUIA 1 - GRADO 11 1.. LOS NUMEROS REALES CONDUCTA DE ENTRADA La figura muestra una recta real -1 0 1 Teniendo en cuenta la Figura responde en minutos a. Cuantos números Reales hay entre -1 y 1. b. Cuantos números naturales

Más detalles

FUNCIONES: DOMINIO, RANGO Y GRAFICA

FUNCIONES: DOMINIO, RANGO Y GRAFICA FUNCIONES: DOMINIO, RANGO Y GRAFICA Dominio, Codominio y Rango de una función Dominio El dominio de una función son todos los valores reales que la variable X puede tomar y la gráfica queda bien definida,

Más detalles