MODELO DE RESPUESTAS Objetivos del 1 al 9

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MODELO DE RESPUESTAS Objetivos del 1 al 9"

Transcripción

1 PRUEBA INTEGRAL LAPSO /9 Universidad Nacional Abierta Probabilidad y Estadística I (Cód. 764) Vicerrectorado Académico Cód. Carrera: 6 Fecha: MODELO DE RESPUESTAS Objetivos del al 9 OBJ PTA Un investigador desea determinar cómo varían las estaturas de las obreras de una empresa, y toma una muestra de 50 mujeres para registrar luego sus estaturas en pulgadas. Los datos obtenidos fueron los siguientes: a) Construya una tabla de frecuencias, usando el criterio de la raíz para determinar el número de clases. b) Calcule: media, mediana, moda, varianza y desviación típica, tanto para los datos no agrupados, como para los agrupados. NOTA: Para lograr el objetivo debe responder correctamente ambas partes de la pregunta. a) Para que nos sea más sencillo elaborar la tabla de distribución de frecuencias, ordenemos los datos en forma ascendente, es decir, de menor a mayor: Tabla de frecuencias. (Límites de clase) Marca de Clase (m i ) Frecuencia (f i ) Frecuencia Relativa (h i ) Frecuencia Acumulada (F i ) Distribución Empírica (H i ) ,5 /50 / ,5 5 4/50 7 7/ ,5 9 9/50 6 6/ ,5 5 5/50 3 3/ ,5 / / ,5 5 5/ / ,5 / /50

2 PRUEBA INTEGRAL LAPSO /9 b.) Para datos no agrupados: b..) Medidas de tendencia central: Media: 360 X = x i = = 63, i Mediana: Med = 63,5 (Como hay un número para de observaciones, la mediana es la media aritmética de los datos, que en este caso, ocupan las posiciones 5 y 6) Moda: M o = 64 (Es el valor del dato que tiene mayor frecuencia) b..) Medidas de dispersión: Varianza: ˆ 838 S = x i- X = x i- 63, = 7, i i b.) Desviación típica o estándar: Para datos agrupados: b..) Media: Medidas de tendencia central: 384 X m f 63,68 n 50 n i i i S ˆ 4,3546 (Es la raíz cuadrada de ˆ S ) Mediana: Med: n 50 - Fa l i + c = = = 63,8 fmed 5 5 Moda: b..) 5-9 l i + c = = Medidas de dispersión: n 87,38 S = m - X = 7, Varianza: ˆ i i = Desviación típica o estándar: S ˆ 4,70

3 PRUEBA INTEGRAL LAPSO /9 En resumen, el cálculo de las medidas de tendencia central y de dispersión, tanto para datos agrupados como no agrupados es mostrado en los siguientes dos cuadros: DATOS NO AGRUPADOS Medidas de tendencia Central Medidas de Dispersión Media Mediana Moda Varianza Desviación típica 63, 63,5 64 7,004 4,3546 DATOS AGRUPADOS Medidas de tendencia Central Medidas de Dispersión Media Mediana Moda Varianza Desviación típica 63,68 63,8 64 7,7833 4,70 OBJ PTA Dados A, B y C eventos arbitrarios en el mismo espacio muestral. Sea D el evento que al menos dos de los eventos A, B o C, ocurren, es decir, D es el conjunto de puntos comunes al menos a dos de los conjuntos A, B o C. Sea D = {exactamente dos de los eventos A, B, C ocurren} D 3 = {al menos uno de los eventos A, B, C ocurren} D 4 = {exactamente uno de los eventos A, B, C ocurren} D 5 = {no más de dos de los eventos ocurren}. Cada uno de los eventos D a D 5 puede ser expresado en términos de A, B y C, utilizando uniones, intersecciones y complementos. Por ejemplo, D 3 = ABC. Encuentre expresiones adecuadas para D, D, D 4 y D 5. En virtud de las operaciones entre conjuntos mencionadas tenemos que: D = (AB)(AC)(BC) D = (ABC c )(AB c C)(A c BC) D 4 = (AB c C c )(A c BC c )(A c B c C) D 5 = (ABC) c

4 PRUEBA INTEGRAL LAPSO /9 OBJ 3 PTA 3 Se tiene que asistir a una reunión donde no se conoce a nadie. Hay en ella 6 mujeres y 4 hombres, y se sabe que hay cuatro matrimonios. De cuántas maneras podría uno imaginarse que están formados los matrimonios? Y si se sabe que hay exactamente tres parejas casadas? Para dar respuesta a la primera pregunta, notemos que existen 6 6! = =5 4 4! x! maneras diferentes para elegir la mujer, y por cada una de estas 5 maneras, existen 4! = 4 maneras de escoger al hombre, por lo que en virtud del principio de multiplicación (PM), existen 5x4 = 360 maneras de conformar los matrimonios. Para la respuesta de la segunda pregunta, por un razonamiento análogo al de la pregunta anterior, tenemos que existen: mujer, y 4 4! = = 4 3 3! x! 6 6! = = 0 3 3! x3! maneras de escoger a la maneras de escoger al hombre y por cada una de estas maneras de escoger al hombre, existen 3! ordenes posibles en que los 3 hombres pueden ser escogidos, por lo tanto, nuevamente, en virtud del PM, existen: 0x4x6 = 480 de conformar las tres parejas. OBJ 4 PTA 4 En el segmento [, 5] se escogen al azar los puntos x e y. Calcule la probabilidad que el punto x esté más cerca de y que de. Consideremos el espacio muestral y sea C el evento = {(x, y) / x 5, y 5}, C = {el punto x está más cerca de y que de }. Queremos calcular P(C) o más explícitamente: P({(x, y) / x - y < x - }) = P({(x, y) / < y < x - }).

5 PRUEBA INTEGRAL LAPSO /9 En la gráfica se representan tanto el espacio muestral como la región en la cual < y < x. De la gráfica también se obtiene que la probabilidad pedida viene dada por el cociente: donde: con lo cual resulta que: Área de C = 3 P C = 4 Área de C Área de, = 4 4 Área de = 3x3, Comentario: Vale la pena mencionar que el área de C se calculó como la suma de las áreas de un triángulo y un rectángulo. OBJ 5 PTA 5 Dos monedas son lanzadas sucesivamente. Si el resultado del lanzamiento es (C, C) extraemos dos bolas de una urna cuya composición es {3R, B, N}. Si el resultado del lanzamiento es (F, F), se extraen dos bolas de una urna cuya composición es {R, B, 5N}. Por último, si el resultado es (F, C) ó (C, F) se extraen dos bolas de una urna cuya composición es {6R, 4B, 5N}. Se pide, suponiendo que todas las extracciones de la urna son sin reemplazamiento, la probabilidad de que las dos bolas extraídas sean una roja y otra blanca. En virtud del teorema de Probabilidad Total, tenemos: P(RB) = P(RB/U )P(U ) + P(RB/U )P(U ) + P(RB/U 3 )P(U 3 ) De manera análoga se obtiene que: = x x + x x + x x = = [] P(BR) = y. [] Por lo tanto sumando [] y [] obtenemos que la probabilidad de que las dos bolas extraídas sean una roja y otra blanca es: P(RB) + P(BR) = 57 80

6 PRUEBA INTEGRAL LAPSO /9 OBJ 6 PTA 6 Sea X ~ U(0, ) y sea Y = [6X] +, donde [. ] denota la función parte entera de X. Calcule E[Y]. Por definición de esperanza matemática para v. a. continuas tenemos que: - E(Y) = 6x + f(x)dx = 6x + dx = 6x dx +, [] 0 0 en virtud de la definición de la función parte entera, resulta: Por lo tanto: [6x] = n si n x n para n = 0,,, 3, 4, 5. 5 n n n 5 6x dx = ndx = n dx = = n = 0 n = 0 n 6 n = 0 n 6 n = n = 0 De [] y [] obtenemos: E[Y] = E[6X + ] =,5, [] OBJ 7 PTA 7 Suponga que una moneda balanceada es lanzada tres veces consecutivas y sean X e Y las v. a. s definidas como sigue: X = Número de caras obtenidas. Y = Número del lanzamiento donde se obtuvo cara por primera vez. ) Encuentre la función de distribución conjunta de X e Y. ) Calcule las distribuciones marginales de X e Y. Antes de dar respuesta a las dos preguntas, definamos el espacio muestral sobre el cual estamos trabajando: = {(c, c, c), (c, c, s), (c, s, c), (s, c, c), (s, s, c), (s, c, s), (c, s, s), (s, s, s)}, puesto que la moneda es balanceada cada punto muestral tiene igual probabilidad de salir, en este caso, la probabilidad de cada punto es /8. ) La distribución conjunta de X e Y es: X\Y / /8 /8 /8 0 /8 / /8 0 0

7 PRUEBA INTEGRAL LAPSO /9 ) Las distribuciones marginales de X e Y respectivamente, son las dadas en las siguientes tablas: x 0 3 P(X = x) /8 3/8 3/8 /8 y 0 3 P(Y = y) /8 4/8 /8 /8 OBJ 8 PTA 8 Sean X e Y v. a. s independientes con funciones de densidad marginal dadas por: 7 < y < f Y(y) =. 0 otro caso < x < 3 f x(x) = 0 otro caso Determine la función de densidad de Z = X + Y. Recordemos que por definición tenemos: f Z (z) = x - f (x).f (z - x)dx El dominio de integración viene dado por la región limitada por los cuatro segmentos de recta oscuros que claramente se aprecian en la figura contigua. Nótese que para z [9, ] ( por qué z está en el segmento [9, ]), x varía en tres regiones bien diferenciadas. Por lo tanto, para calcular f Z (z) debemos analizar por casos: Para z [9, 0], tenemos: z - 7 f Z (z) = z - 9 dx =. Para z [0, ], tenemos: Y.

8 PRUEBA INTEGRAL LAPSO /9 3 f Z (z) = dx =. Para z [, ], tenemos: f Z (z) = 3 z z dx =. En resumen, tenemos por un lado, la expresión analítica de la función de densidad de la variable aleatoria Z = X+ Y y por otro, la gráfica de la misma: z < z 0 0 < z f Z(z) = - z < z 0 en cualquier otro caso OBJ 9 PTA 9 Sean X, X y X 3 v. a. s independientes con varianzas finitas y positivas, y 3, respectivamente. Calcule el coeficiente de correlación entre X - X y X + X 3. Recordemos que por definición: (X, Y) = en nuestro caso X = X - X e Y = X + X 3. Cov(X, Y) Var(X)Var(Y) Calculemos el numerador, teniendo en mente las propiedades de la covarianza y la independencia de las variables.,

9 PRUEBA INTEGRAL LAPSO /9 Cov(X - X, X + X 3 ) = Cov(X, X ) + Cov(X, X 3 ) - Cov(X, X ) - Cov(X, X 3 ) = - Var(X ) = - [*] Calculemos ahora Var(X - X ) y Var(X + X 3 ). En virtud de las propiedades de la varianza tenemos que: Var(X - X ) = Var(X ) + Var(X ) = + y [**] Var(X + X 3 ) = Var(X ) + Var(X 3 ) = + 3. Sustituyendo [*] y [**] en la definición de, resulta: Cov(X - X, X + X 3) - (X - X, X + X 3) = = Var(X - X )Var(X + X ) FIN DEL MODELO.

Prueba Integral Lapso /6

Prueba Integral Lapso /6 Prueba Integral Lapso 2 009-2 76 - /6 Universidad Nacional Abierta Probabilidad y Estadística I (76) Vicerrectorado Académico Cód. Carrera: 06-20 - 508 Fecha: 2-2 - 2 009 MODELO DE RESPUESTAS Objetivos,

Más detalles

Introducción al Tema 9

Introducción al Tema 9 Tema 2. Análisis de datos univariantes. Tema 3. Análisis de datos bivariantes. Tema 4. Correlación y regresión. Tema 5. Series temporales y números índice. Introducción al Tema 9 Descripción de variables

Más detalles

Distribuciones de Probabilidad Para Variables Aleatorias Continuas

Distribuciones de Probabilidad Para Variables Aleatorias Continuas Distribuciones de Probabilidad Para Variables Aleatorias Continuas Departamento de Estadística-FACES-ULA 20 de Diciembre de 2013 Introducción Recordemos la definición de Variable Aleatoria Continua. Variable

Más detalles

Estadística Descriptiva. SESIÓN 12 Medidas de dispersión

Estadística Descriptiva. SESIÓN 12 Medidas de dispersión Estadística Descriptiva SESIÓN 12 Medidas de dispersión Contextualización de la sesión 12 En la sesión anterior se explicaron los temas relacionados con la desviación estándar, la cual es una medida para

Más detalles

Propiedades en una muestra aleatoria

Propiedades en una muestra aleatoria Capítulo 5 Propiedades en una muestra aleatoria 5.1. Conceptos básicos sobre muestras aleatorias Definición 5.1.1 X 1,, X n son llamadas una muestra aleatoria de tamaño n de una población f(x) si son variables

Más detalles

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL 3.1 INTRODUCCIÓN Como ya sabes, una distribución de probabilidad es un modelo matemático que nos ayuda a explicar los

Más detalles

Estadística. Estadística

Estadística. Estadística Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta de las siguientes

Más detalles

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8)

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8) PROBABILIDAD Y ESTADÍSTICA Sesión 5 (En esta sesión abracamos hasta tema 5.8) 5 DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES 5.1 Distribución de probabilidades de una variable aleatoria continua

Más detalles

Ejercicios de Vectores Aleatorios

Ejercicios de Vectores Aleatorios Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO MAGISTRAL GRADO EN INGENIERÍA DE SISTEMAS AUDIOVISUALES Otros M2 Calcular la función de densidad conjunta y las marginales

Más detalles

4. Medidas de tendencia central

4. Medidas de tendencia central 4. Medidas de tendencia central A veces es conveniente reducir la información obtenida a un solo valor o a un número pequeño de valores, las denominadas medidas de tendencia central. Sea X una variable

Más detalles

Distribución de Probabilidades con Nombre Propio Problemas Propuestos

Distribución de Probabilidades con Nombre Propio Problemas Propuestos Distribución de Probabilidades con Nombre Propio Problemas Propuestos DISTRIBUCIÓN BINOMIAL (BERNOULLI) 2.167 Hallar la probabilidad de que al lanzar una moneda honrada 6 veces aparezcan (a) 0, (b) 1,

Más detalles

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico.

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico. Introducción a la Melilla Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales Tema 5. Muestreo y distribuciones muestrales Contenidos Muestreo y muestras aleatorias simples La distribución de la media en el muestreo La distribución de la varianza muestral Lecturas recomendadas:

Más detalles

Tema 5: Principales Distribuciones de Probabilidad

Tema 5: Principales Distribuciones de Probabilidad Tema 5: Principales Distribuciones de Probabilidad Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 5: Principales Distribuciones de Probabilidad

Más detalles

TEMA II: DISTRIBUCIONES RELACIONADAS CON LA NORMAL

TEMA II: DISTRIBUCIONES RELACIONADAS CON LA NORMAL ESTADÍSTICA II TEMA II: DISTRIBUCIONES RELACIONADAS CON LA NORMAL II.1.- Distribución chi-cuadrado. II.1.1.- Definición. II.1..- Función de densidad. Representación gráfica. II.1.3.- Media y varianza.

Más detalles

Selectividad Junio 2007 JUNIO 2007

Selectividad Junio 2007 JUNIO 2007 Bloque A JUNIO 2007 1.- Julia, Clara y Miguel reparten hojas de propaganda. Clara reparte siempre el 20 % del total, Miguel reparte 100 hojas más que Julia. Entre Clara y Julia reparten 850 hojas. Plantea

Más detalles

3. VARIABLES ALEATORIAS

3. VARIABLES ALEATORIAS . VARIABLES ALEATORIAS L as variables aleatorias se clasiican en discretas y continuas, dependiendo del número de valores que pueden asumir. Una variable aleatoria es discreta si sólo puede tomar una cantidad

Más detalles

DISTRIBUCIONES DE PROBABILIDAD (RESUMEN)

DISTRIBUCIONES DE PROBABILIDAD (RESUMEN) DISTRIBUCIONES DE PROBABILIDAD (RESUMEN) VARIABLE ALEATORIA: un experimento produce observaciones numéricas que varían de muestra a muestra. Una VARIABLE ALEATORIA se define como una función con valores

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas real de con Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura real de con Índice real de con real de con.

Más detalles

Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias

Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias Estadística Tema 3: Cálculo de Probabilidades Unidad 2: Variables Aleatorias Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Noviembre 2010 Contenidos...............................................................

Más detalles

Tema 4 Probabilidad condicionada: teoremas básicos. Independencia de sucesos

Tema 4 Probabilidad condicionada: teoremas básicos. Independencia de sucesos Tema 4 Probabilidad condicionada: teoremas básicos. Independencia de sucesos 1. Probabilidad condicionada. Espacio de probabilidad condicionado La probabilidad condicionada es uno de los conceptos clave

Más detalles

Variable Aleatoria. Relación de problemas 6

Variable Aleatoria. Relación de problemas 6 Relación de problemas 6 Variable Aleatoria. Consideremos el experimento aleatorio consistente en lanzar dos dados equilibrados y observar el número máximo de los dos números obtenidos en ellos. Si X es

Más detalles

Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra.

Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. Contenidos mínimos 4B ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Clasificar distintos tipos de números: naturales, enteros, racionales y reales. 2. Operar con números reales y aplicar las propiedades

Más detalles

Capítulo 6: Variable Aleatoria Bidimensional

Capítulo 6: Variable Aleatoria Bidimensional Capítulo 6: Variable Aleatoria Bidimensional Cuando introducíamos el concepto de variable aleatoria unidimensional, decíamos que se pretendía modelizar los resultados de un experimento aleatorio en el

Más detalles

Distribución de Probabilidad Normal

Distribución de Probabilidad Normal Distribución de Probabilidad Normal Departamento de Estadística-FACES-ULA 22 de Diciembre de 2013 Introducción La distribución normal es quizás la distribución de probabilidad para variables aleatorias

Más detalles

Probabilidad. Distribuciones binomial y normal

Probabilidad. Distribuciones binomial y normal Tema 7 Probabilidad. Distribuciones binomial y normal 7.1. Introducción En este tema trataremos algunas cuestiones básicas sobre Probabilidad. Tanto la Probabilidad como la Estadística son dos campos de

Más detalles

Unidad III Variables Aleatorias Unidimensionales

Unidad III Variables Aleatorias Unidimensionales Unidad III Variables Aleatorias Unidimensionales En el capítulo anterior se examinaron los conceptos básicos de probabilidad con respecto a eventos que se encuentran en un espacio muestral. Los experimentos

Más detalles

Maestría en Bioinformática Probabilidad y Estadística: Clase 3

Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Maestría en Bioinformática Probabilidad y Estadística: Clase 3 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Abril de 2010 Contenidos 1 Variables aleatorias

Más detalles

Tema 4: Variable aleatoria. Métodos Estadísticos

Tema 4: Variable aleatoria. Métodos Estadísticos Tema 4: Variable aleatoria. Métodos Estadísticos Definición de v.a. Definición: Una variable aleatoria (v.a.) es un número real asociado al resultado de un experimento aleatorio, es decir, una función

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

El conjunto de los complejos. Escritura cartesiana y binómica. Representación gráfica.

El conjunto de los complejos. Escritura cartesiana y binómica. Representación gráfica. Tramo A Números complejos Disciplina, esfuerzo y perseverancia en la búsqueda de resultados. Valoración del lenguaje preciso, claro y conciso de la Matemática como organizador del pensamiento. Valoración

Más detalles

PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS

PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS CALIFICACIÓN: Consejería de Educación, Ciencia y Cultura PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL Junio 2011 Resolución de 9 de marzo de 2011 (DOCM de 5 de abril)

Más detalles

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria

2. Probabilidad y. variable aleatoria. Curso 2011-2012 Estadística. 2. 1 Probabilidad. Probabilidad y variable aleatoria 2. Probabilidad y variable aleatoria Curso 2011-2012 Estadística 2. 1 Probabilidad 2 Experimento Aleatorio EL término experimento aleatorio se utiliza en la teoría de la probabilidad para referirse a un

Más detalles

ÍNDICE CAPITULO UNO CAPITULO DOS. Pág.

ÍNDICE CAPITULO UNO CAPITULO DOS. Pág. ÍNDICE CAPITULO UNO Pág. Concepto de Estadística 1 Objetivo 1 Diferencia entre estadísticas y estadística 1 Uso de la estadística 1 Divisiones de la estadística 1 1. Estadística Descriptiva 1 2. Estadística

Más detalles

Matemáticas Discretas L. Enrique Sucar INAOE. Permutaciones y Combinaciones

Matemáticas Discretas L. Enrique Sucar INAOE. Permutaciones y Combinaciones Matemáticas Discretas L. Enrique Sucar INAOE Permutaciones y Combinaciones Contenido Introducción Reglas de la suma y el producto Permutaciones Combinaciones Generación de permutaciones Teorema del Binomio

Más detalles

3. Resolver triángulos rectángulos utilizando las definiciones de las razones trigonométricas.

3. Resolver triángulos rectángulos utilizando las definiciones de las razones trigonométricas. Contenidos mínimos MI. 1. Contenidos. Bloque I: Aritmética y Álgebra. 1. Conocer las clases de números, los conjuntos numéricos: naturales, enteros, racionales, reales y complejos y las propiedades que

Más detalles

Si quisiéramos estudiar también cuánto distan, es decir a b, tendríamos 6 resultados: 0, 1, 2, 3, 4 ó 5, con distribución de probabilidad dada por:

Si quisiéramos estudiar también cuánto distan, es decir a b, tendríamos 6 resultados: 0, 1, 2, 3, 4 ó 5, con distribución de probabilidad dada por: Capítulo 3 Variables aleatorias 3. Definición, tipos En ocasiones de un experimento aleatorio sólo nos interesará medir ciertas características del mismo. En estos casos nos bastará con conocer la distribución

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B 1. Queremos invertir una cantidad de dinero en dos tipos

Más detalles

DISTRIBUCIONES DE PROBABILIDAD

DISTRIBUCIONES DE PROBABILIDAD DISTRIBUCIONES DE PROBABILIDAD Se llama variable aleatoria a toda función que asocia a cada elemento del espacio muestral E un número real. Una variable aleatoria discreta es aquella que sólo puede tomar

Más detalles

EJERCICIOS RESUELTOS TEMA 7

EJERCICIOS RESUELTOS TEMA 7 EJERCICIOS RESUELTOS TEMA 7 7.1. Seleccione la opción correcta: A) Hay toda una familia de distribuciones normales, cada una con su media y su desviación típica ; B) La media y la desviaciones típica de

Más detalles

Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez

Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez Profesores: Mg. Cecilia Rosas Meneses Dr. Mauro Gutierrez Martinez Dr. Christiam Gonzales Chávez Definición. La función de distribución acumulada F X de una v.a. X es definida para cada número real x como

Más detalles

Clase 9 Sistemas de ecuaciones no lineales

Clase 9 Sistemas de ecuaciones no lineales Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2013 Problemas resueltos Problema 4: Considere el sistema de ecuaciones x y = 3 (x 2) 2 +y = 1 Problemas resueltos

Más detalles

Valor absoluto de un número real. Potencias de exponente racional. Logaritmos. Logaritmos decimales y neperianos. Propiedades y operaciones.

Valor absoluto de un número real. Potencias de exponente racional. Logaritmos. Logaritmos decimales y neperianos. Propiedades y operaciones. Otras páginas Matemásicas ccss 5º MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I ARITMÉTICA Y ÁLGEBRA Los números reales Números racionales. Números irracionales. Los números y e. Los números reales.

Más detalles

Muestreo y Distribuciones muestrales. 51 SOLUCIONES

Muestreo y Distribuciones muestrales. 51 SOLUCIONES Muestreo y Distribuciones muestrales. 51 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Métodos estadísticos de la ingeniería Soluciones de la hoja de problemas 5. Muestreo

Más detalles

Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%.

Teorema de Bayes. mientras que B tiene una tasa de defectos del 4%. Teorema de Bayes Ejemplo: En una empresa manufacturera, una máquina A produce el 60% de la producción total, mientras que una máquina B el restante 40%. 71 El 2% de las unidades producidas por A son defectuosas,

Más detalles

Medidas de Dispersión

Medidas de Dispersión Medidas de Dispersión Revisamos la tarea de la clase pasada Distribución de Frecuencias de las distancias alcanzadas por las pelotas de golf nuevas: Dato Frecuencia 3.7 1 4.4 1 6.9 1 3.3 1 3.7 1 33.5 1

Más detalles

Clase 9 Sistemas de ecuaciones no lineales

Clase 9 Sistemas de ecuaciones no lineales Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2016 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama

Más detalles

Estadística Avanzada y Análisis de Datos

Estadística Avanzada y Análisis de Datos 1-1 Estadística Avanzada y Análisis de Datos Javier Gorgas y Nicolás Cardiel Curso 2006-2007 2007 Máster Interuniversitario de Astrofísica 1-2 Introducción En ciencia tenemos que tomar decisiones ( son

Más detalles

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s).

Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). VARIABLE ALEATORIA Definición: Se llama variable aleatoria a toda función X que asigna a c/u de los elementos del espacio muestral S, un número Real X(s). X : S S s s X () s X(s) Rx Rx es el recorrido

Más detalles

SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS

SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS SESIÓN 5 RELACIÓN ENTRE LOS VALORES NUMÉRICOS I. CONTENIDOS: 1. Relación entre valores numéricos.. Cálculo de media, mediana y moda en datos agrupados y no agrupados. 3. La media, mediana y moda en variable

Más detalles

La distribución normal o gaussiana es la distribución. Definición 42 Se dice que una variable X se distribuye como normal con parámetros µ y σ si

La distribución normal o gaussiana es la distribución. Definición 42 Se dice que una variable X se distribuye como normal con parámetros µ y σ si La distribución normal La distribución normal o gaussiana es la distribución continua más importante. Definición 42 Se dice que una variable X se distribuye como normal con parámetros µ y σ si f(x) = 1

Más detalles

JUNIO 2010. Opción A. 1 2 3

JUNIO 2010. Opción A. 1 2 3 JUNIO 2010 Opción A 2 3 1 1.- Sean las matrices: A 0 1 2 y B 5 3 1 Halla una matriz X tal que 2X BA AB. 2 0 1 3 3 2. 1 2 3 2.- La cantidad C de tomates (en kg) que se obtienen de una planta de tomate depende

Más detalles

C. Distribución Binomial

C. Distribución Binomial Objetivos de aprendizaje 1. Definir los resultados binomiales 2. Calcular la probabilidad de obtener X éxitos en N pruebas 3. Calcular probabilidades binomiales acumulativas 4. Encontrar la media y la

Más detalles

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES TEMA 1: NÚMEROS REALES 3º ESO Matemáticas Apuntes para trabajo del alumnos en el aula. 1. Fracciones. Números racionales Si se multiplican o dividen el numerador y el denominador de una fracción por un

Más detalles

UNIDAD II Eventos probabilísticos

UNIDAD II Eventos probabilísticos UNIDAD II Eventos probabilísticos UNIDAD 2 EVENTOS PROBABILÍSTICOS Muchas veces ocurre que al efectuar observaciones en situaciones análogas y siguiendo procesos idénticos se logaran resultados diferentes;

Más detalles

Distribución Normal Curva Normal distribución gaussiana

Distribución Normal Curva Normal distribución gaussiana Distribución Normal La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. La distribución normal tiene grandes aplicaciones prácticas, en

Más detalles

GUÍA NÚMERO 1. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA

GUÍA NÚMERO 1. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO 1 NÚMEROS NATURALES Y CARDINALES ( IN, IN 0 ) Los elementos

Más detalles

1.5 Límites infinitos

1.5 Límites infinitos SECCIÓN.5 Límites infinitos 8.5 Límites infinitos Determinar ites infinitos por la izquierda por la derecha. Encontrar dibujar las asíntotas verticales de la gráfica de una función., cuando Límites infinitos

Más detalles

Unidad Temática 2 Probabilidad

Unidad Temática 2 Probabilidad Unidad Temática 2 Probabilidad Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una F si la rechaza. 1. El experimento que consiste

Más detalles

Estadística: Medidas de dispersión: varianza, desviación media y estándar

Estadística: Medidas de dispersión: varianza, desviación media y estándar Estadística: Medidas de dispersión: varianza, desviación media y estándar Situación vinculada a la vida cotidiana: embarazo de jóvenes en el municipio de Diriá A nivel nacional, el 27% de partos corresponde

Más detalles

Nociones de Estadística Descriptiva. Medidas de tendencia central y de variabilidad

Nociones de Estadística Descriptiva. Medidas de tendencia central y de variabilidad Nociones de Estadística Descriptiva. Medidas de tendencia central y de variabilidad Introducción a la estadística descriptiva La estadística descriptiva ayuda a describir las características de grupos

Más detalles

Herramienta de Alineación Curricular - Resumen a través de las unidades Departamento de Educación de Puerto Rico Matemáticas 8vo Grado

Herramienta de Alineación Curricular - Resumen a través de las unidades Departamento de Educación de Puerto Rico Matemáticas 8vo Grado Unidad 8.3 (Relaciones Eponenciales 8.N.1.1 8.N.1.2 8.N.1.3 1.0 Numeración y Operación Describe los números reales como el conjunto de todos los números decimales y utiliza la notación científica, la estimación

Más detalles

Anexos. Anexo 10: Calculadora

Anexos. Anexo 10: Calculadora Anexo 0: Calculadora. Qué calculadora utilizar Utiliza la calculadora que tengas. En caso de que necesites comprarla busca una que te sirva para todo el Bachillerato. De ser así comprueba:. Que sea científica.

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS

SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS A la porción de una línea recta comprendida entre dos de sus puntos se llama segmento rectilíneo o simplemente segmento. Los dos puntos se llaman extremos

Más detalles

Banco de Ejercicios del Departamental Métodos Matemáticos para Sistemas Lineales Numeros Complejos

Banco de Ejercicios del Departamental Métodos Matemáticos para Sistemas Lineales Numeros Complejos Banco de Ejercicios del Departamental Métodos Matemáticos para Sistemas Lineales Numeros Complejos 1. Efectuar cada una de las operaciones indicadas. a) (35 + 25i) + ( 12 5i) b) ( 75 i) + (34 + 42i) c)

Más detalles

Análisis de Datos CAPITULO 3: MEDIDAS DE VARIABILIDAD Y ASIMETRÍA

Análisis de Datos CAPITULO 3: MEDIDAS DE VARIABILIDAD Y ASIMETRÍA 1. INTRODUCCIÓN En el tema 1 veíamos que la distribución de frecuencias tiene tres propiedades: tendencia central, variabilidad y asimetría. Las medidas de tendencia central las hemos visto en el tema

Más detalles

Soluciones Examen de Estadística

Soluciones Examen de Estadística Soluciones Examen de Estadística Ingeniería Superior de Telecomunicación 15 de Febrero, 5 Cuestiones horas C1. Un programa se ejecuta desde uno cualquiera de cuatro periféricos A, B, C y D con arreglo

Más detalles

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x) Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )

Más detalles

7. Distribución normal

7. Distribución normal 7. Distribución normal Sin duda, la distribución continua de probabilidad más importante, por la frecuencia con que se encuentra y por sus aplicaciones teóricas, es la distribución normal, gaussiana o

Más detalles

UNIDAD XI Eventos probabilísticos

UNIDAD XI Eventos probabilísticos UNIDAD XI Eventos probabilísticos UNIDAD 11 EVENTOS PROBABILÍSTICOS Muchas veces ocurre que al efectuar observaciones en situaciones análogas y siguiendo procesos idénticos se logaran resultados diferentes;

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa

Más detalles

1. La siguiente grafica representa. Determine su regla de correspondencia A) B) Calcule C) D) A) 2 B) 4 C) 6 D) 8 E) 10

1. La siguiente grafica representa. Determine su regla de correspondencia A) B) Calcule C) D) A) 2 B) 4 C) 6 D) 8 E) 10 1. La siguiente grafica representa Determine su regla de correspondencia Calcule 2 4 6 8 10 2. Después de graficar la función Indique el rango de la función 3. En el grafico adjunto, halle 5. Determine

Más detalles

4 del tiempo original, pero si hubiera ido. 5 de hora más. Cuál fue en kilómetros la distancia

4 del tiempo original, pero si hubiera ido. 5 de hora más. Cuál fue en kilómetros la distancia BACHILLERATO CO+ 0.- Pedro anduvo una determinada distancia a velocidad constante. Si hubiera ido 0,5 km/h más rápido, habría recorrido la misma distancia en 5 4 del tiempo original, pero si hubiera ido

Más detalles

Teoría de la decisión Estadística

Teoría de la decisión Estadística Conceptos básicos Unidad 7. Estimación de parámetros. Criterios para la estimación. Mínimos cuadrados. Regresión lineal simple. Ley de correlación. Intervalos de confianza. Distribuciones: t-student y

Más detalles

CLASE Nº7. Patrones, series y regularidades numéricas

CLASE Nº7. Patrones, series y regularidades numéricas CLASE Nº7 Patrones, series y regularidades numéricas Patrón numérico en la naturaleza Regularidades numéricas Patrones Espiral con triángulos rectángulos Series numéricas REGULARIDADES NUMÉRICAS Son series

Más detalles

CUADERNO DE EJERCICIOS

CUADERNO DE EJERCICIOS MÉTODOS DE INVESTIGACIÓN EN EDUCACIÓN Psicopedagogía Curso 2009/2010 CUADERNO DE EJERCICIOS Ejercicio nº 1 Aplicada una prueba de medición de la inteligencia a un grupo de 50 alumnos, las puntuaciones

Más detalles

Producto cartesiano. X Y = {(x, y) : x X, y Y }. Ejemplo En el tablero de ajedrez, X = números del 1-8, Y = letras de A-H.

Producto cartesiano. X Y = {(x, y) : x X, y Y }. Ejemplo En el tablero de ajedrez, X = números del 1-8, Y = letras de A-H. Producto cartesiano Motivación: Has oido hablar sobre gente que juega ajedrez sin tener que mirar nunca el tablero?. Esto es posible, y se debe a una herramienta llamada coordenadas de un punto. En un

Más detalles

MEDIDAS DE ASIMETRÍA Y CURTOSIS EMPLEANDO EXCEL

MEDIDAS DE ASIMETRÍA Y CURTOSIS EMPLEANDO EXCEL 1) ASIMETRÍA MEDIDAS DE ASIMETRÍA Y CURTOSIS EMPLEANDO EXCEL Es una medida de forma de una distribución que permite identificar y describir la manera como los datos tiende a reunirse de acuerdo con la

Más detalles

PROYECTO DE REFUERZO ACADÉMICO PARA ESTUDIANTES DE EDUCACIÓN MEDIA PRAEM 2015

PROYECTO DE REFUERZO ACADÉMICO PARA ESTUDIANTES DE EDUCACIÓN MEDIA PRAEM 2015 MINISTERIO DE EDUCACIÓN DIRECCIÓN NACIONAL DE EDUCACIÓN Prueba de Diagnóstico de Matemática Segundo Año de Bachillerato PROYECTO DE REFUERZO ACADÉMICO PARA ESTUDIANTES DE EDUCACIÓN MEDIA PRAEM 2015 NOMBRE

Más detalles

Formulario y Tablas de Probabilidad para los Cursos de Probabilidad, Inferencia Estadística y Econometría

Formulario y Tablas de Probabilidad para los Cursos de Probabilidad, Inferencia Estadística y Econometría Formulario y Tablas de Probabilidad para los Cursos de Probabilidad, Inferencia Estadística y Econometría Ernesto Barrios Zamudio 1 José Ángel García Pérez2 Departamento Académico de Estadística Instituto

Más detalles

Tema 11: Intervalos de confianza.

Tema 11: Intervalos de confianza. Tema 11: Intervalos de confianza. Presentación y Objetivos. En este tema se trata la estimación de parámetros por intervalos de confianza. Consiste en aproximar el valor de un parámetro desconocido por

Más detalles

RELACIÓN DE EJERCICIOS DE REPASO DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I

RELACIÓN DE EJERCICIOS DE REPASO DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Dto. de MATEMÁTICAS RELACIÓN DE EJERCICIOS DE REPASO DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1. Calcular, de forma exacta las siguientes operaciones. a) 1, 0, b) 0,7:0,916. Representa el conjunto

Más detalles

Anexo C. Introducción a las series de potencias. Series de potencias

Anexo C. Introducción a las series de potencias. Series de potencias Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno

Más detalles

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS APLICAAS A LAS CIENCIAS SOCIALES EJERCICIO Nº Páginas 2 OPTATIVIA: EL ALUMNO EBERÁ ESCOGER UNA E LAS OS OPCIONES

Más detalles

Números enteros. Dado cualquier número natural, éste siempre será menor que su sucesor, luego los naturales son ordenados.

Números enteros. Dado cualquier número natural, éste siempre será menor que su sucesor, luego los naturales son ordenados. Números naturales y cardinales Números enteros Los elementos del conjunto N = {1,2,3, } se denominan números naturales. Si a este conjunto le unimos el conjunto formado por el cero, obtenemos N 0 = {0,1,2,

Más detalles

14.1 Introducción. 14.2 Caso 1: Area bajo una curva.

14.1 Introducción. 14.2 Caso 1: Area bajo una curva. Temas. Capacidades Calcular áreas de regiones del plano. 14.1 Introducción Area bajo una curva En esta sesión se inicia una revisión de las principales aplicaciones de la integral definida. La primera

Más detalles

REACTIVOS MATEMÁTICAS 3

REACTIVOS MATEMÁTICAS 3 REACTIVOS MATEMÁTICAS 3 1.- Una es una igualdad en la cual hay términos conocidos y términos desconocidos. El término desconocido se llama incógnita y se representa por letras. a) Literal. b) Ecuación.

Más detalles

Profr. Efraín Soto Apolinar. La función racional

Profr. Efraín Soto Apolinar. La función racional La función racional Ahora estudiaremos una extensión de las funciones polinomiales. Las funciones racionales se definen a partir de las funciones polinomiales. Esta generalización es semejante a la que

Más detalles

FUNCIONES CUADRÁTICAS. PARÁBOLAS

FUNCIONES CUADRÁTICAS. PARÁBOLAS FUNCIONES CUADRÁTICAS. PARÁBOLAS 1. FUNCIONES CUADRÁTICAS Representemos, en función de la longitud de la base (x), el área (y) de todos los rectángulos de perímetro 1 metros. De ellos, cuáles son las medidas

Más detalles

Relación 1. Sucesos y probabilidad. Probabilidad condicionada.

Relación 1. Sucesos y probabilidad. Probabilidad condicionada. Relación. Sucesos y probabilidad. Probabilidad condicionada.. Sean A, B y C tres sucesos cualesquiera. Determine expresiones para los siguientes sucesos: Ocurre sólo A. Ocurren A y B pero no C. c) Ocurren

Más detalles

5. INTEGRALES MULTIPLES

5. INTEGRALES MULTIPLES 5. INTEGRALES MULTIPLES INDICE 5 5.. Integrales iteradas. 5.. Definición de integral doble: áreas y volúmenes..3 5.3. Integral doble en coordenadas polares 5 5.4. Aplicaciones de la integral doble (geométricas

Más detalles

POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las

POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las POLINOMIOS Teoría 1.- Qué es un polinomio? Un polinomio es una expresión algebraica (conjunto de números y letras que representan números, conectados por las operaciones de suma, resta, multiplicación,

Más detalles

P (X 5) = P (x = 5) + P (X = 6) + P (X = 7) + P (X = 8) = 0.005416467 + 0.051456432 + 0.79334918 + 0.663420431 = 0.999628249

P (X 5) = P (x = 5) + P (X = 6) + P (X = 7) + P (X = 8) = 0.005416467 + 0.051456432 + 0.79334918 + 0.663420431 = 0.999628249 Hoja 3: robabilidad y variables aleatorias 1. La probabilidad de que un enfermo se recupere tomando un nuevo fármaco es 0.95. Si se les administra a 8 enfermos, hallar: a La probabilidad de que se recuperen

Más detalles

Distribución muestral de proporciones. Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua

Distribución muestral de proporciones. Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Distribución muestral de proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Distribución muestral de Proporciones Existen ocasiones

Más detalles

Datos de tipo cuantitativo

Datos de tipo cuantitativo Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 2: medidas de tipo paramétrico Documento Datos de tipo cuantitativo Son aquellos que están representados por números.

Más detalles

ESTADISTICA APLICADA: PROGRAMA

ESTADISTICA APLICADA: PROGRAMA Pág. 1 de 5 ESTADISTICA APLICADA: PROGRAMA a) OBJETIVOS Y BLOQUE 1: Teoría de Probabilidades 1.1 Comprender la naturaleza de los experimentos aleatorios y la estructura de los espacios de probabilidades,

Más detalles

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola. Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones

Más detalles

Aplicaciones de las integrales dobles

Aplicaciones de las integrales dobles Aplicaciones de las integrales dobles Las integrales dobles tienen multiples aplicaciones en física en geometría. A continuación damos una relación de alguna de ellas.. El área de una región plana R en

Más detalles

Las Figuras Planas. Vértice. Ángulo. Diagonal. Lado. Los polígonos. El Polígono. CEPA Carmen Conde Abellán Matemáticas II

Las Figuras Planas. Vértice. Ángulo. Diagonal. Lado. Los polígonos. El Polígono. CEPA Carmen Conde Abellán Matemáticas II Las Figuras Planas Melilla Los polígonos Te has fijado alguna vez en el metro que usan los carpinteros? Está formado por segmentos de madera que se pliegan con facilidad. Este instrumento tiene forma de

Más detalles