VEHÍCULOS AEROESPACIALES 16 de enero 2018 Recuperación parcial

Tamaño: px
Comenzar la demostración a partir de la página:

Download "VEHÍCULOS AEROESPACIALES 16 de enero 2018 Recuperación parcial"

Transcripción

1 Apellidos (Mayúsculas): Nombre (Mayúsculas): Tiempo: 180 minutos En las preguntas tipo test (1, 2, 3, 4, y 5) la respuesta correcta vale +0.5 puntos, la incorrecta Honor statement: By taking this exam you adhere to the UPC and its code of honor: you guarantee that the answers to this exam are your own; you will not copy or communicate in any way with your classmates during the duration of this exam. You guarantee that your phone is closed and untouched during the duration of this exam. Breaking the code of honor is considered a VERY SERIOUS offense and it will mean your disqualification from the whole exam. CONSTANTES (para la Tierra): Aceleración de la gravedad: g = 9.81 m s -2. Constante del aire R = 287 m 2 s -2 K -1. Temperatura del aire en la superficie terrestre según ISA: T 0 = K. Presión barométrica a nivel del mar según ISA: p 0 = Pa. Densidad del aire a nivel del mar según ISA: 0 = kg m -3. Viscosidad dinámica del aire: = N s m -2. Relación de calores específicos del aire: = 1.4. Constantes para Venus en su superficie. La atmósfera de Venus está compuesta en más de un 96% por dióxido de carbono (CO 2 ). Aceleración de la gravedad: g = 8.87 m s -2. Constante del aire: R = 190 m 2 s -2 K -1. Viscosidad dinámica: = N s m -2. Velocidad del sonido: a = 413 m s -1. Página 1 de 9

2 Cuestiones 1- Cuando el altímetro de un avión se ajusta tomando como referencia la altitud-presión QNE, se está ajustando empleando como presión de referencia: a) La presión barométrica local a la altitud del aeropuerto. b) La presión barométrica local a nivel del mar. c) La presión estándar a nivel del mar (p 0 =101325Pa). d) Ninguna de las anteriores. 2- Las fuerzas de presión por unidad de masa en forma vectorial se expresan como: a) dfp p p p dm x y z dfp p p p b) u, v, w dm x y z dfp p p p c),, dm x y z d) dfp 1 p p p,, dm x y z 3- Las líneas de corriente en un flujo estacionario: a) Son tangentes al vector velocidad en cada punto, coinciden con las trazas pero no con las sendas, y no pueden cortarse en ningún punto, excepto en los puntos de remanso. b) Son tangentes al vector velocidad en cada punto, no pueden cortarse en ningún punto, y no coinciden con las sedas ni con las trazas. c) Son tangentes al vector velocidad en cada punto, coinciden con las trazas y las sendas, y no pueden cortarse en ningún punto, excepto en los puntos de remanso. d) Coinciden con las trazas pero no con las sendas, no pueden cortarse en ningún punto, excepto en los puntos de remanso, y el flujo puede atravesarlas. Página 2 de 9

3 4- Cuando un perfil entra en pérdida, la capa límite se desprende debido a un aumento excesivo del gradiente de presión adverso sobre el extradós, con lo que el coeficiente de rozamiento aerodinámico aumenta drásticamente al mismo tiempo que se reduce el coeficiente de sustentación. El ángulo de ataque de entrada en pérdida, al aumentar el número de Reynolds: a) Disminuye debido a que la capa límite tiene más energía, ya que la transición entre capa límite laminar y turbulenta se aproxima al borde de salida sobre el extradós. b) Aumenta debido a que la capa límite tiene más energía, ya que la transición entre la capa limite laminar y la turbulenta se aproxima al borde de salida sobre el extradós. c) Aumenta debido a que la capa límite tiene más energía, ya que la transición entre la capa límite laminar y la turbulenta se aproxima al borde de ataque sobre el extradós. d) Disminuye debido a que la capa límite tiene menos energía, ya que la transición entre la capa límite laminar y la turbulenta se aleja del borde de ataque sobre el extradós. 5- La velocidad inducida en un ala finita es: a) La velocidad vertical dirigida hacia el suelo que aparece entre los bordes marginales del ala debida a los torbellinos de estela. b) La velocidad vertical dirigida en dirección opuesta al suelo que aparece entre los bordes marginales del ala debida a los torbellinos de estela. c) La velocidad vertical dirigida hacia el suelo que aparece fuera de la envergadura del ala debida a los torbellinos de estela. d) La velocidad vertical dirigida en dirección opuesta al suelo que aparece fuera de la envergadura del ala debida a los torbellinos de estela. Página 3 de 9

4 Problemas Problema 1. Para un avión supersónico que debe volar a Mach 2.5, calcular el ángulo de flecha mínimo que deberá tener el borde de ataque del ala para quedar dentro del cono de Mach durante el vuelo. (0.5 puntos) Problema 2. En un ensayo en túnel aerodinámico a abaja velocidad (M<0.3), se ha medido la distribución de presiones sobre un perfil simétrico de la que se ha obtenido la distribución del coeficiente de presión que se detalla en la Figura 1. Calcular el coeficiente de sustentación para Mach 0.6. (0.5 puntos) Figura 1 Página 4 de 9

5 t D también puede expresarse como u 0. (0.6 puntos) Dt Problema 3. Demostrar que la ecuación de continuidad u 0, Problema 4. Una avioneta Cessna Cardinal tiene una superficie alar de 16.2 m 2, un alargamiento =7.31 y factor de eficiencia e=0.62. Si la avioneta está volando a nivel del mar en una atmósfera estándar a una velocidad de 251 km/h y tiene un peso total de 9800 N, calcular: a) El coeficiente de rozamiento aerodinámico inducido. (0.5 puntos) b) La fuerza de rozamiento aerodinámica inducida. (0.5 puntos) Página 5 de 9

6 Problema 5. En un ensayo en un túnel de viento se introduce una barra cilíndrica cortada por la mitad a lo largo de su eje cuya sección transversal es la que se muestra en la Figura 2. La parte semicircular del semicilindro se coloca hacia la izquierda encarando el flujo de aire entrante en el túnel. La velocidad del flujo no perturbado a la izquierda del cilindro es u 1/2 1/2 2 P y su presión P. La velocidad tangencial sobre la superficie curva del semicilindro izquierdo es u 1/2 1/2 2 P sin. Supondremos que el flujo es estacionario e incompresible en la mitad semicircular de la barra y en toda la región situada delante aguas arriba, y que la presión en la parte plana donde la capa límite se encuentra desprendida es en primera aproximación constante e igual a P /4. Bajo estas hipótesis determinar: Figura 2 a) La distribución de presión sobre la parte semicircular de la barra para / 2 / 2. (0.7 puntos) Página 6 de 9

7 b) El coeficiente de presión C P para 0 2. Representarlo gráficamente. (0.6 puntos) c) Calcular la resistencia de forma por unidad de longitud d f. (0.7 puntos) Página 7 de 9

8 d) Determinar el coeficiente de resistencia de forma si éste se define de la d f forma usual cdf. (0.4 puntos) rq Problema 6. Un grupo de ingenieros recibe el encargo del diseño aerodinámico de un avión no tripulado para la exploración científica de la superficie de Venus, que deberá volar a baja altura my cerca de la superficie del planeta. Saben que la masa total de la aeronave incluyendo los instrumentos será de 250 kg y necesitan realizar diversas estimaciones para iniciar el diseño. En primera aproximación, los ingenieros suponen que el ala del avión no tiene torsión y que la geometría del perfil es invariable a lo largo de su envergadura. Para iniciar su tarea, los ingenieros deben conocer las propiedades de la atmósfera de Venus en la que volará el avión y al que consideran un gas ideal. a) Por los resultados de misiones espaciales anteriores, sabemos que la temperatura en la tropopausa situada a 65 km sobre la superficie del planeta es de 205 K. Si el gradiente vertical de temperatura en la troposfera venusiana es constante e igual a -8.4 ºC km -1. Cuál es la temperatura en la superficie del planeta en grados centígrados? (0.4 puntos) b) La presión atmosférica a nivel del suelo es de 92 atmósferas. Cuál es la densidad del aire a nivel de la superficie? Tomar 1 atmósfera = 10 5 Pa. (0.4 puntos) Página 8 de 9

9 c) En un túnel de viento (terrestre) y bajo condiciones de atmósfera estándar de la Tierra al nivel del mar se ha ensayado un perfil con una cuerda de 1 m de longitud para Re= A qué número de Mach estiman los ingenieros que deberá volar el avión en Venus? (0.5 puntos) d) Si la superficie del ala del avión es de 10 m 2, calcular cuál debe ser el coeficiente de sustentación. (0.4 puntos) e) Los ensayos en régimen incompresible en el túnel de viento indican que el coeficiente de sustentación del perfil en la región lineal se puede c 5.5( ), con 0 4º. Si el ala mencionada en aproximar por l 0 el punto anterior es rectangular, determinar el ángulo de ataque para obtener la sustentación necesaria manteniendo la longitud de la cuerda de 1 m. El factor de eficiencia es e=0.5. (0.8 puntos) Página 9 de 9

3. Según el modelo de Atmósfera Estándar Internacional, si en la troposfera aumenta la altura:

3. Según el modelo de Atmósfera Estándar Internacional, si en la troposfera aumenta la altura: Preguntas de teoría 1. La Organización de Aviación Civil Internacional (OACI) se crea a) en 1944 a raíz de la firma del Convenio de la Haya. b) en 1944 a raíz de la firma del Convenio de Chicago. c) en

Más detalles

MATERIA: AERODINÁMICA CONTROLADORES DE TRANSITO AÉREO

MATERIA: AERODINÁMICA CONTROLADORES DE TRANSITO AÉREO MATERIA: AERODINÁMICA CONTROLADORES DE TRANSITO AÉREO 1. EL FACTOR DE CARGA MÁXIMO (NMAX) ES UNA LIMITACIÓN ESTRUCTURAL ESTABLECIDA POR EL FABRICANTE Y ASENTADA EN LA SECCIÓN DE LIMITACIONES DEL MANUAL

Más detalles

ACTUACIONES VUELO-4. 10) El aumento de flaps hace que la resistencia: a) Aumente. b) Disminuya. c) Permanezca constante.

ACTUACIONES VUELO-4. 10) El aumento de flaps hace que la resistencia: a) Aumente. b) Disminuya. c) Permanezca constante. 1) La altitud de presión se define como: a) La presión que marca el altímetro que se ha reglado a la elevación del aeródromo. b) La presión que marca el altímetro que se ha reglado al nivel del mar con

Más detalles

MATERIA: AERODINÁMICA ULTRALIVIANO

MATERIA: AERODINÁMICA ULTRALIVIANO MATERIA: AERODINÁMICA ULTRALIVIANO 1. LA LÍNEA RECTA QUE UNE EL BORDE DE ATAQUE CON EL BORDE DE SALIDA DE UN PERFIL ALAR, SE DENOMINA: a. CURVATURA MEDIA b. CUERDA c. ESPESOR d. VIENTO RELATIVO 2. VIENTO

Más detalles

Efecto de la velocidad de la corriente incidente en la resistencia aerodinámica subsónica

Efecto de la velocidad de la corriente incidente en la resistencia aerodinámica subsónica Efecto de la velocidad de la corriente incidente en la resistencia aerodinámica subsónica Apellidos y nombre: García-Cuevas González, Luis Miguel (luiga2@mot.upv.es) Carreres Talens, Marcos (marcarta@mot.upv.es)

Más detalles

INDICE. Capitulo I. Introducción

INDICE. Capitulo I. Introducción INDICE Capitulo I. Introducción I 1.1. La mecánica de fluidos en la ingeniera 1 1.2. Los fluidos y la hipótesis del continuo 22 1.2.1. El modelo del continuo 4 1.3. Propiedades de los fluidos 1.3.1. Densidad,

Más detalles

INGENIERIA CIVIL EN MECANICA GUIA DE LABORATORIO ASIGNATURA CODIGO 9513 NIVEL 3 EXPERIENCIA C901

INGENIERIA CIVIL EN MECANICA GUIA DE LABORATORIO ASIGNATURA CODIGO 9513 NIVEL 3 EXPERIENCIA C901 Ingeniería Civil En Mecánica INGENIERIA CIVIL EN MECANICA GUIA E LABORATORIO MECANICA ASIGNATURA E FLUIOS II COIGO 9513 NIVEL 3 EXPERIENCIA C901 ARRASTRE Y SUSTENTACIÓN SOBRE CUERPOS AEROINAMICOS" 2 1.

Más detalles

Dinámica de Fluidos. Mecánica y Fluidos VERANO

Dinámica de Fluidos. Mecánica y Fluidos VERANO Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo

Más detalles

Flujo externo. R. Castilla y P.J. Gamez-Montero Curso Introducción. Fuerzas aerodinámicas

Flujo externo. R. Castilla y P.J. Gamez-Montero Curso Introducción. Fuerzas aerodinámicas Flujo externo R. Castilla y P.J. Gamez-Montero Curso 20-202 Índice Índice. Introducción 2. Fuerzas aerodinámicas 2.. Arrastre de fricción y de presión....................................... 2 2.2. Coeficientes

Más detalles

PRINCIPIOS DE VUELO-4

PRINCIPIOS DE VUELO-4 1) El ángulo de ataque es: a) El ángulo formado entre la cuerda aerodinámica y el eje longitudinal del avión b) El ángulo formado entre la cuerda aerodinámica y la dirección del viento relativo c) El ángulo

Más detalles

Índice general. I Fundamentos 23. Índice general. Presentación. Prólogo. Nomenclatura

Índice general. I Fundamentos 23. Índice general. Presentación. Prólogo. Nomenclatura Índice general Índice general Presentación Prólogo Nomenclatura V X XIII XV 1 Introducción 1 1.1. Introducción a la ingeniería aeroespacial............. 1 1.2. Clasificación de las aeronaves...................

Más detalles

Lección 3: Aerodinámica. 1.La capa límite 2.Fuerzas sobre perfiles aerodinámicos

Lección 3: Aerodinámica. 1.La capa límite 2.Fuerzas sobre perfiles aerodinámicos Lección 3: Aerodinámica 1.La capa límite 2.Fuerzas sobre perfiles aerodinámicos 1 Lección 3: Aerodinámica 1.La capa límite 2.Fuerzas sobre perfiles aerodinámicos 1 Punto de partida Teoría

Más detalles

Cuarta Lección. Principios de la física aplicados al vuelo.

Cuarta Lección. Principios de la física aplicados al vuelo. Capítulo II. Termodinámica y Física de los Fluidos aplicadas a procesos naturales. Tema. El proceso de vuelo de las aves y de los ingenios alados. Cuarta Lección. Principios de la física aplicados al vuelo.

Más detalles

aeronaves. fija y de ala rotatoria.

aeronaves. fija y de ala rotatoria. MP11 Constitución y navegación de las aeronaves. b) Aerodinámica de las aeronaves de ala fija y de ala rotatoria. b2) Principios de Aerodinámica b.1 Física de la atmósfera, su aplicación. b.2 2Principiosde

Más detalles

DINÁMICA DE FLUIDOS ÍNDICE

DINÁMICA DE FLUIDOS ÍNDICE DINÁMICA DE FLUIDOS ÍNDICE. Tipos de flujo. Ecuación de continuidad 3. Ecuación de Bernouilli 4. Aplicaciones de la ecuación de Bernouilli 5. Efecto Magnus 6. Viscosidad BIBLIOGRAFÍA: Cap. 3 del Tipler

Más detalles

TEMA 5: LOS MEDIOS AÉREO Y ACUÁTICO

TEMA 5: LOS MEDIOS AÉREO Y ACUÁTICO 69 TEMA 5: LOS MEDIOS AÉREO Y ACUÁTICO 1- GENERALIDADES DE LOS MEDIOS AÉREO Y ACUÁTICO. Características comunes y diferenciales de ambos medios. Viento y corrientes de agua relativos. 2- PERFILES. Cuerda

Más detalles

MATERIA: METEOROLOGÍA TLA

MATERIA: METEOROLOGÍA TLA MATERIA: METEOROLOGÍA TLA 1. EL FENÓMENO DE INVERSIÓN DE TEMPERATURA, OCURRE CUÁNDO: a. LA TEMPERATURA BAJA AL AUMENTAR LA ALTURA b. LA HUMEDAD RELATIVA AUMENTA c. LA TEMPERATURA AUMENTA CON LA ALTURA

Más detalles

MATERIA: AERODINÁMICA TRIPULANTES DE CABINA

MATERIA: AERODINÁMICA TRIPULANTES DE CABINA MATERIA: AERODINÁMICA TRIPULANTES DE CABINA 1. CUANDO HABLAMOS DE LA RAMA DE LA FÍSICA, QUE ESTUDIA LAS REACCIONES DE UN CUERPO QUE SE SITÚA EN UNA CORRIENTE DE AIRE, O AIRE RELATIVO CON RESPECTO A SUS

Más detalles

REPASO Conteste la siguientes preguntas en base a la fórmula para la sustentación. Suponga en todos los casos que se trata de un perfil Clark Y.

REPASO Conteste la siguientes preguntas en base a la fórmula para la sustentación. Suponga en todos los casos que se trata de un perfil Clark Y. REPASO Conteste la siguientes preguntas en base a la fórmula para la sustentación. Suponga en todos los casos que se trata de un perfil Clark Y. L = S C L δ 2 V 2 1. En VRN a 1000 pies de altitud un avión

Más detalles

Tecnología Aeroespacial. Definiciones. Gregorio L. Juste ( )

Tecnología Aeroespacial. Definiciones. Gregorio L. Juste  ( ) Definiciones Circulación Γ= Ñ C Vl d linea cerradac Teorema de Stokes Ñ C S ( ) Γ= Vl d = V ndσ Si el rotacional dela velocidad es nulo( movimiento fluidoirrotacional) exixteuna función Φ llamada potencial

Más detalles

COMPORTAMIENTO AERODINAMICO DE CUERPOS FUSELADOS Y PERFILES ALARES (C207)

COMPORTAMIENTO AERODINAMICO DE CUERPOS FUSELADOS Y PERFILES ALARES (C207) UNIVERSIDAD DE SANTIAGO DE CHILE DEPARTAMENTO DE INGENIERIA MECÁNICA AREA DE TERMOFLUIDOS GUIA DE LABORATORIO DE MECANICA DE FLUIDOS COMPORTAMIENTO AERODINAMICO DE CUERPOS FUSELADOS Y PERFILES ALARES (C207)

Más detalles

Clase 1 Piloto Comercial con HVI Aerodinámica 2015 AERODINÁMICA

Clase 1 Piloto Comercial con HVI Aerodinámica 2015 AERODINÁMICA AERODINÁMICA La aerodinámica estudia el movimiento de los gases. En el caso aeronáutico nos interesan los efectos del aire que rodea la Tierra en el movimiento de las aeronaves. La atmósfera tiene un espesor

Más detalles

MARCO TEORICO. Hay que tener en cuenta que el marco teórico que se abarcará en este documento.

MARCO TEORICO. Hay que tener en cuenta que el marco teórico que se abarcará en este documento. MARCO TEORICO Para la realización del cohete hidráulico se debe tener en cuenta los siguientes conceptos físicos clave con el fin de hacer el experimento más efectivo, e igualmente para analizar y entender

Más detalles

Centro de presiones, centro aerodinámico y cuerda media aerodinámica

Centro de presiones, centro aerodinámico y cuerda media aerodinámica Centro de presiones, centro aerodinámico y cuerda media aerodinámica Apellidos y nombre: García-Cuevas González, Luis Miguel (luiga12@mot.upv.es) 1 Carreres Talens, Marcos (marcarta@mot.upv.es) 1 Tiseira

Más detalles

TRANSFERENCIA DE CALOR POR CONVECCIÓN

TRANSFERENCIA DE CALOR POR CONVECCIÓN TRANSFERENCIA DE CALOR POR CONVECCIÓN Nos hemos concentrado en la transferencia de calor por conducción y hemos considerado la convección solo hasta el punto en que proporciona una posible condición de

Más detalles

SANDGLASS PATROL El Ala y el Perfil, definiciones previas Por Gizmo

SANDGLASS PATROL  El Ala y el Perfil, definiciones previas Por Gizmo El Ala y el Perfil, definiciones previas Por Gizmo El Perfil aerodinámico Imagen del Naca Report Summary of airfoil data de I.H. Abott y A.E. von Doenhoff (NACA Report 824 NACA-ACR-L5C05 NACA-WR-L-560,

Más detalles

EJERCICIO DE MATEMÁTICAS SUPUESTO PRÁCTICO Nº 1

EJERCICIO DE MATEMÁTICAS SUPUESTO PRÁCTICO Nº 1 EJERCICIO DE MATEMÁTICAS SUPUESTO PRÁCTICO Nº 1 SECCIÓN A De todos los cilindros inscritos en una esfera de radio 1, calcúlese aquel cuyo volumen sea máximo. SECCIÓN B Dada la función: f(x) = x 4 + ax

Más detalles

INDICE Capitulo 1. Introducción Capitulo 2. Propiedades de los Fluidos Capitulo 3. Estática de Fluidos

INDICE Capitulo 1. Introducción Capitulo 2. Propiedades de los Fluidos Capitulo 3. Estática de Fluidos INDICE Prólogo XV Lista de Símbolos XVII Lista de abreviaturas XXI Capitulo 1. Introducción 1 1.1. Ámbito de la mecánica de fluidos 1 1.2. Esquemas históricos del desarrollo de la mecánica de fluidos 2

Más detalles

REGIMENES DE CORRIENTES O FLUJOS

REGIMENES DE CORRIENTES O FLUJOS LINEAS DE CORRIENTE Ø Las líneas de corriente son líneas imaginarias dibujadas a través de un fluido en movimiento y que indican la dirección de éste en los diversos puntos del flujo de fluidos. Ø Una

Más detalles

Aeronaves y Vehículos Espaciales

Aeronaves y Vehículos Espaciales Aeronaves y Vehículos Espaciales Tema 4 Aerodinámica del Avión Parte III - Regímenes Subsónico y Supersónico Sergio Esteban Roncero Francisco Gavilán Jiménez Escuela Superior de Ingenieros Universidad

Más detalles

Aeronaves y Vehículos Espaciales

Aeronaves y Vehículos Espaciales Aeronaves y Vehículos Espaciales Tema 4 Aerodinámica del Avión Parte II - Alas en Régimen Incompresible Sergio Esteban Roncero Francisco Gavilán Jiménez Departamento de Ingeniería Aeroespacial y Mecánica

Más detalles

PROBLEMAS. Problema 1

PROBLEMAS. Problema 1 PROBLEMAS Problema 1 Se considera un avión en vuelo de crucero a altitud h y velocidad V constantes. La altitud de vuelo está fijada. Sabiendo que la resistencia aerodinámica viene dada por D = k 1 V 2

Más detalles

ONDAS DE CHOQUE VUELO SUPERSÓNICO. Federico Flores M.

ONDAS DE CHOQUE VUELO SUPERSÓNICO. Federico Flores M. ONDAS DE CHOQUE UELO SUPERSÓNICO Federico Flores M. TEORÍA OBJETO MOIÉNDOSE A ELOCIDAD SUBSÓNICA Propagación de ondas de sonido desde una fuente estacionaria. Perturbaciones de presión producidas por un

Más detalles

Flujo. v 1 v 2. V 1 = constante. V 2 = constante

Flujo. v 1 v 2. V 1 = constante. V 2 = constante Hidrodinámica Flujo Can2dad de masa (o de fluido) que atraviesa una (pequeña) superficie por unidad de 2empo y superficie. Si en un punto del fluido la densidad es ρ y la velocidad es v el flujo está dado

Más detalles

Aeronaves y Vehículos Espaciales

Aeronaves y Vehículos Espaciales Aeronaves y Vehículos Espaciales Tema 4 Aerodinámica del Avión Parte III - Regímenes Subsónico y Supersónico Sergio Esteban Roncero Francisco Gavilán Jiménez Departamento de Ingeniería Aeroespacial y Mecánica

Más detalles

PRINCIPIOS DE VUELO-2

PRINCIPIOS DE VUELO-2 1) El borde de ataque es: a) La parte trasera del ala. b) La parte frontal o delantera de un perfil alar. c) El morro del ultraligero d) La parte delantera del motor 2) Qué es el viento relativo?: a) El

Más detalles

TEMA 2 MODELOS DE ATMÓSFERA Y DE AVIÓN

TEMA 2 MODELOS DE ATMÓSFERA Y DE AVIÓN TEMA 2 MODELOS DE ATMÓSFERA Y DE AVIÓN En este tema se van a modelar las fuerzas aerodinámica y propulsiva, así como el consumo de combustible del avión, esto es, se van a definir las funciones L = L(h,

Más detalles

DINÁMICA DE FLUIDOS REALES. Asignatura: Operaciones Unitarias Profesor: Jimmy Walker Alumnos: Giovanni Ramirez Luis Cabrera Antonio Marín

DINÁMICA DE FLUIDOS REALES. Asignatura: Operaciones Unitarias Profesor: Jimmy Walker Alumnos: Giovanni Ramirez Luis Cabrera Antonio Marín DINÁMICA DE FLUIDOS REALES Asignatura: Operaciones Unitarias Profesor: Jimmy Walker Alumnos: Giovanni Ramirez Luis Cabrera Antonio Marín Viscosidad Consideraciones Fluido ideal Viscosidad =0 Fluido real

Más detalles

4) La aguja indicadora del anemómetro refleja siempre la velocidad de las partículas de aire que rodean el avión. a) Verdadero. b) Falso.

4) La aguja indicadora del anemómetro refleja siempre la velocidad de las partículas de aire que rodean el avión. a) Verdadero. b) Falso. 1) Para que un altímetro indique niveles de vuelo, deberá estar ajustado con: a) 1013 Mb o 29,92 pulgadas. b) QNH c) QFE d) 800 Mb. 2) Para realizar un viraje pronunciado y no perder altura, se debe: a)

Más detalles

Coeficientes Aerodinamicos Cl Cd Cm

Coeficientes Aerodinamicos Cl Cd Cm Coeficientes Aerodinamicos Cl Cd Cm con un aprofondimiento de Cm al respecto de la estabilidad de vuelo Asi entenderà Ud. los coeficientes aerodinamicos al terminar las paginas siguientes Complemento al

Más detalles

Para el estudio de la hidrodinámica normalmente se consideran tres aproximaciones importantes:

Para el estudio de la hidrodinámica normalmente se consideran tres aproximaciones importantes: Hidrodinámica Para el estudio de la hidrodinámica normalmente se consideran tres aproximaciones importantes: Que el fluido es un líquido incompresible, es decir, que su densidad no varía con el cambio

Más detalles

Dinámica de fluidos: Fundamentos

Dinámica de fluidos: Fundamentos Capítulo 2 Dinámica de fluidos: Fundamentos Los fluidos, como genéricamente llamamos a los líquidos y los gases, nos envuelven formando parte esencial de nuestro medio ambiente. El agua y el aire son los

Más detalles

M E C Á N I C A. El Torbellino. El Torbellino

M E C Á N I C A. El Torbellino. El Torbellino M E C Á N I C A M E C Á N I C A Los torbellinos o vórtices se forman en fluidos (gases y líquidos) en movimiento. Para describir el movimiento de un fluido (según Euler) se necesita determinar en cada

Más detalles

CONVECCION NATURAL. En la convección forzada el fluido se mueve por la acción de una fuerza externa.

CONVECCION NATURAL. En la convección forzada el fluido se mueve por la acción de una fuerza externa. CONVECCION NATURAL En la convección forzada el fluido se mueve por la acción de una fuerza externa. En convección natural el fluido se mueve debido a cambios de densidad que resultan del calentamiento

Más detalles

Unidad 5. Fluidos (Dinámica)

Unidad 5. Fluidos (Dinámica) Unidad 5 Fluidos (Dinámica) Tipos de Movimiento (Flujos) Flujo Laminar o aerodinámico: el fluido se mueve de forma ordenada y suave, de manera que las capas vecinas se deslizan entre si, y cada partícula

Más detalles

Física y Química 1º Bacharelato

Física y Química 1º Bacharelato Física y Química 1º Bacharelato Examen de setiembre 05/09/11 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre Resuelve solo 3 problemas (2½ puntos cada uno) y las 5 cuestiones (½ punto cada una) Problemas (elige

Más detalles

AERODINÁMICA Básica e Intermedia.

AERODINÁMICA Básica e Intermedia. Por: Mauricio Azpeitia Perez AERODINÁMICA Básica e Intermedia. Introducción. La teoría de vuelo está basada en la aerodinámica. El término aerodinámica sederiva de la combinación de dos palabras griegas:

Más detalles

CAPITULO 5. Uso del paquete y análisis de los resultados. Este capítulo presenta la simulación de los perfiles en túnel de viento, por

CAPITULO 5. Uso del paquete y análisis de los resultados. Este capítulo presenta la simulación de los perfiles en túnel de viento, por CAPITULO 5 Uso del paquete y análisis de los resultados Este capítulo presenta la simulación de los perfiles en túnel de viento, por medio de una serie de gráficas e imágenes que de manera visual y numérica

Más detalles

PRINCIPIOS DE VUELO-1

PRINCIPIOS DE VUELO-1 1) La línea recta que une el borde de ataque con el borde de salida de un perfil alar, se denomina: a) Curvatura media b) Cuerda c) Espesor d) Viento relativo 2) Las cuatro fuerzas principales que actúan

Más detalles

Recordemos algunas cuestiones importantes del vuelo recto y nivelado:

Recordemos algunas cuestiones importantes del vuelo recto y nivelado: RESISTENCIA O DRAG Recordemos algunas cuestiones importantes del vuelo recto y nivelado: 1. En VRN la sustentación (LIFT) es siempre igual al peso W. Es decir que para cualquier velocidad de crucero tengo

Más detalles

Selección Instituto Balseiro Problema 1

Selección Instituto Balseiro Problema 1 Problema 1 Un cubo de hielo de 200 g de masa, cuya temperatura es de 150 C, se coloca en un recipiente que contiene 500 g de agua a 20 C. Encontrar la cantidad de hielo y la temperatura cuando se llega

Más detalles

Física I. Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos Dr. Ezequiel Rodríguez Jáuregui Dr. Santos Jesús Castillo

Física I. Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos Dr. Ezequiel Rodríguez Jáuregui Dr. Santos Jesús Castillo Física I Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos Dr. Ezequiel Rodríguez Jáuregui Dr. Santos Jesús Castillo Webpage: http://paginas.fisica.uson.mx/qb 2016 Departamento

Más detalles

Física I-Ingeniería. PROBLEMAS DE SEGUNDAS PRUEBAS Coordinación Asignatura física I. Física I Ingeniería

Física I-Ingeniería. PROBLEMAS DE SEGUNDAS PRUEBAS Coordinación Asignatura física I. Física I Ingeniería Física I-Ingeniería PROBLEMAS DE SEGUNDAS PRUEBAS 2007-2010 Coordinación Asignatura física I. Física I Ingeniería 2 Primer Semestre 2007 1.- Un proyectil es lanzado desde la cima de un cerro de 50[m] de

Más detalles

PROBLEMAS TEMA I: ESTÁTICA DE FLUIDOS Y FENÓMENOS DE SUPERFICIE

PROBLEMAS TEMA I: ESTÁTICA DE FLUIDOS Y FENÓMENOS DE SUPERFICIE PROBLEMAS TEMA I: ESTÁTICA DE FLUIDOS Y FENÓMENOS DE SUPERFICIE Curso 2016-2017 1. Desde una bolsa de goteo colocada 1.6 m por encima del brazo de un paciente fluye plasma de 1.06 g/cm 3 de densidad por

Más detalles

Tema 4 Aerodinámica del Avión

Tema 4 Aerodinámica del Avión Introducción a la Ing. Aeroespacial Tema 4 Aerodinámica del Avión Parte II - Alas en Régimen Incompresible Sergio Esteban Roncero Francisco Gavilán Jiménez Departamento de Ingeniería Aeroespacial y Mecánica

Más detalles

POTENCIA EXTRAÍDA POR LA TURBINA

POTENCIA EXTRAÍDA POR LA TURBINA Teoría del momento unidimensional (Betz, 196) Supone que la extracción de energía del viento es realizada por una turbina genérica ideal denominada disco actuador Se considera un volumen de control (tubo)

Más detalles

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios Departamento de Física Universidad de Sonora

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios Departamento de Física Universidad de Sonora FÍSICA GENERAL MC Beatriz Gpe. Zaragoza Palacios Departamento de Física Universidad de Sonora TEMARIO 0. Presentación 1. Mediciones y vectores 2. Equilibrio traslacional 3. Movimiento uniformemente acelerado

Más detalles

MECÁNICA DE FLUIDOS II / Capa límite

MECÁNICA DE FLUIDOS II / Capa límite INTRODUCCIÓN En un movimiento a altos números de Reynolds, los efectos viscosos son despreciables. La presencia de un obstáculo obliga a imponer la condición de velocidad nula en el mismo, pero esto no

Más detalles

Vuelo vertical en helicópteros

Vuelo vertical en helicópteros Vuelo vertical en helicópteros Apellidos y nombre: García-Cuevas González, Luis Miguel (luiga12@mot.upv.es) 1 Carreres Talens, Marcos (marcarta@mot.upv.es) 1 Tiseira Izaguirre, Andrés Omar (anti1@mot.upv.es)

Más detalles

Convección Problemas de convección 1.1. PROBLEMAS DE CONVECCIÓN 1

Convección Problemas de convección 1.1. PROBLEMAS DE CONVECCIÓN 1 1.1. PROBLEMAS DE CONVECCIÓN 1 Convección 1.1. Problemas de convección Problema 1 Una placa cuadrada de 0,1 m de lado se sumerge en un flujo uniforme de aire a presión de 1 bar y 20 C con una velocidad

Más detalles

Clases 5 Piloto Comercial con HVI Aerodinámica Construcción y uso de las curvas de un avión para el VRN

Clases 5 Piloto Comercial con HVI Aerodinámica Construcción y uso de las curvas de un avión para el VRN Construcción y uso de las curvas de un avión para el VRN Si ud conoce el perfil del ala de su avión, el peso y la superficie alar puede construir en forma aproximada las curvas de su avión, para ser utilizadas

Más detalles

Tipos de fluidos. Fluido IDEAL. No posee fricción interna. Dinámica de fluidos

Tipos de fluidos. Fluido IDEAL. No posee fricción interna. Dinámica de fluidos Dinámica de fluidos Cátedra de Física- FFyB-UBA Tipos de fluidos Fluido IDEAL Tipos de Fluidos INCOMPRESIBLE No varía su volumen al variar la presión al cual está sometido (δ cte) Según su variación de

Más detalles

Hidrodinámica. Gasto o caudal (Q) se define como el volumen de fluido que pasa a través de cierta sección transversal en la unidad de tiempo.

Hidrodinámica. Gasto o caudal (Q) se define como el volumen de fluido que pasa a través de cierta sección transversal en la unidad de tiempo. C U R S O: FÍSICA MENCIÓN MATERIAL: FM-5 Hidrodinámica Hasta ahora, nuestro estudio se ha restringido a condiciones de reposo, que son considerablemente más sencillas que el estudio de fluidos en movimiento.

Más detalles

TEMA 3: Temperatura, presión. y densidad atmosféricas

TEMA 3: Temperatura, presión. y densidad atmosféricas TEMA 3: Temperatura, presión y densidad atmosféricas 1 Ciclo diario de temperatura La hora del eje X es la solar (mediodía=12h), y se representa un día mediano típico de unas doce horas solares. Retraso

Más detalles

Andrés Zarabozo Martínez. Aerodinámica de los Años 20. Problemas

Andrés Zarabozo Martínez. Aerodinámica de los Años 20. Problemas Andrés Zarabozo Martínez Aerodinámica de los Años 20. Problemas Ingeniería Aeronáutica ETSEIAT 2012 Acerca de estos apuntes Estos apuntes se han realizado para cubrir el temario de la asignatura Aerodinámica

Más detalles

ANÁLISIS AERODINÁMICO Y ESTRUCTURAL DE UNA AERONAVE UAV TLÁLOC II EN MATERIALES COMPUESTOS

ANÁLISIS AERODINÁMICO Y ESTRUCTURAL DE UNA AERONAVE UAV TLÁLOC II EN MATERIALES COMPUESTOS ANÁLISIS AERODINÁMICO Y ESTRUCTURAL DE UNA AERONAVE UAV TLÁLOC II EN MATERIALES COMPUESTOS Gonzalo Anzaldo Muñoz, gonzzo2012@hotmail.com Aeronave no tripulada Tláloc II Gracias a la tecnología de la automatización

Más detalles

Los Vehículos Aéreos

Los Vehículos Aéreos Tecnologías asociadas a sistemas de Enjambres de µuavs Los Vehículos Aéreos «Los UAVs (Ventajas)» Variedad y Flexibilidad de Misiones Mínimo Tiempo de Reacción Mínimo Impacto Ambiental Mínimo Coste de

Más detalles

Alas en Régimen Incompresible

Alas en Régimen Incompresible Alas en Régimen Incompresible Sergio Esteban sesteban@us.es 1 Alas en Régimen Compresible - I Envergadura a la distancia que hay entre las puntas del ala (b). El alargamiento es un parámetro adimensional

Más detalles

Problemas de Mecánica y Ondas II. Boletín nº 2. (Fluidos) Es incompresible? Existe la función de corriente? Determínela en caso afirmativo.

Problemas de Mecánica y Ondas II. Boletín nº 2. (Fluidos) Es incompresible? Existe la función de corriente? Determínela en caso afirmativo. Problemas de Mecánica y Ondas II. oletín nº 2. (Fluidos) 15. Considere un flujo cuyas componentes de la velocidad son 3 2 u = 0 v = y 4 z w=3y z Es incompresible? Existe la función de corriente? Determínela

Más detalles

POR QUÉ VUELA UN AVIÓN?

POR QUÉ VUELA UN AVIÓN? POR QUÉ VUELA UN AVIÓN? Zazil Ha Uc Díaz Santana (1), Carlos Alberto Rubio Jiménez (2), Ma. Teresa Sánchez Conejo (3) 1 [Bachillerato en Ciencias Naturales y Exactas, Escuela de nivel medio superior de

Más detalles

2. CO CEPTOS BÁSICOS SOBRE AERO AVES

2. CO CEPTOS BÁSICOS SOBRE AERO AVES 2. CO CEPTOS BÁSICOS SOBRE AERO AVES 2.1. PRINCIPIOS AERODINÁMICOS Sobre una aeronave actúan varias fuerzas, algunas favorables y otras desfavorables. Las fuerzas básicas que actúan sobre una aeronave

Más detalles

Física General II. Guía N 2: Hidrodinámica y Viscosidad

Física General II. Guía N 2: Hidrodinámica y Viscosidad Física General II Guía N 2: Hidrodinámica y Viscosidad Problema 1: Ley de Torricelli. La figura muestra un líquido que está siendo descargado de un tanque a través de un orificio que se encuentra a una

Más detalles

Quinta Lección. Mirando el vuelo de las aves a la luz de la física..

Quinta Lección. Mirando el vuelo de las aves a la luz de la física.. Capítulo II. Termodinámica y Física de los Fluidos aplicadas a procesos naturales. Tema. El proceso de vuelo de las aves y de los ingenios alados. Quinta Lección. Mirando el vuelo de las aves a la luz

Más detalles

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)

Más detalles

Diversos tipos de toberas

Diversos tipos de toberas Diversos tipos de toberas Descarga de un gas ideal de un recipiente con alta presión a otro recipiente con baja presión Tobera convergente Si la descarga se realiza utilizando una tobera convergente entonces

Más detalles

XIX OLIMPIADA NACIONAL DE FÍSICA

XIX OLIMPIADA NACIONAL DE FÍSICA XIX OLIMPIADA NACIONAL D FÍSICA FAS LOCAL-UNIVRSIDADS D GALICIA- 15 de febrero de 2008 APLLIDOS...NOMBR... CNTRO... 1- Para un objeto de forma cilíndrica, de longitud L y sección recta S, la relación entre

Más detalles

Por qué vuela un avión? Las Matemáticas tienen la respuesta.

Por qué vuela un avión? Las Matemáticas tienen la respuesta. - 1 - Por qué vuela un avión? Las Matemáticas tienen la respuesta. Autor: Ricardo San Martín Molina Resumen: Explicación de los fundamentos matemáticos que hacen que un avión pueda volar. Palabras clave:

Más detalles

Optimización del diseño del conducto de admisión del motor F1L2006

Optimización del diseño del conducto de admisión del motor F1L2006 Optimización del diseño del conducto de admisión del motor FL26 Sánchez Martínez, D.; Carvajal Trujillo, E.; Chacartegui Ramírez, R.; Muñoz Blanco, A. Escuela Superior de Ingenieros. Camino de los Descubrimientos

Más detalles

XXII OLIMPIADA DE FíSICA

XXII OLIMPIADA DE FíSICA XXII OLIMPIADA DE FíSICA Preselección para la Fase local del Distrito Universitario de Valencia 28 octubre de 2010 (MECÁNICA 1ª PARTE) Para la resolución de los ejercicios tome g=10 ms 2 Ejercicio 1 Dos

Más detalles

5) El código de marcas y colores del anemómetro toman como referencia las velocidades: a) IAS. b) CAS. c) TAS. d) EAS.

5) El código de marcas y colores del anemómetro toman como referencia las velocidades: a) IAS. b) CAS. c) TAS. d) EAS. 1) Cuando un avión ha aterrizado en un aeropuerto cuya elevación es de 1500'. Qué marcará su altímetro ajustado a QFE? a) 1500' b) 0' c) 1000' d) 500' 2) Aterrizar con viento de cara permite: a) Aterrizar

Más detalles

XIX OLIMPIADA DE FISICA Universitat de València y Universidad Politécnica de Valencia

XIX OLIMPIADA DE FISICA Universitat de València y Universidad Politécnica de Valencia Problema 1 XIX OLIMPIADA DE FISICA Universitat de València y Universidad Politécnica de Valencia (preselección, 7 noviembre 2007) Un cuerpo de masa M, partiendo del reposo, se mueve debido a la acción

Más detalles

Performance de la aeronave Parte 1ª.

Performance de la aeronave Parte 1ª. Curso Básico y Avanzado para pilotos de RPAS Según el artículo 50.5.c, de la Ley 18/2014, de 15 de octubre. Performance de la aeronave Parte 1ª. Índice 1. PERFIL DE VUELO. PRINCIPIOS DE VUELO...5 1.1.

Más detalles

Valor total: 2.5 puntos.

Valor total: 2.5 puntos. Aeronaves y Vehículos Espaciales Duración: 50 minutos Ingenieros Aeronáuticos DNI Curso 08/09 Escuela Superior de Ingenieros 1 er Apellido 2 do Apellido 05/06/09 Universidad de Sevilla Nombre Problema

Más detalles

GUÍA CLIMATOLOGÍA PRIMER AÑO

GUÍA CLIMATOLOGÍA PRIMER AÑO GUÍA CLIMATOLOGÍA PRIMER AÑO 2014 UNIDAD N 5 CLIMATOLOGÍA CONTINENTE AMERICANO: Presenta una gran diversidad climática dados los siguientes factores: 1,- Su gran extensión latitudinal 2,- Su marcada posición

Más detalles

Descripción del problema

Descripción del problema 4 Descripción del problema control_gamma MATLAB Function uje masa alpha_punto xa In1 ya Va gamma In2 theta q In3 alpha_p CL CD In4 Cm Dinámica sistema q m masa -Cmasa on masa1 grator2 1 s control_ft MATLAB

Más detalles

Física Aplicada a Farmacia. Curso º parcial 20/10/2015. T (s) DT = 2sT 0,02 0,015 0,011 0,011

Física Aplicada a Farmacia. Curso º parcial 20/10/2015. T (s) DT = 2sT 0,02 0,015 0,011 0,011 Problema. Experimental (3 p) En una práctica de física se ha medido el periodo de un péndulo simple para cuatro longitudes diferentes. Estas medidas aparecen en la tabla adjunta, conteniendo la segunda

Más detalles

Soluciones Analíticas de Navier Stokes.

Soluciones Analíticas de Navier Stokes. 1 Soluciones Analíticas de Navier Stokes. Problema 1 Un fluido newtoniano fluye en el huelgo formado por dos placas horizontales. La placa superior se mueve con velocidad u w, la inferior está en reposo.

Más detalles

TEMA 1 Técnicas básicas del análisis de los flujos

TEMA 1 Técnicas básicas del análisis de los flujos TEMA 1 Técnicas básicas del análisis de los flujos 1.1. Introducción: definición y magnitudes características FLUIDO: - no tienen forma definida - líquidos (volumen fijo) - gases (sin volumen definido,

Más detalles

ACTUACIONES VUELO-1. 5) La línea roja en un anemómetro indica: a) VNE b) VNO c) Vs1 d) Vs2

ACTUACIONES VUELO-1. 5) La línea roja en un anemómetro indica: a) VNE b) VNO c) Vs1 d) Vs2 1) Qué significado tiene en un avión, un coeficiente de planeo 7:1? a) Desciende 7 metros en un segundo. b) Recorre 7 metros en un segundo. c) Recorre 7 metros en horizontal por cada 1 metro de descenso.

Más detalles

Estática y Dinámica de Fluidos

Estática y Dinámica de Fluidos Estática y Dinámica de Fluidos 1. Hidrostática. Principio de Pascal. Principio de Arquímedes. Conceptos básicos de hidrodinámica: Una importante propiedad de una sustancia es la densidad, que la definiremos

Más detalles

1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A

Más detalles

Estimación de trayectoria y tiempo de vuelo de un Cohete de Agua Trabajo Integrador - Mecánica de Fluidos - A0052/ Proyecto de extensión Esc.

Estimación de trayectoria y tiempo de vuelo de un Cohete de Agua Trabajo Integrador - Mecánica de Fluidos - A0052/ Proyecto de extensión Esc. Estimación de trayectoria y tiempo de vuelo de un Cohete de Agua Trabajo Integrador - Mecánica de Fluidos - A0052/ Proyecto de extensión Esc. Técnicas Año 2016 Objetivos Incorporación de conceptos de Masa

Más detalles

Descenso del paracaidista en una atmósfera uniforme

Descenso del paracaidista en una atmósfera uniforme Descenso del paracaidista en una atmósfera uniforme Cuando un paracaidista se lanza desde el avión suponemos que su caída es libre, el peso es la única fuerza que actúa sobre él, la aceleración es constante,

Más detalles

Mecánica del Vuelo. Tema 3: Actuaciones de Punto. Damián Rivas Rivas y Sergio Esteban Roncero

Mecánica del Vuelo. Tema 3: Actuaciones de Punto. Damián Rivas Rivas y Sergio Esteban Roncero Intro Vuelo Sim-PV Mecánica del Vuelo Tema 3: Actuaciones de Punto Damián Rivas Rivas y Sergio Esteban Roncero Departamento de Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería, Universidad

Más detalles

DINÁMICA DE LOS FLUIDOS

DINÁMICA DE LOS FLUIDOS DINÁMICA DE LOS FLUIDOS Principios fundamentales La dinámica de los fluidos es simple pero en Sedimentología hay que considerar el efecto que producen los sólidos en las propiedades de la fase fluida pura.

Más detalles

Física I. Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador)

Física I. Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Física I Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Webpage: http://paginas.fisica.uson.mx/qb 2015 Departamento

Más detalles

Comportamiento de la radiación solar a su paso por la atmósfera terrestre

Comportamiento de la radiación solar a su paso por la atmósfera terrestre ATMÓSFERA Comportamiento de la radiación solar a su paso por la atmósfera terrestre Estructura de la atmósfera atendiendo a su temperatura Estructura de la atmósfera ESTRUCTURA DE LA ATMÓSFERA Capas de

Más detalles

HIDRODINAMICA Fluidos en movimiento

HIDRODINAMICA Fluidos en movimiento HIDRODINAMICA Fluidos en movimiento Principio de la conservación de la masa y de continuidad. Ecuación de Bernoulli. 3/0/0 Yovany Londoño Flujo de fluidos Un fluido ideal es o o Incompresible si su densidad

Más detalles