Integración. Capítulo 1. Problema 1.1 Sea f : [ 3, 6] IR denida por: e x 2 2 x 6. (i) Estudiar la continuidad y derivabilidad de f.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Integración. Capítulo 1. Problema 1.1 Sea f : [ 3, 6] IR denida por: e x 2 2 x 6. (i) Estudiar la continuidad y derivabilidad de f."

Transcripción

1 Cpítulo Integrción Problem. Se f : [, 6] IR denid por: + + <, f = <, e 6. i Estudir l continuidd y derivbilidd de f. ii Clculr los etremos bsolutos de f en [, 6]. iii Dr l epresión de F = ft dt. iv Clculr el áre limitid por l grác de f desde = / hst = 6. i L función f es continu en [, 6] {, } por ser un función o bien polinómic o eponencil. En =,, debemos clculr los límites lterles. lím + + = lím = + lím = lím e = + 5 = f es continu en. = f es continu en.

2 6 Índice generl Por otro ldo, l función f es derivble en, 6 {, } por ser un función polinómic o eponencil. Clculmos f en el interior de los distintos intervlos de denición. f = + si < <, si < <, e si < < 6. Pr hllr f y f podemos estudir los límites lterles en los cmbios de denición. Si los límites lterles eisten podremos decir si l función es derivble, pero si no eiste lguno de ellos no podremos deducir nd y tendremos que ir l denición de derivd. lím + = lím = + lím = lím e = + = f no es derivble en. = f no es derivble en. ii El Teorem de Weierstrss nos segur l eistenci de etremos bsolutos de f en [, 6], y que f es un función continu en [, 6] compcto. Estos etremos se encuentrn entre los siguientes puntos. Etremos del intervlo de denición, -,6. b Puntos de no derivbilidd de f,,. c Puntos estcionrios de f, es decir, f =. En,, f = + = = =. En,, f = = En, 6, f = e = no eisten puntos estcionrios. no eisten puntos estcionrios. Finlmente pr obtener los etremos bsolutos bst clculr los vlores de l función en cd uno de los puntos obtenidos.

3 Índice generl 7 f Mínimo bsoluto 6 e Máimo bsoluto iii L función integrl de f es: Si, F = + +. Si, F =. Si 6, F = ft dt = ft dt = ft dt = t t + t + dt = + t + t = t + t + dt + ft dt + t dt = t t = e t dt = + e t = e. iv El áre limitid por l grác de f desde = / hst = 6 está ddo por: 6 / f d = / d + 6 e d = / + e 6 = + e. Problem. L sección de un sólido prlel l bse un ltur z de l mism, es un nillo circulr de rdio interno z y rdio eterno z. Sbiendo que el sólido tiene un ltur uno, hllr el volumen del mismo. Pr clculr el volumen utilizmos l fórmul de Cvlieri o cálculo del volumen de un sólido medinte el áre de sus secciones. En este cso ls secciones son nillos circulres de

4 8 Índice generl rdios r = z y r = z. Por tnto, V = r r dz = z z z dz = z5 5 =. Problem. Se considern ls funciones f = sin y g =. Se dene h = { f si [, ], g i Hllr l función integrl de h, H = si, ]. ht dt. ii Hllr el volumen del sólido que se gener l girr l función f entre y lrededor del eje OX. iii Hllr el volumen del sólido que se gener l girr l función f entre y lrededor del eje OY. i Como l función h está denid trozos su función integrl H tmbién lo estrá. Por tnto, debemos distinguir [, ] y [, ]. [, ] H = [, ] H = ht dt = ht dt = sin t dt = cos t = cos. t sin t dt + t dt = + = +. ii L fórmul del volumen de un sólido de revolución lrededor del eje generdo por l función f desde = hst = b es V = f d. En nuestro cso V = sin cos d = d = sin =. iii L fórmul del volumen del sólido generdo l girr l función f entre y b lrededor del eje OY es V = f d. En nuestro cso: V = + sin =. sin d = [ u = du = d v d = sin d v = cos ] = cos + cos d =

5 Índice generl 9 Problem. Se f : [, ] IR IR denid por: <, f = sen <,. i Estudir l continuidd y derivbilidd de f en [, ]. ii Clculr el áre encerrd bjo l grác de f desde = hst =. iii Hllr el volumen del sólido que se gener l girr l función f entre y lrededor del eje OX. i L función f es continu en [, ] {, } por estr denid medinte funciones elementles. En =,, debemos clculr los límites lterles. lím = lím sen = + lím sen = lím + =. = f es continu en. = f es continu en

6 Índice generl Por otro ldo, l función f es derivble en, {, } por ser un función polinómic o sinusoidl. Clculmos f en el interior de los distintos intervlos de denición. si < <, f = cos si < <, si < <. Pr hllr f y f podemos estudir los límites lterles en los cmbios de denición. Si los límites lterles eisten podremos decir si l función es derivble, pero si no eiste lguno de ellos no podremos deducir nd y tendremos que ir l denición de derivd. lím = lím cos = + lím cos = lím = + = f no es derivble en. = f no es derivble en. ii El áre encerrd bjo l grác de f desde = hst = está dd por: A = f d = = 7 +. d + sen d + d = cos + iii El volumen del sólido que se gener l girr l función f entre y lrededor del eje OX está ddo por: V = 5 + d + sen sen 5 d = 5 = Problem.5 Se f : [, ] IR IR denid por: f = i Hllr l función integrl de f, F = si [,, e si [, ], e si, ]. ft dt. cos d = ii Hllr el áre de l región limitd por l grác de f y el eje y =. iii Hllr el volumen del sólido que se gener l girr l grác de l función f lrededor del eje OX.

7 Índice generl iv Hllr el volumen del sólido que se gener l girr l grác de l función f entre = y = lrededor del eje OY. i Como l función f es continu slvo quizás en un número nito de puntos, es integrble; demás como está denid trozos su función integrl F tmbién lo estrá. Por tnto, debemos distinguir [, ], [, ] y [, ]. [, ] F = [, ] F = + e. [, ] F = + e + e. ft dt = ft dt = ft dt = t dt = t t t dt + ft dt + = +. e t dt = + e t = e t dt = + e + et = ii El áre limitd por l grác de f y el eje y es A = f d = F = + 5e.

8 Índice generl iii L fórmul del volumen de un sólido de revolución lrededor del eje generdo por l función f desde = hst = b es V = f d. En nuestro cso: V = d + [ e + e d + + e e d = ] = + 7 e. 6 iv L fórmul del volumen del sólido generdo l girr l función f entre y b lrededor del eje OY es V = f d. En nuestro cso: V = [ ] e e e d = =. [ u = du = d v d = e d v = e Problem.6 Se f : [, ] IR, denid por f = sin. ] ] = [e e d = i Hllr el áre limitd por l grác de f y el eje OX. ii Hllr el volumen del sólido que se gener l girr l grác de l función f lrededor del eje OX. iii Hllr el volumen del sólido que se gener l girr l grác de l función f lrededor del eje OY. iv Un sólido tiene como bse l región limitd por sin desde = hst = y el eje OX, y sus secciones perpendiculres l eje OX son rectángulos de ltur cos. Hllr el volumen del sólido. i Como l función f es positiv en [, ], el áre será: A = sin d = cos = cos + cos = + =. ii L fórmul del volumen de un sólido de revolución lrededor del eje OX generdo por l función f desde = hst = b es V = f d. V = sin cos d = d = sin =.

9 Índice generl iii L fórmul del volumen del sólido generdo l girr l función f entre y b lrededor del eje OY es V = f d. [ ] u = du = d V = sin d = = v d = sin d v = cos ] [ cos + cos d = [ + sin ] =. iv Como ls secciones del sólido son rectángulos, de bse sin y ltur cos, podemos plicr l fórmul de Cvlieri: V = A d = cos sin cos d = Problem.7 Se f : [, ] IR IR denid por: f = + sin i Hllr l función integrl de f, F = si [, /, si [/, ]. ft dt. = cos ii Hllr el áre de l región limitd por l grác de f y el eje y =. + cos =. iii Hllr el volumen del sólido que se gener l girr l región limitd por l grác de f y el eje y = lrededor del eje OX. iv Hllr el volumen del sólido que se gener l girr l región limitd por l grác de f y el eje y = lrededor del eje OY. i L función f es integrble y que es continu slvo quizás en /; demás como está denid trozos su función integrl F tmbién lo estrá. Por tnto, debemos distinguir

10 Índice generl,5,5 - -,5 - [, /] y [/, ]. [, /] F = ft dt = + t + t dt = t + t = / [/, ] F = ft dt = t + t dt + sint dt / = 5 cos t / = 5 cos. ii El áre limitd por l grác de f y el eje y es A = f d = F = 5 +. iii L fórmul del volumen de un sólido de revolución lrededor del eje generdo l girr l región limitd por l grác de f y el eje y = desde = hst = b es V = f d. En nuestro cso: / V = + + d + sin d = / / cos d = / / d sin = 9. iv L fórmul del volumen del sólido generdo l girr lrededor del eje y l región limitd por l grác de f y el eje y = desde = hst = b es V = f d. En /

11 Índice generl 5 nuestro cso: / V = + d + sin d = / [ ] u = du = d = v d = sin d v = cos + [ / ] cos / cos d = / sin / = Problem.8 Se f : [, ] IR denid por: f =. i Hllr l función integrl de f, F = ft dt. ii Hllr el áre de l región limitd por l grác de f y el eje y =. iii Hllr el volumen del sólido que se gener l girr l región limitd por l grác de f y el eje y = lrededor del eje OX. iv Hllr el volumen del sólido que se gener l girr l región limitd por l grác de f y el eje y = lrededor del eje OY. L función f en [, ] puede reescribirse como: f = {,,, <. i L función f es integrble y que es continu por ser un vlor bsoluto; demás como está denid trozos su función integrl F tmbién lo estrá. Por tnto, debemos distinguir [, ] y [, ]. [, ] F = [, ] F = = + t ft dt = ft dt = t t dt = t dt + = +. t t =. t dt

12 6 Índice generl ii El áre limitd por l grác de f y el eje y es A = f d = F =. iii L fórmul del volumen de un sólido de revolución lrededor del eje generdo l girr l región limitd por l grác de f y el eje y = desde = hst = b es V = f d. En nuestro cso: V = d + + d = d = 5 d = 5 + = 6 5. iv L fórmul del volumen del sólido generdo l girr lrededor del eje y l región limitd por l grác de f y el eje y = desde = hst = b es V = f d. En nuestro cso: V = d + 5. Problem.9 Se f : [, ] IR IR denid por: [ d = + + <, f = cos <,. ] =

13 Índice generl 7 i Hllr l función integrl de f, F = ft dt. ii Estudir l continuidd y l diferencibilidd de F. iii Hllr el volumen del sólido que se gener l girr l región limitd por l grác de f desde = hst = y el eje y = lrededor del eje OX. iv Hllr el volumen del sólido que se gener l girr l región limitd por l grác de f desde = hst = / y el eje y = lrededor del eje OY. - - i L función f es integrble y que es continu slvo en ; demás como está denid trozos su función integrl F tmbién lo estrá. Por tnto, debemos distinguir [, ], [, ] y [, ]. [, ] F = [, ] F = [, ] F = ft dt = ft dt = t + dt = t ft dt + = + sent = + sen. ft dt = ft dt + + t cost dt = + +. dt = t = +.

14 8 Índice generl ii Por el Teorem fundmentl del cálculo l función F es continu en [, ] y que l función f es integrble. Además, F es derivble en los puntos de continuidd de f, por tnto F es derivble en [, ] {}. Pr estudir l derivbilidd en podemos proceder l cálculo de los límites lterles de F = f. lím cos = y lím =, + por tnto F no es derivble en. iii L fórmul del volumen de un sólido de revolución lrededor del eje generdo l girr l región limitd por l grác de f y el eje y = desde = hst = b es V = V = f d. En nuestro cso: cos + cos d = d = + sen =. iv L fórmul del volumen del sólido generdo l girr lrededor del eje y l región limitd por l grác de f y el eje y = desde = hst = b es V = f d. En nuestro cso: V = / sen / [ ] u = du = d cos d = = v d = cos d v = sen / sen d = + cos/ =. Problem. Se f : [, ] IR IR denid por: < /, f = / <,. i Clculr el áre de l región limitd por l grác de f y ls rects =, = e y =. ii Hllr el volumen del sólido que se gener l girr l región limitd por l grác de f y ls rects =, = e y = lrededor del eje OX. iii Hllr el volumen del sólido que se gener l girr l región limitd por l grác de f y ls rects =, = e y = lrededor del eje OY.

15 Índice generl 9 i El áre de l región limitd por l grác de f y ls rects =, = e y = está dd por: A = d + d + d Clculmos cd un de ls integrles por seprdo. = sen t d = = t = = t = + cost dt = t + sent d = =. = sen t d = = t = / = t = + cost dt = t + sent = Finlmente el áre es 8. d = cos t dt =. = +. d = cos t dt. = cos t dt = cos t dt =

16 Índice generl ii L fórmul del volumen de un sólido de revolución lrededor del eje generdo l girr l región limitd por l grác de f y el eje y = desde = hst = b es V = f d. En nuestro cso: V = d + d d = iv L fórmul del volumen del sólido generdo l girr lrededor del eje y l región limitd por l grác de f y el eje y = desde = hst = b es V = f d. En nuestro cso: V = d + d + Problem. Se f = + e, IR = d i Estudir l continuidd de f en IR. ii Clculr los etremos de f en IR, y clsicrlos. iii Estudir el número de ríces de l ecución = + e. iv Clculr l integrl indenid o primitiv de f. = = 6. i L función f es continu por ser sum y diferenci de funciones elementles que lo son. ii L función f es C por ser sum y diferenci de elementles que lo son. Por tnto, los etremos se hllrán entre los puntos estcionrios. f = e = = =. f = e = f = > = = es un mínimo locl. iii Pr estudir el número de ríces de l ecución = + e, denimos l función f = + e. Con los clculdos efectudos en el prtdo nterior sbemos que f tiene un mínimo locl en = y que f = >, por tnto f no puede tener ríces.

17 Índice generl iv + e d = + e + C. Problem. Clculr el volumen generdo l girr lrededor del eje l curv entre = y = b. y = e + e L curv y = e del volumen de revolución respecto del esje tenemos: V = senh + e puede reescribirse como y = cosh. Utilizndo l fórmul cosh d = b + = senh cosh + b + b. d = Problem. Se R = {, y IR : y, y }. i Clculr el áre de R. ii Hllr el volumen del sólido de bse R cuys secciones trnsversles, perpendiculres l eje, son cudrdos. Clculmos los puntos de corte de ls dos prábols. { = y = y = =. Por tnto los puntos de corte son, y,. i Por simetrí el áre pedid es el doble de: A = d + Por tnto el áre pedid es. d = / / =.

18 Índice generl y ii Aplicmos l fórmul de Cvlieri: V = A d. Como ls secciones son cudrdos tenemos que A = l. Donde l es: Si [, ], l = =. Si [, ], l = Por tnto, V = =. d + d = [ ] = 6. Problem. Se R = {, y IR : y sin, y cos, y, [, ]}. i Clculr el áre de R. ii Hllr el volumen del sólido de revolución obtenido l girr R entorno del eje OX. i El áre de R está dd por: A = sen d cos d = cos sen =.

19 Índice generl ii Utilizndo l fórmul del volumen de revolución respecto del esje tenemos: V = sen d sen d [ + cos cos d + sen = + cos d ] = = +. Problem.5 Se F : [, ] IR denid por F = + si <, f = cosh si <, si. ft dt siendo: i Obtener un epresión eplícit de F. ii Estudir l continuidd y diferencibilidd de l función G : IR IR denid como G, y = F, y. iii Clculr, cundo se posible, dg, y. i L función f es integrble por ser continu ecepto en =, y que está denid medinte funciones elementles y los límites lterles en = coinciden, mientrs que en = no coinciden. L función F estrá denid como un función trozos, por ser l función integrl de un función trozos. [, ], F = ft dt = t t + dt = + t = + +.

20 Índice generl [, ], F = + senh. [, ], F = ft dt = ft dt = t + dt + t + dt + + senh + t = + senh +. cosht dt = + senht = cosht dt + dt = ii L función G, y = F, y, será continu si lo son cd un de sus funciones componentes. F es continu por ser l función integrl de un función integrble Teorem Fundmentl del Cálculo e y es continu por ser un función elementl. Por tnto, G es continu en IR. Pr que G se diferencible deben serlo tmbién sus funciones componentes. En este cso, y lo es, pero F no es diferencible en =, y que f no es continu en ese punto. En el resto de puntos F = f. De nuevo plicmos el Teorem Fundmentl del Cálculo. iii L diferencil dg, y, en IR {, y IR : = } es dg, y = f,.

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas) Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

CAPÍTULO XII. INTEGRALES IMPROPIAS

CAPÍTULO XII. INTEGRALES IMPROPIAS CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice: 1. Derivd de un unción. 1.1. Derivd de un unción en un punto. 1.. Interpretción geométric 1.3. Derivds lterles. 1.4. Función derivd. Derivds sucesivs.. Derivbilidd

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

Aplicaciones de la Integral

Aplicaciones de la Integral Aplicciones de l Integrl Cálculo 6// Prof. José G. Rodríguez Ahumd de Se f, g dos funciones tl que pr todo vlor en [, ]. Entonces, el áre A entre sus gráfics en el intervlo [, ] es: ÁREA ENTRE DOS CURVAS

Más detalles

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura).

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura). TEOREMA E GAU. 15. Hllr el flujo del cmpo i + j + z k trvés de l superficie z 1 +, z 1. ) irectmente. b) Aplicndo el teorem de Guss. olución Llmremos l superficie dd su proección sobre el plno XY (ver

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica.

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica. Práctic 3: Cálculo Integrl con MtLb Curso 2010-2011 1 1 Introducción Un de los pquetes más útiles pr el cálculo con MtLb lo constituye Symbolic Mth Toolbox, que permite relizr cálculo simbólico vnzdo,

Más detalles

Introducción a la integración numérica

Introducción a la integración numérica Tem 7 Introducción l integrción numéric Versión: 13 de ril de 009 7.1 Motivción L integrl definid de un función continu f : [, ] R R en el intervlo [, ], If) = fx) dx 7.1) es el áre de l región del plno

Más detalles

Tema 4: Integrales Impropias

Tema 4: Integrales Impropias Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem

Más detalles

Ejercicios de optimización

Ejercicios de optimización Ejercicios de optimizción 1. Entre todos los triángulos isósceles de perímetro 0, cuál es el de áre máxim? Función mximizr: A yh Relcionr vribles: Estudimos l función: h h y x h x y x y 0 x 0y 0 y 0 0y

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS.. INTEGRAL DEFINIDA Se y = f(x) definid pr todo x [, b]. Consideremos un prtiión P del intervlo [, b] P {x 0 = < x < x 2 < < x n = b} Sen P = máx{x i x i }, s n = n m

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES L integrl definid Se y f un función definid en el intervlo,, se llm integrl definid de f en n el intervlo, y se denot por fd lim fc i i i. n i y se llmn límites

Más detalles

Tema 5. Trigonometría y geometría del plano

Tema 5. Trigonometría y geometría del plano 1 Tem. Trigonometrí y geometrí del plno 1. Rzones trigonométrics de un ángulo gudo Ddo un ángulo culquier, si desde un punto, A, de uno de sus ldos se trz su proyección, A, sobre el otro ldo se obtiene

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.

Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua. Integrción indefinid y definid. Aplicciones de l integrl: vlor medio de un función continu. Jun Ruiz 1 Mrcos Mrvá 1 1 Deprtmento de Mtemátics. Universidd de Alclá de Henres. Contenidos Introducción 1 Introducción

Más detalles

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL

TEMA 1 INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL TEMA INTRODUCCIÓN AL CÁLCULO DIFERENCIAL E INTEGRAL. Funciones.. Incrementos rzones de cmbio. 3. Derivds 4. Derivds de orden superior. 5. Primitivs 6. Integrl definid. Este mteril puede descrgrse desde

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

Integración en una variable. Aplicaciones

Integración en una variable. Aplicaciones Tem 4 Integrción en un vrible. Aplicciones Ls integrles formlizn un concepto bstnte sencillo e intuitivo, el de áre. Los orígenes del cálculo de áres los podemos encontrr en el método de exhución desrrolldo

Más detalles

Funciones cuadráticas

Funciones cuadráticas Funciones cudrátics A l función polinómic de segundo grdo f() + b + c siendo, b, c números reles y 0, se l denomin función cudrátic. Los términos de l función reciben los siguientes nombres: y + b + c

Más detalles

Cálculo integral. Beatriz Campos Sancho Cristina Chiralt Monleon. Departament de matemàtiques. Codi d assignatura 305. Cálculo integral - UJI

Cálculo integral. Beatriz Campos Sancho Cristina Chiralt Monleon. Departament de matemàtiques. Codi d assignatura 305. Cálculo integral - UJI Cálculo integrl Betriz Cmpos Sncho Cristin Chirlt Monleon Deprtment de mtemàtiques Codi d ssigntur 35 Betriz Cmpos / Cristin Chirlt - ISBN: 978-84-694-64- Edit: Publiccions de l Universitt Jume I. Servei

Más detalles

UNIDAD 4: INTEGRAL DEFINIDA

UNIDAD 4: INTEGRAL DEFINIDA UNIDAD 4: INTEGRAL DEFINIDA ÍNDICE DE LA UNIDAD.- INTRODUCCIÓN.....- SUMAS SUPERIORES E INFERIORES....- LA INTEGRAL DEFINIDA.... 4.- PROPIEDADES DE LA INTEGRAL DEFINIDA... 5.- TEOREMA FUNDAMENTAL DEL CÁLCULO

Más detalles

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8

3. Expresa los siguientes radicales mediante potencias de exponente fraccionario y simplifica: 625 d) 0, 25 e) c) ( ) 4 8 POTENCIAS. Hll sin clculdor +.. Simplific utilizndo ls propieddes de ls potencis: b c ) 0 b c. Epres los siguientes rdicles medinte potencis de eponente frccionrio y simplific: ). Resuelve sin utilizr

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice:. Derivd de un unción... Derivd de un unción en un punto... Interpretción geométric.3. Derivds lterles..4. Función derivd. Derivds sucesivs.. Derivbilidd y continuidd.

Más detalles

Integral Definida. Aplicaciones

Integral Definida. Aplicaciones Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució

Más detalles

Aplicaciones de la integral.

Aplicaciones de la integral. Tem 1 Aplicciones de l integrl. 1.1 Áres de superficies plns. 1.1.1 Funciones dds de form explícit. A l vist del estudio de l integrl definid relizdo en el Tem 1, prece rzonble l siguiente definición:

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

Práctico 9 - Cálculo de integrales. 1. Teorema fundamental y regla de Barrow

Práctico 9 - Cálculo de integrales. 1. Teorema fundamental y regla de Barrow Universidd de l Repúblic Cálculo Fcultd de Ingenierí - IMERL Segundo semestre 6 Práctico 9 - Cálculo de integrles. Teorem fundmentl y regl de Brrow. Utilizndo los resultdos del ejercicio 9 del práctico

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo IES Pdre Poved (Gudi UNIDAD 6: DERIVADAS.. TASA DE VARIACIÓN MEDIA. Se deine l ts de vrición medi de un unción y en un intervlo [ b] T. M. [, b] ( b (, como: b (,, B,, Si considero l rect que une A ( b

Más detalles

CAPÍTULO 3 CÁLCULO INTEGRAL

CAPÍTULO 3 CÁLCULO INTEGRAL CAPÍTULO 3 CÁLCULO INTEGRAL. INTERROGANTES CENTRALES DEL CAPÍTULO Concepto de áre Sums de Riemnn Integrl definid Propieddes de l integrl definid Integrl indefinid Propieddes de l integrl indefinid Teorem

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 2 VARIABLES.

APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 2 VARIABLES. DP. - AS - 5119 007 Mtemátics ISSN: 1988-79X 00 APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON VARIABLES. Descompón el número 9 en dos sumndos e, tles que l sum + 6 se mínim. DETERMINACIÓN DE INCÓGNITAS

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

Aplicaciones de la integral indefinida

Aplicaciones de la integral indefinida Aplicciones_de_l_integrl.n Aplicciones de l integrl indefinid Práctic de Cálculo, E.U.A.T,Grupos ºA y ºB, 2005 Est práctic muestr cómo clculr lguns áres y volúmenes utilizndo integrles. En cd cso dremos

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

La Geometría de las Normas del Espacio de las Funciones Continuas

La Geometría de las Normas del Espacio de las Funciones Continuas Divulgciones Mtemátics Vol. 11 No. 1(2003), pp. 71 82 L Geometrí de ls Norms del Espcio de ls Funciones Continus The Geometry of the Norms of the Spce of Continuous Functions Arístides Arellán (ristide@ciens.ul.ve)

Más detalles

E.T.S. Minas: Métodos Matemáticos

E.T.S. Minas: Métodos Matemáticos E... Mins: Métodos Mtemáticos Resumen y ejemplos em 6: Integrción numéric Frncisco Plcios Escuel Politécnic uperior de Ingenierí de Mnres Universidd Politécnic de Ctluñ Octubre 8, Versión.5 Contenido.

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA VECTORES EJERCICIOS DE GEOMETRÍA 1. Hllr un vector unitrio u r r r r de l mism dirección que el vector v = 8i 6j.Clculr otro vector ortogonl v r y de módulo 5.. Normliz los vectores: u r = ( 1, v r = (-4,3

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

Tasa de variación media. Concepto de derivada

Tasa de variación media. Concepto de derivada Unidd 7. Derivd de un unción lsmtemtics.eu Pedro Cstro Orteg mteriles de mtemátics Mtemátics I - º Bchillerto Ts de vrición medi. Concepto de derivd L ts de vrición medi de un unción L TVM de en en un

Más detalles

Formulario de integrales

Formulario de integrales Formulrio de integrles c -5 Slvdor Blsco Llopis Este formulrio puede ser copido y distribuido libremente bjo l licenci Cretive Commons Atribución. Espñ. Séptim revisión: Febrero 5 Set revisión: Julio 3

Más detalles

Guía -5 Matemática NM-4: Volumen de Poliedros

Guía -5 Matemática NM-4: Volumen de Poliedros Centro Educcionl Sn Crlos de Argón. Coordinción Acdémic Enseñnz Medi. Sector: Mtemátic. Prof.: Ximen Gllegos H. 1 Guí -5 Mtemátic NM-4: Volumen de Poliedros Nombre: Curso: Fech: Unidd: Geometrí. Contenido:

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES RELACIÓN DE PROBLEMAS DE SELECTIVIDAD º DE BACHILLERATO CIENCIAS DEPARTAMENTO DE MATEMÁTICAS COLEGIO MARAVILLAS TERESA GONZÁLEZ GÓMEZ .-Hallar una primitiva

Más detalles

Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P.

Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P. Log P X Se llm ritmo en bse de P, y se escribe P, l eponente l que hy que elevr l bse pr obtener P. Log P P Ejemplo: 8 8 L l it b d 8 Leemos, ritmo en bse de 8 es porque elevdo es 8. Anámente podemos decir:

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas.

2.1 Ecuaciones de la recta en 2.2 Posiciones relativas. . Ecuciones de l rect en. Posiciones reltivs. R Objetivos. Se persigue que el estudinte: Encuentre ecuciones de rects Determine si dos rects son coincidentes, prlels o si son intersecntes Encuentre punto

Más detalles

[FACTORIZACION DE POLINOMIOS]

[FACTORIZACION DE POLINOMIOS] 009 CETis 6 Ing. Gerrdo Srmiento Díz de León [FACTORIZACION DE POLINOMIOS] Documento que enseñ como fctorizr polinomios Pr fctorizr polinomios hy vrios métodos: FACTORIZACIÓN DE POLINOMIOS. Scr fctor común:

Más detalles

FICHA DE TRABAJO. Bimestre IVº 4ºgrado - sección A B C D Ciclo IVº Fecha: - 11-10 Área : Matemática POLIEDROS REGULARES E IRREGULARES

FICHA DE TRABAJO. Bimestre IVº 4ºgrado - sección A B C D Ciclo IVº Fecha: - 11-10 Área : Matemática POLIEDROS REGULARES E IRREGULARES I TRJ Nombre Nº orden imestre IVº 4ºgrdo - sección iclo IVº ech: - 11-10 Áre : temátic Tem LIRS RULRS IRRULRS LIRS RULRS s quel poliedro en el cul sus crs son regiones poligonles congruentes entre sí,

Más detalles

6.1 Sumas de Riemann e integral definida

6.1 Sumas de Riemann e integral definida Tem 6 Integrción Definid 6.1 Sums de Riemnn e integrl definid Supongmos que estmos interesdos en clculr el áre que se encuentr bjo un curv y = f(x) en un intervlo [, b] (pr simplificr, consideremos el

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

8 - Ecuación de Dirichlet.

8 - Ecuación de Dirichlet. Ecuciones Diferenciles de Orden Superior Prte V III Integrl de Dirichle t Ing. Rmón scl Prof esor Titulr de nálisi s de Señles Sistems Teorí de los Circuit os I I en l UTN, Fcultd Regionl vellned uenos

Más detalles

5.5 Integración numérica

5.5 Integración numérica 88 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.5 Integrción numéric Métodos de Newton-Côtes De cr clculr l integrl definid: f(x) dx se llmn Métodos de Newton-Côtes los que se bsn en integrr, en lugr de l

Más detalles

Cálculo integral de funciones de una variable

Cálculo integral de funciones de una variable Lino Alvrez - Aure Mrtínez CÁLCULO II Cálculo integrl de funciones de un vrible 1 L integrl de Riemnn Se f : [, b] R R un función cotd en [, b]. Definición 1.- Un prtición P = {t 0, t 1,..., t n } del

Más detalles

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A

MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A MTRICES. Determinr l mtriz trnspuest de cd un de ls siguientes;,, C 8. Efectú l siguiente operción con mtrices y clcul. Sen 8, y C determinr: ) t C ) (-C) t t c) -C( t -) d) - t -(C). Dds ls siguientes

Más detalles

TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS Tem 5 Límites de funciones, continuidd y síntots Mtemátics CCSSII º Bch 1 TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 5.1 LÍMITE DE UNA FUNCIÓN 5.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de

Más detalles

Resumen Segundo Parcial, MM-502

Resumen Segundo Parcial, MM-502 Resumen Segundo Prcil, MM-502 Jose Alvreng 18 de febrero de 2015 1. Integrles de líne ) Definición Se r(t) = f(t)i + g(t)j un función vectoril con dominio D, y L un vector. Decimos que r tiene limite L

Más detalles

TEMA 1. NÚMEROS REALES

TEMA 1. NÚMEROS REALES TEMA. NÚMEROS REALES. El número que indic los dís del ño es un número muy curioso. Es el único número que es sum de los cudrdos de tres números nturles consecutivos y que demás es sum de los cudrdos de

Más detalles

CAPÍTULO 3. PROCEDIMIENTOS DE INTEGRACIÓN 3.1. Integración por cambio de variable 3.2. Integración por partes 3.2.1. Producto de un polinomio por una

CAPÍTULO 3. PROCEDIMIENTOS DE INTEGRACIÓN 3.1. Integración por cambio de variable 3.2. Integración por partes 3.2.1. Producto de un polinomio por una CAPÍTULO. PROCEDIMIENTOS DE INTEGRACIÓN.. Integrción por cmbio de vrible.. Integrción por prtes... Producto de un polinomio por un eponencil... Producto de un polinomio por un seno o un coseno... Producto

Más detalles

Integración Numérica. 18 Regla del Trapecio

Integración Numérica. 18 Regla del Trapecio Integrción Numéric L integrl resuelve el problem de clculr el áre bjo l gráfic de un función positiv definid sobre un intervlo cerrdo. El cálculo elementl de funciones de un vrible rel proporcion un método

Más detalles

Aplicación de la Mecánica Cuántica a sistemas sencillos

Aplicación de la Mecánica Cuántica a sistemas sencillos Aplicción de l Mecánic Cuántic sistems sencillos Antonio M. Márquez Deprtmento de Químic Físic Universidd de Sevill Curso 15- Problem 1 Clcule los vlores promedio de x y x pr un prtícul en el estdo n =

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0.

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0. CÁLCULO ELEMENTAL APUNTES Vlor bsoluto Definición 1. El vlor bsoluto del número rel, que se design por, se define por { si 0, = si < 0. Definición 2. L distnci entre los números x 1 y x 2 de l rect rel

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

TEMA 6.- DERIVADAS. La siguiente tabla da el precio, en euros, de un producto durante 8 años sucesivos:

TEMA 6.- DERIVADAS. La siguiente tabla da el precio, en euros, de un producto durante 8 años sucesivos: TEMA 6.- DERIVADAS.- TASA DE VARIACIÓN MEDIA L siguiente tbl d el precio, en euros, de un producto durnte 8 ños sucesivos: Si llmmos P( l unción precio según el ño, podemos medir l vrición del precio en

Más detalles

Apuntes de Integración de funciones de una variable

Apuntes de Integración de funciones de una variable Apuntes de Integrción de funciones de un vrible Miguel Mrtín Suárez Deprtmento de Análisis Mtemático Universidd de Grnd INTEGRACIÓN DE FUNCIONES DE UNA VARIABLE Sums de Riemnn. Definición de áre y de integrl.

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

FUNCIONES EXPONENCIALES Y LOGARÍTMICAS FUNCIONES EXPONENCIALES Y LOGARÍTMICAS LA FUNCIÓN EXPONENCIAL. Introducción Siempre que hy un proceso que evolucione de modo que el umento (o disminución) en un pequeño intervlo de tiempo, se proporcionl

Más detalles

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual MsMtes.com Integrles Selectividd CCNN. [ANDA] [JUN-A] De l función f:(-,+ ) se se que f (x ) = y que f() =. (x+) () Determinr f. () Hllr l primitiv de f cuy gráfic ps por el punto (,).. [ANDA] [JUN-B]

Más detalles

3.- Derivada e integral de funciones de variable compleja.

3.- Derivada e integral de funciones de variable compleja. 3.- Derivd e integrl de funciones de vrile complej. ) Derivds, funciones nlítics e interpretción geométric. ) Regls de diferencición. c) Ecuciones de uch-riemnn. d) Funciones rmónics. e) Integrción complej.

Más detalles

INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS

INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS INTEGRAL DEFINIDA APLICACIÓN l CÁLCULO de ÁREAS Isc Brrow (60-677), teólogo y mtemático inglés, mestro de Newton y precursor de l regl que llev su nomre. MATEMÁTICAS II º Bchillerto Alfonso González IES

Más detalles

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES IMPROPIAS Ing. Jun Scerdoti Deprtmento de Mtemátic Fcultd de Ingenierí Universidd de Buenos Aires V INDICE INTEGRALES IMPROPIAS.- PUNTOS SINGULARES

Más detalles

VARIABLE ALEATORIA CONTINUA. DISTRIBUCIÓN NORMAL.

VARIABLE ALEATORIA CONTINUA. DISTRIBUCIÓN NORMAL. 8 VARIABLE ALEATORIA CONTINUA. DISTRIBUCIÓN NORMAL. CONCEPTO DE INTEGRAL DEFINIDA. Conocimientos previos Pr hllr el áre del recinto limitdo por l curv f(), el eje de sciss y ls rects y, se utiliz l siguiente

Más detalles

TRABAJOS DE MATEMATICA

TRABAJOS DE MATEMATICA UNIVERSIDAD NACIONAL DE CÓRDOBA FACULTAD DE MATEMÁTICA, ASTRONOMÍA Y FÍSICA SERIE C TRABAJOS DE MATEMATICA Nº 36/07 Un segundo curso de Cálculo Crin Boyllin, Elid Ferreyr, Mrt Urciuolo, Cynthi Will Editores:

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID EJERCICIOS PAUS MATEMÁTICAS II (DESDE EL CURSO 07-08 AL 11-12) ÁLGEBRA: TEMAS 1-2-3 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID EJERCICIOS PUS MTEMÁTICS II (DESDE EL CURSO 78 L ) ÁLGEBR: TEMS (Los ejercicios de selectividd resueltos los podéis encontrr en l págin web clsesdepooco) http://wwwclsesdepooco/docuents/es_serch

Más detalles

CURSOSO. MóduloIV: Continuidadyderivabilidad MATEMÁTICASESPECIALES(CAD) M.TeresaUleciaGarcía RobertoCanogarMcKenzie

CURSOSO. MóduloIV: Continuidadyderivabilidad MATEMÁTICASESPECIALES(CAD) M.TeresaUleciaGarcía RobertoCanogarMcKenzie CURSOSO CURSOSO MATEMÁTICASESPECIALESCAD MóduloIV: Continuiddyderivbilidd MTeresUleciGrcí RobertoCnogrMcKenzie DeprtmentodeMtemáticsFundmentles FcultddeCiencis Curso de Mtemátics Especiles Introducción

Más detalles

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]

Más detalles

Laboratorio N 7, Asíntotas de funciones.

Laboratorio N 7, Asíntotas de funciones. Universidd Diego Portles Fcultd de Ingenierí. Instituto de Ciencis Básics Asigntur: Cálculo I Lortorio N 7, Asíntots de funciones. Introducción. Ls síntots de un función son rects que seprn ls regiones

Más detalles

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso

Colegio Técnico Nacional Arq. Raúl María Benítez Perdomo Matemática Primer Curso Colegio Técnico Ncionl Arq. Rúl Mrí Benítez Perdomo Mtemátic Primer Curso Rdicción Se un número rel culquier, n un número nturl mor que 1, se llm ríz n esim de todo número rel, que stisfce l ecución n

Más detalles

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales

Universidad Central de Venezuela Facultad de Farmacia Matemática - Física Prof. J. R. Morales Universidd Centrl de Venezuel Fcultd de Frmci Mtemátic - Físic Prof J R Morles Guí de Vectores (Resumen de l Teorí) 1 En físic distinguiremos dos tipos de cntiddes: vectoriles esclres Ls cntiddes vectoriles

Más detalles

1.4. Integral de línea de un campo escalar.

1.4. Integral de línea de un campo escalar. .4. Integrl de líne de un cmpo esclr. L integrl de líne tiene vris plicciones en el áre de ingenierí, y un de ls interpretciones importntes pr tles plicciones es el significdo que posee l integrl de líne

Más detalles

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. 6. En l integrl dole f(, ), colocr los límites de integrción en mos órdenes, pr los siguientes recintos: i) trpecio de vértices (, ), (, ), (, ) (, ). ii)

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicción Exmen, 7 de Septiembre de 24 Primer prte Ejercicio. Clculr ls coordends de los puntos P y Q de l prábol y x 2, tles que el triángulo formdo por el eje

Más detalles

(1) Representar gráficamente las siguientes funciones lineales o afínes (forma general ). Su gráfica es una línea recta. *( c )

(1) Representar gráficamente las siguientes funciones lineales o afínes (forma general ). Su gráfica es una línea recta. *( c ) Lcdo E. Monto & P.Perz Funciones Reles de Vrible Rel Repúblic Bolivrin de Venezuel Ministerio del Poder Populr pr l Educción Escuel Técnic Robinsonin P.S. S. S. Venezuel Brins Edo Brins Hoj de trbjo *III

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES MATRICES Y DETERMINANTES ) Resolver el siguiente sistem de ecuciones lineles t t z emplendo el método de Guss utilizndo trnsformciones elementles de fils En qué csos es comptible? b) Relcionr ls mtrices

Más detalles

Segunda Versión. Integración y Series. Tomo II

Segunda Versión. Integración y Series. Tomo II UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE CIENCIA Deprtmento de Mtemátic y Cienci de l Computción CÁLCULO Segund Versión Integrción y Series Tomo II Gldys Bobdill A. y Rfel Lbrc B. Sntigo de Chile 4

Más detalles

La Integral de Riemann

La Integral de Riemann Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función potencil Sums de Riemnn Funciones integrbles Riemnn Cálculo de l integrl Teorems de integrbilidd L función

Más detalles

UNIDAD: GEOMETRÍA RECTAS Y PLANOS EN EL ESPACIO - ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS

UNIDAD: GEOMETRÍA RECTAS Y PLANOS EN EL ESPACIO - ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS u r s o : Mtemátic Mteril N 38 GUÍ TEÓRIO PRÁTI Nº 29 UNIDD: GEOMETRÍ RETS Y PLNOS EN EL ESPIO - ÁRES Y VOLÚMENES DE UERPOS GEOMÉTRIOS Determinción del plno: Un plno qued determindo por: Dos rects que

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles