Ejercicios resueltos de cinemática
|
|
- María Ángeles Salazar Moya
- hace 5 años
- Vistas:
Transcripción
1 Ejercicios resueltos de cinemática 1) Un cuerpo situado 50 metros por debajo del origen, se mueve verticalmente con velocidad inicial de 20 m/s, siendo la aceleración de la gravedad g = 9,8 m/s 2. a) Escribe las ecuaciones de la posición y la velocidad del móvil en función del tiempo. b) En qué momento se anula la velocidad? c) Qué velocidad tendrá al pasar por el origen de coordenadas? 2) Un objeto se mueve en el eje de las X con velocidad constante de 5 m/s. Cuando está a 200 metros del origen, parte del mismo otro móvil en el mismo sentido con movimiento uniformemente acelerado a razón de 1m/s 2. Cuánto tiempo tardará en alcanzar el segundo móvil al primero y a qué distancia del origen sucederá? 3) Un cuerpo es lanzado sobre una superficie horizontal a 20 m/s. Si se detiene a 200m cuál ha sido la aceleración? Escribe las ecuaciones de la velocidad y la posición en función del tiempo. 4) La aceleración de un movimiento uniformemente acelerado es 5 m/s 2 y el móvil parte del reposo. Calcula la velocidad media de dicho móvil entre el instante inicial y el final del primer minuto. 5) Un automóvil necesita 50 segundos para alcanzar una velocidad de 100 Km/h partiendo del reposo. Calcula: a) La aceleración, expresada en m/s 2. b) El espacio que recorre en 1 minuto en las condiciones dadas si una vez alcanzada la velocidad la mantiene después invariable.
2 Soluciones 1) Un cuerpo situado 50 metros por encima del origen, se mueve verticalmente hacia abajo con velocidad inicial de 20 m/s, siendo la aceleración de la gravedad g = 9,8 m/s 2. a) Escribe las ecuaciones de la posición y la velocidad del móvil en función del tiempo. b) En qué momento se anula la velocidad? c) Qué velocidad tendrá al pasar por el origen de coordenadas? a) Ordenemos primero los datos que nos da el enunciado: S 0 = 50 m V 0 = 20 m/s g = 9,8 m/s 2 Escribir ahora las ecuaciones es bastante sencillo: V = V 0 - gt V = 20-9,8t S = S 0 + V 0 t - 1/2gt 2 S = t - 1/2 9,8t 2 b) Cogemos la ecuación de la velocidad cuando V = 0 m/s 0 = 20-9,8t t = -20/-9,8 = 2,04 s c) Cogemos la ecuación de la posición cuando S = 0 m, así sabremos en qué momento pasa por el origen de coordenadas: 0 = t - 1/2 9,8t 2 t 1 = -1,75 (descartamos este resultado por ser negativo) t 2 = 5,83 s Y ahora sustituimos ese tiempo en la ecuación de la velocidad: V = 20-9,8 5,83 = -37,15 m/s 2) Un objeto se mueve en el eje de las X con velocidad constante de 5 m/s. Cuando está a 200 metros del origen, parte del mismo otro móvil en el mismo sentido con movimiento uniformemente acelerado a razón de 1m/s 2. Cuánto tiempo tardará en alcanzar el segundo móvil al primero y a qué distancia del origen sucederá? Como siempre, colocamos los datos, teniendo en cuenta que ahora tenemos un móvil A (con MRU) y un móvil B (con MRUA)
3 Móvil A (MRU) Va = 5 m/s S 0A = 200 m Móvil B (MRUA) V 0 = 0 m/s a = 1 m/s 2 S 0B = 0 m S 0A es 200m porque cuando el móvil B comienza, A ya lleva 200 metros recorridos. En cuanto al tiempo, tenemos que calcular primero cuánto tiempo tarda A en recorrer esos 200 metros de ventaja: S = V t 200 = 5 t t = 40 s Eso quiere decir que si B ha estado moviéndose durante t segundos hasta alcanzar a A, A ha estado moviéndose t + 40 segundos. Escribamos ahora las ecuaciones del movimiento para cada uno de los móviles y veamos qué se puede calcular: Móvil A S = S 0A + V (t + 40) S = (t + 40) S = t Móvil B V = V 0 +at V = 1t S = S 0 + V 0 t + 1/2at 2 S = 1/2t 2 Con la ecuación del móvil A y la ecuación de la posición del móvil B hacemos un sistema de ecuaciones (muy facilito, porque ya tiene una incógnita, la S, despejada en las dos ecuaciones, y podemos hacer igualación): S = t S = 1/2t t = 1/2t 2 1/2t 2-5t = 0 t 1 = -23,72 (desechamos este resultado por ser negativo) t 2 = 33,72 s Ya tenemos una de las cosas que nos piden. Para hallar la distancia, nos vamos a cualquiera de las ecuaciones de posición y calculamos S: S = 1/2 (33,72)2 = 568,52 m
4 3) Un cuerpo es lanzado sobre una superficie horizontal a 20 m/s. Si se detiene a 200m cuál ha sido la aceleración? Escribe las ecuaciones de la velocidad y la posición en función del tiempo. V 0 = 20 m/s V f = 0 m/s (porque nos dicen que se detiene). S = 200 m a =? Colocamos los datos en las ecuaciones del movimiento: V = V 0 - gt 0 = 20 + at S = S 0 + V 0 t - 1/2gt = 20t + 1/2 at 2 Nos queda un sistema de ecuaciones con dos incógnitas. Vamos a despejar el tiempo en la primera y sustituirlo en la segunda, para así calcular directamente la aceleración: t = -20/a 200 = 20 (-20/a) + 1/2 a (-20/a) = -400/a + 200/a 200a = a = -200/200 = -1 m/s 2 La aceleración, como era de esperar, sale negativa porque el objeto está frenando. Las ecuaciones del movimiento quedarían así: V = V 0 - gt 0 = 20 - t S = S 0 + V 0 t - 1/2gt = 20t - 1/2t 2 4) La aceleración de un movimiento uniformemente acelerado es 5 m/s 2 y el móvil parte del reposo. Calcula la velocidad media de dicho móvil entre el instante inicial y el final del primer minuto. V 0 = 0 m/s (porque parte del reposo) a = 5 m/s 2 Para calcular la velocidad media necesitamos la velocidad inicial (que ya la conocemos) y la final (cuando t = 60s). V = V 0 + at V = 5 t V = 5 60 = 300 m/s V m = (V f - V 0 )/t = (300-0)/60 = 5 m/s
5 5) Un automóvil necesita 50 segundos para alcanzar una velocidad de 100 Km/h partiendo del reposo. Calcula: a) La aceleración, expresada en m/s 2. b) El espacio que recorre en 1 minuto en las condiciones dadas si una vez alcanzada la velocidad la mantiene después invariable. t = 50s V 0 = 0 m/s V f = 100 Km/h = 27,78 m/s a) Para calcular la aceleración, trabajamos con la ecuación de la velocidad: V = V 0 - gt 27,78 = 0 + a 50 27,78 = 0 + a 50 a = 27,78/50 = 0,56 m/s 2 b) Este apartado debemos dividirlo en dos partes: en los primeros 50 segundos, el móvil tiene MRUA; en los diez segundos siguientes se mueve con MRU a 27,78 m/s. Parte 1 (distancia recorrida en los 50 primeros segundos) S = S 0 + V 0 t - 1/2gt 2 S = /2 0, S = 1/2 0, S = 700 m Parte 2 (distancia en los 10 segundos siguientes) S = V t S = 27,78 10 = 277,8 m Distancia total = ,8 = 977,8 m
EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo
EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo 1. El vector posición de un punto, en función del tiempo, viene dado
3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada?
Problemas de Cinemática 1 o Bachillerato Caída libre y tiro horizontal 1. Desde un puente se tira hacia arriba una piedra con una velocidad inicial de 6 m/s. Calcula: a) Hasta qué altura se eleva la piedra;
Ideas básicas sobre movimiento
Ideas básicas sobre movimiento Todos conocemos por experiencia qué es el movimiento. En nuestra vida cotidiana, observamos y realizamos infinidad de movimientos. El desplazamiento de los coches, el caminar
1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t 2 2 t) j.
IES ARQUITECTO PEDRO GUMIEL BA1 Física y Química UD 1: Cinemática 1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t t) j. a) Determina los
Cajón de Ciencias. Ejercicios resueltos de Movimiento rectilíneo uniforme
Ejercicios resueltos de Movimiento rectilíneo uniforme 1) Pasar de unidades las siguientes velocidades: a) de 36 km/h a m/s b) de 10 m/s a km/h c) de 30 km/min a cm/s d) de 50 m/min a km/h 2) Un móvil
Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA.
Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Actividades Unidad 4. Nos encontramos en el interior de un tren esperando a que comience el viaje. Por la
CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS
CINEMÁTICA II: MRUA PROBLEMAS RESUELTOS PROBLEMA RESUELTO Una persona lanza un objeto desde el suelo verticalmente hacia arriba con velocidad inicial de 0 m/s. Calcula: a) La altura máxima alcanzada. b)
Problemas de Cinemática 1 o Bachillerato
Problemas de Cinemática 1 o Bachillerato 1. Sean los vectores a = i y b = i 5 j. Demostrar que a + b = a + b a b cos ϕ donde ϕ es el ángulo que forma el vector b con el eje X.. Una barca, que lleva una
1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o.
Problemas de Cinemática 1 o Bachillerato Tiro parabólico y movimiento circular 1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de
La masa es la magnitud física que mide la inercia de los cuerpos: N
Pág. 1 16 Las siguientes frases, son verdaderas o falsas? a) Si el primer niño de una fila de niños que corren a la misma velocidad lanza una pelota verticalmente hacia arriba, al caer la recogerá alguno
A continuación voy a colocar las fuerzas que intervienen en nuestro problema.
ísica EL PLANO INCLINADO Supongamos que tenemos un plano inclinado. Sobre él colocamos un cubo, de manera que se deslice sobre la superficie hasta llegar al plano horizontal. Vamos a suponer que tenemos
CINEMÁTICA: MOVIMIENTO RECTILÍNEO, PROBLEMAS VARIOS
CINEMÁTICA: MOVIMIENTO RECTILÍNEO, PROBLEMAS VARIOS Un arquero dispara una flecha que produce un fuerte ruido al chocar contra el blanco. La velocidad media de la flecha es de 150 m/s. El arquero escucha
Problemas de Física 1 o Bachillerato
Problemas de Física o Bachillerato Principio de conservación de la energía mecánica. Desde una altura h dejamos caer un cuerpo. Hallar en qué punto de su recorrido se cumple E c = 4 E p 2. Desde la parte
Ejercicios de cinemática
Ejercicios de cinemática 1.- Un ciclista recorre 32,4 km. en una hora. Calcula su rapidez media en m/s. (9 m/s) 2.- La distancia entre dos pueblos es de 12 km. Un ciclista viaja de uno a otro a una rapidez
1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j.
1 1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. a) Halla la posición de la partícula para t = 3 s. b) Halla la distancia al origen para t = 3 s. 2. La velocidad
CINEMATICA 1. DETERMINACION DEL ESTADO DE REPOSO O MOVIMIENTO DE UN OBJETO
CINEMATICA El objetivo de este tema es describir los movimientos utilizando un lenguaje científico preciso. En la primera actividad veremos qué magnitudes se necesitan introducir para lograr este objetivo.
Juan de la Cruz González Férez
Curso 0: Matemáticas y sus Aplicaciones Vectores, Bases y Distancias Aplicaciones Juan de la Cruz González Férez IES Salvador Sandoval Las Torres de Cotillas (Murcia) 2012 Composición de movimientos Los
CINEMÁTICA I FYQ 1º BAC CC.
www.matyfyq.com Página 1 de 5 Pregunta 1: La posición de una partícula en el plano viene dada por la ecuación vectorial: r(t) = (t 2 4) i + (t + 2) j En unidades del SI calcula: a) La posición de la partícula
EJEMPLOS DE CUESTIONES DE EVALUACIÓN
EJEMPLOS DE CUESTIONES DE EVALUACIÓN 1. EL MOVIMIENTO Dirección en Internet: http://www.iesaguilarycano.com/dpto/fyq/cine4/index.htm a 1. Determine el desplazamiento total en cada uno de los casos siguientes
Decimos que un cuerpo se mueve cuando cambia de posición respecto a un sistema de referencia que se considera fijo.
1. EL MOVIMIENTO Decimos que un cuerpo se mueve cuando cambia de posición respecto a un sistema de referencia que se considera fijo. Por ejemplo: el coche que se mueve cambia de posición respecto a unos
Para revisarlos ponga cuidado en los paréntesis. No se confunda.
Ejercicios MRUA Para revisarlos ponga cuidado en los paréntesis. No se confunda. 1.- Un cuerpo se mueve, partiendo del reposo, con una aceleración constante de 8 m/s 2. Calcular: a) la velocidad que tiene
TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN
TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN Un coche de 50 kg (con el conductor incluido) que funciona con gasolina está situado en una carretera horizontal, arranca y acelerando uniformemente, alcanza
Electrostática: ejercicios resueltos
Electrostática: ejercicios resueltos 1) Dos cargas de 4 y 9 microculombios se hallan situadas en los puntos (2,0) y (4,0) del eje 0X. Calcula el campo y el potencial eléctrico en el punto medio. 2) Dos
Ejercicios resueltos de movimiento circular uniformemente acelerado
Ejercicios resueltos de movimiento circular uniformemente acelerado 1) Una rueda de 50cm de diámetro tarda 10 segundos en adquirir una velocidad constante de 360rpm. a) Calcula la aceleración angular del
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema).
Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 01 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Suponga que trabaja para una gran compañía de transporte y que
IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?
IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento
Observa el diagrama del centro y determina cual de los siguientes corresponde a un diagrama v-t para ese movimiento
De las gráficas. Indica aquellas que presentan movimiento rectilíneo uniforme así como las que pertenecen al movimiento rectilíneo uniformemente acelerado Observa el diagrama del centro y determina cual
Movimiento Rectilíneo Uniforme
Movimiento Rectilíneo Uniforme 1. Teoría La mecánica es la parte de la física encargada de estudiar el movimiento y el reposo de los cuerpos, haciendo un análisis de sus propiedades y causas. La mecánica
PROBLEMAS RESUELTOS TEMA: 3
PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado
Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim
) Sea la función: f(x) = ln( x ): a) Dar su Dominio y encontrar sus asíntotas verticales, horizontales y oblicuas. b) Determinar los intervalos de crecimiento y decrecimiento, los máximos y mínimos, los
Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:
Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.
TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS
TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. CONCEPTO DE TRABAJO: A) Trabajo de una fuerza constante Todos sabemos que cuesta trabajo tirar de un sofá pesado, levantar una pila de libros
a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)
Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,
Tema 1. Movimiento de una Partícula
Tema 1. Movimiento de una Partícula CONTENIDOS Rapidez media, velocidad media, velocidad instantánea y velocidad constante. Velocidades relativas sobre una línea recta (paralelas y colineales) Movimiento
1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen.
Física 2º de Bachillerato. Problemas de Campo Eléctrico. 1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. 2.-
164 Ecuaciones diferenciales
64 Ecuaciones diferenciales Ejercicios 3.6. Mecánica. Soluciones en la página 464. Una piedra de cae desde el reposo debido a la gravedad con resistencia despreciable del aire. a. Mediante una ecuación
JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica
Energía Potencial eléctrica Si movemos la carga q2 respecto a la carga q1 Recordemos que la diferencia en la energía tenemos que: potencial U cuando una partícula se mueve entre dos puntos a y b bajo la
Funciones más usuales 1
Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una
(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura.
Cuestiones 1. Una bola pequeña rueda en el interior de un recipiente cónico de eje vertical y semiángulo α en el vértice A qué altura h sobre el vértice se encontrará la bolita en órbita estable con una
FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA
PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA 1. Todo cuerpo tiene tendencia a permanecer en su estado de movimiento. Esta tendencia recibe el nombre de inercia. 2. La masa es una medida
PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE
PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE ) La ecuación de un M.A.S. es x(t) cos 0t,, en la que x es la elongación en cm y t en s. Cuáles son la amplitud, la frecuencia y el período de este
TRABAJO Y ENERGÍA - EJERCICIOS
TRABAJO Y ENERGÍA - EJERCICIOS Hallar la energía potencial gravitatoria adquirida por un alpinista de 80 kg que escala una montaña de.00 metros de altura. Epg mgh 0,5 kg 9,8 m / s 0,8 m 3,9 J Su energía
EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS
EL MOVIMIENTO CUESTIONES Y PROBLEMAS RESUELTOS 1 DIFICULTAD BAJA 1. Qué magnitud nos mide la rapidez con la que se producen los cambios de posición durante un movimiento? Defínela. La velocidad media.
PROBLEMAS DE MÓVILES. e t. e v. Organizaremos la información en una tabla MÓVIL VELOCIDAD TIEMPO ESPACIO A A. t A. t B. v A v B
PROLEMS DE MÓVILES e v = e= v t t Organizaremos la información en una tabla t = e v v v t t v t v t Para escribir la ecuación usaremos la relación e Tenemos dos tipos 1) PROLEMS DE ENCUENTROS 2) PROLEMS
Trabajo y energía: ejercicios resueltos
Trabajo y energía: ejercicios resueltos 1) Un hombre debe mover 15 metros una caja de 20Kg realizando una fuerza de 40N. Calcula el trabajo que realiza si: a) Empuja la caja desde atrás. b) Tira de la
M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento
RECUERDA: La cinemática, es la ciencia, parte de la física, que se encarga del estudio del movimiento de los cuerpos, tratando de definirlos, clasificarlos y dotarlos de alguna utilidad práctica. El movimiento
d s = 2 Experimento 3
Experimento 3 ANÁLISIS DEL MOVIMIENTO EN UNA DIMENSIÓN Objetivos 1. Establecer la relación entre la posición y la velocidad de un cuerpo en movimiento 2. Calcular la velocidad como el cambio de posición
PRUEBA DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES 3º ESO 2009. 1) Calcula el valor de A y B, dando el resultado de la forma más sencilla posible.
PRUEBA DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES º ESO 009 1) Calcula el valor de A y B, dando el resultado de la forma más sencilla posible. 1 A = 8 1 + 1 B = A = 8 1 = 8 = 8 = 6 4 B = = 4 4 = 4 16
Ejercicios resueltos
Ejercicios resueltos Boletín 5 Campo eléctrico Ejercicio 1 La masa de un protón es 1,67 10 7 kg y su carga eléctrica 1,6 10 19 C. Compara la fuerza de repulsión eléctrica entre dos protones situados en
ESTUDIO DEL MOVIMIENTO.
TEMA 1. CINEMATICA. 4º E.S.O. FÍSICA Y QUÍMICA Página 1 ESTUDIO DEL MOVIMIENTO. MAGNITUD: Es todo aquello que se puede medir. Ejemplos: superficie, presión, fuerza, etc. MAGNITUDES FUNDAMENTALES: Son aquellas
Ejercicios resueltos
Ejercicios resueltos oletín 6 Campo magnético Ejercicio Un electrón se acelera por la acción de una diferencia de potencial de 00 V y, posteriormente, penetra en una región en la que existe un campo magnético
Sistemas de dos ecuaciones lineales con dos incógnitas
Sistemas de dos ecuaciones lineales con dos incógnitas Una ecuación lineal con dos incógnitas es una epresión de la forma a b c donde a, b c son los coeficientes (números) e son las incógnitas. Gráficamente
DESIGUALDADES E INECUACIONES
DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia
Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b
La función lineal Una función polinomial de grado uno tiene la forma: y = a 0 + a 1 x El semestre pasado estudiamos la ecuación de la recta. y = m x + b En la notación de funciones polinomiales, el coeficiente
Ecuaciones de primer grado con dos incógnitas
Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad
FÍSICA Y QUÍMICA 4º ESO Ejercicios: Fuerzas
1(10) Ejercicio nº 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 Kg si le ha comunicado una velocidad de 90 Km/h? Ejercicio nº 2 Un coche de 1000 Kg aumenta su velocidad
2.3. ASPECTOS ENERGÉTICOS
.3. ASPECTOS ENERGÉTICOS.3.1. Sobre un cuerpo actúa una fuerza representada en la gráfica de la figura. Podemos decir que el trabajo realizado por la fuerza es: a) (8/+16+16/) J b)(4+3+3) J c) (4+16+4)
El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad
3. Fuerza e ímpetu El concepto de ímpetu (cantidad de movimiento o momentum surge formalmente en 1969 y se define como: El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad
MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta.
ECUACIONES SIMULTÁNEAS DE PRIMER GRADO CON DOS INCÓGNITAS. Dos o más ecuaciones con dos incógnitas son simultáneas cuando satisfacen iguales valores de las incógnitas. Para resolver ecuaciones de esta
TRABAJO Y ENERGÍA. Campos de fuerzas
TRABAJO Y ENERGÍA 1. Campos de fuerzas. Fuerzas dependientes de la posición. 2. Trabajo. Potencia. 3. La energía cinética: Teorema de la energía cinética. 4. Campos conservativos de fuerzas. Energía potencial.
PROPORCIONALIDAD - teoría
PROPORCIONALIDAD RAZÓN: razón de dos números es el cociente indicado de ambos. Es decir, la razón de los dos números a y b es a:b, o lo que es lo mismo, la fracción b a. PROPORCIÓN: es la igualdad de dos
EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO
EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO Estrategia a seguir para resolver los ejercicios. 1. Lea detenidamente el ejercicio las veces que necesite, hasta que tenga claro en qué consiste y qué es lo
1 EL MOVIMIENTO Y SU DESCRIPCIÓN
EL MOVIMIENTO Y SU DESCRIPCIÓN EJERCICIOS PROPUESTOS. De una persona que duerme se puede decir que está quieta o que se mueve a 06 560 km/h (aproximadamente la velocidad de la Tierra alrededor del Sol).
Aproximación local. Plano tangente. Derivadas parciales.
Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación
Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a
Física P.A.U. ELECTOMAGNETISMO 1 ELECTOMAGNETISMO INTODUCCIÓN MÉTODO 1. En general: Se dibujan las fuerzas que actúan sobre el sistema. Se calcula la resultante por el principio de superposición. Se aplica
2. Qué sucede con la energía cinética de una bola que se mueve horizontalmente cuando:
PONTIFICIA UNIERSIA CATOLICA MARE Y MAESTA EPARTAMENTO E CIENCIAS BASICAS. INTROUCCION A LA FISICA Prof. Remigia Cabrera Unidad I. TRABAJO Y ENERGIA 1. emuestre que la energía cinética en el movimiento
PROBLEMAS M.A.S. Y ONDAS
PROBLEMAS M.A.S. Y ONDAS 1) Una masa de 50 g unida a un resorte realiza, en el eje X, un M.A.S. descrito por la ecuación, expresada en unidades del SI. Establece su posición inicial y estudia el sentido
Profr. Efraín Soto Apolinar. Límites
Límites Cada rama de las matemáticas tiene conceptos que resultan centrales para el desarrollo de la misma. Nosotros empezamos el estudio del cálculo infinitesimal, que está compuesto del cálculo diferencial
CAMPO ELÉCTRICO FCA 10 ANDALUCÍA
CMO LÉCTRICO FC 0 NDLUCÍ. a) xplique la relación entre campo y potencial electrostáticos. b) Una partícula cargada se mueve espontáneamente hacia puntos en los que el potencial electrostático es mayor.
b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:
1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el
1. Dominio, simetría, puntos de corte y periodicidad
Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele
Problemas resueltos. Problema 1. Problema 2. Problema 3. Problema 4. Solución. Solución. Solución.
Problemas resueltos Problema 1. Con una llave inglesa de 25 cm de longitud, un operario aplica una fuerza de 50 N. En esa situación, cuál es el momento de torsión aplicado para apretar una tuerca? Problema
PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.
PROBLEMAS DE DINÁMICA 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. 2. Un vehículo de 800 kg se mueve en un tramo recto y horizontal
Recordando la experiencia
Recordando la experiencia Lanzadera Cohete En el Taller de Cohetes de Agua cada alumno, individualmente o por parejas construisteis un cohete utilizando materiales sencillos y de bajo coste (botellas d
Con una serie de leyes muy sencillas pudo sintetizar y explicar entre otras cosas los fundamentos de la dinámica clásica. Pero: Qué es la dinámica?
4 año secundario Leyes de Newton Isaac newton (1642-1727), es considerado por los historiadores como un verdadero revolucionario en lo que se refriere a las ciencias y en particular a las ciencias naturales.
Teoría y Problemas resueltos paso a paso
Departamento de Física y Química 1º Bachillerato Teoría y Problemas resueltos paso a paso Daniel García Velázquez MAGNITUDES. INTRODUCCIÓN AL ANÁLISIS DIMENSIONAL Magnitud es todo aquello que puede ser
14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N
Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo
Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.
Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental
TRABAJO Y ENERGÍA Página 1 de 13
TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria
MCBtec Mas información en
MCBtec Mas información en www.mcbtec.com INTRODUCCIÓN A LA SIMULACION POR ORDENADOR Indice: Objetivo de este texto. Simulación por ordenador. Dinámica y simulación. Ejemplo disparo de un proyectil. Ejemplo
FÍSICA 2º BACHILLERATO EL OSCILADOR ARMÓNICO. PROBLEMAS RESUELTOS
FÍSICA º BACHILLERATO EL OSCILADOR ARMÓNICO. PROBLEMAS RESUELTOS TIMONMATE 1. Las características conocidas de una partícula que vibra armónicamente son la amplitud, A= 10 cm, y la frecuencia, f= 50 Hz.
Cajón de Ciencias. Problemas resueltos de sistemas de ecuaciones
Problemas resueltos de sistemas de ecuaciones 1) En una granja se crían gallinas y conejos. En total hay 50 cabezas y 134 patas Cuántos animales hay de cada clase? 2) En un taller hay vehículos de 4 y
EJERCICIOS RESUELTOS DE CINEMÁTICA. 4º E.S.O. Y 1º DE BACHILLERATO
EJERCICIOS RESUELTOS DE CINEMÁTICA. 4º E.S.O. Y 1º DE BACHILLERATO NOTA DEL PROFESOR: La finalidad de esta colección de ejercicios resueltos consiste en que sepáis resolver las diferentes situaciones que
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente
FUNCIONES CUADRÁTICAS Y RACIONALES
www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro
Ejercicios de Trigonometría
Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple
Capítulo 1. Mecánica
Capítulo 1 Mecánica 1 Velocidad El vector de posición está especificado por tres componentes: r = x î + y ĵ + z k Decimos que x, y y z son las coordenadas de la partícula. La velocidad es la derivada temporal
Leyes de movimiento. Leyes del movimiento de Newton. Primera ley de Newton o ley de la inercia. Segunda ley de Newton
Leyes de movimiento Leyes del movimiento de Newton La mecánica, en el estudio del movimiento de los cuerpos, se divide en cinemática y dinámica. La cinemática estudia los diferentes tipos de movimiento
Cálculo de las Acciones Motoras en Mecánica Analítica
Cálculo de las Acciones Motoras en Mecánica Analítica 1. Planteamiento general El diseño típico de la motorización de un sistema mecánico S es el que se muestra en la figura 1. Su posición viene definida
Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1
Página 3 EJERCICIOS PROBLEMAS PROPUESTOS PARA PRACTICAR Dominio de definición Halla el dominio de definición de estas funciones: 3 x a) y = y = x + x (x ) c) y = d) y = e) y = x + x + 3 5x x f) y = x x
Lección 24: Lenguaje algebraico y sustituciones
LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce
EJERCICIOS RESUELTOS DE CÓNICAS
EJERCICIOS RESUELTOS DE CÓNICAS 1. Hallar la ecuación de la circunferencia que tiene: a) el centro en el punto (, 5) y el radio es igual a 7. b) un diámetro con extremos los puntos (8, -) y (, 6). a) La
Universidad Autónoma de San Luis Potosi. Facultad de Ingenieria. Mecánica B. Jesús Edgardo Loredo Martínez. Rolando Nájera Perez.
Universidad Autónoma de San Luis Potosi Facultad de Ingenieria Mecánica B Jesús Edgardo Loredo Martínez Rolando Nájera Perez Cristian Almanza Victor Gaytan Garcia Práctica 2) Tiro Parabólico Fecha de entrega:
ECUACIÓN DEL M.A.S. v( t) = dx. a( t) = dv. x( 0) = 0.26 m v( 0) = 0.3 m / s
ECUACIÓN DEL M.A.S. Una partícula tiene un desplazamiento x dado por: x ( t ) = 0.3cos t + π 6 en donde x se mide en metros y t en segundos. a) Cuáles son la frecuencia, el periodo, la amplitud, la frecuencia
Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica
10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a
INTRODUCCIÓN: LA FÍSICA Y SU LENGUAJE, LAS MATEMÁTICAS
INTRODUCCIÓN: LA FÍSICA Y SU LENGUAJE, LAS MATEMÁTICAS La física es la más fundamental de las ciencias que tratan de estudiar la naturaleza. Esta ciencia estudia aspectos tan básicos como el movimiento,
Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8
Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características
CINEMÁTICA II: MRUA. 370 GUÍA DE FÍSICA Y QUÍMICA 1. Bachillerato MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. PROBLEMAS RESUELTOS
CINEMÁTICA II: MRUA PROBLEMAS RESUELTOS PROBLEMA RESUELTO Una persona lanza un objeto desde el suelo verticalmente hacia arriba con velocidad inicial de 0 m/s. Calcula: a) La altura máxima alcanzada. b)
3ª Parte: Funciones y sus gráficas
3ª Parte: Funciones y sus gráficas Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,
Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)
MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en