M. A. S. Y MOV. ONDULATORIO FCA 04 ANDALUCÍA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "M. A. S. Y MOV. ONDULATORIO FCA 04 ANDALUCÍA"

Transcripción

1 1. a) Cuále on la longitude de onda poible de la onda etacionaria producida en una cuerda tena, de longitud L, ujeta por abo extreo? Razone la repueta. b) En qué lugare de la cuerda e encuentran lo punto de aplitud áxia? Y lo de aplitud nula? Razone la repueta.. Por una cuerda e propaga un oviiento ondulatorio caracterizado por la función de onda: y = A en π (x/ - t/t) Razone a qué ditancia e encuentran do punto de ea cuerda i: a) La diferencia de fae entre ello e de π radiane. b) Alcanzan la áxia elongación con un retardo de un cuarto de periodo. 3. a) Qué e una onda arónica o inuoidal? De cuále de u caracterítica depende la energía que tranporta? b) Qué diferencia exiten entre el oviiento de una onda a travé de un edio y el oviiento de la partícula del propio edio? 4. Una partícula de 50 g vibra a lo largo del eje X, alejándoe coo áxio 10 c a un lado y a otro de la poición de equilibrio (x = 0). El etudio de u oviiento ha revelado que exite una relación encilla entre la aceleración y la poición que ocupa en cada intante: a = -16 π x. a) Ecriba la expreione de la poición y de la velocidad de la partícula en función del tiepo, abiendo que ete últio e coenzó a edir cuando la partícula paaba por la poición x = 10 c. b) Calcule la energía cinética y potencial de la partícula cuando e encuentra a 5 c de la poición de equilibrio. 5. Por una cuerda tena, colocada a lo largo del eje X, e propaga un oviiento ondulatorio tranveral cuya función de onda e: y = 0,15 en (4π x + 400π t) (S.I.) a) Repreente gráficaente la fora de la onda en el intante inicial y un cuarto de periodo depué. b) Deterine la elongación y la velocidad de un punto de la cuerda ituado en la poición x = 0,5, en el intante t = 0, Un tabique óvil ha provocado, en la uperficie del agua de un etanque un oviiento ondulatorio caracterizado por la función: y = 0,04 en (10πx - 4πt + π/) (S. I.) Suponiendo que lo frente de onda producido e propagan in pérdida de energía, deterine: a) El tiepo que tarda en er alcanzado por el oviiento un punto ituado a una ditancia de 3 del tabique. b) La elongación y la velocidad, en dicho punto, 0,5 depué de habere iniciado el oviiento.

2 1. a) Coo lo extreo fijo contituyen nodo b) Vientre (A áxia), coo A' A en( K x) en( K x) = 1 por lo tanto el ángulo K x K x= = eto iplica que toará lo iguiente valore π π π x = x= 4 3π π 3 coo K = x π = π x= π x π = 5π x= 5 4 x= n+ 1 iendo n = 0, 1,, 4 con lo cual no queda que ( ) Nodo A = 0 eto iplica que en( K x) = 0 y K x toará lo iguiente valore 0 x = 0 K x= π π π coo K = x = π x = π π x = π x = con lo cual no queda que x = n iendo n = 0, 1,,

3 x t. y = A enπ T a) Teneo que calcular x x1 para una diferencia de fae δ = π rad x1 t x t y1 = A enπ y = A enπ T T δ x t x t π T π = = T π π ( x x1) = π depejando x x = 1 b) En lo punto en que la elongación e áxia e cuple yax x t que en π =1 T por lo tanto, lo ángulo han de er iguale x1 t1 x t1 + T /4 x x1 t1+ T /4 t1 1 π = π = = T T T T 4 x x1 = 4 = A y eto iplica 3. a) Exite un tipo uy iportante de onda que e denoinan arónica, la caracteriza que la función de onda que la decribe e una función inuoidal de x, que e la dirección de propagación y del tiepo t: y( x, t) = A enk( x± v t) La perturbación que e propaga en fora de onda arónica e producida por un ocilador arónico (M. A. S.). La energía ( E ) correpondiente a un egento de cuerda por la que e deplaza una onda arónica de longitud x con una denidad lineal µ viene dada por la ecuación E = µ x π f A por lo tanto la energía tranitida por una onda arónica e directaente proporcional al cuadrado de la frecuencia y al cuadrado de la aplitud. b) El oviiento de propagación de una onda por un edio e unifore, el frente de onda e propaga con velocidad contante. La partícula de un edio por el que e propaga una onda arónica tienen un oviiento vibratorio arónico iple y cada una de ella tiene un defae con la anterior.

4 4. - = 0,05 Kg A = 0,1 a = -16π x a) Coo para t = 0 la elongación x = A la ecuación del M. A. S. e del tipo x = A coω t coo a= ω x utituyendo 16π x = ω x de donde ω = 4π rad / por lo tanto la ecuación queda x = 0,1 co 4π t dx para la expreión de la velocidad v = = 0,1 4 π en4π t dt v = 0, 4 π en4π t b) Para calcular la energía cinética, calculao priero la velocidad del óvil cuando u elongación ean 5 c x = 0,05 v= ω A = = 16 0,1 0,05 = 1, EC = v = 0,05 Kg 1,18 = 0,03 J para calcular la energía potencial, calculao priero la contante elática del ocilador K ω = 16 0,05 7,9 N K = ω = π Kg = 1 1 N 7,9 ( 0,05 ) EP = K x = = 0,01 J x v ω ( A x ) π ( )

5 5. a) y = 0,15 en( 4 π x+ 400 π t) coparando con la ecuación general y = A en( K x± ω t) obteneo que A = 0,15 K = 4π -1 ω = 400π rad/ utituyendo eto valore en la expreione de la longitud de onda y del periodo π π π π 3 = = = 0,5 T = = = 510 K 4π ω 400π para hacer la gráfica en el intante inicial t = 0, le dao a x valore dede 0, cada 4 x = 0 y = 0 para t = 0 x = 0,15 y = 0,15 x = 0,5 y = 0 x = 0,375 y = - 0,15 x = 0 y = 0,15 para t = T/4 = 1, x = 0,15 y = 0 x = 0,5 y = - 0,15 x = 0,375 y = 0

6 5. b) y = 0,15 en( 4 π x+ 400 π t) hay que calcular la elongación (y) y la velocidad de un punto de la cuerda (v), para x = 0,5 y t = 0,01 ( ) y = 0,15 en π + 4π = 0 dy v= = 0, π co( 4 π x+ 400 π t) = 0, π co( π + 4π ) dt v = 188,5 que e correponde con la velocidad áxia = A ω ya que el co(6π) = 1 π 6. - y = 0,04 en 10 π x 4 π t+ a) K = 10π -1 ω = 4π -1 π π ω = = = 0, f K 10π π vax S. I. 4π = = = π v f x 3 unifore x = vt t = 7,5 1 v = 0, 4 = 1 PROP = = 0, = 0, 4 coo el oviiento de propagación e b) Hay que calcular la elongación (y) y la velocidad de un punto de la uperficie del agua, para x = 3 y t = 0,5 π y = 0, 04 en 30 π π + = 0, 04 dy π π v= = 0, 04 4 π co 10 π x 4 π t+ = 0, 04 4 π co 30 π π + dt v = 0 1

M. A. S. Y MOV. ONDULATORIO FCA 05 ANDALUCÍA

M. A. S. Y MOV. ONDULATORIO FCA 05 ANDALUCÍA . Una partícula de 0, kg decribe un oviiento arónico iple a lo largo del eje x, de frecuencia 0 Hz. En el intante inicial la partícula paa por el origen, oviéndoe hacia la derecha, y u velocidad e áxia.

Más detalles

ELEMENTOS DEL MOVIMIENTO

ELEMENTOS DEL MOVIMIENTO 1 ELEMENTOS DEL MOVIMIENTO Poición 1.- Ecribe el vector de poición y calcula u módulo correpondiente para lo iguiente punto: P1 (4,, 1), P ( 3,1,0) y P3 (1,0, 5); La unidade de la coordenada etán en el

Más detalles

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO ENUNCIADOS Pág. 1 CARACTERÍSTICAS DEL MOVIMIENTO 1 Por qué e dice que todo lo movimiento on relativo? 2 Cómo e claifican lo movimiento en función de la trayectoria decrita? 3 Coincide iempre el deplazamiento

Más detalles

OPCION A OPCION B CURSO 2014-2015

OPCION A OPCION B CURSO 2014-2015 Fíica º Bachillerato. Exaen Selectividad Andalucía. Junio 05 (euelto) -- CUSO 04-05 OPCIO A. a) Defina la caracterítica del potencial eléctrico creado por una carga eléctrica puntual poitiva. b) Puede

Más detalles

ELEMENTOS DEL MOVIMIENTO.

ELEMENTOS DEL MOVIMIENTO. 1 Poición y deplazaiento. ELEMENTOS DEL MOVIMIENTO. Ejercicio de la unidad 11 1.- Ecribe el vector de poición y calcula u ódulo correpondiente para lo iguiente punto: P 1 (4,, 1), P ( 3,1,0) y P 3 (1,0,

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com OSCILACIONES Y ONDAS 1- Todos sabemos que fuera del campo gravitatorio de la Tierra los objetos pierden su peso y flotan libremente. Por ello, la masa de los astronautas en el espacio se mide con un aparato

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

Ondas periódicas en una dimensión

Ondas periódicas en una dimensión CÍULO 7 84 Capítulo 7 ONDS ERIÓDICS EN UN DIENSIÓN interaccione capo y onda / fíica 1º b.d. Onda periódica en una dienión Ya heo vito coo un pulo puede tranferir energía de un lugar a otro del epacio in

Más detalles

9 Uno de los métodos para saber a qué distancia. 10 La distancia media entre la Tierra y la Luna es. 11 La Luna se puede considerar una esfera

9 Uno de los métodos para saber a qué distancia. 10 La distancia media entre la Tierra y la Luna es. 11 La Luna se puede considerar una esfera FICHA 1 ACTIVIDADES DE 1 El líite de velocidad en alguna vía urbana e de 3 /h. Expréalo en unidade del Sitea Internacional. 2 Una otocicleta va a 15 /. Cuál e u velocidad en /h? 3 En la vía interetatale

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 4 Movimiento ondulatorio Ejercicio 1 La nota musical la tiene una frecuencia, por convenio internacional de 440 Hz. Si en el aire se propaga con una velocidad de 340 m/s y

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 3 Movimiento armónico simple Ejercicio Una partícula que vibra a lo largo de un segmento de 0 cm de longitud tiene en el instante inicial su máxima velocidad que es de 0 cm/s.

Más detalles

F2 Bach. Movimiento armónico simple

F2 Bach. Movimiento armónico simple F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.

Más detalles

Para describir el desplazamiento de una molécula de aire respecto a su posición de equilibrio usamos:

Para describir el desplazamiento de una molécula de aire respecto a su posición de equilibrio usamos: Ondas sonoras arónicas Para describir el desplazaiento de una olécula de aire respecto a su posición de equilibrio usaos: s x, t = s cos kx ωt ( ) ( ) Aquí s representa el desplazaiento áxio a la derecha

Más detalles

1.7.1. Un automóvil recorre 300 m en 20 segundos, sometido a una aceleración constante de 0,8 m.s -

1.7.1. Un automóvil recorre 300 m en 20 segundos, sometido a una aceleración constante de 0,8 m.s - La deriada en cineática.7. Ejercici de aplicación.7.. Un autóil recrre 3 en egund, etid a una aceleración cntante de,8. -.Calcular a) u elcidad inicial b) u elcidad a l egund c) la lngitud recrrida en

Más detalles

[a] Se sabe que la velocidad está relacionada con la longitud de onda y con la frecuencia mediante: v = f, de donde se deduce que = v f.

[a] Se sabe que la velocidad está relacionada con la longitud de onda y con la frecuencia mediante: v = f, de donde se deduce que = v f. Actividad 1 Sobre el extremo izquierdo de una cuerda tensa y horizontal se aplica un movimiento vibratorio armónico simple, perpendicular a la cuerda, que tiene una elongación máxima de 0,01 m y una frecuencia

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2011

PRUEBA ESPECÍFICA PRUEBA 2011 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 2011 PRUEBA SOLUCIONARIO Aclaraciones previas Tiempo de duración de la prueba: 1 hora Contesta 4 de los 5 ejercicios propuestos (Cada

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAPÍTULO 3 Aplicaciones de prier orden 3.6 Mecánica El paracaidiso es uno de los deportes extreos que día a día cuenta con ayor núero de adeptos. Los que practican este deporte se tiran desde un avión

Más detalles

PROBLEMAS DINÁMICA DE LA PARTÍCULA. 1. Ecuación básica de la dinámica en referencias inerciales y no inerciales

PROBLEMAS DINÁMICA DE LA PARTÍCULA. 1. Ecuación básica de la dinámica en referencias inerciales y no inerciales PRBLEMS DE DINÁMIC DE L PRTÍCUL. Ecuación básica de la dináica en referencias inerciales y no inerciales. Leyes de conservación del ipulso, del oento cinético y del trabajo 3. Fuerzas centrales 4. Gravitación

Más detalles

Describe, en función de la diferencia de fase, qué ocurre cuando se superponen dos ondas progresivas armónicas de la misma amplitud y frecuencia.

Describe, en función de la diferencia de fase, qué ocurre cuando se superponen dos ondas progresivas armónicas de la misma amplitud y frecuencia. El alumno realizará una opción de cada uno de lo bloque. La puntuación máxima de cada problema e de punto, y la de cada cuetión de 1,5 punto. BLOQUE I-PROBLEMAS Se determina, experimentalmente, la aceleración

Más detalles

[ ] [] s [ ] Velocidad media. v m. m m. 2 s. Cinemática ΔX = X2 X1

[ ] [] s [ ] Velocidad media. v m. m m. 2 s. Cinemática ΔX = X2 X1 Cineática CINEMÁTICA Introducción El fenóeno fíico á coún en la naturaleza e el oviiento y de él, preciaente e encarga la cineática. Pero quiene e ueven? : Evidenteente lo cuerpo. Claro que un cuerpo puede

Más detalles

ONDAS ESTACIONARIAS FUNDAMENTO

ONDAS ESTACIONARIAS FUNDAMENTO ONDAS ESTACIONARIAS FUNDAMENTO Una onda estacionaria es el resultado de la superposición de dos movimientos ondulatorios armónicos de igual amplitud y frecuencia que se propagan en sentidos opuestos a

Más detalles

FUERZA CENTRAL (soluciones)

FUERZA CENTRAL (soluciones) FUERZA CENTRAL (olucione) 1.- Un cuerpo de peo g gira en una circunferencia vertical de radio R atado a un cordel. Calcular la tenión del cordel en el punto á alto y en el á bajo. Calcule la velocidad

Más detalles

1.1. Movimiento armónico simple

1.1. Movimiento armónico simple Problemas resueltos 1.1. Movimiento armónico simple 1. Un muelle cuya constante de elasticidad es k está unido a una masa puntual de valor m. Separando la masa de la posición de equilibrio el sistema comienza

Más detalles

FR = N. FUERZAS DE ROZAMIENTO (deslizamiento) F roz

FR = N. FUERZAS DE ROZAMIENTO (deslizamiento) F roz FUEZAS DE OZAMIETO (delizaiento) La fuerza de rozaiento urgen: Cuando a un cuerpo en repoo obre un plano e le aplica una fuerza para intentar ponerlo en oiiento (aunque no llegue a delizar). Fuerza de

Más detalles

CANTIDAD DE MOVIMIENTO LINEAL

CANTIDAD DE MOVIMIENTO LINEAL NOTAS DE FÍSICA GRADO CANTIDAD DE MOIMIENTO LINEAL CONTENIDO. IMPULSO. COLISIONES O CHOQUES 3. PROBLEMAS PROPUESTOS Contanteente ecuchao y veo choque de auto y oto, nootro alguna vece deprevenido chocao

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 2001 1.- Un objeto de 0,2 kg, unido al extremo de un resorte, efectúa oscilaciones armónicas de 0,1 π s de período y su energía cinética máxima es de 0,5 J. a) Escriba la ecuación

Más detalles

Pontificia Universidad Javeriana. Depto. Física. Periodo 1430. Sesión de problemas.

Pontificia Universidad Javeriana. Depto. Física. Periodo 1430. Sesión de problemas. Pontificia Universidad Javeriana. Depto. Física. Periodo 1430. Sesión de probleas. 2. Problea experiento sobre edición e incertidubre Objetivo: Medir la constante de elasticidad de un resorte por dos étodos:

Más detalles

Examen de Sistemas Automáticos Agosto 2013

Examen de Sistemas Automáticos Agosto 2013 Examen de Sitema Automático Agoto 203 Ej. Ej. 2 Ej. 3 Ej. 4 Total Apellido, Nombre: Sección: Fecha: 20 de agoto de 203 Atención: el enunciado conta de tre ejercicio práctico y un tet de repueta múltiple

Más detalles

Energía mecánica.conservación de la energía.

Energía mecánica.conservación de la energía. 57 nergía ecánica.conervación de la energía. NRGÍA POTNCIAL Hay do tipo de energía potencial que tené que conocer. Una e la potencial gravitatoria, que tiene que ver con la altura a la que etá un objeto.

Más detalles

La transformada de Laplace

La transformada de Laplace GUIA 7 La tranformada de Laplace. Concepto de la tranformada de Laplace Definición. Una función u(t) definida en t < tiene tranformada de Laplace i exite un real a > tal que la integral e t u(t) dt converge

Más detalles

Física PRUEBA DE ACCESO A LA UNIVERSIDAD 2013 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR. Examen

Física PRUEBA DE ACCESO A LA UNIVERSIDAD 2013 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR. Examen PRUEBA DE ACCESO A LA UNIVERSIDAD 03 Fíica BACHILLERAO FORMACIÓN PROFESIONAL CICLOS FORMAIVOS DE GRADO SUPERIOR Eamen Criterio de Corrección Calificación UNIBERSIAERA SARZEKO PROBAK 03ko EKAINA FISIKA

Más detalles

LEY DE GAUSS. A v. figura 5.1

LEY DE GAUSS. A v. figura 5.1 LY D GAUSS 5.1 INTRODUCCION. l campo eléctrico producido por objeto cargado etático puede obtenere por do procedimiento equivalente: mediante la ley de Coulomb o mediante la ley de Gau, ley debida a Karl

Más detalles

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos.

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos. Modelo 04. Pregunta 4B.- Un objeto etá ituado a una ditancia de 0 cm del vértice de un epejo cóncavo. Se forma una imagen real, invertida y tre vece mayor que el objeto. a) Calcule el radio de curvatura

Más detalles

BLOQUE I - CUESTIONES Opción A Calcula el cociente entre la energía potencial y la energía cinética de un satélite en orbita circular.

BLOQUE I - CUESTIONES Opción A Calcula el cociente entre la energía potencial y la energía cinética de un satélite en orbita circular. El alumno realizará una opción de cada uno de los bloques La puntuación máxima de cada problema es de puntos, y la de cada cuestión es de 1,5 puntos. LOQUE I - CUESTIONES Calcula el cociente entre la energía

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

ACELERACIÓN DE LA GRAVEDAD (g)

ACELERACIÓN DE LA GRAVEDAD (g) ACELERACIÓN DE LA GRAVEDAD (g) E aquella aceleración con la cual caen lo cuerpo. Su valor depende íntegraente del lugar en que e toe. En la uperficie terretre eta aceleración no e contante, eto e debe

Más detalles

GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones

GEOMETRÍA ANALÍTICA 8.2 ECUACIONES DE UNA RECTA. Para determinar una recta necesitamos una de estas dos condiciones GEOMETRÍA ANALÍTICA 8. ECUACIONES DE UNA RECTA Para determinar una recta neceitamo una de eta do condicione 1. Un punto P(x, y ) y un vector V = (a,b). Do punto P(x, y ), Q(x 1, y 1 ) Un punto P(x, y )

Más detalles

CONCEPTOS - VIBRACIÓN:

CONCEPTOS - VIBRACIÓN: TEMA: EL SONIDO CONCEPTOS MOVIMIENTO: - OSCILATORIO O VIBRATORIO: - CONCEPTO - ELEMENTOS - ONDULATORIO: - CONCEPTO - ELEMENTOS - ONDAS LONGITUDINALES Y TRANSVERSALES EL SONIDO: - CONCEPTO - CARACTERÍSTICAS

Más detalles

Campo Eléctrico. Fig. 1. Problema número 1.

Campo Eléctrico. Fig. 1. Problema número 1. Campo Eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

Procesamiento Digital de Señales Octubre 2012

Procesamiento Digital de Señales Octubre 2012 Proceaiento Digital de Señale Octubre 0 Método de ntitranforación PROCESMIENTO DIGITL DE SEÑLES Tranforada Z - (Parte II) Hay tre étodo de antitranforación, o Tranforación Z Invera para obtener la función

Más detalles

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide

CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide Faore La enoide e exprean fácilmente en término de faore, e má cómodo trabajar que con la funcione eno y coeno. Un faor e un numero complejo que repreenta la amplitud y la fae de una enoide Lo faore brinda

Más detalles

6 El movimiento ondulatorio

6 El movimiento ondulatorio 6 El oiiento ondulatorio EJERCCOS ROUESTOS 6. Son ondas las olas del ar? or qué? Sí, porque se propaga una perturbación: la altura de la superficie del agua sobre su niel edio. 6. uede haber un oiiento

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO 5 MOVIMIENTO ONDULATORIO 5.. EL MOVIMIENTO ONDULATORIO. Indica cómo podemos comprobar que, cuando una onda se propaga por una cuerda, hay transporte de energía, pero no transporte de materia. Un procedimiento

Más detalles

La solución del problema requiere de una primera hipótesis:

La solución del problema requiere de una primera hipótesis: RIOS 9 Cuarto Simpoio Regional obre Hidráulica de Río. Salta, Argentina, 9. CALCULO HIDRAULICO EN RIOS Y DISEÑO DE CANALES ESTABLES SIN USAR ECUACIONES TRADICIONALES Eduardo E. Martínez Pérez Profeor agregado

Más detalles

C. VALENCIANA / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO

C. VALENCIANA / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO El alumno realizará una opción de cada uno de los bloques La puntuación máxima de cada problema es de puntos, y la de cada cuestión es de 1,5 puntos. BLOQUE I - CUESTIONES Si consideramos que las órbitas

Más detalles

Mecánica Cuestiones y Problemas PAU 2002-2009 Física 2º Bachillerato

Mecánica Cuestiones y Problemas PAU 2002-2009 Física 2º Bachillerato Mecánica Cuestiones y Problemas PAU 00009 Física º Bachillerato 1. Conteste razonadamente a las siguientes a) Si la energía mecánica de una partícula permanece constante, puede asegurarse que todas las

Más detalles

TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR

TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR CONTENIDOS REPASO DEL ÁLGEBRA VECTORIAL Proyección, componentes y módulo de un vector Operaciones: suma, resta, producto escalar y producto

Más detalles

FÍSICA Diseño de Interiores y Mobiliario 2014

FÍSICA Diseño de Interiores y Mobiliario 2014 FÍSICA Dieño de Interiore y Mobiliario 014 MAGNITUD P R O F. I NG. C E C I L I A A R I A G N O ; I NG. D A N I E L M O R E N O Unidad Nº 1: Magnitude y Unidade En la Fíica no bata con decribir cualitativaente

Más detalles

El sonido dejará de ser audible cuando su intensidad sea menor o igual a la intensidad umbral:

El sonido dejará de ser audible cuando su intensidad sea menor o igual a la intensidad umbral: P.A.U. MADRID JUNIO 2005 Cuestión 1.- El nivel de intensidad sonora de la sirena de un barco es de 60 db a 10 m de distancia. Suponiendo que la sirena es un foco emisor puntual, calcule: a) El nivel de

Más detalles

Lentes. Como ya sabes, una lente es un medio transparente a la luz que está limitado por dos superficies, al menos una de ellas curva.

Lentes. Como ya sabes, una lente es un medio transparente a la luz que está limitado por dos superficies, al menos una de ellas curva. Como ya abe, una lente e un medio tranparente a la luz que etá limitado por do uperficie, al meno una de ella curva. La lente e pueden claificar egún Groor orma Radio de curvatura de la uperficie Gruea

Más detalles

El estudio teórico de la práctica se realiza en el problema PTC0004-21

El estudio teórico de la práctica se realiza en el problema PTC0004-21 PRÁCTICA LTC-14: REFLEXIONES EN UN CABLE COAXIAL 1.- Decripción de la práctica a) Excitar un cable coaxial de 50 metro de longitud con un pulo de tenión de 0 a 10 voltio, 100 Khz frecuencia y un duty cycle

Más detalles

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos

Modelos de generadores asíncronos para la evaluación de perturbaciones emitidas por parques eólicos eunión de Grupo de Invetigación en Ingeniería Eléctrica. Santander Modelo de generadore aíncrono para la evaluación de perturbacione emitida por parque eólico A. Feijóo, J. Cidrá y C. Carrillo Univeridade

Más detalles

CINEMÁTICA DE LA PARTÍCULA

CINEMÁTICA DE LA PARTÍCULA TEXTO Nº 4 CINEMÁTICA DE LA PARTÍCULA Concepto Báico Ejercicio Reuelto Ejercicio Propueto Edicta Arriagada D. Victor Peralta A Diciebre 8 Sede Maipú, Santiago de Chile Introducción Ete aterial ha ido contruido

Más detalles

1. arranque de motores de inducción Métodos: b) Arranque estrella-delta (tensión reducida) 2. 3. 4. 5. 6. 7. 8.

1. arranque de motores de inducción Métodos: b) Arranque estrella-delta (tensión reducida) 2. 3. 4. 5. 6. 7. 8. INSTITUTO TECNOLOGICO DE COSTA ICA ESCUELA DE INGENIEÍA ELECTONICA TANSFOMADOES Y MAQUINAS ELECTICAS CAACETISTICAS BASICAS DEL MOTO DE INDUCCION OF. JUAN CALOS JIMENEZ II-007. arranque de otore de inducción

Más detalles

2 (6370 + 22322) 10 = 2.09 10 J

2 (6370 + 22322) 10 = 2.09 10 J OPCIÓN A 1. La Agencia Espacial Europea lanzó el pasado 27 de Marzo dos satélites del Sistema de Navegación Galileo. Dichos satélites de masa 1,5 toneladas cada uno, orbitan ya a 22 322 km sobre la superficie

Más detalles

3. TRABAJO Y ENERGÍA E IMPULSO Y CANTIDAD DE MOVIMIENTO PARA LA PARTÍCULA

3. TRABAJO Y ENERGÍA E IMPULSO Y CANTIDAD DE MOVIMIENTO PARA LA PARTÍCULA 83 3. RJO Y EERGÍ E IMPLSO Y CIDD DE MOVIMIEO PR L PRÍCL 3. rabajo energía cinética. Con una fuerza E de 0 kg, inclinada 30º, e epuja un cuerpo de 0 kg obre una uperficie horizontal, en línea recta, a

Más detalles

Tema 2 Movimiento Ondulatorio

Tema 2 Movimiento Ondulatorio Tema Movimiento Ondulatorio. Movimiento ondulatorio: ondas.. Magnitudes caranterísticas de las ondas..3 Ecuación de ondas armónicas..4 Fenómenos ondulatorios.. Movimiento ondulatorio: ondas Es bien conocido

Más detalles

Problemas. 1. Un barco se balancea arriba y abajo y su desplazamiento vertical viene dado por la ecuación y = 1,2 cos

Problemas. 1. Un barco se balancea arriba y abajo y su desplazamiento vertical viene dado por la ecuación y = 1,2 cos Probleas. Un barco se balancea arriba y abajo y su desplazaiento vertical viene dado por t π la ecuación y, cos +. Deterinar la aplitud, frecuencia angular, 6 constante de fase, frecuencia y periodo del

Más detalles

- 83 - MRUV MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO

- 83 - MRUV MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO - 83 - MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO ASIMOV - 84 - - MOVIMIENTO RECTLÍNEO UNIFORMEMENTE VARIADO Suponé un coche que etá quieto y arranca. Cada vez e ueve á rápido. Priero e ueve a 1 por hora,

Más detalles

UNA FUERZA es un empujón o jalón que actúa sobre un objeto.es una cantidad vectorial que tiene magnitud y dirección.

UNA FUERZA es un empujón o jalón que actúa sobre un objeto.es una cantidad vectorial que tiene magnitud y dirección. LA MASA de un objeto e una edida de u inercia. Se llaa inercia de un objeto en repoo a peranecer en ee etado y, de un objeto en oviiento a continuarlo in cabiar u velocidad. EL KILOGRAMO PATRON (ESTANDAR)

Más detalles

Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico.

Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico. Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico. Nombre: Manuel Apellidos: Fernandez Nuñez Curso: 2º A Fecha: 29/02/2008 Índice Introducción pag. 3 a 6 Objetivos.

Más detalles

SEGUNDO PARCIAL - Física 1 30 de junio de 2010

SEGUNDO PARCIAL - Física 1 30 de junio de 2010 Intituto de Fíica Facultad de Ingeniería Univeridad de la República SEGUNDO PARCIAL - Fíica 1 30 de junio de 010 g= 9,8 m/ Cada pregunta tiene ólo una repueta correcta. Cada repueta correcta uma 6 punto.

Más detalles

= 6,67 10 5 N r 2. Astro g (N/kg) R (km) P = = 245,40 kg. F r = ma a = 0,05 mg a = = 0,05 9,8 m/s 2 = 0,49 m/s 2

= 6,67 10 5 N r 2. Astro g (N/kg) R (km) P = = 245,40 kg. F r = ma a = 0,05 mg a = = 0,05 9,8 m/s 2 = 0,49 m/s 2 UIDAD 5 Actividade de la unidad 1. Coprueba la ecaa fuerza gravitatoria exitente entre lo cuerpo que etán en nuetro entorno, aunque ean de gran aa. Con qué fuerza e atraerán do efera de ploo de una tonelada

Más detalles

EJERCICIOS DE FÍSICA

EJERCICIOS DE FÍSICA EJERCICIOS DE FÍSICA 1. El vector posición de un punto, en función del tiempo, viene dado por: r(t)= t i + (t 2 +2) j (S.I.) Calcular: a) La posición, velocidad y aceleración en el instante t= 2 s.; b)

Más detalles

ÓPTICA GEOMÉTRICA. Virtual: La imagen se forma al hacer concurrir en un punto al otro lado del espejo rayos que divergen tras reflejarse en el espejo.

ÓPTICA GEOMÉTRICA. Virtual: La imagen se forma al hacer concurrir en un punto al otro lado del espejo rayos que divergen tras reflejarse en el espejo. 12 ÓPTI GEOMÉTRI UESTIONES 1. La imagen de un objeto que e refleja en un epejo plano erá: a) Real, invertida y má pequeña. b) Virtual, invertida y del mimo tamaño. c) Real, derecha y del mimo tamaño. d)

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA. Curso 2009. Práctico III Trabajo y Energía.

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA. Curso 2009. Práctico III Trabajo y Energía. INSTITUT DE FÍSIC MECÁNIC NEWTNIN Curso 009 Práctico III Trabajo y Enería. NT: Los siuientes ejercicios están ordenados por tea y, dentro de cada tea, en un orden creciente de dificultad. l final se incluyen

Más detalles

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente.

FÍSICA. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional. Dirección de Capacitación No Docente. Centro Educativo de Nivel Secundario Nº 451 Anexo Universidad Tecnológica Nacional Dirección de Capacitación No Docente Dirección General de Cultura y Educación Provincia de Buenos Aires FÍSICA Segundo

Más detalles

Movimiento Circular Movimiento Armónico

Movimiento Circular Movimiento Armónico REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN LICEO BRICEÑO MÉNDEZ S0120D0320 DPTO. DE CONTROL Y EVALUACIÓN PROFESOR: gxâw á atätá 4to Año GUIA # 9 /10 PARTE ( I ) Movimiento

Más detalles

REGULACIÓN AUTOMATICA (8)

REGULACIÓN AUTOMATICA (8) REGULACIÓN AUOMAICA 8 Repueta en frecuencia Nyquit Ecuela Politécnica Superior Profeor: Darío García Rodríguez -4.-Dada la función de tranferencia de lazo abierto de un itema con imentación unitaria, para

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL AVELLANEDA

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL AVELLANEDA UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL AVELLANEDA EJERCICIOS FISICA I ESTÁTICA 1- Una viga unifore pesa 400N se encuentra apoyada en sus extreos y se suspende de ella a 1/4 de su longitud un

Más detalles

Ondas. Opción Múltiple

Ondas. Opción Múltiple Ondas. Opción Múltiple PSI Física Nombre: 1. La distancia recorrida por una onda en un período se llama A. Frecuencia B. Período C. Velocidad de onda D. Long de onda E. Amplitud 2. Cuál de las siguientes

Más detalles

Adjunto: Lic. Auliel María Inés

Adjunto: Lic. Auliel María Inés Ingeniería de Sonido Física 2 Titular: Ing. Daniel lomar Vldii Valdivia Adjunto: Lic. Auliel María Inés 1 Termodinámica i Temperatura La temperatura de un sistema es una medida de la energía cinética media

Más detalles

ONDAS PREGUNTAS PROBLEMAS

ONDAS PREGUNTAS PROBLEMAS ONDAS PREGUNTAS 1. Que significa la expresión onda estacionaria. 2. Explique que es una onda longitudinal. 3. Cómo se obtiene una onda estacionaria de una cuerda tensa? 4. Una fuente hace vibrar una cuerda

Más detalles

F TS. m x. m x 81 = T 2. = 3,413x10 8 m = 341.333 km

F TS. m x. m x 81 = T 2. = 3,413x10 8 m = 341.333 km EECICIO LEYE DE KEPLE Y GAVIACIÓN UNIVEAL olucionario.- A qué ditancia debiera etar un cuerpo de la uperficie terretre para que u peo e anulara? El peo de un cuerpo e anularía en do circuntancia: i) En

Más detalles

FÍSICA-COU Selectividad - Cantabria, junio 2000

FÍSICA-COU Selectividad - Cantabria, junio 2000 PRUEBAS DE ACCESO A LA UNIVERSIDAD Diciebre de 006 Cantabria FÍSICA-COU Selectividad - Cantabria, junio 000.- El aluno elegirá una ola de la do opcione de problea, aí coo cinco de la iete cuetione propueta.-

Más detalles

Prueba 1: Cuestiones sobre campos gravitatorio, eléctrico y electromagnetismo

Prueba 1: Cuestiones sobre campos gravitatorio, eléctrico y electromagnetismo Prueba 1: Cuestiones sobre campos gravitatorio, eléctrico y electromagnetismo 1. El módulo de la intensidad del campo gravitatorio en la superficie de un planeta de masa M y de radio R es g. Cuál será

Más detalles

PAÍS VASCO / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

PAÍS VASCO / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO POBLEMA BLOQUE A Elegir un bloque de problemas y dos cuestiones. La energía de extracción de l cesio e q,9 ev. a) Hallar la frecuencia umbral y la longitud de onda umbral del efecto fotoelécrico. b) Hallar

Más detalles

Funciones y gráficas. 3º de ESO

Funciones y gráficas. 3º de ESO Funciones y gráficas 3º de ESO Funciones Una función es una correspondencia entre dos conjuntos numéricos que asocia a cada valor,, del primer conjunto un único valor, y, del segundo. La variable variable

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividade del final de la unidad. Explica brevemente qué entiende por foco ditancia focal para un dioptrio eférico. Razona cómo erá el igno de la ditancia focal objeto la ditancia focal imagen egún que

Más detalles

MECANICA DE FLUIDOS. Qué estudia la hidráulica?. Líquidos. Fuidos

MECANICA DE FLUIDOS. Qué estudia la hidráulica?. Líquidos. Fuidos 1 GUIA FISICA GRADO ONCE: MECANICA DE FLUIDOS AUTOR Lic. Fíica, ERICSON SMITH CASTILLO MECANICA DE FLUIDOS La leye de Newton que etudiao para lo ólido on aplicable a lo fluido, pero ante debeo conocer

Más detalles

TRABAJO Y ENERGIA: CURVAS DE ENERGÍA POTENCIAL:

TRABAJO Y ENERGIA: CURVAS DE ENERGÍA POTENCIAL: TRABAJO Y ENERGIA: CURVAS DE ENERGÍA POTENCIAL: Si junto con la fuerza de Van der Waals atractiva, que varía proporcionalmente a r 7, dos atómos idénticos de masa M eperimentan una fuerza repulsiva proporcional

Más detalles

1.- EL CAMPO MAGNÉTICO

1.- EL CAMPO MAGNÉTICO 1.- EL CAMPO MAGNÉTICO Las cargas en oviiento foran una corriente eléctrica I; y estas generan una nueva perturbación en el espacio que se describe por edio de una agnitud nueva llaada capo agnético B.

Más detalles

GUIA DE ESTUDIO TEMA: DINAMICA

GUIA DE ESTUDIO TEMA: DINAMICA GUIA DE ESTUDIO TEMA: DINAMICA A. PREGUNTAS DE TIPO FALSO O VERDADERO A continuación se presentan una serie de proposiciones que pueden ser verdaderas o falsas. En el paréntesis de la izquierda escriba

Más detalles

TEMA 2: VIBRACIONES Y ONDAS PARTE 1

TEMA 2: VIBRACIONES Y ONDAS PARTE 1 TEMA : VIBRACIONES Y ONDAS PARTE Movimiento periódico: Periodo Movimiento Oscilatorio: Características Movimiento armónico simple Características cinemáticas del MAS Características dinámicas del MAS Energía

Más detalles

Tema 2. Circuitos resistivos y teoremas

Tema 2. Circuitos resistivos y teoremas Tema. Circuito reitivo y teorema. ntroducción.... Fuente independiente..... Fuente de tenión..... Fuente independiente de intenidad.... eitencia.... 4.. ociación de reitencia... 5 eitencia en erie... 5

Más detalles

M.A.S. Y MOV ONDULATORIO FCA 07 ANDALUCÍA

M.A.S. Y MOV ONDULATORIO FCA 07 ANDALUCÍA . La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (6 t - 0 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud, periodo, longitud de onda y velocidad

Más detalles

CURSO CERO DE FÍSICA DINÁMICA

CURSO CERO DE FÍSICA DINÁMICA CURSO CERO DE ÍSICA Departaento de ísica COTEIDO. Principios fundaentales de la dináica. Priera ley de ewton: Ley de la inercia. Segunda ley de ewton: Ley fundaental de la dináica. Tercera ley de ewton:

Más detalles

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 NOMBRE: Ete examen conta de 22 pregunta, entre pregunta conceptuale y problema

Más detalles

11 Campos magnéticos y corrientes eléctricas

11 Campos magnéticos y corrientes eléctricas Capos agnéticos y corrientes eléctricas EJERCICIOS PROPUESOS. Explica el fundaento científico de la utilización de la brújula para la orientación. La brújula es un ián natural que se orienta en el capo

Más detalles

La cinemática es la parte de la física que se encarga del estudio del movimiento sin importar las causas que lo originan.

La cinemática es la parte de la física que se encarga del estudio del movimiento sin importar las causas que lo originan. CINEMATICA La cinemática es la parte de la física que se encarga del estudio del movimiento sin importar las causas que lo originan. SISTEMA DE REFERENCIA Lo primero que hacemos para saber que un cuerpo

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

MECÁNICA DE FLUIDOS HIDROESTÁTICA

MECÁNICA DE FLUIDOS HIDROESTÁTICA MECÁNICA DE FLUIDOS HIDROESTÁTICA Problea reuelto de Hidrotática. Ejercicio 8.1.- Una etrella de neutrone tiene un radio de 10 K y una aa de X10 0 K. Cuánto pearía un voluen de 1c de ea etrella, bajo la

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. CURSO 007-008 CONVOCATORIA: SEPTIEMBRE TECNOLOGÍA INDUSTRIAL II Lo alumno deberán elegir una de la do opcione. Cada ejercicio vale,5 punto. La pregunta del

Más detalles

LEYES DE LA DINÁMICA Y APLICACIONES

LEYES DE LA DINÁMICA Y APLICACIONES LEYES DE LA DINÁMICA Y APLICACIONES Cuetione. Ejercicio de la unidad 14 1.- Qué opina de la iguiente afirmación?: Andamo gracia al rozamiento. Si no exitiera éte no lo podríamo hacer..- Por qué tienen

Más detalles

Electrotecnia. Problemas del tema 6. Inducción electromagnética

Electrotecnia. Problemas del tema 6. Inducción electromagnética Problema.- Un cuadro de 400 cm de sección y con 0 espiras, se encuentra situado en la dirección normal a un campo magnético de 0.4 T y gira hasta situarse paralelamente al campo, transcurriendo 0.5 s.

Más detalles

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m.

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m. 1 1. De los extremos de una cuerda que pasa por la garganta de una polea sin rozamiento y de masa despreciable, cuelgan dos masas iguales de 200 gramos cada una. Hallar la masa que habrá de añadirse a

Más detalles

θ = θ 1 -θ 0 θ 1 = ángulo final; θ 0 = ángulo inicial. Movimiento circular uniforme (MCU) :

θ = θ 1 -θ 0 θ 1 = ángulo final; θ 0 = ángulo inicial. Movimiento circular uniforme (MCU) : Movimiento circular uniforme (MCU) : Es el movimiento de un cuerpo cuya trayectoria es una circunferencia y describe arcos iguales en tiempos iguales. Al mismo tiempo que recorremos un espacio sobre la

Más detalles

Respecto del eje de giro de la rueda, cuál de las siguientes cantidades permanece constante mientras esta desciende por el plano inclinado?

Respecto del eje de giro de la rueda, cuál de las siguientes cantidades permanece constante mientras esta desciende por el plano inclinado? CIENCIAS (BIOLOGÍA, FÍSICA, QUÍMICA) MÓDULO 3 Eje temático: Mecánica - Fluido 1. Una rueda deciende rodando por un plano inclinado que forma un ángulo α con la horizontal del modo que e ilutra en la figura

Más detalles

Relación de problemas: Tema 11

Relación de problemas: Tema 11 Relación de problemas: Tema.- Dos torres de alta tensión separadas 00 m sostienen un cable de 40 kg. Desde lo alto de una de las torres se golpea el cable, que permanece tenso, y una onda viaja hasta la

Más detalles