En este caso, el valor actual de una unidad monetaria pagadera al final del año de fallecimiento de

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "En este caso, el valor actual de una unidad monetaria pagadera al final del año de fallecimiento de"

Transcripción

1 Parte III: Análss de la determnacón de las prmas en los seguros de vda y de la solvenca dnámca del asegurador cuando los tpos de nterés de valoracón venen estmados a través de números borrosos.4. SEGURO VIDA ENTERA.4.. Planteamento general En este caso, el valor actual de una undad monetara pagadera al fnal del año de fallecmento de una cabeza de edad, es una varable borroso aleatora ue notamos como ~, y vene dada por: ~ ~ = f t + con,,,,-- para la cual, y a un nvel α, a través de f tα =[f t (α,f t (α, podemos hallar la funcón de cuantía de la varable aleatora nferor (α y de la superor (α como: α = f t + con y ( = f t con ( α +,,,,-- Así pues, la esperanza matemátca de ~, ue notaremos como α-cortes venen dados por: [ A ~ será un número borroso cuyos A α = A, A = f, f B, B = t t Sn embargo y como ocurrrá en las estructuras actuarales ue analzaremos a contnuacón, no podemos hallar la epresón analítca de la funcón de pertenenca de la esperanza matemátca, la varanza o la desvacón estándar, ya ue s se utlzan varos tpos de nterés, debemos realzar la convolucón de las funcones de pertenenca de las funcones de pertenenca de cada uno de los tpos de nterés o de los factores de actualzacón ue defnen, o ben, s se utlza un tpo de nterés únco, no este epresón análtca de dcho tpo de nterés como funcón del valor actual de una renta. Asmsmo, la varanza borrosa toma como epresón de los α-cortes: + V[ α = R y = ( =[Mn y, Ma y t y t +, f = α En prncpo, no sólo no podemos dar una epresón de su funcón de pertenenca, sno ue no podemos dar una epresón analítca para sus α-cortes ya ue no es una funcón monótona de los tpos de nterés utlzados en la actualzacón. Sn embargo, para cada nvel α para la ue 57

2 . Análss de las prncpales estructuras actuarales con el tpo de nterés de valoracón estmado a través de números borrosos ueramos calcularla, resolveremos el etremo nferor y el superor de ésta sn más ue plantear los programas matemátcos: Mnmzar (Mamzar y ( s.a.: f f t + t + = t +,,,..,-- Sn embargo, s aplcamos la apromacón a la varanza propuesta en el apartado.6.. de la prmera parte de la tess, el resultado ue obtendremos nclurá el α-corte de la varanza. Los α- cortes de D ~ [, como sempre, se obtendrán sn más ue calcular la raz cuadrada de la varanza. La varanza de Feng se hallará partendo de: [ V[ (α= f ( - A ( α y V[ (α= f ( - A t + α [ [ t + α [ y así, V * [= f { } [ + [ f [ A + [ A = f {[ + [ f } dα [ A + [ A { } dα dα =.4.. Análss cuando el tpo de nterés a aplcar es un número borroso constante S el tpo de nterés aplcar a lo largo de toda la vda del contrato es un número borroso ~ constante para toda la operacón, las varables aleatoras (α y (α venen dadas por: (t ( α = ( + y ( α = ( + con +,,,,-- Sendo entonces los α-cortes de A α = [ A, = A ~ : A (, ( + + Asmsmo, la varanza, borrosa [ V ~, se obtendrá como un número borroso para el cual los etremos de los α-cortes se hallarán resolvendo los programas matemátcos: 58

3 Parte III: Análss de la determnacón de las prmas en los seguros de vda y de la solvenca dnámca del asegurador cuando los tpos de nterés de valoracón venen estmados a través de números borrosos Mn (Ma y = ( + ( + s.a., De forma ue obtendremos el nterés para el cual la varanza toma un valor mámo ** y mínmo * y el valor de la funcón objetvo en estos puntos y**, y*. Por tanto, los α-cortes de la varanza, V[ α son: * ** [ = [ y, y V α = ( + ( + * ** ( + ( + * **, Sn embargo, como sólo aplcamos un únco tpo de nterés borroso durante toda la vda del contrato, tal como se ha comentado en el apartado.8., sólo este un valor ue cumpla las condcones de etremo relatvo de la varanza para un nterés [,. S dcho nterés de actualzacón ue denomnaremos como * puede ser hallado a través de métodos numércos, o con un pauete nformátco al efecto-, una forma relatvamente senclla de calcular los α-cortes de la varanza es: Paso : Determnar el nterés certo * para el cual V[(, ue es una funcón del tpo de nterés de valoracón, presenta un mámo. En este tpo de seguros, y para [,, ya comentamos en el apartado.8. de la prmera parte de la tess ue podíamos representar a la varanza como: V[( V[( * * (nterés 59

4 . Análss de las prncpales estructuras actuarales con el tpo de nterés de valoracón estmado a través de números borrosos Paso : Determnar la escala de verdad para la cual se pretende determnar los α-cortes. La msma es una sucesón de nveles de presuncón α = α α k α n =. Por ejemplo, s se trata de una escala endecadara, n=, donde 9 8. Paso : Determnar los α-cortes de ~ para dcha escala, de forma ue se obtene la sucesón de ntervalos de números reales postvos: = α... α = α. n Paso 4: Calcular V[ α de la sguente forma: Caso a: ( *. En este caso estamos en el tramo decrecente de la varanza. Gráfcamente observamos: V[( V[( * V[( ( V[( ( * ( ( (nterés Es nmedato ue los α-cortes α de V ~ [ V [ α = son: ( + [ A, ( + [ A Caso b: ( *. En este caso, cualuer nterés a aplcar con ( µ se stúa en el tramo ~ > crecente de la funcón varanza, lo cual podemos comprobar gráfcamente: V[( V[( * V[( ( V[( ( ( ( * (nterés 6

5 Parte III: Análss de la determnacón de las prmas en los seguros de vda y de la solvenca dnámca del asegurador cuando los tpos de nterés de valoracón venen estmados a través de números borrosos de forma ue: ( + [ A, ( + [ A V [ α = Caso c: *. En este caso, la representacón gráfca del caso c es: V[( V[( * V[( ( V[( ( ( * ( (nterés En prmer lugar, debemos determnar Mn k {α k }, k {,,,,n} para el cual * calculamos los α-cortes como: [ α<α k, como * α, los α-cortes de la varanza son V [ α = V [, V [ V [ = Mn + donde: ( [ n A, ( + [ n A V [ = * * (t ( + + ( + α k. Así, α α k, como * α, los α-cortes del nterés se stúan en la parte crecente de la varanza (a la zuerda de * o el tramo decrecente de la funcón varanza, es decr, a la derecha de *. Dependendo del caso en ue nos encontremos, computamos los α-cortes de la sguente manera: c. S (α k > *, es decr, nos encontramos en el tramo decrecente de la varanza sendo por tanto, su epresón la msma ue en a: ( + [ A, ( + [ A V [ α = 6

6 . Análss de las prncpales estructuras actuarales con el tpo de nterés de valoracón estmado a través de números borrosos c. S (α k < *, es decr, nos encontramos en el tramo crecente de la varanza y por tanto estamos ante el caso b: ( + [ A, ( + [ A V [ α = Asmsmo, una vez hemos hallado V[ α, es nmedato determnar los α-cortes de D ~ [. Por otra parte, la varanza de Feng, se calculará a partr de la epresón del apartado.4.., susttuyendo en los etremos de los α-cortes de los factores de actualzacón por la epresón ue corresponda de los etremos de α. Asmsmo, D * [ se hallará como la raíz cuadrada del valor de V * [..4.. Análss cuando el tpo de nterés a aplcar es un número borroso constante y trangular Como las varables aleatoras nferor y superor de ~ venen determnadas por el tpo de nterés superor e nferor respectvamente, las epresones correspondentes a su funcón de cuantía son: ( α = ( + ( α con,,,,-- ( α = ( + + ( α con,,,,-- Así, los α-cortes de A ~ son: A α -- = ( + ( α, ( + + ( α Los α-cortes de la varanza borrosa se pueden hallar de la forma eplctada en el apartado anteror, sn más ue consderar ue (α= +( - α y (α= -( - α, hallándose nmedatamente, por supuesto, los de la desvacón estándar a través de V[ α. Asmsmo, la varanza de Feng se halla de la sguente forma: V * [= [( + ( α + ( + + ( α ( + ( α + ( + + ( α dα dα = 6

7 Parte III: Análss de la determnacón de las prmas en los seguros de vda y de la solvenca dnámca del asegurador cuando los tpos de nterés de valoracón venen estmados a través de números borrosos = [( + ( α + ( + + ( α j= ( + ( + ( t α j+ j ( j= ( + + ( dα = [ [ j= ( + t t ( + t t + t j t j t j t j [( + ( + [( + ( + + α j+ j j + t + j dα =.4.4. Aplcacón numérca A contnuacón realzamos dversas aplcacones numércas de esta estructura. Utlzaremos como sempre las tablas de mortaldad PEM 8 y un nterés constante a lo largo de toda la vda del contrato ~ = (', ', '5. Suponemos un captal asegurado de. undades monetaras. Las edades de los hpotétcos asegurados son =5, 45, 6 y 75 años, de forma ue, por ejemplo, para el asegurado de 5 años, las varables borroso aleatoras nferor y superor ue para un nvel de presuncón α defne ~ son: y, = ('5 'α con, t =,,...,79 = (' + 'α con, t =,,...,79 En prmer lugar obtendremos la esperanza matemátca de la varable borroso aleatora asocada a esta estructura actuaral, A ~ y la bondad de la apromacón trangular con la metodología ue vene sendo utlzada a lo largo de la tess, asuméndose como sempre una escala endecadara. Para ello, y de forma análoga a lo realzado en el apartado de la prmera parte de la tess, dado ue A ~ se halla como t B~ ; y ue conocemos el error absoluto mámo ue se comete en los α-cortes de la esperanza matemátca del valor actual de los captales de fallecmento ue ntervenen en el cálculo de A ~ podemos dar una acotacón superor al error ue se comete al apromar A ~ trangularmente. Para t B ~ notaremos a dchos errores como D * I (t y D * D (t, los cuales se establecen en los nveles de presuncón obtendos prevamente, α I * (t y α D * (t, y cuya epresón puede encontrarse en el apartado..4. De esta forma, el error mámo ue podemos 6

8 . Análss de las prncpales estructuras actuarales con el tpo de nterés de valoracón estmado a través de números borrosos cometer en el nvel de presuncón de un valor por apromarlo a través de un número borroso trangular a A ~ vendrá acotado por: Ma A * D I ( t ( A (, A * D D ( t ( A ( El valor de la esperanza matemátca ya apromado medante un NBT, la acotacón del error cometdo por la apromacón trangular y V * [ y D * [ venen dados en el sguente cuadro. Edad A ~ Error V * [ D * [ 5 (5,5,,48, 49,49, 896,87 7,5 45 (8,86, 9,66, 54,7,8 46,8 56,85 6 (9,, 55,5, 666,,6 74,74 64,64 75 (6,4, 74,9, 8,7, 965,59 4,9 Podemos comprobar ue a medda ue la edad del asegurado aumenta, el ajuste trangular a A ~ es mejor. Ello es debdo a ue se ncorporan cada vez menos factores de descuento con vencmentos lejanos, ue son los ue peor uedaban ajustados por un número borroso trangular. En nuestra aplcacón numérca, podemos observar ue para una escala endecadara no podríamos aceptar la apromacón trangular de A ~ 5, ya ue puede producr en determnados valores un cambo en la escala de verdad a la ue pertenecen. Sn embargo, para edades superores s ue podemos aceptar la apromacón trangular de A ~. A contnuacón presentamos para las msmas estructuras anterormente analzadas, la epresón D ~ en una escala endecadara y epresamos el nterés * para el cual de los α-cortes de [ V ~ y [ la varanza como funcón del nterés alcanza mayor valor. =5 años * =,7 =45 años * =,447 α V (α V (α D (α D (α V (α V (α D (α D (α 58,5 894,69 5,7 7,57 777,5 64,6, 6,, 6,9 894,69 7,67 7, ,6 64,6 6,5 6,, 6749,4 894,69 9,4 7,57 9,45 64,6 8,97 6,, 748,6 894,69,95 7,57 6,7 68,4 4,48 6,98,4 75, 894,69,9 7,57 675,47 677, 4,79 6,79,5 786,76 894,69,44 7,57 9,4 65,6 45,9 6,5,6 87,76 894,69 4,4 7,57 86,8 58,6 47,86 6,6,7 894,9 894,69 5,6 7,57 9,7 5467,79 49,64 59,59 64

9 Parte III: Análss de la determnacón de las prmas en los seguros de vda y de la solvenca dnámca del asegurador cuando los tpos de nterés de valoracón venen estmados a través de números borrosos,8 8479,99 894,69 5,94 7,57 879,4 5, 5,6 58,8,9 869, ,7 6,49 7,44 7, ,6 5,7 56,6 8746, ,54 6,9 6,9 77,6 77,6 54,7 54,7 =6 años * =,74 =75 años * =,786 α V (α V (α D (α D (α V (α V (α D (α D (α 674,56 586,5 7,8 89, 989, 45, 99,45 79,, 77,79 59,6,5 87,6 65,5 774,, 75,4, 856, 4466,67 4,74 85,65 4,76 946,76 6,88 7,64, 99,79 654,4 8,7 8,45 99,4 88,76,45 67,66,4 6,89 75,68 4,64 8,97 98,99 676,9,9 6,45,5 984,6 75,9 44,86 78,9 766,4 588,8 7, 59,,6 88, 654,94 47,9 75,9 455,58 85,8,64 54,5,7 756,8 9455,7 5,85 7,6 54,,4,86 49,44,8 65,4 85,4 5,64 67,79 6,69 89,94 7, 44,6,9 448,7 674, 56, 6,5 698, 965,65,7 8,8 56,9 56,9 58,8 58,8 77,8 77,8,6,6 Sendo por ejemplo, la representacón apromada de [ ( µ [ ( V ~ µ para un asegurado de 5 años: V ~ 9 58,5 8746,54 894,69 y para una edad de 75 años: µ [ ( V ~ 989, 77,8 45, 65

10 . Análss de las prncpales estructuras actuarales con el tpo de nterés de valoracón estmado a través de números borrosos No analzaremos en este caso la apromacón trangular a la varanza. Podemos comprobar, ue, por los métodos ue hemos propuesto, es decr, ajustando un número borroso trangular con el µ, ~ * > msmo núcleo y soporte, en los casos en ue el tanto de nterés crítco * cumple ue ( por ejemplo, lo ue ocurría para una edad de 5 años, dcho ajuste no tene sentdo. Por supuesto, el msmo problema se tendrá con la desvacón estándar. Otra cuestón dstnta es ue * no pertenezca al núcleo del número borroso con el ue realzamos el cálculo del valor actual, lo cual ocurre, por ejemplo, para una edad de 75 años. En este caso s podría analzarse la bondad del ajuste trangular de la varanza, o de la desvacón estándar borrosa, mantenendo el núcleo y el soporte del número borroso de partda..5. SEGURO TEMPORAL.5.. Planteamento general En este caso, el asegurado recbe una undad monetara al fnal del año de fallecmento s este sucede dentro de los prómos n años, en caso contraro no recbe ndemnzacón. El valor actual de este captal contngente untaro es una varable borroso aleatora ue notamos como ~, y vene dada por: ~ f con t = =,,..., n - ~ con n p la cual, vendrá caracterzada por las correspondentes varables aleatoras nferor, (α, y superor (α: f con t =,,..., n = y con n p f t = + con con n p t =,,..., n En cualuer caso, supondremos ue la duracón será n>, ya ue en caso contraro sería un captal de fallecmento en, y este puede ser analzado según lo epuesto en.. Así pues, la esperanza matemátca de ~, ue notaremos como cuyos α-cortes venen dados por: [ n A ~, será un número borroso na α = A, A = f, f = B (, B n n n n n t n α t 66

Análisis estadístico de incertidumbres aleatorias

Análisis estadístico de incertidumbres aleatorias Análss estadístco de ncertdumbres aleatoras Errores aleatoros y sstemátcos La meda y la desvacón estándar La desvacón estándar como error de una sola medda La desvacón estándar de la meda úmero de meddas

Más detalles

Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística

Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística Facultad de Ingenería Dvsón de Cencas Báscas Coordnacón de Cencas Aplcadas Departamento de Probabldad y Estadístca Probabldad y Estadístca Prmer Eamen Fnal Tpo A Semestre: 00- Duracón máma:. h. Consderar

Más detalles

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos Bloque 5. Probabldad y Estadístca Tema. Estadístca descrptva Ejerccos resueltos 5.-1 Dada la sguente tabla de ngresos mensuales, calcular la meda, la medana y el ntervalo modal. Ingresos Frecuenca Menos

Más detalles

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900?

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900? EJERCICIO 1. A contnuacón tene dos dstrbucones por sexo y salaro declarado en el prmer empleo tras obtener la lcencatura de un grupo de ttulados por la UNED. Salaro en Hombres en % Mujeres en % < de 600

Más detalles

MODELOS DE SECUENCIACIÓN EN MÁQUINAS 1

MODELOS DE SECUENCIACIÓN EN MÁQUINAS 1 odelos de secuencacón de tareas en máqunas Andrés Ramos Unversdad Pontfca Comllas http://www.t.comllas.edu/aramos/ Andres.Ramos@comllas.edu ODELOS DE SECUENCIACIÓN EN ÁQUINAS odelos de secuencacón de tareas

Más detalles

CESMA BUSINESS SCHOOL

CESMA BUSINESS SCHOOL CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

3.3 Caracterización de grupos: Estadísticos de forma de la distribución

3.3 Caracterización de grupos: Estadísticos de forma de la distribución 3.3 Caracterzacón de grupos: Estadístcos de forma de la dstrbucón 1. Smetría 2. Apuntamento o curtoss 3. Descrpcón estadístca de una varable: tabla resumen Ya ha sdo abordado en temas precedentes el análss

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

En un mercado hay dos consumidores con las siguientes funciones de utilidad:

En un mercado hay dos consumidores con las siguientes funciones de utilidad: En un mercado hay dos consumdores con las sguentes funcones de utldad: U ( + y, y = ln( + U ( = + y con a >,, y a ln( + donde, =,, es la cantdad del ben consumda por el ndvduo, y es la cantdad de renta

Más detalles

4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS.

4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS. 4. REPRESETACIOES GRÁFICAS PARA DATOS CATEGÓRICOS. Cuando se manejan fenómenos categórcos, se pueden agrupar las observacones en tablas de resumen, para después representarlas en forma gráfca como dagramas

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas.

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas. MATRICES Las matrces se utlzan en el cálculo numérco, en la resolucón de sstemas de ecuacones lneales, de las ecuacones dferencales y de las dervadas parcales. Además de su utldad para el estudo de sstemas

Más detalles

Regresión y correlación Tema 8. 1.1 Contraste sobre β 1.2 Regresión en formato ANOVA. 2. Correlación. Contraste sobre ρ xy

Regresión y correlación Tema 8. 1.1 Contraste sobre β 1.2 Regresión en formato ANOVA. 2. Correlación. Contraste sobre ρ xy Unversdad Autónoma de Madrd 1 Regresón y correlacón Tema 8 1. Regresón lneal smple 1.1 Contraste sobre β 1. Regresón en formato ANOVA. Correlacón. Contraste sobre ρ xy Análss de Datos en Pscología II Tema

Más detalles

Pregunta Hoy está nublado, cuál es la probabilidad de que mañana continúe nublado? cuál es la probabilidad de que está nublado pasado mañana?

Pregunta Hoy está nublado, cuál es la probabilidad de que mañana continúe nublado? cuál es la probabilidad de que está nublado pasado mañana? Cadenas de Marov Después de mucho estudo sobre el clma, hemos vsto que s un día está soleado, en el 70% de los casos el día sguente contnua soleado y en el 30% se pone nublado. En térmnos de probabldad,

Más detalles

UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE. Dpto. de Métodos Cuantitativos e Informáticos. Universidad Politécnica de Cartagena.

UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE. Dpto. de Métodos Cuantitativos e Informáticos. Universidad Politécnica de Cartagena. UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE COURNOT. Autores: García Córdoba, José Antono; josea.garca@upct.es Ruz Marín, Manuel; manuel.ruz@upct.es Sánchez García, Juan Francsco; jf.sanchez@upct.es

Más detalles

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116 Números complejos E S Q U E M A D E L A U N I D A D. Números magnaros. Números complejos en forma bnómca págna. Representacón gráfca de los números complejos págna 6.. Suma de números complejos págna 8.

Más detalles

PREGUNTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS EN EXÁMENES DE LOS CAPÍTULOS 2, 3 Y 4 (DISTRIBUCIONES DE FRECUENCIAS UNIDIMENSIONALES )

PREGUNTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS EN EXÁMENES DE LOS CAPÍTULOS 2, 3 Y 4 (DISTRIBUCIONES DE FRECUENCIAS UNIDIMENSIONALES ) TUTORÍA DE ITRODUCCIÓ A LA ESTADÍSTICA. (º A.D.E.) e-mal: mozas@el.uned.es PREGUTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS E EXÁMEES DE LOS CAPÍTULOS, Y 4 (DISTRIBUCIOES DE FRECUECIAS UIDIMESIOALES

Más detalles

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1 Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para

Más detalles

Análisis de la Varianza de dos factores con replicaciones: Caso Balanceado (Scheffé, 1959)

Análisis de la Varianza de dos factores con replicaciones: Caso Balanceado (Scheffé, 1959) Modelo Lneal 03 Ana M Banco 1 Análss de la Varanza de dos factores con replcacones: Caso Balanceado cheffé, 1959 En este eemplo nos nteresa el tempo de coagulacón en mnutos del plasma sanguíneo para 3

Más detalles

Departamento de Economía Aplicada I ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA EN EMPRESARIALES ESTADÍSTICA

Departamento de Economía Aplicada I ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA EN EMPRESARIALES ESTADÍSTICA Deartamento de Economía Alcada ESCUELA UNVERSTARA DE ESTUDOS EMRESARALES DLOMATURA EN EMRESARALES ESTADÍSTCA Ejerccos Resueltos NÚMEROS ÍNDCES Curso 2006-2007 Deartamento de Economía Alcada Ejerccos Resueltos:

Más detalles

ESTADÍSTICA (GRUPO 12)

ESTADÍSTICA (GRUPO 12) ESTADÍSTICA (GRUPO 12) CAPÍTULO II.- ANÁLISIS DE UNA CARACTERÍSTICA (DISTRIBUCIONES UNIDIMENSIONALES) TEMA 7.- MEDIDAS DE CONCENTRACIÓN. DIPLOMATURA EN CIENCIAS EMPRESARIALES UNIVERSIDAD DE SEVILLA 1.

Más detalles

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o 4 LNZ DE OHR: Contraccón de mezcla alcohol/h2o CONTENIDOS Defncones. Contraccón de una ezcla. olumen específco deal y real. Uso de la balanza de ohr. erfcacón de Jnetllos. Propagacón de Errores. OJETIOS

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Dstrbucones de probabldad Toda dstrbucón de probabldad es generada por una varable aleatora x, la que puede ser de dos tpos: Varable aleatora dscreta (x). Se le denomna varable porque puede tomar dferentes

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un expermento, un número real.

Más detalles

DISTRIBUCION DE RENDIMIENTOS: APLICACIONES

DISTRIBUCION DE RENDIMIENTOS: APLICACIONES DISTRIBUCION DE RENDIMIENTOS: APLICACIONES Puntos a desarrollar Como es el modelo de dstrbucon normal de los rendmentos Como se puede utlzar para hacer predccones futuras sobre precos de actvos Como se

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

2. CARACTERÍSTICAS Y REQUISITOS DEL SISTEMA DE REDUCCIÓN

2. CARACTERÍSTICAS Y REQUISITOS DEL SISTEMA DE REDUCCIÓN INGURUMN TA LURRALD OLITIKA SAILA Ingurumen Salburuordetza DARTAMNTO D MDIO AMBINT Y OLÍTICA TRRITORIAL Vceconsejería de Medo Ambente RQUISITOS ARA LAS ROUSTAS D SISTMAS D RDUCCIÓN D MISIONS DIRNTS AL

Más detalles

ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO.

ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO. ELECTROSTÁTICA. CAMPO ELÉCTRICO EN EL VACÍO..- PERSPECTIVA HISTÓRICA MATERIA { MOLÉCULAS } { ÁTOMOS}, sendo los átomos y/o moléculas estables por la nteraccón electromagnétca. Desde la perspectva electromagnétca

Más detalles

1.- Una empresa se plantea una inversión cuyas características financieras son:

1.- Una empresa se plantea una inversión cuyas características financieras son: ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES. Departamento de Economía Aplcada (Matemátcas). Matemátcas Fnanceras. Relacón de Problemas. Rentas. 1.- Una empresa se plantea una nversón cuyas característcas

Más detalles

Cuaderno de actividades 4º ESO

Cuaderno de actividades 4º ESO Estadístca Undmensonal 1 Conceptos báscos. Cuaderno de actvdades º ESO Cualquer elemento o ente que sea portador de nformacón sobre alguna propedad en la cual se está nteresado se denomna ndvduo. El conjunto

Más detalles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles 2 Undad I.. Defncón de reaccón de combustón La reaccón de combustón se basa en la reaccón químca exotérmca de una sustanca (o una mezcla de ellas) denomnada combustble, con el oxígeno. Como consecuenca

Más detalles

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera

Material realizado por J. David Moreno y María Gutiérrez. Asignatura: Economía Financiera Tema - MATEMÁTICAS FINANCIERAS Materal realzado por J. Davd Moreno y María Gutérrez Unversdad Carlos III de Madrd Asgnatura: Economía Fnancera Apuntes realzados por J. Davd Moreno y María Gutérrez Advertenca

Más detalles

Vida Util, características de la Fiabilidad e Inviabilidad y distribuciones teóricas en el terreno de la fiabilidad

Vida Util, características de la Fiabilidad e Inviabilidad y distribuciones teóricas en el terreno de la fiabilidad Vda Utl, característcas de la Fabldad e Invabldad y dstrbucones teórcas en el terreno de la fabldad Realzado por: Mgter. Leandro D. Torres Vda Utl Este índce se refere a una vda útl meda nomnal y se puede

Más detalles

62 EJERCICIOS de NÚMEROS COMPLEJOS

62 EJERCICIOS de NÚMEROS COMPLEJOS 6 EJERCICIOS de NÚMEROS COMPLEJOS. Resolver las sguentes ecuacones en el campo de los números complejos: a x -x+=0 (Soluc: ± b x +=0 (Soluc: ± c x -x+=0 (Soluc: ± d x -x+=0 (Soluc: ± e x -6x +x-6=0 (Soluc:,

Más detalles

Las acciones a considerar en el proyecto de una estructura o elemento estructural se pueden clasificar según los criterios siguientes:

Las acciones a considerar en el proyecto de una estructura o elemento estructural se pueden clasificar según los criterios siguientes: CAÍTULO III ACCIONES Artículo 9º Clasfcacón de las accones Las accones a consderar en el proyecto de una estructura o elemento estructural se pueden clasfcar según los crteros sguentes: - Clasfcacón por

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado en Geomátca y Topografía Escuela Técnca Superor de Ingeneros en Topografía, Geodesa y Cartografía. Unversdad Poltécnca de Madrd

Más detalles

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso. CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

Matemáticas A 4º E.S.O. pág. 1

Matemáticas A 4º E.S.O. pág. 1 Matemátcas A º E.S.O. pág. HOJA : ESTADÍSTICA º.- Agrupa en ntervalos y construye una tabla de frecuencas (con la marca de clase ncluda) y la frecuenca absoluta de las sguentes alturas, meddas en centímetros,

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Rentas financieras. Unidad 5

Rentas financieras. Unidad 5 Undad 5 Rentas fnanceras 5.. Concepto de renta 5.2. Clasfcacón de las rentas 5.3. Valor captal o fnancero de una renta 5.4. Renta constante, nmedata, pospagable y temporal 5.4.. Valor actual 5.4.2. Valor

Más detalles

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES Documento Preparado para la Cámara de Fondos de Inversón Versón 203 Por Rodrgo Matarrta Venegas 23 de Setembre del 204 2 Análss Industral

Más detalles

-.GEOMETRÍA.- a) 37 cm y 45 cm. b) 16 cm y 30 cm. En estos dos, se dan la hipotenusa y un cateto, y se pide el otro cateto:

-.GEOMETRÍA.- a) 37 cm y 45 cm. b) 16 cm y 30 cm. En estos dos, se dan la hipotenusa y un cateto, y se pide el otro cateto: -.GEOMETRÍA.- Ejercco nº 1.- Calcula el lado que falta en este trángulo rectángulo: Ejercco nº 2.- En los sguentes rectángulos, se dan dos catetos y se pde la hpotenusa (s su medda no es exacta, con una

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

Tema 4. Números Complejos

Tema 4. Números Complejos Tema. Números Complejos. Números complejos...... Defncón de números complejo..... Conjugado y opuesto de números complejos..... Representacón gráfca de los complejos.... Operacones con complejos..... Suma

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

VARIABLES ALEATORIAS BIDIMENSIONALES. DISTRIBUCIONES

VARIABLES ALEATORIAS BIDIMENSIONALES. DISTRIBUCIONES Gestón Aeronáutca: Estadístca Teórca Facultad Cencas Económcas Empresarales Departamento de Economía Aplcada Profesor: Santago de la Fuente Fernández VARIABLES ALEATORIAS BIDIMENSIONALES. DISTRIBUCIONES

Más detalles

CONTRIBUCIÓN A LA MEJORA DE RESOLUCIÓN DE LOS SISTEMAS DE OBTENCIÓN DE IMÁGENES POR ULTRASONIDOS

CONTRIBUCIÓN A LA MEJORA DE RESOLUCIÓN DE LOS SISTEMAS DE OBTENCIÓN DE IMÁGENES POR ULTRASONIDOS UNIVERSITAT POLITÈCNICA DE CATALUNYA Departament d Engnyera Electrònca CONTRIBUCIÓN A LA MEJORA DE RESOLUCIÓN DE LOS SISTEMAS DE OBTENCIÓN DE IMÁGENES POR ULTRASONIDOS Autor: Jord Salazar Soler Drector:

Más detalles

T. 5 Estadísticos de forma de la distribución

T. 5 Estadísticos de forma de la distribución T. 5 Estadístcos de forma de la dstrbucón 1 1. Asmetría 2. Apuntamento o curtoss Ya ha sdo abordado en temas precedentes el análss de la forma de la dstrbucón de frecuencas desde una aproxmacón gráfca.

Más detalles

2.5 Especialidades en la facturación eléctrica

2.5 Especialidades en la facturación eléctrica 2.5 Especaldades en la facturacón eléctrca Es necesaro destacar a contnuacón algunos aspectos peculares de la facturacón eléctrca según Tarfas, que tendrán su mportanca a la hora de establecer los crteros

Más detalles

Regresión y Correlación

Regresión y Correlación Regresón Correlacón 1.- El número de turstas (en mllones) entrados en España mensualmente durante los años 001 00 se epone en la sguente estadístca. Nº Turstas 001,76,6,9 3,8 4,4 4,81 8,93 9,98 5,91 4,34,6

Más detalles

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza

Maestría en Administración. Medidas Descriptivas. Formulario e Interpretación. Dr. Francisco Javier Cruz Ariza Maestría en Admnstracón Meddas Descrptvas Formularo e Interpretacón Dr. Francsco Javer Cruz Arza A contnuacón mostramos el foco de atencón de las dstntas meddas que abordaremos en el presente manual. El

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías

Resumen de los teoremas fundamentales del análisis estructural aplicados a celosías Resumen de los teoremas fundamentales del análss estructural aplcados a celosías INTRODUCCIÓN Fuerzas aplcadas y deformacones de los nudos (=1,n) ESTICIDD Tensón =Ν/Α. Unforme en cada seccón de la arra.

Más detalles

Organización y resumen de datos cuantitativos

Organización y resumen de datos cuantitativos Organzacón y resumen de datos cuanttatvos Contendos Organzacón de datos cuanttatvos: dagrama de tallos y hojas, tablas de frecuencas. Hstogramas. Polígonos. Ojvas ORGANIZACIÓN Y RESUMEN DE DATOS CUANTITATIVOS

Más detalles

CAPÍTULO IV METODOLOGÍA. Para llevar a cabo la investigación se ha tenido en cuenta el siguiente diseño:

CAPÍTULO IV METODOLOGÍA. Para llevar a cabo la investigación se ha tenido en cuenta el siguiente diseño: CAPÍTUL IV METDLGÍA 1. Dseño y técnca de nvestgacón Para llevar a cabo la nvestgacón se ha tendo en cuenta el sguente dseño: 1. Investgacón con medcón preva y posteror con grupo de control.. Las undades

Más detalles

DEFINICIÓN DE INDICADORES

DEFINICIÓN DE INDICADORES DEFINICIÓN DE INDICADORES ÍNDICE 1. Notacón básca... 3 2. Indcadores de ntegracón: comerco total de benes... 4 2.1. Grado de apertura... 4 2.2. Grado de conexón... 4 2.3. Grado de conexón total... 5 2.4.

Más detalles

315 M de R Versión 1 Segunda Parcial 1/8 Lapso 2008/2

315 M de R Versión 1 Segunda Parcial 1/8 Lapso 2008/2 5 M de R Versón Segunda Parcal /8 Lapso 8/ UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 5 MOMENTO: Segunda Parcal

Más detalles

Modelos unifactoriales de efectos aleatorizados

Modelos unifactoriales de efectos aleatorizados Capítulo 4 Modelos unfactorales de efectos aleatorzados En el modelo de efectos aleatoros, los nveles del factor son una muestra aleatora de una poblacón de nveles. Este modelo surge ante la necesdad de

Más detalles

GANTT, PERT y CPM INDICE

GANTT, PERT y CPM INDICE GANTT, PERT y CPM INDICE 1 Antecedentes hstórcos...2 2 Conceptos báscos: actvdad y suceso...2 3 Prelacones entre actvdades...3 4 Cuadro de prelacones y matrz de encadenamento...3 5 Construccón del grafo...4

Más detalles

Tema 21: Distribución muestral de un estadístico

Tema 21: Distribución muestral de un estadístico Análss de Datos I Esquema del Tema 21 Tema 21: Dstrbucón muestral de un estadístco 1. INTRODUCCIÓN 2. DISTRIBUCIÓN MUESTRAL DE LA MEDIA 3. DISTRIBUCIÓN MUESTRAL DE LA PROPORCIÓN Bblografía * : Tema 15

Más detalles

PRÁCTICA 1: MEDIDA DE MAGNITUDES FÍSICAS Y SU TRATAMIENTO NUMÉRICO

PRÁCTICA 1: MEDIDA DE MAGNITUDES FÍSICAS Y SU TRATAMIENTO NUMÉRICO PRÁCTICA 1: MEDIDA DE MAGNITUDES FÍSICAS Y SU TRATAMIENTO NUMÉRICO MEDIDA Y ERROR La medda epermental es la base de todo el conocmento centífco. Medr es comparar una determnada propedad de un sstema con

Más detalles

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales:

Vectores VECTORES 1.- Magnitudes Escalares y Magnitudes Vectoriales. Las Magnitudes Escalares: Las Magnitudes Vectoriales: VECTOES 1.- Magntudes Escalares y Magntudes Vectorales. Las Magntudes Escalares: son aquellas que quedan defndas úncamente por su valor numérco (escalar) y su undad correspondente, Eemplo de magntudes

Más detalles

8 MECANICA Y FLUIDOS: Calorimetría

8 MECANICA Y FLUIDOS: Calorimetría 8 MECANICA Y FLUIDOS: Calormetría CONTENIDOS Dencones. Capacdad caloríca. Calor especíco. Equlbro térmco. Calormetría. Calorímetro de las mezclas. Marcha del calorímetro. Propagacón de Errores. OBJETIVOS

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II PRACTICA 11: Crcutos no lneales elementales con el amplfcador operaconal OBJETIVO: El alumno se famlarzará con

Más detalles

CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO. Como se explica en el capítulo 4, una anualidad es una serie de pagos que se realizan

CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO. Como se explica en el capítulo 4, una anualidad es una serie de pagos que se realizan CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO 7. Anualdad de Vda Como se elca en el caítulo 4, una anualdad es una sere de agos que se realzan durante un temo determnado, nombrándose a esta

Más detalles

Tema 3. Teoremas de la Teoría de Circuitos

Tema 3. Teoremas de la Teoría de Circuitos Tema 3. Teoremas de la Teoría de Crcutos 3.1 Introduccón 3. Superposcón 3.3 Transformacón de fuentes 3.4 Teorema de Theenn 3.5 Teorema de Norton V Th Th L 3.6 Máxma transferenca de potenca José. Pereda,

Más detalles

TEMA 4. TRABAJO Y ENERGIA.

TEMA 4. TRABAJO Y ENERGIA. TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

315 M/R Versión 1 Segunda Parcial 1/7 Lapso 2009/2

315 M/R Versión 1 Segunda Parcial 1/7 Lapso 2009/2 35 M/R Versón Segunda Parcal /7 UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 35 MOMENTO: Segunda Parcal VERSIÓN:

Más detalles

Tasas de Caducidad. - Guía de Apoyo para la Construcción y Aplicación - Por: Act. Pedro Aguilar Beltrán. paguilar@cnsf.gob.mx

Tasas de Caducidad. - Guía de Apoyo para la Construcción y Aplicación - Por: Act. Pedro Aguilar Beltrán. paguilar@cnsf.gob.mx Tasas de Caducdad - Guía de Apoyo para la Construccón y Aplcacón - Por: Act. Pedro Agular Beltrán pagular@cnsf.gob.m 1. Introduccón La construccón y aplcacón de tasas de caducdad en el cálculo de utldades

Más detalles

Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO

Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO CUESTIONARIO Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO 1. Cuánto vale una Letra del Tesoro, en tanto por cento de nomnal, s calculamos su valor al 3% de nterés y faltan 5 días para su vencmento? A) 97,2

Más detalles

Colección de problemas de. Poder de Mercado y Estrategia

Colección de problemas de. Poder de Mercado y Estrategia de Poder de Mercado y Estratega Curso 3º - ECO- 0-03 Iñak Agurre Jaromr Kovark Marta San Martín Fundamentos del Análss Económco I Unversdad del País Vasco UPV/EHU Tema. Olgopolo y competenca monopolístca.

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas

Más detalles

FUNDAMENTOS QUIMICOS DE LA INGENIERIA

FUNDAMENTOS QUIMICOS DE LA INGENIERIA FUNDAMENTOS QUIMICOS DE LA INGENIERIA (BLOQUE DE INGENIERIA QUIMICA) GUION DE PRACTICAS DE LABORATORIO ANTONIO DURÁN SEGOVIA JOSÉ MARÍA MONTEAGUDO MARTÍNEZ INDICE PRACTICA PAGINA BALANCE MACROSCÓPICO DE

Más detalles

1. Concepto y origen de la estadística Conceptos básicos Tablas estadísticas: recuento Representación de graficas...

1. Concepto y origen de la estadística Conceptos básicos Tablas estadísticas: recuento Representación de graficas... TEMA. ESTADÍSTICA DESCRIPTIVA.. Concepto y orgen de la estadístca..... Conceptos báscos..... Tablas estadístcas: recuento..... Representacón de grafcas.... 6.. Varables cualtatvas... 6.. Varables cuanttatvas

Más detalles

4. PROBABILIDAD CONDICIONAL

4. PROBABILIDAD CONDICIONAL . ROBBILIDD CONDICIONL La probabldad de que ocurra un evento B cuando se sabe que ha ocurrdo algún otro evento se denomna robabldad Condconal, Se denota como (B/) y se lee como la probabldad de que ocurra

Más detalles

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir

Consideremos un sólido rígido sometido a un sistema de fuerzas en equilibrío, es decir 1. PRINIPIO E TRJOS VIRTULES El prncpo de los trabajos rtuales, en su ertente de desplazamentos rtuales, fue ntroducdo por John ernoull en 1717. La obtencón del msmo dera de la formulacón débl (o ntegral)

Más detalles

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias

Créditos Y Sistemas de Amortización: Diferencias, Similitudes e Implicancias Crédtos Y Sstemas de Amortzacón: Dferencas, Smltudes e Implcancas Introduccón Cuando los ngresos de un agente económco superan su gasto de consumo, surge el concepto de ahorro, esto es, la parte del ngreso

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

PRECIOS MEDIOS ANUALES DE LAS TIERRAS DE USO AGRARIO (METODOLOGÍA)

PRECIOS MEDIOS ANUALES DE LAS TIERRAS DE USO AGRARIO (METODOLOGÍA) SECREARÍA ENERAL ÉCNICA MINISERIO DE ARICULURA, ALIMENACIÓN Y MEDIO AMBIENE SUBDIRECCIÓN ENERAL DE ESADÍSICA PRECIOS MEDIOS ANUALES DE LAS IERRAS DE USO ARARIO (MEODOLOÍA) OBJEIVO: Desde 1983 el Mnstero

Más detalles

GUIA DE ALCANCE FINANCIERO CAE OPERACIONES DE CRÉDITO HIPOTECARIO

GUIA DE ALCANCE FINANCIERO CAE OPERACIONES DE CRÉDITO HIPOTECARIO INTRODUCCIÓN La ley 2.555 publcada el día 5 de dcembre de 211 y que entró en vgenca el día 4 de marzo de 212, que modca la ley 19.496 Sobre Proteccón de los Derechos de los Consumdores (LPC, regula desde

Más detalles

Cifrado de imágenes usando autómatas celulares con memoria

Cifrado de imágenes usando autómatas celulares con memoria Cfrado de mágenes usando autómatas celulares con memora L. Hernández Encnas 1, A. Hernández Encnas 2, S. Hoya Whte 2, A. Martín del Rey 3, G. Rodríguez Sánchez 4 1 Insttuto de Físca Aplcada, CSIC, C/Serrano

Más detalles

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1). TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen

Más detalles

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2011 INSTITUTO NACIONAL DE ESTADÍSTICAS

ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 2011 INSTITUTO NACIONAL DE ESTADÍSTICAS METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE POR CARRETERA AÑO CONTABLE 0 INSTITUTO NACIONAL DE ESTADÍSTICAS 03 ÍNDICE I. METODOLOGÍA ENCUESTA ESTRUCTURAL DE TRANSPORTE INTERURBANO DE PASAJEROS POR CARRETERA.

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Unversdad de Cádz Departamento de Matemátcas MATEMÁTICAS para estudantes de prmer curso de facultades y escuelas técncas Tema 13 Dstrbucones bdmensonales. Regresón y correlacón lneal Elaborado por la Profesora

Más detalles

Tratamiento de datos experimentales. Teoría de errores

Tratamiento de datos experimentales. Teoría de errores Tratamento de datos expermentales. Teoría de errores. Apéndce II Tratamento de datos expermentales. Teoría de errores (Fuente: Práctcas de Laboratoro: Físca, Hernández et al., 005) El objetvo de la expermentacón

Más detalles

7ª SESIÓN: Medidas de concentración

7ª SESIÓN: Medidas de concentración Curso 2006-2007 7ª Sesón: Meddas de concentracón 7ª SESIÓN: Meddas de concentracón. Abrr el rograma Excel. 2. Abrr el lbro utlzado en las ráctcas anterores. 3. Insertar la Hoja7 al fnal del lbro. 4. Escrbr

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico

Apéndice A: Metodología para la evaluación del modelo de pronóstico meteorológico Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Apéndce A: Metodología para la evaluacón del modelo de pronóstco meteorológco Tabla de contendos Ap.A Apéndce A: Metodología

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

Efectos fijos o aleatorios: test de especificación

Efectos fijos o aleatorios: test de especificación Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto

Más detalles