En este caso, el valor actual de una unidad monetaria pagadera al final del año de fallecimiento de

Tamaño: px
Comenzar la demostración a partir de la página:

Download "En este caso, el valor actual de una unidad monetaria pagadera al final del año de fallecimiento de"

Transcripción

1 Parte III: Análss de la determnacón de las prmas en los seguros de vda y de la solvenca dnámca del asegurador cuando los tpos de nterés de valoracón venen estmados a través de números borrosos.4. SEGURO VIDA ENTERA.4.. Planteamento general En este caso, el valor actual de una undad monetara pagadera al fnal del año de fallecmento de una cabeza de edad, es una varable borroso aleatora ue notamos como ~, y vene dada por: ~ ~ = f t + con,,,,-- para la cual, y a un nvel α, a través de f tα =[f t (α,f t (α, podemos hallar la funcón de cuantía de la varable aleatora nferor (α y de la superor (α como: α = f t + con y ( = f t con ( α +,,,,-- Así pues, la esperanza matemátca de ~, ue notaremos como α-cortes venen dados por: [ A ~ será un número borroso cuyos A α = A, A = f, f B, B = t t Sn embargo y como ocurrrá en las estructuras actuarales ue analzaremos a contnuacón, no podemos hallar la epresón analítca de la funcón de pertenenca de la esperanza matemátca, la varanza o la desvacón estándar, ya ue s se utlzan varos tpos de nterés, debemos realzar la convolucón de las funcones de pertenenca de las funcones de pertenenca de cada uno de los tpos de nterés o de los factores de actualzacón ue defnen, o ben, s se utlza un tpo de nterés únco, no este epresón análtca de dcho tpo de nterés como funcón del valor actual de una renta. Asmsmo, la varanza borrosa toma como epresón de los α-cortes: + V[ α = R y = ( =[Mn y, Ma y t y t +, f = α En prncpo, no sólo no podemos dar una epresón de su funcón de pertenenca, sno ue no podemos dar una epresón analítca para sus α-cortes ya ue no es una funcón monótona de los tpos de nterés utlzados en la actualzacón. Sn embargo, para cada nvel α para la ue 57

2 . Análss de las prncpales estructuras actuarales con el tpo de nterés de valoracón estmado a través de números borrosos ueramos calcularla, resolveremos el etremo nferor y el superor de ésta sn más ue plantear los programas matemátcos: Mnmzar (Mamzar y ( s.a.: f f t + t + = t +,,,..,-- Sn embargo, s aplcamos la apromacón a la varanza propuesta en el apartado.6.. de la prmera parte de la tess, el resultado ue obtendremos nclurá el α-corte de la varanza. Los α- cortes de D ~ [, como sempre, se obtendrán sn más ue calcular la raz cuadrada de la varanza. La varanza de Feng se hallará partendo de: [ V[ (α= f ( - A ( α y V[ (α= f ( - A t + α [ [ t + α [ y así, V * [= f { } [ + [ f [ A + [ A = f {[ + [ f } dα [ A + [ A { } dα dα =.4.. Análss cuando el tpo de nterés a aplcar es un número borroso constante S el tpo de nterés aplcar a lo largo de toda la vda del contrato es un número borroso ~ constante para toda la operacón, las varables aleatoras (α y (α venen dadas por: (t ( α = ( + y ( α = ( + con +,,,,-- Sendo entonces los α-cortes de A α = [ A, = A ~ : A (, ( + + Asmsmo, la varanza, borrosa [ V ~, se obtendrá como un número borroso para el cual los etremos de los α-cortes se hallarán resolvendo los programas matemátcos: 58

3 Parte III: Análss de la determnacón de las prmas en los seguros de vda y de la solvenca dnámca del asegurador cuando los tpos de nterés de valoracón venen estmados a través de números borrosos Mn (Ma y = ( + ( + s.a., De forma ue obtendremos el nterés para el cual la varanza toma un valor mámo ** y mínmo * y el valor de la funcón objetvo en estos puntos y**, y*. Por tanto, los α-cortes de la varanza, V[ α son: * ** [ = [ y, y V α = ( + ( + * ** ( + ( + * **, Sn embargo, como sólo aplcamos un únco tpo de nterés borroso durante toda la vda del contrato, tal como se ha comentado en el apartado.8., sólo este un valor ue cumpla las condcones de etremo relatvo de la varanza para un nterés [,. S dcho nterés de actualzacón ue denomnaremos como * puede ser hallado a través de métodos numércos, o con un pauete nformátco al efecto-, una forma relatvamente senclla de calcular los α-cortes de la varanza es: Paso : Determnar el nterés certo * para el cual V[(, ue es una funcón del tpo de nterés de valoracón, presenta un mámo. En este tpo de seguros, y para [,, ya comentamos en el apartado.8. de la prmera parte de la tess ue podíamos representar a la varanza como: V[( V[( * * (nterés 59

4 . Análss de las prncpales estructuras actuarales con el tpo de nterés de valoracón estmado a través de números borrosos Paso : Determnar la escala de verdad para la cual se pretende determnar los α-cortes. La msma es una sucesón de nveles de presuncón α = α α k α n =. Por ejemplo, s se trata de una escala endecadara, n=, donde 9 8. Paso : Determnar los α-cortes de ~ para dcha escala, de forma ue se obtene la sucesón de ntervalos de números reales postvos: = α... α = α. n Paso 4: Calcular V[ α de la sguente forma: Caso a: ( *. En este caso estamos en el tramo decrecente de la varanza. Gráfcamente observamos: V[( V[( * V[( ( V[( ( * ( ( (nterés Es nmedato ue los α-cortes α de V ~ [ V [ α = son: ( + [ A, ( + [ A Caso b: ( *. En este caso, cualuer nterés a aplcar con ( µ se stúa en el tramo ~ > crecente de la funcón varanza, lo cual podemos comprobar gráfcamente: V[( V[( * V[( ( V[( ( ( ( * (nterés 6

5 Parte III: Análss de la determnacón de las prmas en los seguros de vda y de la solvenca dnámca del asegurador cuando los tpos de nterés de valoracón venen estmados a través de números borrosos de forma ue: ( + [ A, ( + [ A V [ α = Caso c: *. En este caso, la representacón gráfca del caso c es: V[( V[( * V[( ( V[( ( ( * ( (nterés En prmer lugar, debemos determnar Mn k {α k }, k {,,,,n} para el cual * calculamos los α-cortes como: [ α<α k, como * α, los α-cortes de la varanza son V [ α = V [, V [ V [ = Mn + donde: ( [ n A, ( + [ n A V [ = * * (t ( + + ( + α k. Así, α α k, como * α, los α-cortes del nterés se stúan en la parte crecente de la varanza (a la zuerda de * o el tramo decrecente de la funcón varanza, es decr, a la derecha de *. Dependendo del caso en ue nos encontremos, computamos los α-cortes de la sguente manera: c. S (α k > *, es decr, nos encontramos en el tramo decrecente de la varanza sendo por tanto, su epresón la msma ue en a: ( + [ A, ( + [ A V [ α = 6

6 . Análss de las prncpales estructuras actuarales con el tpo de nterés de valoracón estmado a través de números borrosos c. S (α k < *, es decr, nos encontramos en el tramo crecente de la varanza y por tanto estamos ante el caso b: ( + [ A, ( + [ A V [ α = Asmsmo, una vez hemos hallado V[ α, es nmedato determnar los α-cortes de D ~ [. Por otra parte, la varanza de Feng, se calculará a partr de la epresón del apartado.4.., susttuyendo en los etremos de los α-cortes de los factores de actualzacón por la epresón ue corresponda de los etremos de α. Asmsmo, D * [ se hallará como la raíz cuadrada del valor de V * [..4.. Análss cuando el tpo de nterés a aplcar es un número borroso constante y trangular Como las varables aleatoras nferor y superor de ~ venen determnadas por el tpo de nterés superor e nferor respectvamente, las epresones correspondentes a su funcón de cuantía son: ( α = ( + ( α con,,,,-- ( α = ( + + ( α con,,,,-- Así, los α-cortes de A ~ son: A α -- = ( + ( α, ( + + ( α Los α-cortes de la varanza borrosa se pueden hallar de la forma eplctada en el apartado anteror, sn más ue consderar ue (α= +( - α y (α= -( - α, hallándose nmedatamente, por supuesto, los de la desvacón estándar a través de V[ α. Asmsmo, la varanza de Feng se halla de la sguente forma: V * [= [( + ( α + ( + + ( α ( + ( α + ( + + ( α dα dα = 6

7 Parte III: Análss de la determnacón de las prmas en los seguros de vda y de la solvenca dnámca del asegurador cuando los tpos de nterés de valoracón venen estmados a través de números borrosos = [( + ( α + ( + + ( α j= ( + ( + ( t α j+ j ( j= ( + + ( dα = [ [ j= ( + t t ( + t t + t j t j t j t j [( + ( + [( + ( + + α j+ j j + t + j dα =.4.4. Aplcacón numérca A contnuacón realzamos dversas aplcacones numércas de esta estructura. Utlzaremos como sempre las tablas de mortaldad PEM 8 y un nterés constante a lo largo de toda la vda del contrato ~ = (', ', '5. Suponemos un captal asegurado de. undades monetaras. Las edades de los hpotétcos asegurados son =5, 45, 6 y 75 años, de forma ue, por ejemplo, para el asegurado de 5 años, las varables borroso aleatoras nferor y superor ue para un nvel de presuncón α defne ~ son: y, = ('5 'α con, t =,,...,79 = (' + 'α con, t =,,...,79 En prmer lugar obtendremos la esperanza matemátca de la varable borroso aleatora asocada a esta estructura actuaral, A ~ y la bondad de la apromacón trangular con la metodología ue vene sendo utlzada a lo largo de la tess, asuméndose como sempre una escala endecadara. Para ello, y de forma análoga a lo realzado en el apartado de la prmera parte de la tess, dado ue A ~ se halla como t B~ ; y ue conocemos el error absoluto mámo ue se comete en los α-cortes de la esperanza matemátca del valor actual de los captales de fallecmento ue ntervenen en el cálculo de A ~ podemos dar una acotacón superor al error ue se comete al apromar A ~ trangularmente. Para t B ~ notaremos a dchos errores como D * I (t y D * D (t, los cuales se establecen en los nveles de presuncón obtendos prevamente, α I * (t y α D * (t, y cuya epresón puede encontrarse en el apartado..4. De esta forma, el error mámo ue podemos 6

8 . Análss de las prncpales estructuras actuarales con el tpo de nterés de valoracón estmado a través de números borrosos cometer en el nvel de presuncón de un valor por apromarlo a través de un número borroso trangular a A ~ vendrá acotado por: Ma A * D I ( t ( A (, A * D D ( t ( A ( El valor de la esperanza matemátca ya apromado medante un NBT, la acotacón del error cometdo por la apromacón trangular y V * [ y D * [ venen dados en el sguente cuadro. Edad A ~ Error V * [ D * [ 5 (5,5,,48, 49,49, 896,87 7,5 45 (8,86, 9,66, 54,7,8 46,8 56,85 6 (9,, 55,5, 666,,6 74,74 64,64 75 (6,4, 74,9, 8,7, 965,59 4,9 Podemos comprobar ue a medda ue la edad del asegurado aumenta, el ajuste trangular a A ~ es mejor. Ello es debdo a ue se ncorporan cada vez menos factores de descuento con vencmentos lejanos, ue son los ue peor uedaban ajustados por un número borroso trangular. En nuestra aplcacón numérca, podemos observar ue para una escala endecadara no podríamos aceptar la apromacón trangular de A ~ 5, ya ue puede producr en determnados valores un cambo en la escala de verdad a la ue pertenecen. Sn embargo, para edades superores s ue podemos aceptar la apromacón trangular de A ~. A contnuacón presentamos para las msmas estructuras anterormente analzadas, la epresón D ~ en una escala endecadara y epresamos el nterés * para el cual de los α-cortes de [ V ~ y [ la varanza como funcón del nterés alcanza mayor valor. =5 años * =,7 =45 años * =,447 α V (α V (α D (α D (α V (α V (α D (α D (α 58,5 894,69 5,7 7,57 777,5 64,6, 6,, 6,9 894,69 7,67 7, ,6 64,6 6,5 6,, 6749,4 894,69 9,4 7,57 9,45 64,6 8,97 6,, 748,6 894,69,95 7,57 6,7 68,4 4,48 6,98,4 75, 894,69,9 7,57 675,47 677, 4,79 6,79,5 786,76 894,69,44 7,57 9,4 65,6 45,9 6,5,6 87,76 894,69 4,4 7,57 86,8 58,6 47,86 6,6,7 894,9 894,69 5,6 7,57 9,7 5467,79 49,64 59,59 64

9 Parte III: Análss de la determnacón de las prmas en los seguros de vda y de la solvenca dnámca del asegurador cuando los tpos de nterés de valoracón venen estmados a través de números borrosos,8 8479,99 894,69 5,94 7,57 879,4 5, 5,6 58,8,9 869, ,7 6,49 7,44 7, ,6 5,7 56,6 8746, ,54 6,9 6,9 77,6 77,6 54,7 54,7 =6 años * =,74 =75 años * =,786 α V (α V (α D (α D (α V (α V (α D (α D (α 674,56 586,5 7,8 89, 989, 45, 99,45 79,, 77,79 59,6,5 87,6 65,5 774,, 75,4, 856, 4466,67 4,74 85,65 4,76 946,76 6,88 7,64, 99,79 654,4 8,7 8,45 99,4 88,76,45 67,66,4 6,89 75,68 4,64 8,97 98,99 676,9,9 6,45,5 984,6 75,9 44,86 78,9 766,4 588,8 7, 59,,6 88, 654,94 47,9 75,9 455,58 85,8,64 54,5,7 756,8 9455,7 5,85 7,6 54,,4,86 49,44,8 65,4 85,4 5,64 67,79 6,69 89,94 7, 44,6,9 448,7 674, 56, 6,5 698, 965,65,7 8,8 56,9 56,9 58,8 58,8 77,8 77,8,6,6 Sendo por ejemplo, la representacón apromada de [ ( µ [ ( V ~ µ para un asegurado de 5 años: V ~ 9 58,5 8746,54 894,69 y para una edad de 75 años: µ [ ( V ~ 989, 77,8 45, 65

10 . Análss de las prncpales estructuras actuarales con el tpo de nterés de valoracón estmado a través de números borrosos No analzaremos en este caso la apromacón trangular a la varanza. Podemos comprobar, ue, por los métodos ue hemos propuesto, es decr, ajustando un número borroso trangular con el µ, ~ * > msmo núcleo y soporte, en los casos en ue el tanto de nterés crítco * cumple ue ( por ejemplo, lo ue ocurría para una edad de 5 años, dcho ajuste no tene sentdo. Por supuesto, el msmo problema se tendrá con la desvacón estándar. Otra cuestón dstnta es ue * no pertenezca al núcleo del número borroso con el ue realzamos el cálculo del valor actual, lo cual ocurre, por ejemplo, para una edad de 75 años. En este caso s podría analzarse la bondad del ajuste trangular de la varanza, o de la desvacón estándar borrosa, mantenendo el núcleo y el soporte del número borroso de partda..5. SEGURO TEMPORAL.5.. Planteamento general En este caso, el asegurado recbe una undad monetara al fnal del año de fallecmento s este sucede dentro de los prómos n años, en caso contraro no recbe ndemnzacón. El valor actual de este captal contngente untaro es una varable borroso aleatora ue notamos como ~, y vene dada por: ~ f con t = =,,..., n - ~ con n p la cual, vendrá caracterzada por las correspondentes varables aleatoras nferor, (α, y superor (α: f con t =,,..., n = y con n p f t = + con con n p t =,,..., n En cualuer caso, supondremos ue la duracón será n>, ya ue en caso contraro sería un captal de fallecmento en, y este puede ser analzado según lo epuesto en.. Así pues, la esperanza matemátca de ~, ue notaremos como cuyos α-cortes venen dados por: [ n A ~, será un número borroso na α = A, A = f, f = B (, B n n n n n t n α t 66

Análisis estadístico de incertidumbres aleatorias

Análisis estadístico de incertidumbres aleatorias Análss estadístco de ncertdumbres aleatoras Errores aleatoros y sstemátcos La meda y la desvacón estándar La desvacón estándar como error de una sola medda La desvacón estándar de la meda úmero de meddas

Más detalles

Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística

Facultad de Ingeniería División de Ciencias Básicas Coordinación de Ciencias Aplicadas Departamento de Probabilidad y Estadística Facultad de Ingenería Dvsón de Cencas Báscas Coordnacón de Cencas Aplcadas Departamento de Probabldad y Estadístca Probabldad y Estadístca Prmer Eamen Fnal Tpo A Semestre: 00- Duracón máma:. h. Consderar

Más detalles

SEGUNDA PARTE RENTAS FINANCIERAS

SEGUNDA PARTE RENTAS FINANCIERAS SEGUNDA PARTE RENTAS FINANCIERAS 5 INTRODUCCIÓN A LA TEORÍA DE RENTAS 5.1 CONCEPTO: Renta fnancera: conjunto de captales fnanceros cuyos vencmentos regulares están dstrbudos sucesvamente a lo largo de

Más detalles

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900?

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900? EJERCICIO 1. A contnuacón tene dos dstrbucones por sexo y salaro declarado en el prmer empleo tras obtener la lcencatura de un grupo de ttulados por la UNED. Salaro en Hombres en % Mujeres en % < de 600

Más detalles

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos Bloque 5. Probabldad y Estadístca Tema. Estadístca descrptva Ejerccos resueltos 5.-1 Dada la sguente tabla de ngresos mensuales, calcular la meda, la medana y el ntervalo modal. Ingresos Frecuenca Menos

Más detalles

Introducción a la Física. Medidas y Errores

Introducción a la Física. Medidas y Errores Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren

Más detalles

MODELOS DE SECUENCIACIÓN EN MÁQUINAS 1

MODELOS DE SECUENCIACIÓN EN MÁQUINAS 1 odelos de secuencacón de tareas en máqunas Andrés Ramos Unversdad Pontfca Comllas http://www.t.comllas.edu/aramos/ Andres.Ramos@comllas.edu ODELOS DE SECUENCIACIÓN EN ÁQUINAS odelos de secuencacón de tareas

Más detalles

TEMA 7 RENTAS FRACCIONADAS

TEMA 7 RENTAS FRACCIONADAS TEMA 7 RENTAS FRACCIONADAS. INTRODUCCIÓN En la actvdad normal de las entdades fnanceras es muy frecuente ue la perodcdad con ue se hacen efectvos los sucesvos térmnos no sean anuales, como hasta ahora

Más detalles

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta.

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta. Rentas Fnanceras. Renta fracconada 6. RETA FRACCIOADA Una renta fracconada se caracterza porque su frecuenca no concde con la frecuenca de varacón del térmno de dcha renta. Las característcas de la renta

Más detalles

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un epermento, un número real.

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2011 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. 3 y

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2011 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. 3 y ENUNCADOS DE LOS EJERCCOS PROPUESTOS EN 011 EN MATEMÁTCAS APLCADAS A LAS CENCAS SOCALES. EJERCCO 1 a (5 puntos Raconalce las epresones y. 7 b (5 puntos Halle el conjunto de solucones de la necuacón EJERCCO

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

SEMANA 13. CLASE 14. MARTES 20/09/16

SEMANA 13. CLASE 14. MARTES 20/09/16 SEMAA 3. CLASE. MARTES 20/09/6. Defncones de nterés.. Estadístca descrptva. Es la parte de la Estadístca que se encarga de reunr nformacón cuanttatva concernente a ndvduos, grupos, seres de hechos, etc..2.

Más detalles

Colección de problemas de. Poder de Mercado y Estrategia

Colección de problemas de. Poder de Mercado y Estrategia de Poder de Mercado y Estratega Curso 3º - ECO- 013-014 Iñak Agurre Jaromr Kovark Javer Arn Peo Zuazo Fundamentos del Análss Económco I Unversdad del País Vasco UPV/EHU Tema 3. Monopolo 1. Los costes de

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

CESMA BUSINESS SCHOOL

CESMA BUSINESS SCHOOL CESMA BUSINESS SCHOOL MATEMÁTICAS FINANCIERAS. TEMA 4 RENTAS y MÉTODOS DE AMORTIZACIÓN Javer Blbao García 1 1.- Introduccón Defncón: Conjunto de captales con vencmentos equdstantes de tempo. Para que exsta

Más detalles

Utilizar sumatorias para aproximar el área bajo una curva

Utilizar sumatorias para aproximar el área bajo una curva Cálculo I: Guía del Estudante Leccón 5 Apromacón del área bajo la curva Leccón 5: Apromacón del área bajo una curva Objetvo: Utlzar sumatoras para apromar el área bajo una curva Referencas: Stewart: Seccón

Más detalles

EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL

EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL Gestón Aeronáutca: Estadístca Teórca Facultad Cencas Económcas y Empresarales Departamento de Economía Aplcada Profesor: Santago de la Fuente Fernández EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Págna 0 PRACTICA Meda y desvacón típca 1 Las edades de los estudantes de un curso de nformátca son: 17 17 18 19 18 0 0 17 18 18 19 19 1 0 1 19 18 18 19 1 0 18 17 17 1 0 0 19 0 18 a) Haz una tabla

Más detalles

EL ANÁLISIS DE LA VARIANZA (ANOVA) 2. Estimación de componentes de varianza

EL ANÁLISIS DE LA VARIANZA (ANOVA) 2. Estimación de componentes de varianza EL ANÁLSS DE LA VARANZA (ANOVA). Estmacón de componentes de varanza Alca Maroto, Rcard Boqué Grupo de Qumometría y Cualmetría Unverstat Rovra Vrgl C/ Marcel.lí Domngo, s/n (Campus Sescelades) 43007-Tarragona

Más detalles

1. Lección 7 - Rentas - Valoración (Continuación)

1. Lección 7 - Rentas - Valoración (Continuación) Apuntes: Matemátcas Fnanceras 1. Leccón 7 - Rentas - Valoracón (Contnuacón) 1.1. Valoracón de Rentas: Constantes y Dferdas 1.1.1. Renta Temporal y Pospagable En este caso, el orgen de la renta es un momento

Más detalles

4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS.

4. REPRESENTACIONES GRÁFICAS PARA DATOS CATEGÓRICOS. 4. REPRESETACIOES GRÁFICAS PARA DATOS CATEGÓRICOS. Cuando se manejan fenómenos categórcos, se pueden agrupar las observacones en tablas de resumen, para después representarlas en forma gráfca como dagramas

Más detalles

Pregunta Hoy está nublado, cuál es la probabilidad de que mañana continúe nublado? cuál es la probabilidad de que está nublado pasado mañana?

Pregunta Hoy está nublado, cuál es la probabilidad de que mañana continúe nublado? cuál es la probabilidad de que está nublado pasado mañana? Cadenas de Marov Después de mucho estudo sobre el clma, hemos vsto que s un día está soleado, en el 70% de los casos el día sguente contnua soleado y en el 30% se pone nublado. En térmnos de probabldad,

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

Objetivos El alumno conocerá y aplicará diversas técnicas de derivación e integración numérica. Al final de esta práctica el alumno podrá:

Objetivos El alumno conocerá y aplicará diversas técnicas de derivación e integración numérica. Al final de esta práctica el alumno podrá: Objetvos El alumno conocerá y aplcará dversas técncas de dervacón e ntegracón numérca. Al fnal de esta práctca el alumno podrá:. Resolver ejerccos que contengan dervadas e ntegrales, por medo de métodos

Más detalles

Para el caso que las variables no estén correlacionadas (covarianza nula) la incertidumbre asociada a la cantidad q viene dada por:

Para el caso que las variables no estén correlacionadas (covarianza nula) la incertidumbre asociada a la cantidad q viene dada por: Capítulo 5 La fórmula de Welch-Satterthwate Hemo vto como encontrar un ntervalo de confanza para una cantdad medda (tanto con N grande como con N peueño). La pregunta ue naturalmente urge e cómo encontrar

Más detalles

Regresión y correlación Tema 8. 1.1 Contraste sobre β 1.2 Regresión en formato ANOVA. 2. Correlación. Contraste sobre ρ xy

Regresión y correlación Tema 8. 1.1 Contraste sobre β 1.2 Regresión en formato ANOVA. 2. Correlación. Contraste sobre ρ xy Unversdad Autónoma de Madrd 1 Regresón y correlacón Tema 8 1. Regresón lneal smple 1.1 Contraste sobre β 1. Regresón en formato ANOVA. Correlacón. Contraste sobre ρ xy Análss de Datos en Pscología II Tema

Más detalles

En un mercado hay dos consumidores con las siguientes funciones de utilidad:

En un mercado hay dos consumidores con las siguientes funciones de utilidad: En un mercado hay dos consumdores con las sguentes funcones de utldad: U ( + y, y = ln( + U ( = + y con a >,, y a ln( + donde, =,, es la cantdad del ben consumda por el ndvduo, y es la cantdad de renta

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas.

Una matriz es un conjunto de elementos de cualquier naturaleza aunque, en general, son números ordenados en filas y columnas. MATRICES Las matrces se utlzan en el cálculo numérco, en la resolucón de sstemas de ecuacones lneales, de las ecuacones dferencales y de las dervadas parcales. Además de su utldad para el estudo de sstemas

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

Se entiende por renta el cobro o el pago periódico motivado por el uso de un capital

Se entiende por renta el cobro o el pago periódico motivado por el uso de un capital Rentas Se entende por renta el cobro o el pago peródco motvado por el uso de un captal Desde el punto de vsta de las matemátcas fnanceras, se entende por renta una sucesón de captales dsponbles, respectvamente

Más detalles

Resolución de sistemas lineales por métodos directos

Resolución de sistemas lineales por métodos directos Resolucón de sstemas lneales por métodos drectos Descomposcón LU S la matr del sstema Ax = b se expresa como producto de una matr trangular nferor, L, de una superor, U, la resolucón del msmo se reduce

Más detalles

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o

4 BALANZA DE MOHR: Contracción de mezcla alcohol/h2o 4 LNZ DE OHR: Contraccón de mezcla alcohol/h2o CONTENIDOS Defncones. Contraccón de una ezcla. olumen específco deal y real. Uso de la balanza de ohr. erfcacón de Jnetllos. Propagacón de Errores. OJETIOS

Más detalles

UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE. Dpto. de Métodos Cuantitativos e Informáticos. Universidad Politécnica de Cartagena.

UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE. Dpto. de Métodos Cuantitativos e Informáticos. Universidad Politécnica de Cartagena. UNA FORMA GRÁFICA DE ENSEÑANZA: APLICACIÓN AL DUOPOLIO DE COURNOT. Autores: García Córdoba, José Antono; josea.garca@upct.es Ruz Marín, Manuel; manuel.ruz@upct.es Sánchez García, Juan Francsco; jf.sanchez@upct.es

Más detalles

Problemas de Optimización. Conceptos básicos de optimización. Indice. Un problema de optimización NLP. Equivalencias. Contornos / Curvas de nivel

Problemas de Optimización. Conceptos básicos de optimización. Indice. Un problema de optimización NLP. Equivalencias. Contornos / Curvas de nivel Conceptos báscos de optmzacón Problemas de Optmzacón Prof. Cesar de Prada Dpt. Ingenería de Sstemas y Automátca UVA prada@autom.uva.es mn J() h() = g() Problema general NPL Para encontrar una solucón al

Más detalles

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez Problema La sguente tabla epresa la estatura en cm. de soldados: Talla 5 56 60 6 68 6 80 8 88 Soldados 6 86 50 8 95 860 85 6 9 a) Haz un hstograma que represente la estatura en metros de los soldados.

Más detalles

Tema 11: Estadística.

Tema 11: Estadística. Tema 11: Estadístca. Ejercco 1. Un fabrcante de tornllos desea hacer un control de caldad. Para ello, recoge 1 de cada 100 tornllos producdos y lo analza. a) Cuál es la poblacón? b) Cuál es la muestra?

Más detalles

Estadísticos muéstrales

Estadísticos muéstrales Estadístcos muéstrales Una empresa dedcada al transporte y dstrbucón de mercancías, tene una plantlla de 50 trabajadores. Durante el últmo año se ha observado que 5 trabajadores han faltado un solo día

Más detalles

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN COLEGIO IGLÉS DEPARTAMETO IVEL: CUARTO MEDIO PSU. UIDAD: ESTADISTICA 3 PROFESOR: ATALIA MORALES A. ROLADO SAEZ M. MIGUEL GUTIÉRREZ S. JAVIER FRIGERIO B. MEDIDAS DE DISPERSIÓ Las meddas de dspersón dan

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

H 0 : La distribución poblacional es uniforme H 1 : La distribución poblacional no es uniforme

H 0 : La distribución poblacional es uniforme H 1 : La distribución poblacional no es uniforme Una hpótess estadístca es una afrmacón con respecto a una característca que se desconoce de una poblacón de nterés. En la seccón anteror tratamos los casos dscretos, es decr, en forma exclusva el valor

Más detalles

3.3 Caracterización de grupos: Estadísticos de forma de la distribución

3.3 Caracterización de grupos: Estadísticos de forma de la distribución 3.3 Caracterzacón de grupos: Estadístcos de forma de la dstrbucón 1. Smetría 2. Apuntamento o curtoss 3. Descrpcón estadístca de una varable: tabla resumen Ya ha sdo abordado en temas precedentes el análss

Más detalles

Figura 1

Figura 1 5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto

Más detalles

UNIDAD 1: Tablas de frecuencias

UNIDAD 1: Tablas de frecuencias UIDAD : Tablas de recuencas Cuando sobre una poblacón hemos realzado una encuesta o cualquer regstro para conocer los valores que toman las varables, nos encontramos ante una gran cantdad de datos que

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

ESTADÍSTICA. Definiciones

ESTADÍSTICA. Definiciones ESTADÍSTICA Defncones - La Estadístca es la cenca que se ocupa de recoger, contar, organzar, representar y estudar datos referdos a una muestra para después generalzar y sacar conclusones acerca de una

Más detalles

Estas medidas serán más significativas cuanto más homogéneos sean los datos y pueden ser engañosas cuando mezclamos poblaciones distintas.

Estas medidas serán más significativas cuanto más homogéneos sean los datos y pueden ser engañosas cuando mezclamos poblaciones distintas. UIDAD 3: Meddas estadístcas Las meddas estadístcas o parámetros estadístcos son valores representatvos de una coleccón de datos y que resumen en unos pocos valores la normacón del total de datos. Estas

Más detalles

3 - VARIABLES ALEATORIAS

3 - VARIABLES ALEATORIAS arte Varables aleatoras rof. María B. ntarell - VARIABLES ALEATORIAS.- Generaldades En muchas stuacones epermentales se quere asgnar un número real a cada uno de los elementos del espaco muestral. Al descrbr

Más detalles

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de:

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de: Varables Aleatoras Varables Aleatoras Objetvos del tema: Concepto de varable aleatora Al fnal del tema el alumno será capaz de: Varables aleatoras dscretas y contnuas Funcón de probabldad Funcón de dstrbucón

Más detalles

Mosto Vino joven Vino crianza Vino reserva Gran reserva Precio [ /l] Coste [ /l] Evap [%]

Mosto Vino joven Vino crianza Vino reserva Gran reserva Precio [ /l] Coste [ /l] Evap [%] PROBLEMA: EL BODEGUERO Un bodeguero ha tendo una buena cosecha que estma sea de 10000 ltros. El bodeguero ha de decdr qué cantdad de la cosecha dedcarla a hacer mosto, qué cantdad conservarla un año en

Más detalles

DISTRIBUCION DE RENDIMIENTOS: APLICACIONES

DISTRIBUCION DE RENDIMIENTOS: APLICACIONES DISTRIBUCION DE RENDIMIENTOS: APLICACIONES Puntos a desarrollar Como es el modelo de dstrbucon normal de los rendmentos Como se puede utlzar para hacer predccones futuras sobre precos de actvos Como se

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Dstrbucones de probabldad Toda dstrbucón de probabldad es generada por una varable aleatora x, la que puede ser de dos tpos: Varable aleatora dscreta (x). Se le denomna varable porque puede tomar dferentes

Más detalles

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES

APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES APLICACIÓN DEL ANALISIS INDUSTRIAL EN CARTERAS COLECTIVAS DE VALORES Documento Preparado para la Cámara de Fondos de Inversón Versón 203 Por Rodrgo Matarrta Venegas 23 de Setembre del 204 2 Análss Industral

Más detalles

75.12 ANÁLISIS NUMÉRICO I GUÍA DE PROBLEMAS INTEGRACIÓN

75.12 ANÁLISIS NUMÉRICO I GUÍA DE PROBLEMAS INTEGRACIÓN Análss Numérco Facultad de ngenería - UBA 75. ANÁLSS NUMÉRCO FACULTAD DE NGENERÍA UNVERSDAD DE BUENOS ARES GUÍA DE PROBLEMAS 4 6. NTEGRACÓN. Calcular la sguente ntegral utlzando las fórmulas del trapeco

Más detalles

Departamento de Economía Aplicada I ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA EN EMPRESARIALES ESTADÍSTICA

Departamento de Economía Aplicada I ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES DIPLOMATURA EN EMPRESARIALES ESTADÍSTICA Deartamento de Economía Alcada ESCUELA UNVERSTARA DE ESTUDOS EMRESARALES DLOMATURA EN EMRESARALES ESTADÍSTCA Ejerccos Resueltos NÚMEROS ÍNDCES Curso 2006-2007 Deartamento de Economía Alcada Ejerccos Resueltos:

Más detalles

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116

1. Números imaginarios. Números complejos en forma binómica página 115. 2. Representación gráfica de los números complejos página 116 Números complejos E S Q U E M A D E L A U N I D A D. Números magnaros. Números complejos en forma bnómca págna. Representacón gráfca de los números complejos págna 6.. Suma de números complejos págna 8.

Más detalles

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1 Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para

Más detalles

EJERCICIOS: Tema 3. Los ejercicios señalados con.r se consideran de conocimientos previos necesarios para la comprensión del tema 3.

EJERCICIOS: Tema 3. Los ejercicios señalados con.r se consideran de conocimientos previos necesarios para la comprensión del tema 3. EJERCICIOS: Tema 3 Los ejerccos señalados con.r se consderan de conocmentos prevos necesaros para la comprensón del tema 3. Ejercco 1.R Dos bblotecas con el msmo fondo bblográfco especalzado ofrecen las

Más detalles

TEMA 5. INTERPOLACION

TEMA 5. INTERPOLACION TEMA 5.. Introduccón. Nomenclatura. Interpolacón lneal 4. Interpolacón cuadrátca 5. Interpolacón por splnes cúbcos 6. RESUMEN 7. Programacón en Matlab INTERPOLACION . Introduccón En el Tema 4, se ha descrto

Más detalles

EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL.

EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL. EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Una cofradía de pescadores regstra la cantdad de sardnas que llegan al puerto (X), en klogramos, el preco de la subasta en la lonja (Y), en euros por klo, han

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

Colección de problemas de. Poder de Mercado y Estrategia

Colección de problemas de. Poder de Mercado y Estrategia Coleccón de problemas de Poder de Mercado y Estratega Curso 3º - ECO- 016-017 Iñak Agurre Jaromr Kovark Marta San Martín Fundamentos del Análss Económco I Unversdad del País Vasco UPV/EHU Poder de Mercado

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de Matemátcas II Segundo Curso, Grado en Ingenería Electrónca Industral y Automátca Grado en Ingenería Eléctrca 7 de febrero de 0. Conteste las sguentes cuestones: Ã! 0 (a) (0.5 ptos.) Escrba en forma bnómca

Más detalles

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica?

Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica? Relacones entre varables cualtatvas Problema: xste relacón entre el estado nutrconal y el rendmento académco de estudantes de enseñanza básca? stado Nutrconal Malo Regular Bueno TOTAL Bajo 13 95 3 55 Rendmento

Más detalles

Las acciones a considerar en el proyecto de una estructura o elemento estructural se pueden clasificar según los criterios siguientes:

Las acciones a considerar en el proyecto de una estructura o elemento estructural se pueden clasificar según los criterios siguientes: CAÍTULO III ACCIONES Artículo 9º Clasfcacón de las accones Las accones a consderar en el proyecto de una estructura o elemento estructural se pueden clasfcar según los crteros sguentes: - Clasfcacón por

Más detalles

62 EJERCICIOS de NÚMEROS COMPLEJOS

62 EJERCICIOS de NÚMEROS COMPLEJOS 6 EJERCICIOS de NÚMEROS COMPLEJOS. Resolver las sguentes ecuacones en el campo de los números complejos: a x -x+=0 (Soluc: ± b x +=0 (Soluc: ± c x -x+=0 (Soluc: ± d x -x+=0 (Soluc: ± e x -6x +x-6=0 (Soluc:,

Más detalles

El planteamiento de los problemas económicos financieros se desarrollan con base en los conceptos de capitalizaciones y actualizaciones.

El planteamiento de los problemas económicos financieros se desarrollan con base en los conceptos de capitalizaciones y actualizaciones. UNIVERSIDAD MARIANO GALVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMATICA FINANCIERA Lc. Manuel de

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

El planteamiento de los problemas económicos financieros se desarrollan con base en los conceptos de capitalizaciones y actualizaciones.

El planteamiento de los problemas económicos financieros se desarrollan con base en los conceptos de capitalizaciones y actualizaciones. UNIVERSIDAD MARIANO GALVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CAMPUS VILLA NUEVA CURSO MATEMATICA FINANCIERA Lc. Manuel de Jesús Campos Boc

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

-.GEOMETRÍA.- a) 37 cm y 45 cm. b) 16 cm y 30 cm. En estos dos, se dan la hipotenusa y un cateto, y se pide el otro cateto:

-.GEOMETRÍA.- a) 37 cm y 45 cm. b) 16 cm y 30 cm. En estos dos, se dan la hipotenusa y un cateto, y se pide el otro cateto: -.GEOMETRÍA.- Ejercco nº 1.- Calcula el lado que falta en este trángulo rectángulo: Ejercco nº 2.- En los sguentes rectángulos, se dan dos catetos y se pde la hpotenusa (s su medda no es exacta, con una

Más detalles

ESTADÍSTICA (GRUPO 12)

ESTADÍSTICA (GRUPO 12) ESTADÍSTICA (GRUPO 12) CAPÍTULO II.- ANÁLISIS DE UNA CARACTERÍSTICA (DISTRIBUCIONES UNIDIMENSIONALES) TEMA 7.- MEDIDAS DE CONCENTRACIÓN. DIPLOMATURA EN CIENCIAS EMPRESARIALES UNIVERSIDAD DE SEVILLA 1.

Más detalles

T. 5 Estadísticos de forma de la distribución

T. 5 Estadísticos de forma de la distribución T. 5 Estadístcos de forma de la dstrbucón 1 1. Asmetría 2. Apuntamento o curtoss Ya ha sdo abordado en temas precedentes el análss de la forma de la dstrbucón de frecuencas desde una aproxmacón gráfca.

Más detalles

Cuaderno de actividades 4º ESO

Cuaderno de actividades 4º ESO Estadístca Undmensonal 1 Conceptos báscos. Cuaderno de actvdades º ESO Cualquer elemento o ente que sea portador de nformacón sobre alguna propedad en la cual se está nteresado se denomna ndvduo. El conjunto

Más detalles

Análisis de la Varianza de dos factores con replicaciones: Caso Balanceado (Scheffé, 1959)

Análisis de la Varianza de dos factores con replicaciones: Caso Balanceado (Scheffé, 1959) Modelo Lneal 03 Ana M Banco 1 Análss de la Varanza de dos factores con replcacones: Caso Balanceado cheffé, 1959 En este eemplo nos nteresa el tempo de coagulacón en mnutos del plasma sanguíneo para 3

Más detalles

Matemáticas A 4º E.S.O. pág. 1

Matemáticas A 4º E.S.O. pág. 1 Matemátcas A º E.S.O. pág. HOJA : ESTADÍSTICA º.- Agrupa en ntervalos y construye una tabla de frecuencas (con la marca de clase ncluda) y la frecuenca absoluta de las sguentes alturas, meddas en centímetros,

Más detalles

1.- Una empresa se plantea una inversión cuyas características financieras son:

1.- Una empresa se plantea una inversión cuyas características financieras son: ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES. Departamento de Economía Aplcada (Matemátcas). Matemátcas Fnanceras. Relacón de Problemas. Rentas. 1.- Una empresa se plantea una nversón cuyas característcas

Más detalles

+ y 1 ; U 2 (x 2,y 2 ) = ax 2 (x 2) 2 2

+ y 1 ; U 2 (x 2,y 2 ) = ax 2 (x 2) 2 2 13. Consdere un mercado en el que hay dos consumdores con las sguentes funcones de utldad: U 1 (x 1,y 1 = 4x 1 (x 1 + y 1 ; U (x,y = ax (x + y con 4 > a >0 donde x, =1,, es la cantdad del ben x consumda

Más detalles

CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información

CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información IV. Base de Datos CAPÍTULO IV. MEDICIÓN De acuerdo con Székely (2005), exste dentro del período 950-2004 nformacón representatva a nvel naconal que en algún momento se ha utlzado para medr la pobreza.

Más detalles

PREGUNTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS EN EXÁMENES DE LOS CAPÍTULOS 2, 3 Y 4 (DISTRIBUCIONES DE FRECUENCIAS UNIDIMENSIONALES )

PREGUNTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS EN EXÁMENES DE LOS CAPÍTULOS 2, 3 Y 4 (DISTRIBUCIONES DE FRECUENCIAS UNIDIMENSIONALES ) TUTORÍA DE ITRODUCCIÓ A LA ESTADÍSTICA. (º A.D.E.) e-mal: mozas@el.uned.es PREGUTAS TIPO TEST Y EJERCICIOS PRÁCTICOS PROPUESTOS E EXÁMEES DE LOS CAPÍTULOS, Y 4 (DISTRIBUCIOES DE FRECUECIAS UIDIMESIOALES

Más detalles

Tema 1: Estadística Descriptiva Unidimensional

Tema 1: Estadística Descriptiva Unidimensional Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. Fenómeno aleatoro: no es posble predecr el resultado. La estadístca se ocupa de aquellos fenómenos no determnstas donde

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES Matemátcas 1º CT 1 DISTRIBUCIONES BIDIMENSIONALES PROBLEMAS RESUELTOS 1. a) Asoca las rectas de regresón: y = +16, y = 1 e y = 0,5 + 5 a las nubes de puntos sguentes: b) Asgna los coefcentes de correlacón

Más detalles

LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II)

LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II) LECTURA 03 DISTRIBUCIONES DE FRECUENCIAS (PARTE II) DISTRIBUCIONES DE FRECUENCIAS EN INTERVALOS DE CLASE Y DISTRIBUCIONES DE FRECUENCIAS POR ATRIBUTOS O CATEGORÍAS TEMA 6 DISTRIBUCIÓN DE FRECUENCIAS EN

Más detalles

2. CARACTERÍSTICAS Y REQUISITOS DEL SISTEMA DE REDUCCIÓN

2. CARACTERÍSTICAS Y REQUISITOS DEL SISTEMA DE REDUCCIÓN INGURUMN TA LURRALD OLITIKA SAILA Ingurumen Salburuordetza DARTAMNTO D MDIO AMBINT Y OLÍTICA TRRITORIAL Vceconsejería de Medo Ambente RQUISITOS ARA LAS ROUSTAS D SISTMAS D RDUCCIÓN D MISIONS DIRNTS AL

Más detalles

LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II)

LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II) LECTURA 03 DISTRIBUCIONES DE FRECUENCIAS (PARTE II) DISTRIBUCIONES DE FRECUENCIAS EN INTERVALOS DE CLASE Y DISTRIBUCIONES DE FRECUENCIAS POR ATRIBUTOS O CATEGORÍAS TEMA 6 DISTRIBUCIÓN DE FRECUENCIAS EN

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

Generación de e Modelos 3D a Partir de e Datos de e Rango de e Vistas Parciales.

Generación de e Modelos 3D a Partir de e Datos de e Rango de e Vistas Parciales. Generacón de e Modelos 3D a Partr de e Datos de e Rango de e Vstas Parcales. Santago Salamanca Mño Escuela de Ingenerías Industrales Unversdad de Extremadura (UNED, UCLM, UEX) Introduccón (I) Qué es un

Más detalles

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1.

SISTEMA DIÉDRICO I Intersección de planos y de recta con plano TEMA 8 INTERSECCIONES. Objetivos y orientaciones metodológicas. 1. Objetvos y orentacones metodológcas SISTEMA DIÉDRICO I Interseccón de planos y de recta con plano TEMA 8 Como prmer problema del espaco que presenta la geometría descrptva, el alumno obtendrá la nterseccón

Más detalles

PyE_ EF1_TIPO1_

PyE_ EF1_TIPO1_ SEMESTRE 00- TIPO DURACIÓN MÁIMA.5 HORAS DICIEMBRE DE 00 NOMBRE. El índce de clardad se determnó en los celos de Morelos, para cada uno de los 365 días de un año, obtenéndose los sguentes datos. Límtes

Más detalles

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versón Integral / 28/ UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 35 MOMENTO: Prueba Integral FECHA DE

Más detalles

Vida Util, características de la Fiabilidad e Inviabilidad y distribuciones teóricas en el terreno de la fiabilidad

Vida Util, características de la Fiabilidad e Inviabilidad y distribuciones teóricas en el terreno de la fiabilidad Vda Utl, característcas de la Fabldad e Invabldad y dstrbucones teórcas en el terreno de la fabldad Realzado por: Mgter. Leandro D. Torres Vda Utl Este índce se refere a una vda útl meda nomnal y se puede

Más detalles