PNF en Mecánica Vibraciones Mecánicas Prof. Charles Delgado

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PNF en Mecánica Vibraciones Mecánicas Prof. Charles Delgado"

Transcripción

1 Vibraciones en máquinas LOS MOVIMIENTOS VIBRATORIOS en máquinas se presentan cuando sobre las partes elásticas actúan fuerzas variables. Generalmente, estos movimientos son indeseables, aun cuando en algunos casos (transportadores vibratorios, por ejemplo)se diseñan deliberadamente en la máquina. EL ANÁLISIS DE LAS VIBRACIONES requiere el siguiente procedimiento general: 1. Evaluar las masas y la elasticidad de las partes envueltas. 2. Calcular la cantidad de rozamiento envuelta. 3. Idealizar el implemento mecánico real, reemplazándolo por un sistema aproximadamente equivalente de masas, resortes y amortiguadores. 4. Escribir la ecuación diferencial de movimiento del sistema idealizado. 5. Resolver la ecuación e interpretar los resultados. EL SISTEMA IDEAL MAS SENCILLO consiste de una masa única, un resorte único y un amortiguador, como muestra la figura 1. La ecuación diferencial de movimiento para este sistema es m = masa. k = constante del resorte (fuerza por unidad de deformación). c = constante de amortiguamiento (fuerza por unidad de velocidad). (Se supone que la amortiguación es viscosa, es decir que la fuerza resistente es proporcional a la velocidad.) F(t) = fuerza externa cualquiera, función del tiempo. x = desplazamiento de la masa desde la posición de equilibrio estático. = derivadas, primera y segunda respectivamente, de x con respecto a t. Figura 1: Sistema Masa Resorte Amortiguador 1

2 CUALQUIER SISTEMA DE UN SOLO GRADO DE LIBERTAD puede describirse por medio de la misma forma de ecuación diferencial escrita anteriormente y si la fuerza de restitución (fuerza del resorte) es proporcional a la velocidad. Para el sistema general de un solo grado de libertad podemos escribir Donde son la masa equivalente, la constante de amortiguamiento equivalente y la constante del resorte equivalente, respectivamente. El desplazamiento x puede ser lineal o angular. La función excitadora, F(t), puede ser de cualquier forma en La práctica. Para este análisis se supone que es sinusoidal: F 0 es la amplitud de la fuerza aplicada externamente y ω es la frecuencia angular. LAS VIBRACIONES LIBRES se presentan cuando después de una perturbación inicial, no existe ninguna función externa de excitación, esto es, F(t) = 0. La ecuación diferencial es La solución de esta ecuación puede escribirse y A 1 y A 2 son constantes determinadas por las condiciones iniciales. y En el caso particular en que, S 1 = S 2 = S y la solución es EL AMORTIGUAMIENTO CRITICO se refiere al caso especial que se acaba de mencionar para el cual y, es llamado el valor crítico del coeficiente de amortiguamiento. Si el amortiguamiento es mayor que el crítico, entonces la solución de la ecuación para vibraciones libres no contiene términos periódicos. La masa, después de la perturbación inicial, regresa hacia la posición de equilibrio pero no oscila. AMORTIGUAMIENTO MENOR QUE EL CRÍTICO. Esta es la situación oscilatoria. La solución de la ecuación diferencial para vibraciones libres puede escribirse en la forma 2

3 ,, es la frecuencia amortiguada del sistema. Si el amortiguamiento fuera cero la frecuencia seria, la cual se llama frecuencia natural. Las constantes X y se determinan de las condiciones iniciales. PARA VIBRACIONES FORZADAS, la solución de la ecuación diferencial es la dada anteriormente para vibraciones libres, adicionada de una integral particular. La solución puede escribirse en la forma La primera parte de la expresión anterior representa la vibración transitoria, la cual desaparece con el tiempo. La segunda parte se llama vibración en estado estacionario y es la parte que generalmente presenta más interés para el ingeniero. LA AMPLITUD EN ESTADO ESTACIONARIO Y es Esta expresión puede escribirse es la relación de frecuencias y es la relación de amortiguamiento EL FACTOR DE AMPLIFICACIÓN M es M es la relación entre la amplitud del desplazamiento en estado estacionario y el desplazamiento que produciría una fuerza estática igual a F 0. EL ÁNGULO DE FASE puede determinarse de las expresiones 3

4 LA FUERZA TRASMITIDA A LA BASE es la suma de la fuerza del resorte y de la fuerza de amortiguamiento; Usando la solución en estado estacionario mostrada anteriormente para x, puede demostrarse que la amplitud de la fuerza trasmitida es LA TRASMISIBILÍDAD es la relación entre la amplitud de la fuerza transmitida y la amplitud que se tendría si la masa estuviera anclada a la base (sin resorte y amortiguado) LA FUNCIÓN EXCITADORA, en la discusión anterior, estaba en la forma de una fuerza periódica aplicada a la masa móvil. Otra situación importante se ilustra en la figura 2. Aquí un movimiento periódico de la base produce el movimiento de la masa, Corrientemente, el problema de diseño en esta situación consiste en escoger un resorte y un amortiguador tales que la amplitud del movimiento de la masa sea pequeña en comparación con la amplitud del movimiento de la base. Z (t) k e x c e Figura 2 Si z (t) se toma de modo que sea sinusoidal, esto es masa es la ecuación diferencial para el movimiento de la es un ángulo de fase. La ecuación diferencial anterior, excepto por el ángulo de fase previamente. La solución muestra que la amplitud de la vibración en estado estacionario es, es idéntica en su forma a la ecuación discutida 4

5 LA TRASMISIBILIDAD es la relación entre la amplitud del movimiento de la masa y el de la base. LOS SISTEMAS DE MAS DE UN GRADO DE LIBERTAD no pueden describirse mediante una simple ecuación diferencial de segundo orden. Un análisis completo de un sistema tal requeriría, en general, la solución simultánea de un sistema de n ecuaciones de segundo orden, n es el número de grados de libertad del sistema. Sin embargo, existen métodos prácticos relativamente sencillos que permiten determinar la frecuencia más baja de vibración (o frecuencia fundamental), Esta información es de gran importancia para el ingeniero proyectista. El sistema de dos grados de libertad de la figura 3 pasee dos modos de vibración. En el primer modo las dos masas se mueven en fase, alcanzando los desplazamientos máximos en el mismo sentido y en el mismo instante. En el segundo modo las masas están fuera de fase, alcanzando los desplazamientos máximos en sentidos opuestos y en el mismo instante. Figura 3 EL MÉTODO DE LA ENERGÍA para determinar la frecuencia del primer modo se basa en que, si se desprecia el rozamiento, la energía cinética máxima del sistema debe ser igual a su energía potencial máxima. Sean X 1 = amplitud del desplazamiento de la masa m i y X 2 = amplitud del desplazamiento de la masa m 2. Supongamos un movimiento sinusoidal de frecuencia. La energía cinética máxima del sistema será La energía potencial máxima almacenada en el resorte será Sin rozamiento, 5

6 de la cual ó Esta ecuación daría la primera, o más baja, frecuencia natural de vibración, si se conociera la relación de amplitudes. El procedimiento práctico consiste en ensayar una serie de valoree para esta relación. El valor que dé el resultado más bajo para w es el más cercano al valor correcto. LA RESONANCIA se define en varias formas en textos diferentes. El término se refiere generalmente a la operación en la vecindad de la amplitud máxima en vibración forzada, Para un sistema sin rozamiento significa operación a la frecuencia natural. Con amortiguamiento viscoso y una función excitadora de la forma se obtiene cuando la frecuencia de operación es aplicado a la masa, la amplitud máxima Notar que es diferente a la frecuencia amortiguada. En ausencia de implementos de amortiguamiento colocados deliberadamente, el factor es generalmente pequeño y y son aproximadamente iguales. Por tanto, se usa ordinariamente en cálculos de ingeniería. En los problemas, cuando se menciona la resonancia, significará operación a la frecuencia natural. Para sistemas de varios grados de libertad, resonancia significará operación a cualquiera de las frecuencias naturales. Referencia: SETO, William. Vibraciones Mecánica, Serie Schaum. McGraw Hill. 6

F2 Bach. Movimiento armónico simple

F2 Bach. Movimiento armónico simple F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.

Más detalles

4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple.

4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple. 4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple. 4.1.1. Movimiento oscilatorio características. 4.1.2. Movimiento periódico: período. 4.1.3. Movimiento armónico simple: características

Más detalles

Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico.

Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico. Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico. Nombre: Manuel Apellidos: Fernandez Nuñez Curso: 2º A Fecha: 29/02/2008 Índice Introducción pag. 3 a 6 Objetivos.

Más detalles

MOVIMIENTO ARMÓNICO AMORTIGUADO

MOVIMIENTO ARMÓNICO AMORTIGUADO MOVIMIENTO ARMÓNICO AMORTIGUADO OBJETIVO Medida experimental de la variación exponencial decreciente de la oscilación en un sistema oscilatorio de bajo amortiguamiento. FUNDAMENTO TEÓRICO A) SISTEMA SIN

Más detalles

1.1. Movimiento armónico simple

1.1. Movimiento armónico simple Problemas resueltos 1.1. Movimiento armónico simple 1. Un muelle cuya constante de elasticidad es k está unido a una masa puntual de valor m. Separando la masa de la posición de equilibrio el sistema comienza

Más detalles

Soporte vertical, cinta métrica, juego de masas, varilla corta, polea, nuez, computador.

Soporte vertical, cinta métrica, juego de masas, varilla corta, polea, nuez, computador. ITM, Institución universitaria Guía de Laboratorio de Física Mecánica Práctica 11: Resortes y energía. Implementos Soporte vertical, cinta métrica, juego de masas, varilla corta, polea, nuez, computador.

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com OSCILACIONES Y ONDAS 1- Todos sabemos que fuera del campo gravitatorio de la Tierra los objetos pierden su peso y flotan libremente. Por ello, la masa de los astronautas en el espacio se mide con un aparato

Más detalles

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: 1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A AGOSTO 26 DE 2013 COMPROMISO DE HONOR Yo,.. al firmar este compromiso,

Más detalles

Física General I. Curso 2014 - Primer semestre Turno Tarde. Contenidos de las clases dictadas

Física General I. Curso 2014 - Primer semestre Turno Tarde. Contenidos de las clases dictadas Física General I Curso 2014 - Primer semestre Turno Tarde Contenidos de las clases dictadas 14/3 - Introducción: qué es la Física, áreas de la Física y ubicación de la Mecánica Newtoniana en este contexto,

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

Vibración y Dinámica Estructural

Vibración y Dinámica Estructural Capítulo 4 Vibración y Dinámica Estructural 4.. Ecuaciones Básicas Considere de medio continuo se tiene un cuerpo tridimensional, cuyo comportamiento del material es elástico lineal con deformaciones pequeñas,

Más detalles

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4 Práctico 4 Ejercicio 1 Considere el sistema de la figura, formado por masas puntuales m unidas entre sí por resortes de constante K y longitud natural a. lamemos y n al desplazamiento de la n-ésima masa

Más detalles

TEMA 6 MOVIMIENTO OSCILATORIO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS

TEMA 6 MOVIMIENTO OSCILATORIO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS TEMA 6 MOVIMIENTO OSCILATORIO CONSEJOS PREVIOS A LA RESOLUCIÓN DE LOS PROBLEMAS Ten bien presente la diferencia entre dos clases de cantidades: las que representan propiedades físicas básicas del sistema

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 3 Movimiento armónico simple Ejercicio Una partícula que vibra a lo largo de un segmento de 0 cm de longitud tiene en el instante inicial su máxima velocidad que es de 0 cm/s.

Más detalles

ONDAS ESTACIONARIAS FUNDAMENTO

ONDAS ESTACIONARIAS FUNDAMENTO ONDAS ESTACIONARIAS FUNDAMENTO Una onda estacionaria es el resultado de la superposición de dos movimientos ondulatorios armónicos de igual amplitud y frecuencia que se propagan en sentidos opuestos a

Más detalles

Movimiento Circular Movimiento Armónico

Movimiento Circular Movimiento Armónico REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN LICEO BRICEÑO MÉNDEZ S0120D0320 DPTO. DE CONTROL Y EVALUACIÓN PROFESOR: gxâw á atätá 4to Año GUIA # 9 /10 PARTE ( I ) Movimiento

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA TRONCO COMÚN 2005-2 4348 DINÁMICA PRÁCTICA NO. DIN-08 LABORATORIO DE NOMBRE DE LA PRÁCTICA LABORATORIO DE CIENCIAS BÁSICAS 8 CONSERVACIÓN

Más detalles

Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas.

Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas. EXPERIMENTO # 1: LEY DE HOOKE MEDICIÓN DE FUERZAS Objetivo: Estudios de las propiedades de un dinamómetro mediante la aplicación de fuerza conocidas. Fundamento Teórico: El concepto de fuerza es definido

Más detalles

CAMPOS ELÉCTRICOS Y MAGNÉTICOS EN LA MATERIA

CAMPOS ELÉCTRICOS Y MAGNÉTICOS EN LA MATERIA CAMPOS ELÉCTRICOS Y MAGNÉTICOS EN LA MATERIA Prof O Contreras Al considerar campos dentro de materiales, el campo Eléctrico induce a nivel atómico, Dipolos de Momento Dipolar Eléctrico Si el número de

Más detalles

En todo momento se supone que el cambio de posición del interruptor es brusco; es decir, se produce en un intervalo nulo de tiempo.

En todo momento se supone que el cambio de posición del interruptor es brusco; es decir, se produce en un intervalo nulo de tiempo. 31 32 Se denomina expresión temporal o expresión instantánea a una expresión matemática en la que el tiempo es la variable independiente. Es decir, si se desea conocer el valor de la corriente (o el de

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 4 Movimiento ondulatorio Ejercicio 1 La nota musical la tiene una frecuencia, por convenio internacional de 440 Hz. Si en el aire se propaga con una velocidad de 340 m/s y

Más detalles

Métodos numéricos para Ecuaciones Diferenciales Ordinarias

Métodos numéricos para Ecuaciones Diferenciales Ordinarias Métodos numéricos para Ecuaciones Diferenciales Ordinarias Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es

Más detalles

Nombre de la As ignatura :Anális is de Vibraciones. Carrera : Ingeniería Mecatrónica. Clave de la as ignatura: MCC-0213

Nombre de la As ignatura :Anális is de Vibraciones. Carrera : Ingeniería Mecatrónica. Clave de la as ignatura: MCC-0213 1.DATOS DE LA ASIGNATURA: Nombre de la As ignatura :Anális is de Vibraciones Carrera : Ingeniería Mecatrónica Clave de la as ignatura: MCC0213 Horas teóricas Horas prácticas créditos : 210 2.UBICACIÓN

Más detalles

Física Mecánica. Sesión de Problemas Experimento. TEMA: TEOREMA DEL TRABAJO Y LA ENERGÍA. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA.

Física Mecánica. Sesión de Problemas Experimento. TEMA: TEOREMA DEL TRABAJO Y LA ENERGÍA. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA. TEM: TEOREM DEL TRJO Y L ENERGÍ. PRINCIPIO DE CONSERVCIÓN DE L ENERGÍ. Problema experimento #10: Trabajo y Conservación de la energía con plano inclinado. Medir el espesor de un pequeño bloque de madera

Más detalles

PRÁCTICA REMOTA PÉNDULO FÍSICO AMORTIGUADO

PRÁCTICA REMOTA PÉNDULO FÍSICO AMORTIGUADO PRÁCTICA REMTA PÉNDUL FÍSIC AMRTIGUAD 1. BJETIV Estudio del comportamiento de un péndulo físico débilmente amortiguado. Determinación de la constante de amortiguamiento, γ, del periodo, T, de la frecuencia

Más detalles

Transformada de Laplace: Aplicación a vibraciones mecánicas

Transformada de Laplace: Aplicación a vibraciones mecánicas Transformada de Laplace: Aplicación a vibraciones mecánicas Santiago Gómez Jorge Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina thegrimreaper7@gmail.com

Más detalles

UNIVERSIDAD DISTRITAL Francisco José de Caldas Facultad de Ingeniería Ingeniería Eléctrica. Fecha de Elaboración Fecha de Revisión.

UNIVERSIDAD DISTRITAL Francisco José de Caldas Facultad de Ingeniería Ingeniería Eléctrica. Fecha de Elaboración Fecha de Revisión. UNIVERSIDAD DISTRITAL Francisco José de Caldas Facultad de Ingeniería Ingeniería Eléctrica Elaboró Revisó Olga P. Rivera y el material de la coordinación [Escriba aquí el nombre] Fecha de Elaboración Fecha

Más detalles

Análisis Estructural - 2009 Trabajo práctico de dinámica estructural: Superposición modal

Análisis Estructural - 2009 Trabajo práctico de dinámica estructural: Superposición modal Análisis Estructural - 9 Enunciado Dada la estructura de la Figura, idealizada mediante un marco con vigas rígidas y columnas inextensibles, sometida a una carga armónica lateral de 8 t, se pide: ) Determinar

Más detalles

Universidad Nacional Experimental De los Llanos Experimentales Occidentales Ezequiel Zamora Guasdualito-Estado Apure

Universidad Nacional Experimental De los Llanos Experimentales Occidentales Ezequiel Zamora Guasdualito-Estado Apure Universidad Nacional Experimental De los Llanos Experimentales Occidentales Ezequiel Zamora Guasdualito-Estado Apure LABORATORIO: CONSERVACION DE LA CANTIDAD DE MOVIMIENTO LINEAL DESPUES DE UNA COLISION.

Más detalles

sin Linealización de los sistemas para pequeñas oscilaciones respecto a su posición de equilibrio. cos 1,, 0

sin Linealización de los sistemas para pequeñas oscilaciones respecto a su posición de equilibrio. cos 1,, 0 Capítulo 1 Sistemas de un grado de libertad Sistema lineal: Ecuación diferencial que rige su movimiento es lineal Ejemplo: 1.- Principio de superposición: + + = () 1() 1() 2() 2() Entonces: 1() + 2()+...

Más detalles

FUNDACIÓN UNIVERSITARIA TECNOLÓGICO COMFENALCO

FUNDACIÓN UNIVERSITARIA TECNOLÓGICO COMFENALCO RELEVANCIA DEL CONCEPTO DE POTENCIA Y ENERGIA Los tres descubrimientos más importantes de la ciencia son: la materia es atómica, todos los sistemas (físicos, químicos y biológicos) son productos de procesos

Más detalles

LABORATORIO DE MECANICA LEY DE HOOKE

LABORATORIO DE MECANICA LEY DE HOOKE No 6 LABORATORIO DE MECANICA LEY DE HOOKE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Objetivo general: Estudiar experimentalmente el comportamiento

Más detalles

TEMA 4: BALANCES DE ENERGÍA. IngQui-4 [1]

TEMA 4: BALANCES DE ENERGÍA. IngQui-4 [1] TEMA 4: BALANCES DE ENERGÍA IngQui-4 [1] OBJETIVOS! Aplicar la ecuación de conservación al análisis de la energía involucrada en un sistema.! Recordar las componentes de la energía (cinética, potencial

Más detalles

20 Dinámica + elementos finitos (caso lineal) Diego Andrés Alvarez Marín Profesor Asociado Universidad Nacional de Colombia Sede Manizales

20 Dinámica + elementos finitos (caso lineal) Diego Andrés Alvarez Marín Profesor Asociado Universidad Nacional de Colombia Sede Manizales 20 Dinámica + elementos finitos (caso lineal) Diego Andrés Alvarez Marín Profesor Asociado Universidad Nacional de Colombia Sede Manizales 1 Ecuaciones de la elástodinámica Las ecuaciones diferenciales

Más detalles

Sumario 1. Frecuencia una señal periódica

Sumario 1. Frecuencia una señal periódica LOGO REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ Departamento de Ingeniería Electrónica Tema 3 Técnicas de Modulación

Más detalles

INSTITUTO TECNOLÓGICO DE MATAMOROS. RESPUESTA FORZADA DE UN SISTEMA AMORTIGUADO VISCOSO SUJETO A UNA SOLA FRECUENCIA DE EXCITACIÓN ARMÓNICA.

INSTITUTO TECNOLÓGICO DE MATAMOROS. RESPUESTA FORZADA DE UN SISTEMA AMORTIGUADO VISCOSO SUJETO A UNA SOLA FRECUENCIA DE EXCITACIÓN ARMÓNICA. INSTITUTO TECNOLÓGICO DE MATAMOROS. INGENIERÍA MECATRÓNICA. RESPUESTA FORZADA DE UN SISTEMA AMORTIGUADO VISCOSO SUJETO A UNA SOLA FRECUENCIA DE EXCITACIÓN ARMÓNICA. Materia: Análisis de Vibraciones. Profesor.

Más detalles

CIRCUITOS y SISTEMAS I

CIRCUITOS y SISTEMAS I CIRCUITOS y SISTEMAS I I II - III LEYES IV - V MÉTODOS VI ANÁLISIS TEMPORAL INTRODUCCIÓN componentes + general conexiones simplificativos VII asociaciones ANÁLISIS FRECUENCIAL 4,5 horas (4,5 + 4) horas

Más detalles

e st dt = e st TRANSFORMADA DE LAPLACE: DEFINICIÓN, PROPIEDADES Y EJEMPLOS 1. Definición de Transformada de Laplace

e st dt = e st TRANSFORMADA DE LAPLACE: DEFINICIÓN, PROPIEDADES Y EJEMPLOS 1. Definición de Transformada de Laplace TRANSFORMADA DE LAPLACE: DEFINICIÓN, PROPIEDADES Y EJEMPLOS. Definición de Transformada de Laplace Sea E el espacio vectorial de las funciones continuas a trozos y de orden exponencial (esto es, dada una

Más detalles

Choques Elásticos Apuntes de Clases

Choques Elásticos Apuntes de Clases COLEGIO JOSEFINO SANTÍSIMA TRINIDAD DEPARTAMENTE DE FÍSICA Profesor Jaier E. Jiménez C. Choques Elásticos Apuntes de Clases Se produce un choque elástico cuando los cuerpos chocan y no se pierde energía

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2011

PRUEBA ESPECÍFICA PRUEBA 2011 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 2011 PRUEBA SOLUCIONARIO Aclaraciones previas Tiempo de duración de la prueba: 1 hora Contesta 4 de los 5 ejercicios propuestos (Cada

Más detalles

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

CAPITULO II Espectroscopia del infrarrojo

CAPITULO II Espectroscopia del infrarrojo CAPITULO II Espectroscopia del infrarrojo 2.1 Región del infrarrojo Los enlaces químicos que unen entre sí a los átomos de una molécula, no son rígidos, sino que se comportan con efectos de elasticidad

Más detalles

Explorando la ecuación de la recta pendiente intercepto

Explorando la ecuación de la recta pendiente intercepto Explorando la ecuación de la recta pendiente intercepto Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. Los puntos que están en la misma recta se dice que son. 2. Describe el

Más detalles

UNIVERSIDAD NACIONAL DE VILLA MERCEDES CARRERA DE KINESIOLOGIA Y FISIATRIA TRABAJO Y ENERGIA.

UNIVERSIDAD NACIONAL DE VILLA MERCEDES CARRERA DE KINESIOLOGIA Y FISIATRIA TRABAJO Y ENERGIA. TRABAJO Y ENERGIA. El problema fundamental de la Mecánica es describir como se moverán los cuerpos si se conocen las fuerzas aplicadas sobre él. La forma de hacerlo es aplicando la segunda Ley de Newton,

Más detalles

TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR

TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR CONTENIDOS REPASO DEL ÁLGEBRA VECTORIAL Proyección, componentes y módulo de un vector Operaciones: suma, resta, producto escalar y producto

Más detalles

CURSO CERO DE FÍSICA TRABAJO Y ENERGÍA

CURSO CERO DE FÍSICA TRABAJO Y ENERGÍA CURSO CERO DE FÍSICA Departamento de Física CONTENIDO Concepto de trabajo Teorema trabajo-energía cinética Fuerzas conservativas Energía potencial Conservación de la energía mecánica Ejemplo CONCEPTO DE

Más detalles

Demostración de la Transformada de Laplace

Demostración de la Transformada de Laplace Transformada de Laplace bilateral Demostración de la Transformada de Laplace Transformada Inversa de Laplace En el presente documento trataremos de demostrar matemáticamente cómo puede obtenerse la Transformada

Más detalles

Cadenas de Markov. José Antonio Camarena Ibarrola

Cadenas de Markov. José Antonio Camarena Ibarrola Cadenas de Markov José Antonio Camarena Ibarrola Definiciones elementales El proceso discreto cadena de Markov si se cumple es denominado es la probabilidad de que en el tiempo k, el proceso esté en el

Más detalles

METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD

METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD METODO SIMPLEX ANALISIS DE SENSIBILIDAD Y DUALIDAD Análisis de sensibilidad con la tabla simplex El análisis de sensibilidad para programas lineales implica el cálculo de intervalos para los coeficientes

Más detalles

Colegio Beato Carlos Manuel Rodríguez Departamento de Matemáticas. Mapa curricular Algebra I 8 vo grado

Colegio Beato Carlos Manuel Rodríguez Departamento de Matemáticas. Mapa curricular Algebra I 8 vo grado Colegio Beato Carlos Manuel Rodríguez Departamento de Matemáticas Mapa curricular Algebra I 8 vo grado Colegio Beato Carlos Manuel Rodríguez Mapa curricular Algebra I 8 vo grado periodo 11 al 22 de agosto

Más detalles

Rige:2005 Aprobado H.C.D.: Res. : Modificado/Anulado/Sust H.C.D. Res. :

Rige:2005 Aprobado H.C.D.: Res. : Modificado/Anulado/Sust H.C.D. Res. : Hoja 1 de 5 Programa de: Electrotecnia General y Máquinas eléctricas Universidad Nacional de Córdoba Facultad de Ciencias Exactas, Físicas y Naturales República Argentina Código: Carrera: Ingeniería Mecánica

Más detalles

Estática. Equilibrio de una Partícula

Estática. Equilibrio de una Partícula Estática 3 Equilibrio de una Partícula Objetivos Concepto de diagrama de cuerpo libre para una partícula. Solución de problemas de equilibrio de una partícula usando las ecuaciones de equilibrio. Índice

Más detalles

1. El movimiento ondulatorio.

1. El movimiento ondulatorio. Ondas Mecánicas 1. El movimiento ondulatorio. a. Tipos de ondas. b. Velocidad de ondas.. Descripción matemática de una onda. Función de onda. a) Pulsos de ondas b) Ondas armónicas. 3. Energía transportada

Más detalles

EJERCICIO 16 LA COMPETENCIA PERFECTA. La función de demanda siguiente es la misma para todos los compradores: P = -20q + 164

EJERCICIO 16 LA COMPETENCIA PERFECTA. La función de demanda siguiente es la misma para todos los compradores: P = -20q + 164 EJERCICIO 16 LA COMPETENCIA PERFECTA El modelo de competencia perfecta es uno de los modelos de mercado más importantes en microeconomía. En este ejercicio analizamos dicho modelo. * Consideremos una situación

Más detalles

Solución de ecuaciones de segundo grado completando el trinomio cuadrado perfecto

Solución de ecuaciones de segundo grado completando el trinomio cuadrado perfecto Solución de ecuaciones de segundo grado completando el trinomio cuadrado perfecto Cuando no es posible factorizar la ecuación, se completa el trinomio cuadrado perfecto con la única finalidad de poder

Más detalles

4. Mecánica Rotacional

4. Mecánica Rotacional 4. Mecánica Rotacional Cinemática Rotacional: (Conceptos básicos) Radián Velocidad angular Aceleración angular Frecuencia y período Velocidad tangencial Aceleración tangencial Aceleración centrípeta Torca

Más detalles

Modelo Académico de Calidad para la Competitividad AIND-01 92/98

Modelo Académico de Calidad para la Competitividad AIND-01 92/98 9. Matriz de Valoración ó Rúbrica MATRIZ DE VALORACIÓN O RÚBRICA Siglema: AIND-01 Nombre del Módulo: Nombre del Alumno: PSP evaluador: Grupo: Fecha: Resultado de Aprendizaje: 1.1 Determina la gráfica,

Más detalles

La energía y sus formas

La energía y sus formas TRABAJO Y ENERGÍA La energía y sus formas En nuestro lenguaje habitual se utiliza con mucha frecuencia el término energía y aproximadamente sabemos lo que significa. Sabemos que necesitamos energía para

Más detalles

GUIA DE ESTUDIO TEMA: DINAMICA

GUIA DE ESTUDIO TEMA: DINAMICA GUIA DE ESTUDIO TEMA: DINAMICA A. PREGUNTAS DE TIPO FALSO O VERDADERO A continuación se presentan una serie de proposiciones que pueden ser verdaderas o falsas. En el paréntesis de la izquierda escriba

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables

Más detalles

4. SISTEMAS LINEALES DE SEGUNDO ORDEN (I)

4. SISTEMAS LINEALES DE SEGUNDO ORDEN (I) 4. SISTEMAS LINEALES DE SEGUNDO ORDEN (I) 4. INTRODUCCIÓN DOMINIO TIEMPO Un sistema lineal de segundo orden con una variable de entrada, " x ( t)", y una variable salida, " y( t)" se modela matemáticamente

Más detalles

MOVIMIENTO DE UN OSCILADOR ARMÓNICO AMORTIGUADO

MOVIMIENTO DE UN OSCILADOR ARMÓNICO AMORTIGUADO MOVIMIENTO DE UN OSCILADOR ARMÓNICO AMORTIGUADO Alejo Hernández - Alihuén García - Franco Poggio - Renzo Espósito - Samuel Céspedes Turno Tarde - Curso de Física Experimental 1 (2009) - Departamento de

Más detalles

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas.

1. Conocimientos previos. 1 Funciones exponenciales y logarítmicas. . Conocimientos previos. Funciones exponenciales y logarítmicas.. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Intervalos y sus definiciones básicas.

Más detalles

Solución de sistemas de ecuaciones lineales: Introducción y conceptos generales

Solución de sistemas de ecuaciones lineales: Introducción y conceptos generales Solución de sistemas de ecuaciones lineales: Introducción y conceptos generales Ing. Jesús Javier Cortés Rosas M. en A. Miguel Eduardo González Cárdenas M. en A. Víctor D. Pinilla Morán * 2011 Resumen

Más detalles

Movimiento armónico conceptos básicos

Movimiento armónico conceptos básicos Movimiento armónico conceptos básicos Llamamos movimiento oscilatorio cuando un móvil realiza un recorrido que se repite periódicamente, y que tiene un máximo y un mínimo respecto a un punto. Por ejemplo,

Más detalles

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.2 Determinación aproximada de extremos: Método de Newton-Raphson

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.2 Determinación aproximada de extremos: Método de Newton-Raphson Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3: Aplicaciones Tema 3.2 Determinación aproximada de extremos: Método de Newton-Raphson Francisco Palacios Escuela Politécnica Superior de Ingeniería

Más detalles

CAPÍTULO 12 Estudio de casos: ecuaciones algebraicas lineales

CAPÍTULO 12 Estudio de casos: ecuaciones algebraicas lineales CAPÍTULO 12 Estudio de casos: ecuaciones algebraicas lineales El propósito de este capítulo es usar los procedimientos numéricos analizados en los capítulos 9, 10 y 11 para resolver sistemas de ecuaciones

Más detalles

5 Casos de estudio 91 5 CASOS DE ESTUDIO

5 Casos de estudio 91 5 CASOS DE ESTUDIO 5 Casos de estudio 91 5 CASOS DE ESTUDIO Debido a la naturaleza de su funcionamiento en los mecanismos leva palpador en general, las variables (ángulo de presión, radio de curvatura, huella de contacto,

Más detalles

Corriente Eléctrica. La corriente eléctrica representa la rapidez a la cual fluye la carga a través de una

Corriente Eléctrica. La corriente eléctrica representa la rapidez a la cual fluye la carga a través de una Capitulo 27 Corriente y Resistencia Corriente Eléctrica La corriente eléctrica representa la rapidez a la cual fluye la carga a través de una región del espacio En el SI, la corriente se mide en ampere

Más detalles

LABORATORIO DE MECANICA LEY DE HOOKE

LABORATORIO DE MECANICA LEY DE HOOKE No 6 LABORATORIO DE MECANICA LEY DE HOOKE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Objetivo general: Estudiar experimentalmente el comportamiento

Más detalles

AUTO Vo= 15 m/s = 54 km/h Vmáx = 90km/h = 25 m/s a= 2m/ t= t= t = 5s Alcanza la velocidad máxima el auto d= Vot + ½ d= (15)(5) + ½ d= 100m AUTO

AUTO Vo= 15 m/s = 54 km/h Vmáx = 90km/h = 25 m/s a= 2m/ t= t= t = 5s Alcanza la velocidad máxima el auto d= Vot + ½ d= (15)(5) + ½ d= 100m AUTO TEMA #1 Un automóvil y un camión viajan a una velocidad constante de 54 km/h (15 m/s), el automóvil esta 20 m atrás del camión. El chofer del automóvil desea rebasar al camión, el acelera, pero el límite

Más detalles

HOMOGENEIDAD DIMENSIONAL

HOMOGENEIDAD DIMENSIONAL HOMOGENEIDAD DIMENSIONAL Los observables que podemos medir se agrupan en conjuntos caracterizados por una propiedad que llamamos magnitud. Existe la magnitud tiempo, la magnitud velocidad, la magnitud

Más detalles

A) FÍSICA I (CURSO DE LA FACULTAD DE CIENCIAS, CLAVE: T91F1) B) DATOS BÁSICOS DEL CURSO C) OBJETIVOS DEL CURSO

A) FÍSICA I (CURSO DE LA FACULTAD DE CIENCIAS, CLAVE: T91F1) B) DATOS BÁSICOS DEL CURSO C) OBJETIVOS DEL CURSO UNIVERSIDAD AUTÓNOMA DE SAN LUIS POTOSI Facultad de Ciencias Programas Analíticos de los primeros dos semestres de la licenciatura en Biofísica. 1) NOMBRE DE CADA CURSO O ACTIVIDAD CURRICULAR A) FÍSICA

Más detalles

Valor evaluación = 70 % Fecha de entrega: Agosto 20 de 2012. Valor presentación taller = 30% Fecha de evaluación: a partir de agosto 20 de 2012.

Valor evaluación = 70 % Fecha de entrega: Agosto 20 de 2012. Valor presentación taller = 30% Fecha de evaluación: a partir de agosto 20 de 2012. COLEGIO NACIONAL LOPERENA FISICA GRADO UNDECIMO PLAN DE RECUPERACION DE FISICA (SEGUNDO PERIODO) TEMPERATURA CALOR MOVIMIENTO PERIÓDICO MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO PENDULAR. NOTA: Desarrolla

Más detalles

CURSO FÍSICA II 2012 CLASE VIII

CURSO FÍSICA II 2012 CLASE VIII UNIVERSIDAD NACIONAL DEL NORDESTE FACULTAD DE INGENIERÍA DEPARTAMENTO DE FÍSICA Y QUÍMICA CURSO FÍSICA II 2012 CLASE VIII MECÁNICA DE FLUIDOS PROPIEDADES DE FLUIDOS ESTÁTICA DE LOS FLUIDOS CINÉMATICA DE

Más detalles

Tema 3: Acústica física III

Tema 3: Acústica física III Tema 3: Acústica física III Interferencia y ondas estacionarias. Principio, aplicación y demostración. Ondas estacionarias en un tubo. Ondas estacionarias 1D. Demostración. Modos propios y teoría de ondas

Más detalles

Fluidos. Presión. Principio de Pascal.

Fluidos. Presión. Principio de Pascal. Fluidos. Presión. Principio de Pascal. CHOQUES ELASTICOS E INELASTICOS Se debe tener en cuenta que tanto la cantidad de movimiento como la energía cinética deben conservarse en los choques. Durante una

Más detalles

Campos Electromagnéticos Estáticos

Campos Electromagnéticos Estáticos Capítulo 3: Campos Electromagnéticos Estáticos Flujo de un campo vectorial Superficie cerrada Ley de Gauss Karl Friedrich Gauss (1777-1855) Flujo de E generado por una carga puntual Superficie arbitraria

Más detalles

3.3 Funciones crecientes y decrecientes y el criterio de la primera derivada

3.3 Funciones crecientes y decrecientes y el criterio de la primera derivada SECCIÓN. Funciones crecientes decrecientes el criterio de la primera derivada 79. Funciones crecientes decrecientes el criterio de la primera derivada Determinar los intervalos sobre los cuales una función

Más detalles

P. A. U. FÍSICA Madrid Junio 2002. Un planeta esférico tiene un radio de 3000 Km y la aceleración de la gravedad en su superficie es 6 m/s 2.

P. A. U. FÍSICA Madrid Junio 2002. Un planeta esférico tiene un radio de 3000 Km y la aceleración de la gravedad en su superficie es 6 m/s 2. P. A. U. FÍSICA Madrid Junio 2002 Cuestión 1.- Un planeta esférico tiene un radio de 3000 Km y la aceleración de la gravedad en su superficie es 6 m/s 2. a) Cuál es su densidad media? b) Cuál es la velocidad

Más detalles

ENERGIA. La energía se define como la capacidad que tiene un sistema para producir trabajo.

ENERGIA. La energía se define como la capacidad que tiene un sistema para producir trabajo. ENERGIA La energía se define como la capacidad que tiene un sistema para producir trabajo. Tipos de energía almacenada: son aquellos que se encuentran dentro del sistema 1. Energía potencial: es debida

Más detalles

Análisis esquemático simplificado de una torre de enfriamiento.

Análisis esquemático simplificado de una torre de enfriamiento. Análisis esquemático simplificado de una torre de enfriamiento. En el diagrama el aire con una humedad Y 2 y temperatura t 2 entra por el fondo de la torre y la abandona por la parte superior con una humedad

Más detalles

DINÁMICA FCA 05 ANDALUCÍA

DINÁMICA FCA 05 ANDALUCÍA 1. Con un arco se lanza una flecha de 0 g, verticalmente hacia arriba, desde una altura de m y alcanza una altura máxima de 50 m, ambas sobre el suelo. Al caer, se clava en el suelo una profundidad de

Más detalles

Universidad de San Carlos de Guatemala, Facultad de Ingeniería PROGRAMA FISICA 1, Primer Semestre 2013

Universidad de San Carlos de Guatemala, Facultad de Ingeniería PROGRAMA FISICA 1, Primer Semestre 2013 Universidad de San Carlos de Guatemala, Facultad de Ingeniería PROGRAMA FISICA 1, Primer Semestre 2013 Código: 150 Créditos: 6 Escuela: Escuela de Ciencias Área: Depto. de Física Pre-Requisito: Física

Más detalles

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios 2015 Departamento de Física Universidad de Sonora

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios 2015 Departamento de Física Universidad de Sonora FÍSICA GENERAL MC Beatriz Gpe. Zaragoza Palacios 015 Departamento de Física Universidad de Sonora TEMARIO 0. Presentación 1. Mediciones y vectores. Equilibrio traslacional 3. Movimiento uniformemente acelerado

Más detalles

Vectores y Escalares

Vectores y Escalares Vectores y Escalares Suma Grafica y Analítica En física debemos distinguir entre vectores y escalares. Un vector es una cantidad orientada, tiene tanto magnitud como dirección. La velocidad, la fuerza

Más detalles

PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO

PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO Parte I: MOMENTOS DE INERCIA Objetivo: Determinar experimentalmente el momento de inercia de un disco respecto a su centro de gravedad y respecto a distintos

Más detalles

Guía de ejercicios. Supletorio. Segundo IB

Guía de ejercicios. Supletorio. Segundo IB Guía de ejercicios. Supletorio. Segundo IB 1. Cuando un gas en un recipiente en forma cilíndrica se comprime a temperatura constante por un pistón, la presión del gas se incrementa. Considere los siguientes

Más detalles

LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO

LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO 1.- Por un plano inclinado de ángulo y sin rozamiento, se lanza hacia arriba una masa m con una velocidad v o. Se pide: a) Fuerza o fuerzas que actúan sobre

Más detalles

Mecánica Cuestiones y Problemas PAU 2002-2009 Física 2º Bachillerato

Mecánica Cuestiones y Problemas PAU 2002-2009 Física 2º Bachillerato Mecánica Cuestiones y Problemas PAU 00009 Física º Bachillerato 1. Conteste razonadamente a las siguientes a) Si la energía mecánica de una partícula permanece constante, puede asegurarse que todas las

Más detalles

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291)

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) I. Combinación Lineal Definición: Sean v 1, v 2, v 3,, v n vectores en el espacio vectorial V. Entonces cualquier

Más detalles

Ecuaciones de Maxwell y Ondas Electromagnéticas

Ecuaciones de Maxwell y Ondas Electromagnéticas Capítulo 7: Ecuaciones de Maxwell y Ondas Electromagnéticas Hasta ahora: Ley de Gauss Ley de Faraday-Henry Ley de Gauss para el magnetismo Ley de Ampere Veremos que la Ley de Ampere presenta problemas

Más detalles

VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO)

VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO) VALORES EXACTOS DE FUNCIONES TRIGONOMÉTRICAS (SENO Y COSENO) En trigonometría plana, es fácil de encontrar el valor exacto de la función seno y coseno de los ángulos de 30, 5 y 60, gracias a la ayuda de

Más detalles

Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones

Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas 1.- Adición y sustracción 2.- Multiplicación 3.- División 4.- Productos especiales 5.- Triángulo de Pascal II.- Factorización y Operaciones

Más detalles

TALLER DE TRABAJO Y ENERGÍA

TALLER DE TRABAJO Y ENERGÍA TALLER DE TRABAJO Y ENERGÍA EJERCICIOS DE TRABAJO 1. Un mecánico empuja un auto de 2500 kg desde el reposo hasta alcanzar una rapidez v, realizando 5000 J de trabajo en el proceso. Durante este tiempo,

Más detalles

Mecánica Vectorial Cap. 3. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D.

Mecánica Vectorial Cap. 3. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Mecánica Vectorial Cap. 3 Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Cómo tener éxito en Matemáticas? Paso 1: El trabajo duro triunfa sobre el talento natural. Paso 2: Mantenga una mente abierta.

Más detalles

MOTORES DE CD INTRODUCCIÓN A LOS MOTORES DE CD. Los motores de CD son máquinas utilizadas

MOTORES DE CD INTRODUCCIÓN A LOS MOTORES DE CD. Los motores de CD son máquinas utilizadas INTRODUCCIÓN A LOS MOTORES DE CD Los motores de CD son máquinas utilizadas tanto como motores que como generadores de CD, es decir, físicamente es la misma máquina y únicamente difieren en la forma de

Más detalles

CURSO: MECÁNICA DE SÓLIDOS II UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA

CURSO: MECÁNICA DE SÓLIDOS II UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA CURSO: MECÁNICA DE SÓLIDOS II PROFESOR: ING. JORGE A. MONTAÑO PISFIL CURSO DE

Más detalles