Estadística II Tema 4. Regresión lineal simple. Curso 2010/11

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Estadística II Tema 4. Regresión lineal simple. Curso 2010/11"

Transcripción

1 Estadística II Tema 4. Regresión lineal simple Curso 010/11

2 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores de mínimos cuadrados: construcción y propiedades Inferencias sobre el modelo de regresión: Inferencia sobre la pendiente Inferencia sobre la varianza Estimación de una respuesta promedio Predicción de una nueva respuesta

3 Tema 4. Regresión lineal simple Objetivos de aprendizaje Saber construir un modelo de regresión lineal simple que describa cómo influye una variable X sobre otra variable Y Saber obtener estimaciones puntuales de los parámetros de dicho modelo Saber contruir intervalos de confianza y resolver contrastes sobre dichos parámetros Saber estimar el valor promedio de Y para un valor de X Saber predecir futuros de la variable respuesta, Y

4 Tema 4. Regresión lineal simple Referencias en la bibliografía Meyer, P. Probabilidad y aplicaciones estadísticas (199) Capítulo Newbold, P. Estadística para los negocios y la economía (1997) Capítulo 10 Peña, D. Regresión y análisis de experimentos (005) Capítulo 5

5 Introducción Un modelo de regresión es un modelo que permite describir cómo influye una variable X sobre otra variable Y. X: Variable independiente o explicativa o exógena Y: Variable dependiente o respuesta o endógena El objetivo es obtener estimaciones razonables de Y para distintos valores de X a partir de una muestra de n pares de valores (x 1, y 1 ),..., (x n, y n ).

6 Introducción Ejemplos Estudiar cómo influye la estatura del padre sobre la estatura del hijo. Estimar el precio de una vivienda en función de su superficie. Predecir la tasa de paro para cada edad. Aproximar la calificación obtenida en una materia según el número de horas de estudio semanal. Prever el tiempo de computación de un programa en función de la velocidad del procesador.

7 Introducción Tipos de relación Determinista: Conocido el valor de X, el valor de Y queda perfectamente establecido. Son del tipo: y = f (x) Ejemplo: La relación existente entre la temperatura en grados centígrados (X ) y grados Fahrenheit (Y ) es: y = 1,8x Plot of Grados Fahrenheit vs Grados centígrados Grados Fahrenheit Grados centígrados

8 Introducción Tipos de relación No determinista: Conocido el valor de X, el valor de Y no queda perfectamente establecido. Son del tipo: y = f (x) + u donde u es una perturbación desconocida (variable aleatoria). Ejemplo: Se tiene una muestra del volumen de producción (X ) y el costo total (Y ) asociado a un producto en un grupo de empresas. 80 Plot of Costos vs Volumen 60 Costos Volumen Existe relación pero no es exacta.

9 Introducción Tipos de relación Lineal: Cuando la función f (x) es lineal, f (x) = β 0 + β 1 x Si β1 > 0 hay relación lineal positiva. Si β1 < 0 hay relación lineal negativa. Relación lineal positiva Relación lineal negativa Y Y X X Los datos tienen un aspecto recto.

10 Introducción Tipos de relación No lineal: Cuando la función f (x) no es lineal. Por ejemplo, f (x) = log(x), f (x) = x + 3,... Relación no lineal 1 0 Y X Los datos no tienen un aspecto recto.

11 Introducción Tipos de relación Ausencia de relación: Cuando f (x) = 0.,5 Ausencia de relación 1,5 0,5 Y -0,5-1,5 -, X

12 Medidas de dependencia lineal La covarianza Una medida de la dependencia lineal es la covarianza: cov (x, y) = n (x i x) (y i ȳ) i=1 n 1 Si hay relación lineal positiva, la covarianza será positiva y grande. Si hay relación lineal negativa, la covarianza será negativa y grande en valor absoluto. Si hay no hay relación entre las variables o la relación es marcadamente no lineal, la covarianza será próxima a cero. PERO la covarianza depende de las unidades de medida de las variables.

13 Medidas de dependencia lineal El coeficiente de correlación lineal Una medida de la dependencia lineal que no depende de las unidades de medida es el coeficiente de correlación lineal: r (x,y) = cor (x, y) = cov (x, y) s x s y donde: n (x i x) n (y i ȳ) s x = i=1 n 1 y s y = i=1 n 1-1 cor (x, y) 1 cor (x, y) = cor (y, x) cor (ax + b, cy + d) = cor (x, y) para cualesquiera valores a, b, c, d.

14 El modelo de regresión lineal simple El modelo de regresión lineal simple supone que, donde: y i = β 0 + β 1 x i + u i y i representa el valor de la variable respuesta para la observación i-ésima. x i representa el valor de la variable explicativa para la observación i-ésima. u i representa el error para la observación i-ésima que se asume normal, u i N(0, σ) β 0 y β 1 son los coeficientes de regresión: β0 : intercepto β1 : pendiente Los parámetros que hay que estimar son: β 0, β 1 y σ.

15 El modelo de regresión lineal simple El objetivo es obtener estimaciones ˆβ 0 y ˆβ 1 de β 0 y β 1 para calcular la recta de regresión: ŷ = ˆβ 0 + ˆβ 1 x que se ajuste lo mejor posible a los datos. Ejemplo: Supongamos que la recta de regresión del ejemplo anterior es: Costo = 15,65 + 1,9 Volumen 80 Plot of Fitted Model 60 Costos Volumen Se estima que una empresa que produce 5 mil unidades tendrá un costo: costo = 15,65 + 1,9 5 = 16,6 mil euros

16 El modelo de regresión lineal simple La diferencia entre cada valor y i de la variable respuesta y su estimación ŷ i se llama residuo: e i = y i ŷ i Valor observado Dato (y) Recta de regresión estimada Ejemplo (cont.): Indudablemente, una empresa determinada que haya producido exactamente 5 mil unidades no va a tener un gasto de exactamente 16,6 mil euros. La diferencia entre el costo estimado y el real es el residuo. Si por ejemplo el costo real de la empresa es de 18 mil euros, el residuo es: e i = 18 16,6 = 1,4mil euros

17 Hipótesis del modelo de regresión lineal simple Linealidad: La relación existente entre X e Y es lineal, f (x) = β 0 + β 1 x Homogeneidad: El valor promedio del error es cero, E[u i ] = 0 Homocedasticidad: La varianza de los errores es constante, Var(u i ) = σ Independencia: Las observaciones son independientes, E[u i u j ] = 0 Normalidad: Los errores siguen una distribución normal, u i N(0, σ)

18 Hipótesis del modelo de regresión lineal simple Linealidad Los datos deben ser razonablemante rectos. 80 Plot of Fitted Model 60 Costos Volumen Si no, la recta de regresión no representa la estructura de los datos. 34 Plot of Fitted Model 4 Y X

19 Hipótesis del modelo de regresión lineal simple Homocedasticidad La dispersión de los datos debe ser constante para que los datos sean homocedásticos. 80 Plot of Costos vs Volumen 60 Costos Volumen Si no se cumple, los datos son heterocedásticos.

20 x i In Objetivo: Analizar la relación entre una o varias Hipótesis del modelo de regresión lineal simple Independencia variables dependientes y un conjunto de factores independientes. Los datos deben ser independientes. Tipos de relaciones: f ( Y, Y,..., Y X, X,..., X ) 1 k 1 Una observación- Relación no debe no lineal dar información sobre las demás. Habitualmente, -se Relación sabelineal por el tipo de datos si son adecuados o no para el análisis. Regresión lineal simple En general, las series temporales no cumplen la hipótesis de Regresión Lineal independencia. Normalidad Se asume que Modelo los datos son normales a priori. y 0 1x u, u N(0, ) i i i l i Núm. Obs (i) Regresión H L y i 0 1 x N H

21 Estimadores de mínimos cuadrados Gauss propuso en 1809 el método de mínimos xi cuadrados para obtener los valores ˆβ 0 y ˆβ 1 que mejor se ajustan a los datos: Regresión Lineal ŷ i = ˆβ 0 + ˆβ 1 x i El método consiste en minimizar la suma de los cuadrados de las distancias verticales entre los datos y las estimaciones, es decir, minimizar la suma de los residuos al cuadrado, Residuos n n n ( ( ei = (y i ŷ i ) = y i ˆβ0 + ˆβ )) y ˆ ˆ 1 x i i 0 1xi e i i=1 i=1 i=1 Valor Observado Valor Previsto Residuo e i x 7 y i yˆ i ˆ ˆ 0 1x i x i

22 y, Estimadores de mínimos i 1xi u u cuadrados i i y El resultado que se obtiene i : Variable dependiente es: cov(x, y) ˆβ 1 = = Regresión Lineal 0 N(0, ) x i : Variable independiente u i : Parte aleatoria s x n (x i x) (y i ȳ) i=1 0 n (x i x) i=1 6 y i y Regresión Lineal Recta de regresión ˆβ 0 = ȳ ˆβ 1 x yˆ ˆ ˆ 1x 0 Residuos y i Valor Observ y ˆ 0 y ˆ 1x x Pendiente ˆ 1 y i Regresión Lineal 8 Regresión Lineal

23 Estimadores de mínimos cuadrados Ejercicio 4.1 Los datos de la producción de trigo en toneladas (X ) y el precio del kilo de harina en pesetas (Y ) en la década de los 80 en España fueron: Producción de trigo Precio de la harina Ajusta la recta de regresión por el método de mínimos cuadrados Resultados ˆβ 1 = 10X i=1 10X i=1 x i y i n xȳ xi n x = ,6 35, ,6 = 1,3537 ˆβ 0 = ȳ ˆβ 1 x = 35,4 + 1,3537 8,6 = 74,116 La recta de regresión es: ŷ = 74,116 1,3537x

24 Estimadores de mínimos cuadrados Ejercicio 4.1 Los datos de la producción de trigo en toneladas (X ) y el precio del kilo de harina en pesetas (Y ) en la década de los 80 en España fueron: Producción de trigo Precio de la harina Ajusta la recta de regresión por el método de mínimos cuadrados Resultados ˆβ 1 = 10X i=1 10X i=1 x i y i n xȳ xi n x = ,6 35, ,6 = 1,3537 ˆβ 0 = ȳ ˆβ 1 x = 35,4 + 1,3537 8,6 = 74,116 La recta de regresión es: ŷ = 74,116 1,3537x

25 Estimadores de mínimos cuadrados 50 Plot of Fitted Model Precio en ptas Produccion en kg. βˆ0 βˆ1 Regression Analysis - Linear model: Y = a + b*x Dependent variable: Precio en ptas. Independent variable: Produccion en kg Standard T Parameter Estimate Error Statistic P-Value Intercept 74,1151 8, ,4841 0,0000 Slope -1, ,300-4,5094 0, Analysis of Variance Source Sum of Squares Df Mean Square F-Ratio P-Value Model 58, ,475 0,33 0,000 Residual 07,95 8 5, Total (Corr.) 736,4 9 Correlation Coefficient = -0,84714 R-squared = 71,7647 percent Standard Error of Est. = 5,0981

26 Estimación de la varianza Para estimar la varianza de los errores, σ, podemos utilizar, ˆσ = que es el estimador máximo verosímil de σ, pero es un estimador sesgado. n i=1 Un estimador insesgado de σ es la varianza residual, n n i=1 e i e i sr = n

27 Estimación de la varianza Ejercicio 4. Calcula la varianza residual en el ejercicio 4.1. Resultados Calculamos primero los residuos, e i, usando la recta de regresión, ŷ i = 74,116 1,3537x i x i y i ŷ i e i La varianza residual es: s R = nx e i i=1 n = 07,9 = 5,99 8

28 Estimación de la varianza Ejercicio 4. Calcula la varianza residual en el ejercicio 4.1. Resultados Calculamos primero los residuos, e i, usando la recta de regresión, ŷ i = 74,116 1,3537x i x i y i ŷ i e i La varianza residual es: s R = nx e i i=1 n = 07,9 = 5,99 8

29 Correlation Coefficient = -0,84714 R-squared = 71,7647 percent Standard Error of Est. = 5,0981 Ŝ Estimación de la varianza Regression Analysis - Linear model: Y = a + b*x Dependent variable: Precio en ptas. Independent variable: Produccion en kg. Standard T Parameter Estimate Error Statisti Intercept 74,1151 8, ,484 Slope -1, ,300-4, Analysis of Variance Source Sum of Squares Df Mean Square Model 58, ,475 Residual 07,95 8 5,9906 Total (Corr.) 736,4 9

30 Inferencias sobre el modelo de regresión Hasta ahora sólo hemos obtenido estimaciones puntuales de los coeficientes de regresión. Usando intervalos de confianza podemos obtener una medida de la precisión de dichas estimaciones. Usando contrastes de hipótesis podemos comprobar si un determinado valor puede ser el auténtico valor del parámetro.

31 Inferencia para la pendiente El estimador ˆβ 1 sigue una distribución normal porque es una combinación lineal de normales, n (x i x) n ˆβ 1 = (n 1)sX y i = w i y i i=1 donde y i = β 0 + β 1 x i + u i, que cumple que y i N ( β 0 + β 1 x i, σ ). Además, ˆβ 1 es un estimador insesgado de β 1, y su varianza es, Por tanto, [ ] Var ˆβ 1 = [ ] E ˆβ1 = i=1 i=1 i=1 n (x i x) (n 1)sX E [y i ] = β 1 n ( ) (xi x) σ (n 1)sX Var [y i ] = (n 1)sX ( ˆβ 1 N β 1, σ (n 1)s X )

32 Intervalo de confianza para la pendiente Queremos ahora obtener el intervalo de confianza para β 1 de nivel 1 α. Como σ es desconocida, la estimamos con sr. El resultado básico cuando la varianza es desconocida es: ˆβ 1 β 1 s R (n 1)s X t n que nos permite obtener el intervalo de confianza para β 1 : sr ˆβ 1 ± t n,α/ (n 1)sX La longitud del intervalo disminuirá si: Aumenta el tamaño de la muestra. Aumenta la varianza de las x i. Disminuye la varianza residual.

33 Contrastes sobre la pendiente Usando el resultado anterior podemos resolver contrastes sobre β 1. En particular, si el verdadero valor de β 1 es cero entonces Y no depende linealmente de X. Por tanto, es de especial interés el contraste: H 0 : β 1 = 0 H 1 : β 1 0 La región de rechazo de la hipótesis nula es: ˆβ 1 s R /(n 1)sX > t n,α/ Equivalentemente, si el cero está fuera del intervalo de confianza para β 1 de nivel 1 α, rechazamos la hipótesis nula a ese nivel. El p-valor del contraste es: ( ) ˆβ 1 p-valor = Pr t n > s R /(n 1)sX

34 Inferencia para la pendiente Ejercicio Calcula un intervalo de confianza al 95 % para la pendiente de la recta de regresión obtenida en el ejercicio Contrasta la hipótesis de que el precio de la harina depende linealmente de la producción de trigo, usando un nivel de significación de Resultados 1. t n,α/ = t 8,0,05 =,306,306 1,3537 β1 q 5,99 9 3,04,046 β 1 0,661,306. Como el intervalo no contiene al cero, rechazamos que β 1 = 0 al nivel De hecho: ˆβ 1 p s R / (n 1) sx = 1,3537 q 5,99 = 4,509 >,306 p-valor= Pr(t 8 > 4,509) = 0,00 9 3,04

35 Inferencia para la pendiente Ejercicio Calcula un intervalo de confianza al 95 % para la pendiente de la recta de regresión obtenida en el ejercicio Contrasta la hipótesis de que el precio de la harina depende linealmente de la producción de trigo, usando un nivel de significación de Resultados 1. t n,α/ = t 8,0,05 =,306,306 1,3537 β1 q 5,99 9 3,04,046 β 1 0,661,306. Como el intervalo no contiene al cero, rechazamos que β 1 = 0 al nivel De hecho: ˆβ 1 p s R / (n 1) sx = 1,3537 q 5,99 = 4,509 >,306 p-valor= Pr(t 8 > 4,509) = 0,00 9 3,04

36 Inferencia para la pendiente s R ( n 1) sx ˆ β 1 s /( n 1) R s X Regression Analysis - Linear model: Y = a + b*x Dependent variable: Precio en ptas. Independent variable: Produccion en kg Standard T Parameter Estimate Error Statistic P-Value Intercept 74,1151 8, ,4841 0,0000 Slope -1, ,300-4,5094 0, Analysis of Variance Source Sum of Squares Df Mean Square F-Ratio P-Value Model 58, ,475 0,33 0,000 Residual 07,95 8 5, Total (Corr.) 736,4 9 Correlation Coefficient = -0,84714 R-squared = 71,7647 percent Standard Error of Est. = 5,0981

37 Inferencia para el intercepto El estimador ˆβ 0 sigue una distribución normal porque es una combinación lineal de normales, n ( ) 1 ˆβ 0 = n xw i y i i=1 donde w i = (x i x) /ns X y donde y i = β 0 + β 1 x i + u i, que cumple que y i N ( β 0 + β 1 x i, σ ). Además, ˆβ 0 es un estimador insesgado de β 0, y su varianza es, [ ] Var ˆβ 0 = y por tanto, [ ] E ˆβ 0 = n i=1 n i=1 ( ) 1 n xw i E [y i ] = β 0 ( ) ( 1 1 n xw i Var [y i ] = σ n + x ) (n 1)sX ( 1n ˆβ 0 N (β 0, σ + x )) (n 1)sX

38 Intervalo de confianza para el intercepto Queremos ahora obtener el intervalo de confianza para β 0 de nivel 1 α. Como σ es desconocida, la estimamos con s R. El resultado básico cuando la varianza es desconocida es: s R ˆβ 0 β 0 ( 1 n + x ) t n (n 1)sX que nos permite obtener el intervalo de confianza para β 0 : ( ) ˆβ 0 ± t n,α/ sr 1 n + x (n 1)sX La longitud del intervalo disminuirá si: Aumenta el tamaño de la muestra. Aumenta la varianza de las x i. Disminuye la varianza residual. Disminuye la media de las x i.

39 Contrastes sobre el intercepto Usando el resultado anterior podemos resolver contrastes sobre β 0. En particular, si el verdadero valor de β 0 es cero entonces la recta de regresión pasa por el origen. Por tanto, es de especial interés el contraste: H 0 : β 0 = 0 H 1 : β 0 0 La región de rechazo de la hipótesis nula es: ˆβ 0 ( ) > t n,α/ sr 1 n + x (n 1)s X Equivalentemente, si el cero está fuera del intervalo de confianza para β 0 de nivel 1 α, rechazamos la hipótesis nula a ese nivel. El p-valor es: p-valor = Pr t n > ˆβ 0 ( ) sr 1 n + x (n 1)s X

40 Inferencia para el intercepto Ejercicio Calcula un intervalo de confianza al 95 % para el intercepto de la recta de regresión obtenida en el ejercicio Contrasta la hipótesis de que la recta de regresión pasa por el origen, usando un nivel de significación de Resultados 1. t n,α/ = t 8,0,05 =,306,306 r 5,99 74,1151 β ,6 9 3,04,306 53,969 β0 94,61. Como el intervalo no contiene al cero, rechazamos que β 0 = 0 al nivel De hecho: ˆβ 0 r = 74,1151 r = 8,484 >,306 sr 1 + n 5,99 x (n 1)s X p-valor= Pr(t 8 > 8,483) = 0, ,6 9 3,04

41 Inferencia para el intercepto Ejercicio Calcula un intervalo de confianza al 95 % para el intercepto de la recta de regresión obtenida en el ejercicio Contrasta la hipótesis de que la recta de regresión pasa por el origen, usando un nivel de significación de Resultados 1. t n,α/ = t 8,0,05 =,306,306 r 5,99 74,1151 β ,6 9 3,04,306 53,969 β0 94,61. Como el intervalo no contiene al cero, rechazamos que β 0 = 0 al nivel De hecho: ˆβ 0 r = 74,1151 r = 8,484 >,306 sr 1 + n 5,99 x (n 1)s X p-valor= Pr(t 8 > 8,483) = 0, ,6 9 3,04

42 Inferencia para el intercepto ˆ β 0 1 x sr n ( n 1) s 1 x X sr n ( n 1) s Regression Analysis - Linear model: Y = a + b*x X Dependent variable: Precio en ptas. Independent variable: Produccion en kg Standard T Parameter Estimate Error Statistic P-Value Intercept 74,1151 8, ,4841 0,0000 Slope -1, ,300-4,5094 0, Analysis of Variance Source Sum of Squares Df Mean Square F-Ratio P-Value Model 58, ,475 0,33 0,000 Residual 07,95 8 5, Total (Corr.) 736,4 9 Correlation Coefficient = -0,84714 R-squared = 71,7647 percent Standard Error of Est. = 5,0981

43 Inferencia para la varianza El resultado básico es que: (n ) s R σ χ n Utilizando este resultado podemos: Construir el intervalo de confianza para la varianza: (n ) s R χ n,α/ σ (n ) s R χ n,1 α/ Resolver contrastes del tipo: H 0 : σ = σ 0 H 1 : σ σ 0

44 Estimación de una respuesta promedio y predicción de una nueva respuesta Se distiguen dos tipos de problemas: 1. Estimar el valor medio de la variable Y para cierto valor X = x 0.. Predecir el valor que tomará la variable Y para cierto valor X = x 0. Por ejemplo, en el ejercicio 4.1: 1. Cuál será el precio medio del kg. de harina para los años en que se producen 30 ton. de trigo?. Si un determinado año se producen 30 ton. de trigo, cuál será el precio del kg. de harina? En ambos casos el valor estimado es: ŷ 0 = ˆβ 0 + ˆβ 1 x 0 = ȳ + ˆβ 1 (x 0 x) Pero la precisión de las estimaciones es diferente.

45 Estimación de una respuesta promedio Teniendo en cuenta que: ( ) Var (ŷ 0 ) = Var (ȳ) + (x 0 x) Var ˆβ 1 ( ) = σ 1 n + (x 0 x) (n 1) sx El intervalo de confianza para la respuesta promedio es: ( ) ŷ 0 ± t n,α/ s 1 R n + (x 0 x) (n 1) sx

46 Predicción de una nueva respuesta La varianza de la predicción de una nueva respuesta es el error cuadrático medio de la predicción: [ E (y 0 ŷ 0 ) ] = Var (y 0 ) + Var (ŷ 0 ) ( ) = σ n + (x 0 x) (n 1) s X El intervalo de confianza para la predicción de una nueva respuesta es: ( ) ŷ 0 ± t n,α/ s R n + (x 0 x) (n 1) sx La longitud de este intervalo es mayor que la del anterior (menos precisión) porque no corresponde a un valor medio sino a uno específico.

47 Estimación de una respuesta promedio y predicción de una nueva respuesta En rojo se muestran los intervalos para las medias estimadas y en rosa los intervalos de predicción. Se observa que la amplitud de estos últimos es considerablemente mayor. 50 Plot of Fitted Model Precio en ptas Produccion en kg.

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10 Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

Tema 4. Regresión lineal simple

Tema 4. Regresión lineal simple Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores de mínimos cuadrados: construcción y propiedades Inferencias

Más detalles

Segunda práctica de REGRESIÓN.

Segunda práctica de REGRESIÓN. Segunda práctica de REGRESIÓN. DATOS: fichero practica regresión 2.sf3. Objetivo: El objetivo de esta práctica es interpretar una regresión y realizar correctamente la diagnosis. En la primera parte se

Más detalles

Primera práctica de REGRESIÓN.

Primera práctica de REGRESIÓN. Primera práctica de REGRESIÓN. DATOS: fichero practica regresión 1.sf3 1. Objetivo: El objetivo de esta práctica es aprender cuándo se puede utilizar el análisis de regresión. En la primera parte se presentan

Más detalles

Regresión lineal múltiple

Regresión lineal múltiple Regresión lineal múltiple José Gabriel Palomo Sánchez gabriel.palomo@upm.es E.U.A.T. U.P.M. Julio de 2011 Índice I 1 El modelo de regresión lineal múltiple 1 El modelo de regresión múltiple. Introducción

Más detalles

Tema 1. Modelo de diseño de experimentos (un factor)

Tema 1. Modelo de diseño de experimentos (un factor) Tema 1. Modelo de diseño de experimentos (un factor) Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 1: Diseño de experimentos (un factor) 1 Introducción El objetivo del Análisis de la Varianza

Más detalles

Estadística II Examen Final - Enero 2012. Responda a los siguientes ejercicios en los cuadernillos de la Universidad.

Estadística II Examen Final - Enero 2012. Responda a los siguientes ejercicios en los cuadernillos de la Universidad. Estadística II Examen Final - Enero 2012 Responda a los siguientes ejercicios en los cuadernillos de la Universidad. No olvide poner su nombre y el número del grupo de clase en cada hoja. Indique claramente

Más detalles

Econometria. 4. Modelo de Regresión Lineal Simple: Inferencia. Prof. Ma. Isabel Santana

Econometria. 4. Modelo de Regresión Lineal Simple: Inferencia. Prof. Ma. Isabel Santana Econometria 4. Modelo de Regresión Lineal Simple: Inferencia Prof. Ma. Isabel Santana MRLS: Inferencia Hasta ahora nos hemos ocupado solamente de la estimación de los parámetros del modelo de regresión

Más detalles

Estadistica II Tema 1. Inferencia sobre una población. Curso 2009/10

Estadistica II Tema 1. Inferencia sobre una población. Curso 2009/10 Estadistica II Tema 1. Inferencia sobre una población Curso 2009/10 Tema 1. Inferencia sobre una población Contenidos Introducción a la inferencia Estimadores puntuales Estimación de la media y la varianza

Más detalles

Estadística II Ejercicios Tema 5

Estadística II Ejercicios Tema 5 Estadística II Ejercicios Tema 5 1. Considera los cuatro conjuntos de datos dados en las transparencias del Tema 5 (sección 5.1) (a) Comprueba que los cuatro conjuntos de datos dan lugar a la misma recta

Más detalles

4,2 + 0,67 Y c) R 2 = 0,49. 3.- En la estimación de un modelo de regresión lineal se ha obtenido:

4,2 + 0,67 Y c) R 2 = 0,49. 3.- En la estimación de un modelo de regresión lineal se ha obtenido: INTRODUCCIÓN A LA ESTADÍSTICA. Relación 4: REGRESIÓN Y CORRELACIÓN 1.- En una población se ha procedido a realizar observaciones sobre un par de variables X e Y. Xi 4 5 4 5 6 5 6 6 Yi 1 1 3 3 3 4 4 ni

Más detalles

Estadística II Tema 3. Comparación de dos poblaciones. Curso 2010/11

Estadística II Tema 3. Comparación de dos poblaciones. Curso 2010/11 Estadística II Tema 3. Comparación de dos poblaciones Curso 2010/11 Tema 3. Comparación de dos poblaciones Contenidos Comparación de dos poblaciones: ejemplos, datos apareados para la reducción de la variabilidad

Más detalles

INTRODUCCIÓN DIAGRAMA DE DISPERSIÓN. Figura1

INTRODUCCIÓN DIAGRAMA DE DISPERSIÓN. Figura1 Capítulo 5 Análisis de regresión INTRODUCCIÓN OBJETIVO DE LA REGRESIÓN Determinar una función matemática sencilla que describa el comportamiento de una variable dadoslosvaloresdeotrauotrasvariables. DIAGRAMA

Más detalles

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE Jorge Fallas jfallas56@gmail.com 2010 1 Temario Introducción: correlación y regresión Supuestos del análisis Variación total de Y y variación explicada por

Más detalles

Teoría de la decisión Estadística

Teoría de la decisión Estadística Conceptos básicos Unidad 7. Estimación de parámetros. Criterios para la estimación. Mínimos cuadrados. Regresión lineal simple. Ley de correlación. Intervalos de confianza. Distribuciones: t-student y

Más detalles

Estadística Avanzada y Análisis de Datos

Estadística Avanzada y Análisis de Datos 1-1 Estadística Avanzada y Análisis de Datos Javier Gorgas y Nicolás Cardiel Curso 2006-2007 2007 Máster Interuniversitario de Astrofísica 1-2 Introducción En ciencia tenemos que tomar decisiones ( son

Más detalles

ESTADISTICA APLICADA: PROGRAMA

ESTADISTICA APLICADA: PROGRAMA Pág. 1 de 5 ESTADISTICA APLICADA: PROGRAMA a) OBJETIVOS Y BLOQUE 1: Teoría de Probabilidades 1.1 Comprender la naturaleza de los experimentos aleatorios y la estructura de los espacios de probabilidades,

Más detalles

Vamos a estudiar: Relación entre variables. Cómo influye una variable X sobre otra variable Y

Vamos a estudiar: Relación entre variables. Cómo influye una variable X sobre otra variable Y Regresión Vamos a estudiar: Relación entre variables. Cómo influye una variable X sobre otra variable Y Vamos a estudiar: Relación entre variables. Cómo influye una variable X sobre otra variable Y X Y

Más detalles

Estimación por intervalos

Estimación por intervalos Método de construcción de intervalos de confianza Intervalos de confianza para una población normal Estadística II Universidad de Salamanca Curso 2011/2012 Método de construcción de intervalos de confianza

Más detalles

Un modelo para representar una relación aproximadamente

Un modelo para representar una relación aproximadamente Regresión Se han visto algunos ejemplos donde parece que haya una relación aproximadamente lineal entre dos variables. Supongamos que queremos estimar la relación entre las dos variables. Cómo ajustamos

Más detalles

Estadística II Tema 2. Conceptos básicos en el contraste de. Curso 2010/11

Estadística II Tema 2. Conceptos básicos en el contraste de. Curso 2010/11 Estadística II Tema 2. Conceptos básicos en el contraste de hipótesis Curso 2010/11 Tema 2. Conceptos básicos en el contraste de hipótesis Contenidos Definición de contraste e hipótesis estadística. Hipótesis

Más detalles

Análisis estadístico básico (I) Magdalena Cladera Munar mcladera@uib.es Departament d Economia Aplicada Universitat de les Illes Balears

Análisis estadístico básico (I) Magdalena Cladera Munar mcladera@uib.es Departament d Economia Aplicada Universitat de les Illes Balears Análisis estadístico básico (I) Magdalena Cladera Munar mcladera@uib.es Departament d Economia Aplicada Universitat de les Illes Balears CONTENIDOS Introducción a la inferencia estadística. Muestreo. Estimación

Más detalles

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Regresión con autocorrelación

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Regresión con autocorrelación ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES Regresión con autocorrelación Introducción: Consideramos la regresión y t = β 0 + β 1 x 1t + + β k x kt + + β K x Kt + u t = β x t + u t con las hipótesis

Más detalles

Regresión lineal simple

Regresión lineal simple Regresión lineal simple José Gabriel Palomo Sánchez gabriel.palomo@upm.es E.U.A.T. U.P.M. Julio de 2011 I 1 El problema general. Dependencia e independencia de variables 1 Dependencia determinista 2 Dependencia

Más detalles

Estadística II Ejercicios Tema 4

Estadística II Ejercicios Tema 4 Estadística II Ejercicios Tema 4 1. Los siguientes datos muestran la estatura (en cm.) y el peso (en Kg.) para una muestra de cinco alumnos de una clase: estatura (cm.) peso (Kg.) 154 60 158 62 162 61

Más detalles

Unidad Temática 5 Estimación de parámetros: medias, varianzas y proporciones

Unidad Temática 5 Estimación de parámetros: medias, varianzas y proporciones Unidad Temática 5 Estimación de parámetros: medias, varianzas y proporciones Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una

Más detalles

ASIGNATURA: ESTADISTICA II (II-055) Ing. César Torrez https://torrezcesar.wordpress.com

ASIGNATURA: ESTADISTICA II (II-055) Ing. César Torrez https://torrezcesar.wordpress.com ASIGNATURA: ESTADISTICA II (II-055) Ing. César Torrez torrezcat@gmail.com https://torrezcesar.wordpress.com 0416-2299743 Programa de Estadística II UNIDAD IV: REGRESIÓN Y CORRELACIÓN MÚLTIPLE LINEAL TANTO

Más detalles

peso edad grasas Regresión lineal simple Los datos

peso edad grasas Regresión lineal simple Los datos Regresión lineal simple Los datos Los datos del fichero EdadPesoGrasas.txt corresponden a tres variables medidas en 25 individuos: edad, peso y cantidad de grasas en sangre. Para leer el fichero de datos

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales Tema 5. Muestreo y distribuciones muestrales Contenidos Muestreo y muestras aleatorias simples La distribución de la media en el muestreo La distribución de la varianza muestral Lecturas recomendadas:

Más detalles

Tema 4. Modelo de regresión múltiple. Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 4: Regresión múltiple 1

Tema 4. Modelo de regresión múltiple. Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 4: Regresión múltiple 1 Tema 4. Modelo de regresión múltiple Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 4: Regresión múltiple 1 Objetivos del tema Construir un modelo que represente la dependencia lineal de

Más detalles

ANÁLISIS DE REGRESIÓN

ANÁLISIS DE REGRESIÓN ANÁLISIS DE REGRESIÓN INTRODUCCIÓN Francis Galtón DEFINICIÓN Análisis de Regresión Es una técnica estadística que se usa para investigar y modelar la relación entre variables. Respuesta Independiente Y

Más detalles

y = b 0 + b 1 x 1 + + b k x k

y = b 0 + b 1 x 1 + + b k x k Las técnicas de Regresión lineal multiple parten de k+1 variables cuantitativas: La variable respuesta (y) Las variables explicativas (x 1,, x k ) Y tratan de explicar la y mediante una función lineal

Más detalles

Muestreo y Distribuciones muestrales. 51 SOLUCIONES

Muestreo y Distribuciones muestrales. 51 SOLUCIONES Muestreo y Distribuciones muestrales. 51 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Métodos estadísticos de la ingeniería Soluciones de la hoja de problemas 5. Muestreo

Más detalles

5 Relaciones entre variables.

5 Relaciones entre variables. ANÁLISIS EPLORATORIO DE DATOS 39 ANÁLISIS EPLORATORIO DE DATOS 40 Relaciones entre variables..1 Ejercicios. Ejercicio.1 En una muestra de 0 individuos se recogen datos sobre dos medidas antropométricas

Más detalles

TRABAJO PRÁCTICO ESTADISTICA APLICADA (746)

TRABAJO PRÁCTICO ESTADISTICA APLICADA (746) UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADEMICO AREA DE MATEMATICA TRABAJO PRÁCTICO ESTADISTICA APLICADA (746) JOSE GREGORIO SANCHEZ CASANOVA C.I. V-9223081 CARRERA: 610 SECCION Nº 1 SAN CRISTOBAL,

Más detalles

Relación 3 de problemas

Relación 3 de problemas ESTADÍSTICA II Curso 2016/2017 Grado en Matemáticas Relación 3 de problemas 1. La Comunidad de Madrid evalúa anualmente a los alumnos de sexto de primaria de todos los colegios sobre varias materias. Con

Más detalles

CONCEPTOS FUNDAMENTALES

CONCEPTOS FUNDAMENTALES TEMA 8: CONTRASTES DE HIPÓTESIS PARAMÉTRICAS PRIMERA PARTE: Conceptos fundamentales 8.1. Hipótesis estadística. Tipos de hipótesis 8.2. Región crítica y región de aceptación 8.3. Errores tipo I y tipo

Más detalles

Técnicas de Inferencia Estadística II. Tema 3. Contrastes de bondad de ajuste

Técnicas de Inferencia Estadística II. Tema 3. Contrastes de bondad de ajuste Técnicas de Inferencia Estadística II Tema 3. Contrastes de bondad de ajuste M. Concepción Ausín Universidad Carlos III de Madrid Grado en Estadística y Empresa Curso 2014/15 Contenidos 1. Introducción

Más detalles

Y = ßo + ß1X + ε. La función de regresión lineal simple es expresado como:

Y = ßo + ß1X + ε. La función de regresión lineal simple es expresado como: 1 Regresión Lineal Simple Cuando la relación funcional entre las variables dependiente (Y) e independiente (X) es una línea recta, se tiene una regresión lineal simple, dada por la ecuación donde: Y =

Más detalles

El método de mínimos cuadrados. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas

El método de mínimos cuadrados. Curso de Estadística TAE, 2005 J.J. Gómez-Cadenas El método de mínimos cuadrados Curso de Estadística TAE, 005 J.J. Gómez-Cadenas Mínimos cuadrados y máxima verosimilitud Teorema del límite central Una medida y, puede considerarse como un variable aleatoria,

Más detalles

ANALISIS DE LA ESTATURA

ANALISIS DE LA ESTATURA ANALISIS DE LA ESTATURA OBJETIVO El objetivo de este trabajo es realizar un estudio de la de distintos individuos. DATOS Se realizan los distintos análisis de regresión simple, así como el análisis de

Más detalles

Métodos Estadísticos de la Ingeniería Tema 10: Inferencia Estadística, Intervalos de Confianza Grupo B

Métodos Estadísticos de la Ingeniería Tema 10: Inferencia Estadística, Intervalos de Confianza Grupo B Métodos Estadísticos de la Ingeniería Tema 10: Inferencia Estadística, Intervalos de Confianza Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Abril 010 Contenidos...............................................................

Más detalles

Comparación de Líneas de Regresión

Comparación de Líneas de Regresión Comparación de Líneas de Regresión Resumen El procedimiento de Comparación de Líneas de Regresión esta diseñado para comparar líneas de regresión relacionas con Y y X en dos o mas niveles de un factor

Más detalles

Práctica 4 EJERCICIOS 1.- REGRESIÓN LINEAL SIMPLE 5.1 Regresión de Peso sobre Altura Datos en Encuesta.sgd a) Estudio descriptivo de ambas variables

Práctica 4 EJERCICIOS 1.- REGRESIÓN LINEAL SIMPLE 5.1 Regresión de Peso sobre Altura Datos en Encuesta.sgd a) Estudio descriptivo de ambas variables EJERCICIOS 1.- REGRESIÓN LINEAL SIMPLE 5.1 Regresión de Peso sobre Altura Datos en Encuesta.sgd a) Estudio descriptivo de ambas variables Marco elementos atípicos: b) Obtener la recta de regresión y comprobar

Más detalles

8.2.5. Intervalos para la diferencia de medias de dos poblaciones

8.2.5. Intervalos para la diferencia de medias de dos poblaciones 8.. INTERVALOS DE CONFIANZA PARA LA DISTRIBUCIÓN NORMAL 89 distribuye de modo gaussiana. Para ello se tomó una muestra de 5 individuos (que podemos considerar piloto), que ofreció los siguientes resultados:

Más detalles

Definición de Correlación

Definición de Correlación Definición de Correlación En ocasiones nos puede interesar estudiar si existe o no algún tipo de relación entre dos variables aleatorias: Estudiar cómo influye la estatura del padre sobre la estatura del

Más detalles

ACTIVIDAD 5: Correlación y Regresión Lineal

ACTIVIDAD 5: Correlación y Regresión Lineal Actividad 5: Correlación y Regresión Lineal ACTIVIDAD 5: Correlación y Regresión Lineal CASO 5-1: RELACIONES ENTRE VARIABLES A continuación se muestran cuatro variables y seis valores (observaciones) asociados

Más detalles

Capítulo 6. Análisis bivariante de variables

Capítulo 6. Análisis bivariante de variables Contenidos: Capítulo 6 Análisis bivariante de variables Distribución bidimensional de frecuencias ( tabla de correlación o contingencia ) Distribuciones marginales Coeficientes de Asociación Análisis de

Más detalles

6. ESTIMACIÓN DE PARÁMETROS

6. ESTIMACIÓN DE PARÁMETROS PROBABILIDAD Y ESTADÍSTICA Sesión 7 6. ESTIMACIÓN DE PARÁMETROS 6.1 Características el estimador 6. Estimación puntual 6..1 Métodos 6..1.1 Máxima verosimilitud 6..1. Momentos 6.3 Intervalo de confianza

Más detalles

Introducción a la estadística básica, el diseño de experimentos y la regresión

Introducción a la estadística básica, el diseño de experimentos y la regresión Introducción a la estadística básica, el diseño de experimentos y la regresión Objetivos José Gabriel Palomo Sánchez gabriel.palomo@upm.es E.U.A.T. U.P.M. Julio de 2011 Objetivo general Organizar el estudio

Más detalles

CAPÍTULO 4 TRANSFORMACIONES EN REGRESIÓN

CAPÍTULO 4 TRANSFORMACIONES EN REGRESIÓN CAPÍTULO 4 TRANSFORMACIONES EN REGRESIÓN Edgar Acuña Fernández Departamento de Matemáticas Universidad de Puerto Rico Recinto Universitario de Mayagüez Edgar Acuña Analisis de Regresion 1 Transformaciones

Más detalles

Introducción al Tema 9

Introducción al Tema 9 Tema 2. Análisis de datos univariantes. Tema 3. Análisis de datos bivariantes. Tema 4. Correlación y regresión. Tema 5. Series temporales y números índice. Introducción al Tema 9 Descripción de variables

Más detalles

TEMA 4: CONTRASTES DE HIPÓTESIS. CONCEPTOS BÁSICOS

TEMA 4: CONTRASTES DE HIPÓTESIS. CONCEPTOS BÁSICOS ASIGNATURA: ESTADÍSTICA II (Grado ADE,MIM,FBS) TEMA 4: CONTRASTES DE HIPÓTESIS. CONCEPTOS BÁSICOS 4.1. Hipótesis estadística. Tipos de hipótesis 4.2. Región crítica y región de aceptación 4.3. Errores

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Estadística aplicada al medio ambiente

Estadística aplicada al medio ambiente Estadística aplicada al medio ambiente III. Regresión lineal 3 o de CC. AA. Departamento de Matemáticas Universidad Autónoma de Madrid 2011/12 Planteamiento Modelo Estimación de parámetros Intervalos de

Más detalles

Regresión. Vamos a estudiar: Relación entre variables. Cómo influye una variable X sobre otra variable Y

Regresión. Vamos a estudiar: Relación entre variables. Cómo influye una variable X sobre otra variable Y Regresión Vamos a estudiar: Relación entre variables. Cómo influye una variable X sobre otra variable Y Vamos a estudiar: Relación entre variables. Cómo influye una variable X sobre otra variable Y X Y

Más detalles

ECONOMETRÍA I. Tema 2: El Modelo de Regresión Lineal Simple. Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía

ECONOMETRÍA I. Tema 2: El Modelo de Regresión Lineal Simple. Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía ECONOMETRÍA I Tema 2: El Modelo de Regresión Lineal Simple Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA I 1 / 42 Modelo de Regresión

Más detalles

Relación entre variables: causalidad, correlación y regresión

Relación entre variables: causalidad, correlación y regresión Relación entre variables: causalidad, correlación y regresión Correlación entre variables. Modelos de regresión simple (lineal, cuadrática, cúbica). Modelos de regresión múltiple Blanca de la Fuente PID_00161061

Más detalles

Vamos a estudiar: Relación entre variables. Cómo influye una variable X sobre otra variable Y

Vamos a estudiar: Relación entre variables. Cómo influye una variable X sobre otra variable Y Regresión Vamos a estudiar: Relación entre variables. Cómo influye una variable X sobre otra variable Y Vamos a estudiar: Relación entre variables. Cómo influye una variable X sobre otra variable Y X Y

Más detalles

EJERCICIO T1 NOMBRE: Correctas Incorrectas En Blanco Puntos

EJERCICIO T1 NOMBRE: Correctas Incorrectas En Blanco Puntos ECONOMETRÍA EJERCICIO T1 APELLIDOS: NOMBRE: FIRMA: GRUPO: DNI: Pregunta 1 A B C En Blanco Pregunta A B C En Blanco Pregunta 3 A B C En Blanco Pregunta 4 A B C En Blanco Pregunta 5 A B C En Blanco Pregunta

Más detalles

Introducción al Tema 3. Tema 3. Correlación y regresión Covarianza y correlación. Propiedades y relación con el diagrama de dispersión. Regresión.

Introducción al Tema 3. Tema 3. Correlación y regresión Covarianza y correlación. Propiedades y relación con el diagrama de dispersión. Regresión. Introducción al Tema 3 1 Tema 2. Análisis de datos Representaciones y gráficos. Resumen numérico. Relaciones entre variables. bivariantes Extensión a dos variables cuantitativas Tema 3. Correlación y regresión

Más detalles

Estadística II Curso 2010/11. Guión de la Práctica 2 El modelo de regresión lineal y su tratamiento en Statgraphics

Estadística II Curso 2010/11. Guión de la Práctica 2 El modelo de regresión lineal y su tratamiento en Statgraphics Estadística II Curso 2010/11 Guión de la Práctica 2 El modelo de regresión lineal y su tratamiento en Statgraphics 1. Contenidos de la práctica - Introducción - El modelo de regresión lineal simple o Estimación

Más detalles

Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS. Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO

Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS. Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO Objetivos de la clase Objetivos de la estadística. Concepto y parámetros

Más detalles

Tema 3. 3. Correlación. Correlación. Introducción

Tema 3. 3. Correlación. Correlación. Introducción 3-1 Introducción Tema 3 Correlación Coeficiente de correlación lineal de Pearson Coeficiente de correlación poblacional Contraste paramétrico clásico Transformación de Fisher Correlación bayesiana Test

Más detalles

REVISION DE CONCEPTOS BÁSICOS

REVISION DE CONCEPTOS BÁSICOS REVISION DE CONCEPTOS BÁSICOS Objetivos Introducir, de manera muy general, algunos de los conceptos matemáticos y estadísticos que se utilizan en el análisis de regresión. La revisión no es rigurosa y

Más detalles

D.2 ANÁLISIS ESTADÍSTICO DE LAS TEMPERATURAS DE VERANO

D.2 ANÁLISIS ESTADÍSTICO DE LAS TEMPERATURAS DE VERANO Anejo Análisis estadístico de temperaturas Análisis estadístico de temperaturas - 411 - D.1 INTRODUCCIÓN Y OBJETIVO El presente anejo tiene por objeto hacer un análisis estadístico de los registros térmicos

Más detalles

1. Distribución Normal estándar

1. Distribución Normal estándar Distribución Normal estándar y cuadrados mínimos Universidad de Puerto Rico ESTA 3041 Prof. Héctor D. Torres Aponte 1. Distribución Normal estándar En efecto, todas las distribuciones Normales son lo mismo

Más detalles

ÍNDICE CAPITULO UNO CAPITULO DOS. Pág.

ÍNDICE CAPITULO UNO CAPITULO DOS. Pág. ÍNDICE CAPITULO UNO Pág. Concepto de Estadística 1 Objetivo 1 Diferencia entre estadísticas y estadística 1 Uso de la estadística 1 Divisiones de la estadística 1 1. Estadística Descriptiva 1 2. Estadística

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Tema 2. Contraste de hipótesis en una población

Tema 2. Contraste de hipótesis en una población Tema 2. Contraste de hipótesis en una población Contenidos Introducción, las hipótesis nula y alternativa El procedimiento de contraste de hipótesis Errores de Tipo I y Tipo II, potencia del contraste

Más detalles

MATEMÁTICA III. Régimen de Cursada: Semestral Caracter: Obligatoria Correlativas: Matemática II Profesor: Beatriz Pintarelli Hs. semanales: 6 hs.

MATEMÁTICA III. Régimen de Cursada: Semestral Caracter: Obligatoria Correlativas: Matemática II Profesor: Beatriz Pintarelli Hs. semanales: 6 hs. MATEMÁTICA III Año 2015 Carrera/ Plan: Licenciatura en Informática Plan 2015-3º año Licenciatura en Sistemas Plan 2015 3º año Licenciatura en Informática Plan 2003-07 / Plan 2012-2º año Licenciatura en

Más detalles

Modelo mixto: estimación y prueba de hipótesis

Modelo mixto: estimación y prueba de hipótesis Agro 6998 Conferencia 3 Modelo mixto: estimación y prueba de hipótesis Comenzaremos definiendo el modelo lineal de efectos fijos para luego extender dicha definición al caso del modelo lineal mixto. El

Más detalles

1. IDENTIFICACIÓN DE LA ASIGNATURA

1. IDENTIFICACIÓN DE LA ASIGNATURA UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE ADMINISTRACION Y ECONOMIA DEPARTAMENTO DE CONTABILIDAD Y AUDITORIA PROGRAMA DE ESTUDIO ESTADÍSTICA APLICADA II 1. IDENTIFICACIÓN DE LA ASIGNATURA 2. OBJETIVOS

Más detalles

Distribuciones bidimensionales. Regresión.

Distribuciones bidimensionales. Regresión. Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Tema 5: Distribuciones bidimensionales. Regresión. Resumen teórico Resumen teórico de los principales conceptos estadísticos

Más detalles

Test de Kolmogorov-Smirnov

Test de Kolmogorov-Smirnov Test de Kolmogorov-Smirnov Georgina Flesia FaMAF 2 de junio, 2011 Test de Kolmogorov-Smirnov El test chi-cuadrado en el caso continuo H 0 : Las v.a. Y 1, Y 2,..., Y n tienen distribución continua F. Particionar

Más detalles

C a r t a D e s c r i p t i v a

C a r t a D e s c r i p t i v a I. Identificadores del Programa: C a r t a D e s c r i p t i v a Programa: Maestría en Matemática Educativa. Depto.: Física y Matemáticas Materia: Métodos Estadísticos Clave: MME10090 No. Créditos: 6 Tipo:

Más detalles

Bioestadística. Curso Práctica: La recta de regresión

Bioestadística. Curso Práctica: La recta de regresión Bioestadística. Curso 2012-2013 Carmen M a Cadarso, M a del Carmen Carollo, Xosé Luis Otero, Beatriz Pateiro Índice 1. Introducción 2 2. El diagrama de dispersión 2 3. Covarianza 4 4. Coeciente de correlación

Más detalles

Tema 2: Análisis de datos bivariantes

Tema 2: Análisis de datos bivariantes Tema 2: Análisis de datos bivariantes Los contenidos a desarrollar en este tema son los siguientes: 1. Tablas de doble entrada. 2. Diagramas de dispersión. 3. Covarianza y Correlación. 4. Regresión lineal.

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B 1. Queremos invertir una cantidad de dinero en dos tipos

Más detalles

Pruebas de Bondad de Ajuste

Pruebas de Bondad de Ajuste 1 Facultad de Ingeniería IMERL PROBABILIDAD Y ESTADÍSTICA Curso 2008 Pruebas de Bondad de Ajuste En esta sección estudiaremos el problema de ajuste a una distribución. Dada una muestra X 1, X 2,, X n de

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

Únicamente uso libro texto (no fotocopias) o tablas estadísticas y calculadora.1 acierto 1 pto.1 fallo, -0,25.

Únicamente uso libro texto (no fotocopias) o tablas estadísticas y calculadora.1 acierto 1 pto.1 fallo, -0,25. Únicamente uso libro texto (no fotocopias) o tablas estadísticas y calculadora.1 acierto 1 pto.1 fallo, -0,5. 1. La media recortada, al 10 %, de los datos siguientes, es: 18 1 1 3 17 8 17 1 18 0 19 17

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL SIMPLE 1. El problema de la regresión lineal simple. Método de mínimos cuadrados 3. Coeficiente de regresión 4. Coeficiente de correlación lineal 5. El contraste de regresión 6. Inferencias

Más detalles

11. PRUEBAS NO PARAMÉTRICAS

11. PRUEBAS NO PARAMÉTRICAS . PRUEBAS NO PARAMÉTRICAS Edgar Acuña http://math.uprm/edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ PRUEBAS NO PARAMÉTRICAS Se estudiarán las pruebas noparamétricas, las cuales

Más detalles

TEMA 3 Modelo de regresión simple

TEMA 3 Modelo de regresión simple TEMA 3 Modelo de regresión simple José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Estructura de este tema Planteamiento del problema.

Más detalles

ANALISIS DE REGRESIÓN. El análisis de regresión involucra el estudio la relación entre dos variables CUANTITATIVAS. En general interesa:

ANALISIS DE REGRESIÓN. El análisis de regresión involucra el estudio la relación entre dos variables CUANTITATIVAS. En general interesa: Regresión Lineal Simple Liliana Orellana,008 ANALISIS DE REGRESIÓN El análisis de regresión involucra el estudio la relación entre dos variables CUANTITATIVAS. En general interesa: b Investigar si existe

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 9 Nombre: Pruebas de hipótesis referentes al valor de la media de la población Contextualización Los métodos estadísticos y las técnicas de

Más detalles

RELACIÓN DE EJERCICIOS DE REPASO DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I

RELACIÓN DE EJERCICIOS DE REPASO DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Dto. de MATEMÁTICAS RELACIÓN DE EJERCICIOS DE REPASO DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1. Calcular, de forma exacta las siguientes operaciones. a) 1, 0, b) 0,7:0,916. Representa el conjunto

Más detalles

TEMA 4 Modelo de regresión múltiple

TEMA 4 Modelo de regresión múltiple TEMA 4 Modelo de regresión múltiple José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Estructura de este tema Modelo de regresión múltiple.

Más detalles

Econometría. Modelo de Desempleo y Salarios. Profesoras Amparo Sancho Guadalupe Serrano

Econometría. Modelo de Desempleo y Salarios. Profesoras Amparo Sancho Guadalupe Serrano Econometría Modelo de Desempleo y Salarios Profesoras Amparo Sancho Guadalupe Serrano Modelo de empleo y salarios Para explicar el concepto de desempleo y su relación con los salarios, es necesario conocer

Más detalles

Linear Regression and the Least-squares problem

Linear Regression and the Least-squares problem Linear Regression and the Least-squares problem Aniel Nieves-González Abril 2013 Aniel Nieves-González () Linear Regression and the LSP Abril 2013 1 / 25 Variables cuantitativas y relaciones entre estas

Más detalles

SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas

SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA PROF. Esther González Sánchez Departamento de Informática y Sistemas Facultad de Informática Universidad de Las Palmas de Gran Canaria

Más detalles

Linear Regression and the Least-squares problem

Linear Regression and the Least-squares problem Linear Regression and the Least-squares problem Aniel Nieves-González Aniel Nieves-González () Linear Regression and the LSP 1 / 25 Variables cuantitativas y relaciones entre estas (Repaso) Recuerde que

Más detalles

REGRESIÓN LINEAL CON SPSS

REGRESIÓN LINEAL CON SPSS ESCUELA SUPERIOR DE INFORMÁTICA Prácticas de Estadística REGRESIÓN LINEAL CON SPSS 1.- INTRODUCCIÓN El análisis de regresión lineal es una técnica estadística utilizada para estudiar la relación entre

Más detalles

Tema 11: Intervalos de confianza.

Tema 11: Intervalos de confianza. Tema 11: Intervalos de confianza. Presentación y Objetivos. En este tema se trata la estimación de parámetros por intervalos de confianza. Consiste en aproximar el valor de un parámetro desconocido por

Más detalles

Problemas resueltos. Temas 10 y 11 11, 9, 12, 17, 8, 11, 9, 4, 5, 9, 14, 9, 17, 24, 19, 10, 17, 17, 8, 23, 8, 6, 14, 16, 6, 7, 15, 20, 14, 15.

Problemas resueltos. Temas 10 y 11 11, 9, 12, 17, 8, 11, 9, 4, 5, 9, 14, 9, 17, 24, 19, 10, 17, 17, 8, 23, 8, 6, 14, 16, 6, 7, 15, 20, 14, 15. Temas 10 y 11. Contrastes paramétricos de hipótesis. 1 Problemas resueltos. Temas 10 y 11 1- las puntuaciones en un test que mide la variable creatividad siguen, en la población general de adolescentes,

Más detalles

Técnicas de validación estadística Bondad de ajuste

Técnicas de validación estadística Bondad de ajuste Técnicas de validación estadística Bondad de ajuste Georgina Flesia FaMAF 28 de mayo, 2013 Pruebas de bondad de ajuste Dado un conjunto de observaciones, de qué distribución provienen o cuál es la distribución

Más detalles

Estadística Inferencial. Sesión No. 8 Pruebas de hipótesis para varianza.

Estadística Inferencial. Sesión No. 8 Pruebas de hipótesis para varianza. Estadística Inferencial. Sesión No. 8 Pruebas de hipótesis para varianza. Contextualización. En las dos sesiones anteriores se vieron métodos de inferencia estadística para medias y proporciones poblacionales.

Más detalles