En las figuras anteriores vemos algunos casos (no todos) que pueden presentarse al pasar por un punto x 0. (en este caso, para x 0 =2)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "En las figuras anteriores vemos algunos casos (no todos) que pueden presentarse al pasar por un punto x 0. (en este caso, para x 0 =2)"

Transcripción

1 UNIVERSIDAD DEL VALLE PROFESOR CARLOS IVAN RESTREPO CONTINUIDAD. 1.- Continuidad en un punto. Continuidad lateral..- Continuidad en un intervalo. 3.- Operaciones con funciones continuas 4.- Discontinuidades. Tipos. 1.- Continuidad en un punto. Continuidad lateral. Intuitivamente, una función es continua si su gráfica puede dibujarse sin levantar el lápiz del papel. Los puntos en que haya que levantar el lápiz se llaman puntos de discontinuidad. En las figuras anteriores vemos algunos casos (no todos) que pueden presentarse al pasar por un punto x 0. (en este caso, para x 0 =) En la primera figura la función no es continua porque desde los dos lados no vamos hacia el mismo punto, es decir, no existe lim f(x). x x 0 En la segunda figura sí van hacia el mismo sitio, pero falta (no existe) el punto de unión entre los dos trozos o ramas, que sería f(x 0 ).

2 En la tercera existe ese punto de unión f(x 0 ) pero no está colocado en el sitio adecuado: lim f(x) f(x 0 ). Y por último, en la cuarta figura todo está bien y la función es continua. x x0 A la vista de esto podemos dar la definición formal de función continua en un punto. Así, diremos que una función f(x) es continua en un punto x 0 si cumple las tres condiciones siguientes: 1. lim f(x) Nota: Existen otras formas equivalentes de dar la definición. Por ejemplo: una función f(x) es continua en un punto a si: 1. Existe el límite de la función f(x) en x = a.. La función está definida en x = a; es decir, existe f(a) 3. Los dos valores anteriores coinciden.. f(x 3. x x0 lim x x0 0 ) f(x) f(x O también, Si tenemos en cuenta la definición métrica de límite podemos escribir: f es continua en x a 0 0 / x a ( f x)() f a 0 ) Ejemplos: La función f ( x) x x es continua en el punto x = 3? Veamos si se cumplen las tres condiciones anteriores:

3 1. lim f x lim x x x x 3 ( ) f ( 3) lim f ( x) f ( 3) x3 Por tanto, f(x) es continua en el punto x = 3. Dada la función f ( x) x x 1, estudiar la continuidad de dicha función en x = 1. x Veamos si se cumplen las condiciones necesarias: 1. lim x 1 lim x x lim x x x x ( 1) ( 1) x 1 x ( x 1) x 1 x f ( 1) no existe, pues se anula el denominador El lim f ( x) y f ( 1) no son iguales porque f(1) no existe y, en consecuencia, no se pueden comparar. x1 Por tanto, al no estar definida la función en el punto x = 1 no podemos hablar de la continuidad en dicho punto. Dada la función 3x 5 si x 1 f ( x) si x 1, estudiar la continuidad de dicha función en x = 1 3 x si x 1 Seguiremos el mismo proceso que en los ejemplos anteriores: 1. Estudiamos la existencia del lim f ( x). x1

4 Como en el punto x = 1 la función experimenta un cambio de definición, para estudiar la existencia de dicho límite, tendremos que calcular los límites laterales de la función en el punto. Por tanto: lim f ( x) lim ( 3x 5). f (1) = 3. lim f ( x) f ( 1) x1 x1 x1 lim f ( x) lim ( 3 x) x1 x1 En consecuencia, existe lim f ( x) pues los límites laterales son iguales. x1 Luego la función es discontinua en el punto x = 1. Dada la función 3x si x f ( x) 5 si x, estudiar la continuidad de dicha función en x =. 3 x si x Seguiremos el mismo proceso que en los ejemplos anteriores: 1. Estudiamos la existencia del lim f ( x) x Como en el punto x = la función experimenta un cambio de definición, para estudiar la existencia de dicho límite, tendremos que calcular los límites laterales de la función en el punto. Por tanto: lim f ( x) lim ( 3x ) 4 x x lim f ( x) lim ( 3 x) 1 x x

5 En consecuencia, no existe lim f ( x) pues los límites laterales son distintos. x. f () = 5 Luego la función es discontinua en el punto x =. Continuidad lateral Cuando una función no es continua en un punto podemos preguntarnos si lo es lateralmente; es decir, si desde algún lado llegamos a f(x 0 ). En concreto: Una función f(x) es continua por la izquierda en un punto x 0 si y sólo si lim f (x) f (x0). x x 0 Una función f(x) es continua por la derecha en un punto x 0 si y sólo si lim f (x) f (x0). x x 0

6 .- Continuidad en un intervalo. El concepto de continuidad no tiene excesivo interés y aplicación práctica mientras no se extienda a un intervalo para poder tener propiedades en un trozo más amplio que un entorno, a veces muy pequeño, alrededor de un punto. Una función es continua en un intervalo si lo es en todos los puntos del intervalo. Así, en la función adjunta, podemos apreciar que hay continuidad en el intervalo [-4, -1], pero no en el intervalo [-1,1]

7 En en caso de que el intervalo sea cerrado, [a, b], es necesario que la función también sea continua lateralmente los extremos. Estas apreciaciones serán de vital importancia para aplicarlas posteriormente a los teoremas sobre funciones continuas.

8 3.- Operaciones con funciones continuas. Propiedades. Teniendo en cuenta las propiedades de las funciones y de los límites, podemos deducir las siguientes propiedades: Si f ( x) g( x) Si f ( x) g( x) Si f ( x) g( x) y son funciones continuas en a, b, entonces la función (f + g)(x) es continua en a b y son funciones continuas en a, b, entonces la función (fg)(x) es continua en a b y son funciones continuas en a, b, y g(x) no se anula en a b Si f(x) es continua en a, b, entonces (f)(x) es continua en a b Si f(x) es continua en a, b y g(x) es continua en f a b,.,, entonces la función,, para todo R.,, entonces la función ( g f )( x),. es continua en a b f ( x) es continua en a, b. g,. Nota: Como ejemplo de que cómo se debe realizar una demostración de esas afirmaciones, veamos el caso de la suma de dos funciones continuas en un punto y comprobemos que también es una función continua en ese punto. Demostración: Aplicando una de las propiedades de los límites de funciones,

9 En resumen: Las operaciones con funciones continuas tienen como resultado otra función continua, siempre que tenga sentido la operación. De hecho, la mayoría de las funciones más usuales son continuas. 1. La función constante f(x) = k es continua en R. En efecto, sea un número cualquiera ar y estudiemos la continuidad de la función constante en dicho punto: lim() f xlim() k k f a xa xa Por tanto, la función es continua en el punto ar y como a es un número real cualquiera, la función es continua para cualquier valor real, es decir, es continua en R.. La función identidad f(x) = x es continua en R. En efecto, sea un número cualquiera ar y estudiemos la continuidad de la función identidad en dicho punto: lim() f xlim () x a f a xa xa Por tanto, la función es continua en el punto ar y como a es un número real cualquiera, la función es continua para cualquier valor real, es decir, es continua en R. 3. La función potencial f () x n x, N n es continua en R.

10 n Si tenemos en cuenta que f ( x) x ( n) x x x, la función potencial es un producto de n funciones continuas y, por tanto, será otra función continua. n n1 4. La función polinómica f ( x) a x a x + a x a, es una función continua en R. n n1 1 0 La función polinómica está formada por la suma de un número finito de productos de una función constante por una función potencial: si tenemos en cuenta que el producto de funciones continuas es otra función continua y la suma de funciones continuas también es continua, la función polinómica será continua en todo R. 5. La función racional denominador. P( x) f ( x) es continua en todo su dominio, es decir, en todo R menos en aquellos valores que anulen el Q( x) El dominio de la función racional está formado por todos los números reales que no anulan el denominador de la fracción: Entonces, a Dom() f se verifica que: Dom( f ( x)) R x R / Q( x) 0 P()() x P a lim() f xlim () f a xa xa Q()() x Q a y la función es continua en adom(f) y como a es un punto cualquiera del dominio, será continua en éste. Propiedades de las funciones continuas. Si una función es continua en un punto, entonces tiene límite en dicho punto. Esta propiedad es consecuencia directa de la definición de la continuidad.

11 Teorema de acotación. Si una función es continua en un punto x = a, entonces está acotada en ese punto, es decir, existe un entorno simétrico de x = a en el que la función está acotada. Teorema del signo. Si f(x) es continua en un punto x = a y f(a) 0, entonces existe un entorno de x = a en el que f(x) tiene el mismo signo que f(a). f (a) f (a) f (a) O f (a) f (a) f (a) a a a ( ) O ( a a) a 4.- Discontinuidades. Tipos. Cuando una función no es continua en un punto x 0 decimos que tiene o que presenta una discontinuidad en ese punto. Teniendo en cuenta que una función es continua en un punto x = a si, y solo si, algún motivo, tendremos uno de los siguientes tipos de discontinuidades. lim()(). f x f a xa, en caso de que esta condición no se cumpla por

12 Discontinuidades Evitables Inevitables De salto (1ª especie) Esencial (ª especie Nota: En las discontinuidades evitables va a existir el límite pero en las inevitables, no Salto finito Salto inf inito Discontinuidad evitable. Una función presenta una discontinuidad evitable en un punto x 0 cuando: lim f(x) pero o bien no coincide con f(x 0 ) o bien no existe f(x 0 ). x x 0

13 Este tipo de discontinuidad se llama evitable porque se resolvería o evitaría definiendo una nueva función a partir de la que tenemos, de la siguiente manera: g() x f () x si x a L si x a es decir, definimos la nueva función igual que la función que tenemos en todos los puntos donde no hay problema y en el punto donde presenta la discontinuidad le asignamos el valor del límite. Ejemplo: Explica como harías para que la siguiente función sea continua: f ( x) x 5x 6 x 3 en el punto x = 3. Si observamos la función, resulta que no está definida en el punto x = 3 pero, si calculamos el límite de la función en ese punto, obtenemos: x 5x 6( 3)( x ) x lim lim lim( x ) 3 1 x 3 x 3 x 3 x 3 x 3 que sería el verdadero valor de la función en ese punto. La nueva función x 5x 6 si x 3 g( x) x 3 1 si x 3 sería continua en el punto x = 3.

14 Discontinuidad de salto finito. Cuando, no existe lim x x 0 f(x) pero si existen los límites laterales, que son finitos aunque distintos. En este caso, puede existir o no f(a) Además, llamamos salto a la diferencia entre los límites laterales de la función en el punto. Salto = lim f ( x) lim f ( x) xa xa Ejemplo 3x 1 si x 1 Estudiar la continuidad de la función f ( x) 3 x si x 1 en el punto x = 1. Para estudiar la continuidad en el punto x = 1, analizamos si se verifican los tres puntos de los que hablamos con anterioridad: 1º.- La función está definida en el punto x = 1: f ( 1) 4

15 º.- Estudiamos la existencia del límite en x = 1, para lo cual tenemos que recurrir a calcular los límites laterales en él puesto que en dicho punto existe un cambio de definición de la función lim() f xlim(3 1) x 4 x1 x1 Al ser los límites laterales distintos, la función no tiene límite en dicho punto. lim() f xlim(3 ) 1x x1 x1 En consecuencia, en x = 1, la función presenta una discontinuidad inevitable de salto finito: Salto = lim() f xlim() 4f x1 3 x1 x1 Si observamos los valores de los límites laterales, vemos que el límite a la izquierda coincide con el valor que toma la función en el punto, por lo que la función tiene una continuidad lateral a la izquierda en el punto x = 1. Discontinuidad de salto infinito. Cuando no existe lim x x 0 f(x) y alguno de los límites laterales (o los dos) es infinito

16 Ejemplo Estudiar la continuidad de la función 3x 1 si x 1 f ( x) 1 en el punto x = 1. si x 1 x 1 Para estudiar la continuidad en el punto x = 1, analizamos si se verifican los tres puntos de los que hablamos con anterioridad: 1º.- La función está definida en el punto x = 1: f ( 1) 4 º.- Estudiamos la existencia del límite en x = 1, para lo cual tenemos que recurrir a calcular los límites laterales en él puesto que en dicho punto existe un cambio de definición de la función lim() f xlim(3 1) x 4 1 lim f ( x) lim x1 x1 x 1 x1 x1 En consecuencia, en x = 1, la función presenta una discontinuidad inevitable de salto infinito: Nota: Si observamos los valores de los límites laterales, vemos que el límite a la izquierda coincide con el valor que toma la función en el punto, por lo que podemos decir que la función es continua por la izquierda en el punto x = 1. Discontinuidad esencial Cuando no existe alguno de los límites laterales (o los dos) 1 Por ejemplo, la función ( x) sen( x) 1 cada vez mas cerca del 0. Por tanto, presenta un discontinuidad esencial en x=0 f no tiene límites laterales en el 0 porque oscila infinitas veces entre 1 y

17 Ejemplo Estudiar la continuidad de la función f ( x) x si x en el punto x =. Teniendo en cuenta que su gráfica es la que se adjunta, podemos observar que en x = hay una discontinuidad esencial porque no existe el límite por la derecha.

Límites y continuidad

Límites y continuidad Estudio de la continuidad de la función en el punto = : Comprobemos, como primera medida, que la función está definida en =. Para =, tenemos que determinar f() = + = 6 + = 8, luego eiste. Calculamos, entonces

Más detalles

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales

Más detalles

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2 UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como

Más detalles

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2 UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como

Más detalles

TEMA 2: CONTINUIDAD DE FUNCIONES

TEMA 2: CONTINUIDAD DE FUNCIONES TEMA : CONTINUIDAD DE FUNCIONES 1. Continuidad de una función en un punto Entre las primeras propiedades de las funciones aparece el concepto de continuidad. Durante mucho tiempo fue asumida como una idea

Más detalles

Gráficamente: una función es continua en un punto si en dicho punto su gráfica no se rompe. Función continua en x = 0 Función no continua en x = 0

Gráficamente: una función es continua en un punto si en dicho punto su gráfica no se rompe. Función continua en x = 0 Función no continua en x = 0 Funciones continuas Funciones continuas Continuidad de una función Si x 0 es un número, la función f(x) es continua en este punto si el límite de la función en ese punto coincide con el valor de la función

Más detalles

2.1. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable x)

2.1. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable x) Bloque : Cálculo Diferencial Tema : Límite y Continuidad de una función.. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable ) La forma de comportarse una función para valores muy grandes

Más detalles

4.2. Continuidad de una función en un punto. (A) Una función f es continua en un punto x=a, cuando se cumplen las siguientes condiciones:

4.2. Continuidad de una función en un punto. (A) Una función f es continua en un punto x=a, cuando se cumplen las siguientes condiciones: 4. CONTINUIDAD DE UNA FUNCIÓN. 4.. Noción intuitiva de continuidad de una unción en un punto. La mayor parte de las unciones que manejamos a nivel elemental, presentan en sus gráicas una propiedad característica

Más detalles

Es evidente la continuidad en En el punto, se tiene:

Es evidente la continuidad en En el punto, se tiene: Tema 3 Continuidad Ejercicios Resueltos Ejercicio 1 Estudia la continuidad de la función La función puede expresarse como Para representarla basta considerar dos arcos de parábola: Es evidente la continuidad

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo

Más detalles

Procedimiento para determinar las asíntotas verticales de una función

Procedimiento para determinar las asíntotas verticales de una función DETERMINACIÓN DE ASÍNTOTAS EN UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 4 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

2.1 CONTINUIDAD EN UN PUNTO 2.2 CONTINUIDAD DE FUNCIONES CONOCIDAS 2.3 CONTINUIDAD EN OPERACIONES CON

2.1 CONTINUIDAD EN UN PUNTO 2.2 CONTINUIDAD DE FUNCIONES CONOCIDAS 2.3 CONTINUIDAD EN OPERACIONES CON Cap. Continuidad de funciones.1 CONTINUIDAD EN UN PUNTO. CONTINUIDAD DE FUNCIONES CONOCIDAS.3 CONTINUIDAD EN OPERACIONES CON FUNCIONES.4 CONTINUIDAD EN UN INTERVALO.5 TEOREMA DEL VALOR INTERMEDIO OBJETIVOS:

Más detalles

Funciones. Domf = {x R f(x) B} Ranf = {f(x) x Domf} x (, 4) (4, ) 4y + 1 y. 4y + 1. > 4 = y y. > 0 = y

Funciones. Domf = {x R f(x) B} Ranf = {f(x) x Domf} x (, 4) (4, ) 4y + 1 y. 4y + 1. > 4 = y y. > 0 = y Funciones Una función real de variable real es una aplicación f : A B donde A,B son conjuntos de números reales. Domf = x R f(x) B Rango: El rango o imagen de la función f es un conjunto que se define

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio

Más detalles

ASÍNTOTAS DE LA GRÁFICA DE UNA FUNCIÓN

ASÍNTOTAS DE LA GRÁFICA DE UNA FUNCIÓN ASÍNTOTAS DE LA GRÁFICA DE UNA FUNCIÓN La gráfica de una función elemental puede presentar ninguna una o varias asíntotas verticales y además puede presentar a lo sumo una asíntota horizontal o una asíntota

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN

DERIVADAS. TÉCNICAS DE DERIVACIÓN DERIVADAS. TÉCNICAS DE DERIVACIÓN Página 5 REFLEXIONA Y RESUELVE Tangentes a una curva y f () 5 5 9 4 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(4). f'() 0; f'(9) ; f'(4) 4 Di otros

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS Tema 8 Límites de funciones, continuidad y asíntotas Matemáticas II º Bach 1 TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8.1 LÍMITE DE UNA FUNCIÓN 8.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite

Más detalles

Tema 1. Cálculo diferencial

Tema 1. Cálculo diferencial Tema 1. Cálculo diferencial 1 / 57 Una función es una herramienta mediante la que expresamos la relación entre una causa (variable independiente) y un efecto (variable dependiente). Las funciones nos permiten

Más detalles

DEPARTAMENTO DE MATEMÁTICAS B A C H I L L E R A T O

DEPARTAMENTO DE MATEMÁTICAS B A C H I L L E R A T O DEPARTAMENTO DE MATEMÁTICAS B A C H I L L E R A T O FUNDACIÓN VEDRUNA S E V I L L A COLEGIO SANTA JOAQUINA DE VEDRUNA MATEMÁTICAS I LÍMITES Y CONTINUIDAD DE FUNCIONES Límite finito de una función en un

Más detalles

el blog de mate de aida CSI: Límites y continuidad. . Se lee x tiende a x por la derecha. , se expresa así: , se expresa así: por la derecha)

el blog de mate de aida CSI: Límites y continuidad. . Se lee x tiende a x por la derecha. , se expresa así: , se expresa así: por la derecha) pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO gnifica que toma valores cada vez más próimos a. Se lee tiende a. Ejemplo: ;,9;,;,;,8;,;,9;,;,999; Es una secuencia de números cada vez más próimos a. Escribimos.

Más detalles

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones.

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. 0.. Concepto de derivada. Definición. Sea f : S R R, a (b, c) S. Decimos que f es derivable en a si existe: f(x) f(a)

Más detalles

Espacio de Funciones Medibles

Espacio de Funciones Medibles Capítulo 22 Espacio de Funciones Medibles Igual que la σ-álgebra de los conjuntos medibles, la familia de funciones medibles, además de contener a todas las funciones razonables (por supuesto son medibles

Más detalles

PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD

PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD Considera la función f(x)= x 3 + px donde p es un número real. Escribir (en función de p) la ecuación de la recta tangente a la grafica f(x) en el punto de abscisa

Más detalles

4. " $#%&' (#) para todo $#* (desigualdad triangular).

4.  $#%&' (#) para todo $#* (desigualdad triangular). 10 Capítulo 2 Espacios Métricos 21 Distancias y espacios métricos Definición 211 (Distancia) Dado un conjunto, una distancia es una aplicación que a cada par le asocia un número real y que cumple los siguientes

Más detalles

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales:

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales: FUNCIONES CONTINUAS EN UN INTERVALO Teoremas de continuidad y derivabilidad Teorema de Bolzano Sea una función que verifica las siguientes hipótesis:. Es continua en el intervalo cerrado [, ]. Las imágenes

Más detalles

Límite de una función

Límite de una función Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es decir el valor al que tienden

Más detalles

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q).

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q). TEMA 4: DERIVADAS 1. La derivada de una función. Reglas de derivación 1.1. La pendiente de una curva. La pendiente de una curva en un punto P es una medida de la inclinación de la curva en ese punto. Si

Más detalles

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable.

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable. Cardinalidad Dados dos conjuntos A y B, decimos que A es equivalente a B, o que A y B tienen la misma potencia, y lo notamos A B, si existe una biyección de A en B Es fácil probar que es una relación de

Más detalles

26 Apuntes de Matemáticas II para preparar el examen de la PAU

26 Apuntes de Matemáticas II para preparar el examen de la PAU 6 Apuntes de Matemáticas II para preparar el examen de la PAU Unidad. Funciones.Continuidad TEMA FUNCIONES. CONTINUIDAD. 1. Definición de Continuidad. Tipos de discontinuidades 3. Continuidad de las funciones

Más detalles

Límites y continuidad

Límites y continuidad Límites y continuidad.. Límites El ite por la izquierda de una función f en un punto 0, denotado como 0 f() es el valor al que se aproima f() cuando se acerca hacia 0 por la izquierda. De igual forma,

Más detalles

EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA

EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA EJERCICIOS DE CONTINUIDAD Y APLICACIONES DE LA DERIVADA 1º) Estudia la continuidad de la siguiente función: x+3 si x < 2 fx = x +1 si x 2 La función está definida para todos los reales: D(f)=R Tanto a

Más detalles

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN 1 FUNCIONES FUNCIÓN REAL DE VARIABLE REAL Una función real de variable real es una relación que asocia a cada número real, (variable independiente),

Más detalles

Límites y continuidad de funciones

Límites y continuidad de funciones Límites y continuidad de funciones 1 Definiciónde límite Llamamos LÍMITE de una función f en un punto x=a al valor al que se aproximan los valores de la función cuando x se aproxima al valor de a. lím

Más detalles

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=

Más detalles

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3)

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x) Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )

Más detalles

1.5 Límites infinitos

1.5 Límites infinitos SECCIÓN.5 Límites infinitos 8.5 Límites infinitos Determinar ites infinitos por la izquierda por la derecha. Encontrar dibujar las asíntotas verticales de la gráfica de una función., cuando Límites infinitos

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

Concepto de función. Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B

Concepto de función. Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función

Más detalles

Las superficies serán: Tapa y superficie lateral S 1 = ( x 2 +4xy ) cm 2 Superficie de la base: S 2 = x 2 cm 2

Las superficies serán: Tapa y superficie lateral S 1 = ( x 2 +4xy ) cm 2 Superficie de la base: S 2 = x 2 cm 2 MATEMÁTICAS II, º BACHILLERATO F.- Se desea construir una caja cerrada de base cuadrada con una capacidad de 8 cm. Para la tapa y la superficie lateral se usa un material que cuesta /cm y para la base

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE

Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE TEMA 5: DERIVADAS. APLICACIONES. ÍNDICE 5..- Derivada de una función en un punto. 5...- Tasa de variación media. Interpretación geométrica. 5..2.- Tasa de variación instantánea. Derivada de una función

Más detalles

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2)

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2) Tema 0 Aplicaciones de la derivada Matemáticas II º Bachillerato TEMA 0 APLICACIONES DE LA DERIVADA RECTA TANGENTE Escribe e 0 EJERCICIO : la ecuación de la recta tangente a la curva f en 0. Ordenada del

Más detalles

TEMA 6 LÍMITE Y CONTINUIDAD

TEMA 6 LÍMITE Y CONTINUIDAD TEMA 6 LÍMITE Y CONTINUIDAD 6.. IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN. Dada la función f() = 2, a qué valor se aproima f() cuando se aproima a 2? Dada la función f() =?, a qué valor se aproima f() cuando

Más detalles

1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas:

1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas: LIMITE DE FUNCIONES Tema: Introducción a límite 1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas: a) Cuál es el valor de la función si x = 2? b) Cuál es el valor de la función

Más detalles

Se utilizarán las letras mayúsculas, tales como A, B y C para nombrar conjuntos. Por ejemplo: a i. o e

Se utilizarán las letras mayúsculas, tales como A, B y C para nombrar conjuntos. Por ejemplo: a i. o e Conjuntos Notación de conjuntos Se utilizarán las letras mayúsculas, tales como A, B y C para nombrar conjuntos. Por ejemplo: A 1,2,3 B 2,5,6 C a, e, i, o, u D #,&,*,@ Es bastante corriente dibujar los

Más detalles

Derivadas. Contenido Introducción. ( α) Definición de Derivada. (α) Pendiente de la recta tangente. (α) Funciones diferenciables.

Derivadas. Contenido Introducción. ( α) Definición de Derivada. (α) Pendiente de la recta tangente. (α) Funciones diferenciables. Derivadas. Contenido 1. Introducción. (α) 2. Definición de Derivada. (α) 3. Pendiente de la recta tangente. (α) 4. Funciones diferenciables. (α) 5. Función derivada. (α) 6. Propiedades de la derivada.

Más detalles

TEMA 1: Funciones elementales

TEMA 1: Funciones elementales MATEMATICAS TEMA 1 CURSO 014/15 TEMA 1: Funciones elementales 8.1 CONCEPTO DE FUNCIÓN: Una función es una ley que asigna a cada elemento de un conjunto un único elemento de otro. Con esto una función hace

Más detalles

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo

Más detalles

= y. Así pues, el domino lo forman los números x para los cuales existe el valor de f (x)

= y. Así pues, el domino lo forman los números x para los cuales existe el valor de f (x) UAH Actualización de Conocimientos de Matemáticas para Tema 6 Funciones Concepto de función Dados dos conjuntos A y B, una función de A en B es una relación (una ley) que asigna a cada elemento de A uno

Más detalles

Teoría Tema 3 Teoremas de derivabilidad

Teoría Tema 3 Teoremas de derivabilidad página 1/10 Teoría Tema 3 Teoremas de derivabilidad Índice de contenido Teorema de Rolle...2 Teorema del valor medio de Lagrange (o de los incrementos finitos)...4 Teorema de Cauchy...6 Regla de L'Hôpital...8

Más detalles

RESUMEN TEÓRICO DE CLASES

RESUMEN TEÓRICO DE CLASES Página 1 RESUMEN TEÓRICO DE CLASES Página 2 Tema 1. Inecuaciones Las inecuaciones son desigualdades algebraicas en la que sus dos miembros se relacionan por uno de estos signos: >; ;

Más detalles

Funciones de varias variables

Funciones de varias variables Capítulo Funciones de varias variables Problema Sea f : IR 2 IR definida por: 2 y 2 f, y) = e +y 2 > y, y. i) Estudiar la continuidad de f en IR 2. ii) Definimos g : IR IR como g) = f, ). Analizar la derivabilidad

Más detalles

Límites y continuidad de funciones reales de variable real

Límites y continuidad de funciones reales de variable real Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones

Más detalles

A partir de la definición obtenemos las siguientes propiedades para estas funciones:

A partir de la definición obtenemos las siguientes propiedades para estas funciones: Capítulo 1 Conjuntos Supondremos conocidas las nociones básicas sobre teoría de conjuntos, tales como subconjuntos, elementos, unión, intersección, complemento, diferencia, diferencia simétrica, propiedades

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,

Más detalles

INTRODUCCIÓN. FUNCIONES. LÍMITES.

INTRODUCCIÓN. FUNCIONES. LÍMITES. INTRODUCCIÓN. FUNCIONES. LÍMITES. Este capítulo puede considerarse como una prolongación y extensión del anterior, límite de sucesiones, al campo de las funciones. Se inicia recordando el concepto de función

Más detalles

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]

Más detalles

Reglas de derivación. 4.1. Sumas, productos y cocientes. Tema 4

Reglas de derivación. 4.1. Sumas, productos y cocientes. Tema 4 Tema 4 Reglas de derivación Aclarado el concepto de derivada, pasamos a desarrollar las reglas básicas para el cálculo de derivadas o, lo que viene a ser lo mismo, a analizar la estabilidad de las funciones

Más detalles

Curvas en paramétricas y polares

Curvas en paramétricas y polares Capítulo 10 Curvas en paramétricas y polares Introducción Después del estudio detallado de funciones reales de variable real expresadas en forma explícita y con coordenadas cartesianas, que se ha hecho

Más detalles

Topología de R n. Beatriz Porras

Topología de R n. Beatriz Porras Producto escalar, métrica y norma asociada. Topología de R n Beatriz Porras 1 Producto escalar, métrica y norma asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

Herramientas digitales de auto-aprendizaje para Matemáticas

Herramientas digitales de auto-aprendizaje para Matemáticas Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura Índice la cadena Tabla de Dada una función f : D R R,

Más detalles

DERIVABILIDAD-CURSO 6TO-MATEMÁTICA SÍNTESIS TEÓRICO-PRÁCTICA PROF. SERGIO WEINBERGER

DERIVABILIDAD-CURSO 6TO-MATEMÁTICA SÍNTESIS TEÓRICO-PRÁCTICA PROF. SERGIO WEINBERGER DERIVABILIDAD-CURSO 6TO-MATEMÁTICA SÍNTESIS TEÓRICO-PRÁCTICA PROF. SERGIO WEINBERGER INTRODUCCIÓN. Y t a Se considera una función f definida en un entorno de centro a, sea x pertene- P ciente a dicho entorno.

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

CURSO 2013/2014 RESUMEN LÍMITES Y CONTINUIDAD 2, ,61 2,01 4,0401 1,99 3,9601 2,001 4, ,999 3,

CURSO 2013/2014 RESUMEN LÍMITES Y CONTINUIDAD 2, ,61 2,01 4,0401 1,99 3,9601 2,001 4, ,999 3, RESUMEN LÍMITES Y CONTINUIDAD Límite de una función en un punto El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

y con la semiamplitud δ =1. 2.

y con la semiamplitud δ =1. 2. LÍMITE DE UNA FUNCIÓN UNIDAD II II. ENTORNOS Se denomina entorno de un punto a en, al intervalo abierto ( δ a δ ) semiamplitud del intervalo. a, donde δ es la El entorno de a, en notación de conjuntos

Más detalles

Teoría Tema 9 Representación gráfica de funciones

Teoría Tema 9 Representación gráfica de funciones página 1/24 Teoría Tema 9 Representación gráfica de funciones Índice de contenido Gráficas de funciones...2 Gráfica de una parábola...3 Gráfica de un polinomio de grado 3...6 Gráfica de un cociente de

Más detalles

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático Análisis Matemático Unidad 4 - Límite de una función en un punto Límite de una función en un punto El límite de una función para un valor de x es el valor al que la función tiende en los alrededores de

Más detalles

RELACIÓN ENTRE LA GRÁFICA DE UNA FUNCIÓN f y LA DE SU INVERSA f -1

RELACIÓN ENTRE LA GRÁFICA DE UNA FUNCIÓN f y LA DE SU INVERSA f -1 RELACIÓN ENTRE LA GRÁFICA DE UNA FUNCIÓN f y LA DE SU INVERSA f -1 Sabemos que la función inversa 1 Si f a b, entonces f b a 1 f (o recíproca) de f cumple la siguiente condición: Por lo tanto: 1 f f 1

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio opción A, modelo 3 Septiembre 03 específico x Sea f la función definida por f(x) = para x > 0, x (donde ln denota el logaritmo neperiano) ln(x) [ 5 puntos] Estudia y determina las asíntotas

Más detalles

Derivadas 6 ACTIVIDADES. 1. Página 140. Función f(x) x 2 1: Función g(x) x 3 7: 2. Página Página Página

Derivadas 6 ACTIVIDADES. 1. Página 140. Función f(x) x 2 1: Función g(x) x 3 7: 2. Página Página Página Derivadas 6 ACTIVIDADES 1. Página 140 Función f(x) x 2 1: Función g(x) x 3 7: 2. Página 140 3. Página 141 4. Página 141 5. Página 142 211 Derivadas 6. Página 142 Las derivadas laterales no existen, por

Más detalles

si este límite es finito, y en este caso decimos que f es integrable (impropia)

si este límite es finito, y en este caso decimos que f es integrable (impropia) Capítulo 6 Integrales impropias menudo resulta útil poder integrar funciones que no son acotadas, e incluso integrarlas sobre recintos no acotados. En este capítulo desarrollaremos brevemente una teoría

Más detalles

APUNTES DE FUNCIONES PARA 4º ESO

APUNTES DE FUNCIONES PARA 4º ESO APUNTES DE FUNCIONES PARA 4º ESO - DEFINICIÓN: Una función es una relación entre dos magnitudes, X e Y, de forma que a cada valor de la magnitud X corresponde un único valor y de la magnitud Y. : variable

Más detalles

Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones

Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril 009,

Más detalles

El cuerpo de los números reales

El cuerpo de los números reales Capítulo 1 El cuerpo de los números reales 1.1. Introducción Existen diversos enfoques para introducir los números reales: uno de ellos parte de los números naturales 1, 2, 3,... utilizándolos para construir

Más detalles

Teoría Tema 8 Ejemplos y más ejemplos de límites

Teoría Tema 8 Ejemplos y más ejemplos de límites página 1/10 Teoría Tema 8 Ejemplos y más ejemplos de límites Índice de contenido Practicar y practicar...2 página 2/10 Practicar y practicar Como existen infinitas funciones distintas... existen infinitos

Más detalles

Aproximación intuitiva al concepto de límite de una función en un punto

Aproximación intuitiva al concepto de límite de una función en un punto Aproimación intuitiva al concepto de límite de una función en un punto ) Consideremos el siguiente gráfico Cuando los valores de se aproiman a 8 por la derecha, las imágenes de se acercan a 4 Cuando los

Más detalles

4. Resolución de indeterminaciones: la regla de L Hôpital.

4. Resolución de indeterminaciones: la regla de L Hôpital. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Funciones y derivada. 4. Resolución de indeterminaciones: la regla de L Hôpital. Sean f y g dos funciones derivables en un intervalo abierto I R y sea

Más detalles

En este capítulo obtendremos los resultados básicos del cálculo diferencial para funciones reales definidas sobre R o sobre intervalos.

En este capítulo obtendremos los resultados básicos del cálculo diferencial para funciones reales definidas sobre R o sobre intervalos. Capítulo 6 Derivadas 61 Introducción En este capítulo obtendremos los resultados básicos del cálculo diferencial para funciones reales definidas sobre R o sobre intervalos Definición 61 Sea I R, I, f :

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto

Más detalles

Conjuntos finitos y conjuntos numerables

Conjuntos finitos y conjuntos numerables Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos

Más detalles

CAPITULO 7.SERIES DE FOURIER. 7.1. Sistemas de funciones ortogonales

CAPITULO 7.SERIES DE FOURIER. 7.1. Sistemas de funciones ortogonales CAPITULO 7.SERIES DE FOURIER La publicación por Fourier (1768-1830) de la " Teoría analítica del calor ", fue de una influencia decisiva en las matemáticas posteriores. Se supone en ella que cualquier

Más detalles

Universidad de Sonora

Universidad de Sonora Universidad de Sonora Departamento de Matemáticas. Notas: Límites y Continuidad Dr. José Luis Díaz Gómez 2003 Límites y Continuidad de funciones 1. EL PROCESO DEL LÍMITE Mediante gráficos y tablas de valores

Más detalles

EJERCICIOS REPASO 2ª EVALUACIÓN

EJERCICIOS REPASO 2ª EVALUACIÓN MATRICES Y DETERMINANTES 1.) Sean las matrices: EJERCICIOS REPASO 2ª EVALUACIÓN a) Encuentre el valor o valores de x de forma que b) Igualmente para que c) Determine x para que 2.) Dadas las matrices:

Más detalles

Límites y continuidad

Límites y continuidad Límites y continuidad Podríamos empezar diciendo que los límites son importantes en el cálculo, pero afirmar tal cosa sería infravalorar largamente su auténtica importancia. Sin límites el cálculo sencillamente

Más detalles

FUNCIONES RACIONALES. HIPÉRBOLAS

FUNCIONES RACIONALES. HIPÉRBOLAS www.matesronda.net José A. Jiménez Nieto FUNCIONES RACIONALES. HIPÉRBOLAS 1. FUNCIÓN DE PROPORCIONALIDAD INVERSA El área de un rectángulo es 18 cm 2. La siguiente tabla nos muestra algunas medidas que

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

5.1. Límite de una Función en un Punto

5.1. Límite de una Función en un Punto Capítulo 5 Continuidad 51 Límite de una Función en un Punto Definición 51 Sean (X, d) y (Y, ρ) espacios métricos, D X, f : D Y una función, a X un punto de acumulación de D y b Y Decimos que b es el límite

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales Capítulo 2 Sucesiones y series de números reales 2.. Sucesiones de números reales 2... Introducción Definición 2... Llamamos sucesión de números reales a una función f : N R, n f(n) = x n. Habitualmente

Más detalles

Aplicaciones de las Derivadas

Aplicaciones de las Derivadas Tema 4 Aplicaciones de las Derivadas 4.1 Introducción Repasaremos en este Tema algunas de las aplicaciones fundamentales de las derivadas. Muchas de ellas son ya conocidas por tratarse de conceptos explicados

Más detalles

Límites e indeterminaciones

Límites e indeterminaciones Límites e indeterminaciones La idea de límite de una función no es en sí complicada, pero hubo que esperar hasta el siglo XVII a que los matemáticos Newton 1 y Leibniz 2 le dieran forma y la convirtiesen

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles