OPCIÓN A EJERCICIO 1 (A)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "OPCIÓN A EJERCICIO 1 (A)"

Transcripción

1 IES Fco Ayala de Graada Juio de 01 (Geeral Modelo 6) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 01 MODELO (COMÚN) OPCIÓN A EJERCICIO 1 (A) Sea las matrices A = y B =. a b 0 (1 5 putos) Obtega a y b sabiedo que A 5 - =. Es A simétrica? - 1 (1 5 putos) Para los valores a = y b = 1 calcule la matriz X talque A B = (X - I ). Solució Sea las matrices A = y B =. a b 0 Obtega a y b sabiedo que A 5 - =. Es A simétrica? - 1 A = = A A = - 1 a b -1 -a+ -b- =. Igualado teemos: a b ab+a -a+b 5 = -a +, de dode a = = -b -, de dode b = 0. - = ab + a, lo cual es cierto para a = -1 y b = 0. 1 = -a + b, lo cual es cierto para a = -1 y b = Para a = -1 y b = 0, teemos A = la cual es simétrica pues A = A t, y además se observa que los -1 0 elemetos simétricos respecto a la diagoal pricipal so iguales (el -1). Para los valores a = y b = 1 calcule la matriz X talque A B = (X - I ) Para a = y b = 1 teemos A = y B = 1 0 De A B = (X - I ), teemos A B = X - 6I es decir (1/) A B + I = X La matriz pedida es X = (1/) A B + I = (1/) 1 0-5/ 1 0 1/ 1 1 = + = = (1/). 0 / 0 0 9/ = (1/) = EJERCICIO (A) Los beeficios de ua empresa e sus 8 años viee dados, e milloes de euros, por la fució t B(t) = - t + 9t, 0 t 8; dode la variable t idica el tiempo trascurrido, e años, desde su fudació. (1 5 putos) Estudia la mootoía y los extremos de B(t). (1 puto) Dibuje la gráfica de B(t) e el itervalo [0,8] y explique, a partir de ella la evolució de los beeficios de esta empresa e sus 8 años de existecia. Solució Los beeficios de ua empresa e sus 8 años viee dados, e milloes de euros, por la fució t B(t) = - t + 9t, 0 t 8; dode la variable t idica el tiempo trascurrido, e años, desde su fudació. Estudia la mootoía y los extremos de B(t). La mootoía es el estudio de la 1ª derivada, como B(t) es ua cúbica sabemos que es cotiua y derivable e todo R, es particular e su domiio 0 t 8. Por tato los extremos absolutos se ecotrará etre los valores que aule la 1ª derivada B (t), y los extremos del itervalo t = 0 y t = 8. 1

2 IES Fco Ayala de Graada Juio de 01 (Geeral Modelo 6) Solucioes Germá-Jesús Rubio Lua De B(t) = t - t + 9t, teemos B (t) = t - 6t + 9. t De B (t) = 0-6t + 9 = 0 t - t + 6 = 0 t - 8t + 1 = 0 t = de dode t = 6 y t =. 8 ± ± =, Como B (1) = Como B () = Como B (7) = (1) () (7) - 6(1) + 9 = 15/ > 0, B(t) es estrictamete creciete ( ) e (0,). - 6() + 9 = - 9/ < 0, B(t) es estrictamete decreciete ( ) e (,6). - 6(7) + 9 = 15/ > 0, B(t) es estrictamete creciete ( ) e (6,8). Por defiició t = es u máximo relativo de B(t) que vale B() = - () + 9() = 8. 6 Por defiició t = 6 es u míimo relativo de B(t) que vale B(6) = - (6) + 9(6) = 0. t Falta evaluar B(t) = - t + 9t e los valores t = 0 y t = 8, para ver los extremos absolutos (teiedo e cueta los resultados ya obteidos) 0 B(0) = - (0) + 9(0) = 0 8 B(8) = - (8) + 9(8) = 8. Vemos que el máximo absoluto de B(t) es 8 y se alcaza e t = y t = 8. Vemos que el míimo absoluto de B(t) es 0 y se alcaza e t = 0 y t = 6. Dibuje la gráfica de B(t) e el itervalo [0,8] y explique, a partir de ella la evolució de los beeficios de esta empresa e sus 8 años de existecia. La gráfica de la fució B(t) es ua cúbica. Teiedo e cueta los resultados del apartado ( podemos dibujarla e [0,8], y podemos tambié decir la evolució de sus beeficios si teer que observar su gráfica. Teemos B(t) es estrictamete creciete ( ) e (0,), B(t) es estrictamete decreciete ( ) es estrictamete creciete ( ) e (6,8), B(0) = 0, B() = 8, B(6) = 0 y B(8) = 8. U esbozo de la gráfica de B(t) es: e (,6), B(t) Observado la gráfica los beeficios crece e los años (0,) (6,8), y decrece e (,6).

3 IES Fco Ayala de Graada Juio de 01 (Geeral Modelo 6) Solucioes Germá-Jesús Rubio Lua EJERCICIO (A) El 55% de los alumos de u cetro docete utiliza e su desplazamieto trasporte público, el 0% usa vehículo propio y el resto va adado. El 65% de los que utiliza trasporte público so mujeres, el 70% de los que usa vehículo propio so hombres y el 5% de los que va adado so mujeres. (1 5 putos) Elegido al azar u alumo de ese cetro, calcule la probabilidad de que sea hombre. (1 puto) Elegido al azar u hombre, alumo de ese cetro, cuál es la probabilidad de que vaya adado Solució El 55% de los alumos de u cetro docete utiliza e su desplazamieto trasporte público, el 0% usa vehículo propio y el resto va adado. El 65% de los que utiliza trasporte público so mujeres, el 70% de los que usa vehículo propio so hombres y el 5% de los que va adado so mujeres. Elegido al azar u alumo de ese cetro, calcule la probabilidad de que sea hombre. Llamemos A, B, C, H y M, a los sucesos siguietes, utiliza trasporte público, utiliza su vehículo, "va adado", es hombre y "es mujer", respectivamete. Además teemos p(a) = 55% = 0 55, p(b) = 0% = 0, p(m/a) = 65% = 0 65, p(h/b) = 70% = 0 7 y p(m/c) = 5% = 0 5 Todo esto se ve mejor e el siguiete diagrama de árbol (completamos las probabilidades sabiedo que la suma de ellas que parte de u mismo odo vale 1). Elegido al azar u alumo de ese cetro, calcule la probabilidad de que sea hombre. Aplicado el teorema de la probabilidad total, la probabilidad de que sea hombre es: p(h) = p(a).p(h/a) + p(b).p(h/b) + p(c).p(h/c) = = (0 55) (0 5) + (0 ) (0 7) + (0 15) (0 8) = Elegido al azar u hombre, alumo de ese cetro, cuál es la probabilidad de que vaya adado Aplicado el teorema de Bayes, teemos: p( C H ) p( C) p(h/c ) (0'15) (0'8) p(c/h) = = = = 1/ p(h) p(h) 0'75 EJERCICIO (A) Se quiere estimar la proporció de hembras etre los peces de ua piscifactoría; para ello se ha tomado ua muestra aleatoria de 500 peces, y e ella hay 175 hembras. (1 5 putos) Calcule u itervalo de cofiaza para la proporció de hembras e esta població de peces, co u ivel de cofiaza del 9%. (1 puto) A la vista del resultado del muestreo se quiere repetir la experiecia para coseguir u itervalo de cofiaza co el mismo ivel y u error máximo de 0 0, cuál es el tamaño que debe teer la ueva muestra? Solució

4 IES Fco Ayala de Graada Juio de 01 (Geeral Modelo 6) Solucioes Germá-Jesús Rubio Lua Sabemos que si 0 para la proporció muestral p, el estimador PROPORCIÓN MUESTRAL p sigue ua ormal N( p q p, ) que es la distribució muestral de proporcioes, dode q = 1- p, y geeralmete escribimos p N( p q p, ) o p N( p q p, ). Sabemos que el itervalo de cofiaza para estimar la proporció p de las muestras es: p q ˆ ˆ p q ˆ ˆ I.C.(p) = p ˆ - z ˆ 1 α/.,p + z 1 α/. = (b- dode z 1-α/ es el puto crítico de la variable aleatoria Normal tipificada Z N(0,1) que verifica p(z z 1-α/ )=1-α/. p(1 ˆ p) ˆ El error cometido es E < z 1 α /. = (b-/, de dode el tamaño de la muestra es > ˆˆ. (z 1-α/ ).p.q E Se quiere estimar la proporció de hembras etre los peces de ua piscifactoría; para ello se ha tomado ua muestra aleatoria de 500 peces, y e ella hay 175 hembras. Calcule u itervalo de cofiaza para la proporció de hembras e esta població de peces, co u ivel de cofiaza del 9%. Datos del problema: p = 175/500 = 0 5, q = = 0 65, = 500, ivel de cofiaza 1 α = 9% = = 0 9, de dode α = 0 06 = 6% como ivel de sigificació. De α = 0 06 teemos α/ = 0 0 De la igualdad p(z z 1-α/ ) = 1 - α/ = = 0 97, que se mira e la tabla de la distribució Normal N(0,1), y os dará el correspodiete valor crítico z 1 - α/. Mirado e la tabla de la N(0,1) vemos que el valor 0 97 o viee e la tabla y el valor más próximo es , que correspode a z 1-α/ = 1 88 (Iterpolado z 1-α/ = 1 881). Por tato el itervalo de cofiaza pedido es: p q ˆ ˆ p q ˆ ˆ 0'5 0'65 0'5 0'65 I.C.(p) = p ˆ - z ˆ 1 α/.,p + z 1 α/. = 0'5-1'88,0'5 + 1' ( ; ) A la vista del resultado del muestreo se quiere repetir la experiecia para coseguir u itervalo de cofiaza co el mismo ivel y u error máximo de 0 0, cuál es el tamaño que debe teer la ueva muestra? Datos: z 1-α/ = 1 88, p = 0 5, q = 0 65; error máximo = E 0 0. (z ˆ ˆ 1 α /) p q (1'88) 0'5 0'65 De = , teemos que el tamaño míimo de la muestra es E 0'0 = 011. OPCION B EJERCICIO 1 (B) U fabricate de tapices dispoe de 500 kg de hilo de seda, 00 kg de hilo de plata y 5 kg de hilo de oro. Desea fabricar dos tipos de tapices: A y B. Para los del tipo A se ecesita 1 kg de hilo de seda y kg de hilo de plata, y para los del tipo B, kg de hilo de seda, 1 kg de hilo de plata y 1 kg de hilo de oro. Cada tapiz del tipo A se vede a 00 euros y cada tapiz del tipo B a 000 euros. Si se vede todo lo que se fabrica,

5 IES Fco Ayala de Graada Juio de 01 (Geeral Modelo 6) Solucioes Germá-Jesús Rubio Lua ( putos) Cuátos tapices de cada tipo ha de fabricar para que el beeficio sea máximo y cuál es ese beeficio? (0 5 putos) Qué catidad de hilo de cada clase quedará cuado se fabrique el úmero de tapices que proporcioa el máximo beeficio? Solució U fabricate de tapices dispoe de 500 kg de hilo de seda, 00 kg de hilo de plata y 5 kg de hilo de oro. Desea fabricar dos tipos de tapices: A y B. Para los del tipo A se ecesita 1 kg de hilo de seda y kg de hilo de plata, y para los del tipo B, kg de hilo de seda, 1 kg de hilo de plata y 1 kg de hilo de oro. Cada tapiz del tipo A se vede a 000 euros y cada tapiz del tipo B a 000 euros. Si se vede todo lo que se fabrica, Cuátos tapices de cada tipo ha de fabricar para que el beeficio sea máximo y cuál es ese beeficio? x = Número de tapices tipo A. y = Número de tapices tipo B. Fució Objetivo F(x,y) = 000x + 000y. (vede el tipo A a 000 y el tipo A a 000 ) Restriccioes: Tipo A Tipo B Catidad Hilo de seda Hilo de plata 1 00 Hilo de oro Mirado la tabla teemos: x + y 500; x + y 00; y 5 Si se vede todo lo que se fabrica: x 0, y 0 Las desigualdades x + y 500; x + y 00; y 5; x 0, y 0, las trasformamos e igualdades, y ya so rectas, x + y = 500; x + y = 00; y = 5; x = 0, y = 0, Para que os sea más fácil dibujar las rectas (co dos valores es suficiete), despejamos las y y teemos y = -x/ + 50; y = -x + 00; y = 5; x = 0, y = 0 Represetamos gráficamete las rectas que verifica estas igualdades, etre las que estará los bordes del recito delimitado por las iecuacioes dadas. Calculamos los vértices del recito resolviedo las ecuacioes las rectas de dos e dos. De x = 0 e y = 0. Puto de corte A(0,0). De y = 0 e y = -x+00, teemos 0 = -x+00, luego x = 00. Puto de corte B(00,0). De y = -x + 00 e y = -x/ + 50, teemos -x + 00 = -x/ + 50, de dode x+800 = -x+500, es decir 00 = x, luego x = 100 e y = 00, y el puto de corte es C(100,00) De y = 5 e y = -x/ + 50, teemos 5 = -x/ + 50, de dode 50 = -x+500, es decir x = 50, luego x = 50 e y = 5, y el puto de corte es D(50,5) De x = 0 e y = 5. Puto de corte es E(0,5) 5

6 IES Fco Ayala de Graada Juio de 01 (Geeral Modelo 6) Solucioes Germá-Jesús Rubio Lua Vemos que los vértices del recito so: A(0,0), B(00,0), C(100,00), D(50,5) y E (0,5). Calculemos el máximo de la fució F(x,y) = 000x + 000y e dicha regió. El Teorema Fudametal de la Programació Lieal afirma que su máximo y míimo absoluto está e la regió acotada, y que estos extremos debe estar situados e algú vértice del recito, por lo que evaluamos F e los putos ateriores A(0,0), B(00,0), C(100,00), D(50,5) y E (0,5). E el caso de que coicida e dos vértices cosecutivos la solució es todo el segmeto que los ue. F(0,0) = 000(0)+000(0) = 0; F(00,0) = 000(00)+000(0) = 00000; F(100,00) = 000(100) + 000(00) = ; F(50,5) = 000(50)+000(5) = ; F(0,5) = 000(0) + 000(5) = Teiedo e cueta lo aterior vemos que el máximo absoluto de la fució F e la regió es (el valor mayor e los vértices) y se alcaza e el vértice C(100,00). Es decir el máximo beeficio se alcaza vediedo 100 tapices tipo A y 00 tapices tipo B Qué catidad de hilo de cada clase quedará cuado se fabrique el úmero de tapices que proporcioa el máximo beeficio? 100 tapices de tipo A equivale a = 100 kg de hilo de seda y 100 = 00 kg de hilo de plata. 00 tapices de tipo B equivale a 00 = 00 kg de hilo de seda, 1 00 = 00 kg de hilo de plata y 1 00 = 00 kg de hilo de oro.. Hilo de seda gastado = = 500. Queda = 0 kg de hilo de seda. Hilo de plata gastado = = 00. Queda = 0 kg de hilo de plata. Hilo de oro gastado = 00. Queda 5 00 = 5 kg de hilo de oro. EJERCICIO (B) Sea f(x) ua fució cuya fució derivada, f (x), tiee por gráfica ua parábola que corta al eje OX e los putos (-1,0) y (5,0) y co vértice (,-) (1 puto) Estudie razoadamete la mootoía de f(x). (0 5 putos) Determie las abscisas de los extremos relativos de la fució f(x). c) (1 puto) Halla la ecuació de la recta tagete a la grafica de f(x) e el puto de abscisa x =, sabiedo que f() = 5. Solució Sea f(x) ua fució cuya fució derivada, f (x), tiee por gráfica ua parábola que corta al eje OX e los putos (-1,0) y (5,0) y co vértice (,-) Estudie razoadamete la mootoía de f(x). Co los datos ateriores la gráfica de f (es ua parábola, que tiee el vértice debajo de los cortes co el eje OX, luego tiee las ramas hacia arrib, es parecida a: Observado la gráfica de f (x) vemos que f (x) > 0 (ecima del eje OX) e el itervalo (-,-1), es decir f estrictamete creciete ( ) e el itervalo (-,-1). Observado la gráfica de f (x) vemos que f (x) < 0 (debajo del eje OX) e el itervalo (-1,5), es decir f estrictamete decreciete ( ) e el itervalo (-1,5). Observado la gráfica de f (x) vemos que f (x) > 0 (ecima del eje OX) e el itervalo (5,+ ), es decir f 6

7 IES Fco Ayala de Graada Juio de 01 (Geeral Modelo 6) Solucioes Germá-Jesús Rubio Lua estrictamete creciete ( ) e el itervalo (5,+ ). Por defiició x = -1 es u máximo relativo. Por defiició x = 5 es u míimo relativo. (este es el apartado () c) Halla la ecuació de la recta tagete a la grafica de f(x) e el puto de abscisa x=, sabiedo que f()=5. La ecuació de la recta tagete e x = es y f() = f () (x ) Me ice que f() = 5, y que la gráfica de f pasa por (,-), es decir me da f () = -. La recta tagete pedida es y 5 = -(x ), es decir y = -x + 1. EJERCICIO (B) De los sucesos aleatorios idepedietes A y B se sabe que p(a) = 0 y que p(b C ) = 0 5. Calcule las siguietes probabilidades. (0 75 putos) p(a B). (0 75 putos) p(a C B C ). c) (1 puto) p(a/b C ). Solució De los sucesos aleatorios idepedietes A y B se sabe que p(a) = 0 y que p(b C ) = 0 5. Calcule las siguietes probabilidades. p(a B). Del problema teemos: p(a) = 0 y p(b C ) = 0 5; A y B idepedietes es decir p(a B) = p(a) p(b). ( ) Sabemos que p(a B) = p(a) + p(b) - p(a B); p(a B C ) = p(a) - p(a B); p(a/b) = p A B ; p(b) p(b) = 1 - p(b C ); p(a C B C ) = {Ley de Morga} = p(a B) C = {suceso cotrario} = 1 - p(a B). Me pide p(a B). De p(b C ) = 0 5, teemos p(b) = 1 - p(b C ) = = De p(a B) = p(a) p(b), teemos p(a B) = = 0 5. Luego p(a B) = p(a) + p(b) - p(a B) = = p(a C B C ). Me pide p(a C B C ) = p(a B) C = 1 - p(a B) = = c) p(a/b C ). ( C p A B ) Me pide p(a/b C p(a) - p(a B) 0' - 0'5 ) = = = = 0. C p(b ) 0'5 0'5 EJERCICIO (B) El tiempo que los españoles dedica a ver la televisió los domigos es ua variable aleatoria que sigue ua distribució Normal de media descoocida y desviació típica 75 miutos. Elegida ua muestra aleatoria de españoles se ha obteido, para la media de esa distribució, el itervalo de cofiaza (188 18, 08 8), co u ivel del 99%. (1 5 putos) Calcule la media muestral y el tamaño de la muestra. (1 puto) Calcule el error máximo permitido si se hubiese utilizado ua muestra de 500 y u ivel de cofiaza del 96%. Solució σ Sabemos que para la media poblacioal μ, el estimador MEDIA MUESTRAL X, sigue ua N(μ, ), y geeralmete escribimos X N(µ, σ ) o X N(µ, σ ) 7

8 IES Fco Ayala de Graada Juio de 01 (Geeral Modelo 6) Solucioes Germá-Jesús Rubio Lua Tambié sabemos que el itervalo de cofiaza para estimar la media es: σ σ I.C. (µ) = x z 1 α/,x + z1 α/ = (a, dode z 1-α/ y z α/ = - z 1-α/ es el puto crítico de la variable aleatoria Normal tipificada Z N(0,1) que verifica p(z z 1-α/ ) = 1 - α/ Vemos que x = (a + / σ Tambié sabemos que el error máximo de la estimació es E = z1 α /, para el itervalo de la media. σ Pero la amplitud del itervalo es b a = z1 α / = E, de dode E = (b /, por tato el tamaño z 1- α/. σ míimo de la muestra es = E. El tiempo que los españoles dedica a ver la televisió los domigos es ua variable aleatoria que sigue ua distribució Normal de media descoocida y desviació típica 75 miutos. Elegida ua muestra aleatoria de españoles se ha obteido, para la media de esa distribució, el itervalo de cofiaza (188 18, 08 8), co u ivel del 99%. Calcule la media muestral y el tamaño de la muestra. Datos del problema: Itervalo = (188 18, 08 8) = (a,, σ = 75, x = (a + /, E = (b /; ivel de cofiaza = 99% = 0 99 = 1 - α, de dode α = 0 01, es decir α/ = 0 01/ = De p(z z 1-α/ ) = 1 - α/ = = Mirado e las tablas de la N(0,1) vemos que la probabilidad o viee, las más próximas so y que correspode a 57 y 58, por tato z 1-α/ es la media es decir z 1-α/ = ( )/ = 575. Hemos visto que la media muestral es x = (a + / = ( )/ = Teemos que el error = E = (b / = ( )/ = 10, luego el tamaño de la muestra es: z 1- α/. σ ' > = E 10' 50 01, es decir el tamaño míimo es = 51. Calcule el error máximo permitido si se hubiese utilizado ua muestra de 500 y u ivel de cofiaza del 96%. Datos del problema: = 500, σ = 75, ivel de cofiaza = 96% = 0 96 = 1 - α, de dode α = 0 0 De 1 α = 0 96, teemos α = = 0 0, de dode α/ = 0 0/ = 0 0 De p(z z 1-α/ ) = 1 - α/ = = Mirado e las tablas de la N(0,1) vemos que la probabilidad 0 98 o viee, y la mas próxima es que correspode a z 1-α/ = 05 (Iterpolado z 1-α/ = 05). σ De E = z 1 α /, teemos E < muestra de 500 es de ' , es decir el error máximo admisible para la 500 8

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2006 (Modelo 5 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A Sea la regió defiida por las siguietes iecuacioes: x/2 + y/3 1 ; - x + 2y 0; y 2. (2 putos) Represete

Más detalles

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna 12 2 = 3 12. , es decir IES Fco Ayala de Graada Sobrates de 008 (Modelo Juio) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 008 (MODELO ) OPCIÓN A EJERCICIO _A 0 a b Sea las matrices A= y B= 0 6 a) ( 5 putos)

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 5) IES Fco Ayala de Graada Sobrates de 008 (Modelo 5) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 008 (MODELO 5) OPCIÓN A EJERCICIO 1_A De las restriccioes que debe cumplir las

Más detalles

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3

= Adj(A ) = 0 1-2/8 3/8 0 1-2/8 3/8 1-2/8 3/8 8-2 3 IES Fco Ayala de Graada Sobrates de 007 (Modelo 5) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( puto) U taller de carpitería ha vedido 5 muebles, etre sillas, silloes y butacas, por u total de

Más detalles

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes 2014 (Modelo 2 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates 014 (Modelo ) Solucioes Germá-Jesús Rubio Lua SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 014 MODELO OPIÓN A EJERIIO 1 (A) (1 75 putos) Represete gráficamete la regió

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 011 (Modelo 1) Euciado Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A IES Fco Ayala de Graada Sobrates de 2012 (Modelo 1 ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A EJERCICIO 1_A -1-6 -1 1 2 a 0 1 Sea las matrices A

Más detalles

0-3 2 0 4-2 -2 0-1 0-1 0-3-13-1

0-3 2 0 4-2 -2 0-1 0-1 0-3-13-1 IS Fco Ayala de Graada Sobrates 009 (Modelo 6) Solució Germá-Jesús Rubio Lua OPCIÓN A JRCICIO 1 ( putos) Sea las matrices: -1 4-1 - 1 5 - -6 A ; B 0-1 y C 0-1 1 0 1-0 -1 Determie X e la ecuació matricial

Más detalles

IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Soluciones Germán-Jesús Rubio Luna+

IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Soluciones Germán-Jesús Rubio Luna+ IES Fco Ayala de Graada Sobrates 009 (Modelo 3 Juio) Solucioes Germá-Jesús Rubio Lua+ MATEMÁTICAS CCSS JUNIO 009 (MODELO 3) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 Sea la igualdad A X + B = A, dode

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2001 (Modelo 6) Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 x -1 Se cosidera la matriz A = 1 1 1. x x 0 (1 5 putos) Calcule los valores de x para los que o existe

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 2 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 006 (Modelo Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (1 5 putos) Represete gráficamete el recito defiido por el siguiete sistema de iecuacioes:

Más detalles

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 2000 (Modelo 1) Solució Germá-Jesús Rubio Lua Los Exámees del año 2000 me los ha proporcioado D. José Gallegos Ferádez OPCIÓN A EJERCICIO 1_A (2 putos) Dibuje el recito

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Juio de 03 (Reserva Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 03 MODELO (RESERVA ) OPCIÓN A EJERCICIO (A) ( 5 putos) U fabricate elabora

Más detalles

OPCIÓN A EJERCICIO 1 (A)

OPCIÓN A EJERCICIO 1 (A) IES Fco Ayala de Graada Juio de 014 (Geeral Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 014 MODELO (COMÚN) OPCIÓN A EJERCICIO 1 (A) 1 a Sea las matrices A = y

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 001 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Se quiere orgaizar u puete aéreo etre dos ciudades, co plazas suficietes de pasaje y carga,

Más detalles

-6-2 1 15 5-6 10 1-4 15 5-6 10 1-4

-6-2 1 15 5-6 10 1-4 15 5-6 10 1-4 IES Fco Ayala de Graada Sobrates de 2002 (Modelo 6 Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 2 1-1 Sea la matriz A = 0 m-6 m+1 2 0 (1 puto) Calcule los valores de m para que dicha

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 5)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 5) SELETIVIDAD ANDALUÍA MATEMÁTIAS SS SOBRANTES 01 (MODELO 5) OPIÓN A EJERIIO 1_A ( 5 putos) U comerciate dispoe de 100 euros para comprar dos tipos de mazaas A y B. Las del tipo A las compra a 0 60 euros/kg

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) U cliete de u supermercado ha pagado u total de 156 euros por 24 litros de leche,

Más detalles

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2008 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 008 (Modelo 1) Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 007-008 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN A

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 5 Septiembre) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 5 Septiembre) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 00 (Modelo 5 Septiembre) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A (3 putos) Para fabricar tipos de cable, A y B, que se vederá a 50 y 00 pts el metro, respectivamete,

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2014 MODELO 3 (COLISIONES) OPCIÓN A IES Fco Ayala de Graada Juio de 014 (Colisioes Modelo 3) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 014 MODELO 3 (COLISIONES) OPCIÓN A EJERCICIO 1 (A) 1 a Sea las matrices

Más detalles

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

SOLUCIONES Modelo 2 PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 2010-2011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II IES Fco Ayala de Graada Sobrates de 011 (Modelo ) Germá-Jesús Rubio Lua SOLUCIONES Modelo PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 4)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 4) IES Fco Ayala de Graada Sobrates de 8 (Modelo 4) Solució Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 8 (MODELO 4) OPCIÓN A EJERCICIO 1_A (3 putos) U joyero fabrica dos modelos

Más detalles

OPCIÓN A EJERCICIO 1_A 1-2 1 Sean las matrices A =

OPCIÓN A EJERCICIO 1_A 1-2 1 Sean las matrices A = IES Fco Ayala de Graada Sobrates de 007 (Juio Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1-1 x -x Sea las matrices A, X y e Y -1 3 0 - z (1 puto) Determie la matriz iversa de A. ( putos)

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 013 MODELO OPCIÓN A EJERCICIO 1 (A) Sea R la regió factible defiida por las iecuacioes x 3y, x 5, y 1. (0 5 putos) Razoe si el puto (4 5,1 55) perteece

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 2)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 2) IES Fco Ayala de Graada Sobrates de 0 (Modelo ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 0 (MODELO ) OPCIÓN A EJERCICIO _A ( 5 putos) Halle la matriz X que verifique la ecuació

Más detalles

Ejercicio 1. Sea el recinto limitado por las siguientes inecuaciones: y + 2x 2; 2y 3x 3; 3y x 6.

Ejercicio 1. Sea el recinto limitado por las siguientes inecuaciones: y + 2x 2; 2y 3x 3; 3y x 6. Materiales producidos e el curso: Curso realizado e colaboració etre la Editorial Bruño y el IUCE de la UAM de Madrid del 1 de marzo al 30 de abril de 013 Título: Curso Moodle para matemáticas de la ESO

Más detalles

Propuesta A. { (x + 1) 4. Se considera la función f(x) =

Propuesta A. { (x + 1) 4. Se considera la función f(x) = Pruebas de Acceso a Eseñazas Uiversitarias Oficiales de Grado (0) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá cotestar a ua de las dos opcioes propuestas A o B. Se podrá utilizar

Más detalles

Tema 9. Inferencia Estadística. Intervalos de confianza.

Tema 9. Inferencia Estadística. Intervalos de confianza. Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO.001-.00 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella,

Más detalles

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos

INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL. 1. Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos 1 INTERVALOS DE CONFIANZA Y TAMAÑO MUESTRAL La mayoría de estos problemas ha sido propuestos e exámees de selectividad de los distitos distritos uiversitarios españoles. 1. Ua muestra aleatoria de 9 tarrias

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede

Más detalles

OPCIÓN A EJERCICIO 1_A x 1 0 1

OPCIÓN A EJERCICIO 1_A x 1 0 1 IES Fco Ayala de Graada Sobrates de 006 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A x 1 0 1 Sea las matrices A = y B =. 1 x+1 (1 puto) Ecuetre el valor o valores de x de forma

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y,

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN Págia 98 Cuátas caras cabe esperar? El itervalo característico correspodiete a ua probabilidad del 95% (cosideramos casas raros al 5% de los casos extremos)

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE ESPECÍFICA: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMÁTICAS APLICADAS A LAS CC SS - Cada alumo debe elegir sólo ua de las pruebas (A o B).

Más detalles

IES Fco Ayala de Granada Junio de 2012 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 01 MODELO 4 (COMÚN) OPCIÓN A EJERCICIO 1 (A) Sea el recinto determinado

Más detalles

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 IES Fco Ayala de Granada Sobrantes 010 (Modelo ) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 010 (Modelo 1) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 a 1 1 1 3 Sean las matrices

Más detalles

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 2) Solución Germán-Jesús Rubio Luna OPCIÓN A 0 2-4 (A I 2 ) B = A A A = -

IES Fco Ayala de Granada Sobrantes de 2004 (Modelo 2) Solución Germán-Jesús Rubio Luna OPCIÓN A 0 2-4 (A I 2 ) B = A A A = - IES Fco Ayala de Graada Sobrates de 004 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A - 0 0 - - - Sea las matrices A=, B= y C= - 0 0 - ( puto) Calcule (A I ) B, siedo I la matriz idetidad

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO.-.3 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo

Modelos lineales en Biología, 5ª Curso de Ciencias Biológicas Clase 28/10/04. Estimación y estimadores: Distribuciones asociadas al muestreo Modelos lieales e Biología, 5ª Curso de Ciecias Biológicas Clase 8/10/04 Estimació y estimadores: Distribucioes asociadas al muestreo Referecias: Cualquiera de los textos icluidos e la bibliografía recomedada

Más detalles

CURSO 2.004-2.005 - CONVOCATORIA:

CURSO 2.004-2.005 - CONVOCATORIA: PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE / LOCE CURSO 4-5 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

Muestreo. Tipos de muestreo. Inferencia Introducción

Muestreo. Tipos de muestreo. Inferencia Introducción Germá Jesús Rubio Lua Catedrático de Matemáticas del IES Fracisco Ayala Muestreo. Tipos de muestreo. Iferecia Itroducció Nota.- Puede decirse que la Estadística es la ciecia que se preocupa de la recogida

Más detalles

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA IES Fco Ayala de Granada Sobrantes 00 (Modelo ) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 00 (Modelo ) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO Sea el recinto del plano definido

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN 3 INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN Págia 99 REFLEXIONA Y RESUELVE Cuátas caras cabe esperar? Repite el razoamieto aterior para averiguar cuátas caras cabe esperar si lazamos 00 moedas

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 2006 (Modelo 6 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (2 putos) Sea las matrices A= y B = (1 1). -5-4 Eplique qué dimesió debe teer la matriz X para

Más detalles

IES Fco Ayala de Granada Modelo 2 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 2 DEL 2015 OPCIÓN A

IES Fco Ayala de Granada Modelo 2 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 2 DEL 2015 OPCIÓN A IES Fco Ayala de Graada Modelo del 015 (Solucioes) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO DEL 015 OPCIÓN A EJERCICIO 1 (A) 1-1 Sea las matrices A = 0 1-1, B = 1 1, C = ( 1),

Más detalles

PRUEBA A ( ) ( ) p z p z 0.4988 1 0.4988 0.4988 1 0.4988 0.4988 1.96,0.4988 + 1.96 = 0.4521, 0.5455 441 441

PRUEBA A ( ) ( ) p z p z 0.4988 1 0.4988 0.4988 1 0.4988 0.4988 1.96,0.4988 + 1.96 = 0.4521, 0.5455 441 441 PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE CURSO 007-008 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC SS - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder

Más detalles

Tipo A Tipo B Min. y Máx. Gambas 2 1 50 Langostinos 3 5 180 Contenedores 1 1 50 Coste 350 550 350x + 550y

Tipo A Tipo B Min. y Máx. Gambas 2 1 50 Langostinos 3 5 180 Contenedores 1 1 50 Coste 350 550 350x + 550y IES Fco Ayala de Granada Sobrantes 010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 010 (Modelo 6) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 (.5 puntos) Un supermercado

Más detalles

14 Intervalos de confianza

14 Intervalos de confianza Solucioario 14 Itervalos de cofiaza ACTIVIDADES INICIALES 14.I. Calcula tal que P z < Z z α α = 0,87. P zα < Z zα = P Z zα P Z < zα = P Z zα 1= 0,87 P Z P Z P Z = 1,87 = 0,935. Buscado e el iterior de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció B Reserva, Ejercicio 4,

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004 Solució del eame de Ivestigació Operativa de Sistemas de septiembre de 4 Problema (,5 putos: Ua marca de cereales para el desayuo icluye u muñeco de regalo e cada caja de cereales. Hay tres tipos distitos

Más detalles

Sobrantes de 2004 (Junio Modelo 5) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Junio Modelo 5) Soluciones Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2004 (Juio Modelo 5) Solucioes Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A x+y 6 3x-2y 13 Sea el sistema de iecuacioes. x+3y -3 x 0 (2 putos) Dibuje el recito cuyos

Más detalles

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con:

TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA. En los problemas de Programación Lineal nos encontraremos con: TEMA 2.- MODELOS DE PROGRAMACION LINEAL. SOLUCION GRAFICA.- Itroducció E los problemas de Programació Lieal os ecotraremos co: - Fució Objetivo: es la meta que se quiere alcazar, y que será la fució a

Más detalles

16 Distribución Muestral de la Proporción

16 Distribución Muestral de la Proporción 16 Distribució Muestral de la Proporció 16.1 INTRODUCCIÓN E el capítulo aterior hemos estudiado cómo se distribuye la variable aleatoria media aritmética de valores idepedietes. A esta distribució la hemos

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN PRUEBA PARCIAL N o 3 Profesor: Hugo S. Salias. Primer Semestre 2012 1. El ivel

Más detalles

Variables aleatorias. Distribución binomial y normal

Variables aleatorias. Distribución binomial y normal Variables aleatorias. Distribució biomial y ormal Variable aleatoria Def.- Al realizar u experimeto aleatorio teemos u espacio muestral E. A cualquier ley o aplicació que a cualquier suceso de E le asocie

Más detalles

Sobrantes de 2004 (Modelo 6) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Modelo 6) Soluciones Germán-Jesús Rubio Luna OPCIÓN A IES Fc Ayala de Graada Sbrates de 004 (Mdel 6) Slucies Germá-Jesús Rubi Lua OPCIÓN A EJERCICIO 1_A (1 put) Dibuje la regió del pla defiida pr las siguietes iecuacies: x 3y -13; x + 3y 17, x + y 11; y 0.

Más detalles

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA Autores: Ágel A. Jua (ajuap@uoc.edu), Máimo Sedao (msedaoh@uoc.edu), Alicia Vila (avilag@uoc.edu). ESQUEMA DE CONTENIDOS Defiició Propiedades

Más detalles

DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferencial Parcial 3 (27/10/2010)

DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferencial Parcial 3 (27/10/2010) UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Mate1203 Cálculo Diferecial Parcial 3 (27/10/2010) 1. Cosidere la fució f (x) = 3(x 1) 2/3 (x 1) 2 a) Halle el domiio b) Ecuetre los putos críticos,

Más detalles

Estimación puntual y por Intervalos de Confianza

Estimación puntual y por Intervalos de Confianza Capítulo 7 Estimació putual y por Itervalos de Cofiaza 7.1. Itroducció Cosideremos ua v.a X co distribució F θ co θ descoocido. E este tema vemos cómo dar ua estimació putual para el parámetro θ y cómo

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-2. - CONVOCATORIA: Juio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo

Más detalles

TEMA 5: INTERPOLACIÓN

TEMA 5: INTERPOLACIÓN 5..- ITRODUCCIÓ TEMA 5: ITERPOLACIÓ Supogamos que coocemos + putos (x,y, (x,y,..., (x,y, de la curva y = f(x, dode las abscisas x k se distribuye e u itervalo [a,b] de maera que a x x < < x b e y k = f(x

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O

PRIMERA SESIÓN. l. Se considera la sucesión de números reales definida por la relación de recurrenc1a: U n+l = a Un + ~ U n-1, con n > O PRIMERA SESIÓN Problema N l. l. Se cosidera la sucesió de úmeros reales defiida por la relació de recurreca: U +l = a U + ~ U -, co > O Siedo: a y ~ úmeros fijos. Se supoe tambié coocidos los dos primeros

Más detalles

Soluciones Hoja de Ejercicios 2. Econometría I

Soluciones Hoja de Ejercicios 2. Econometría I Ecoometría I. Solucioes Hoja 2 Carlos Velasco. MEI UC3M. 2007/08 Solucioes Hoja de Ejercicios 2 Ecoometría I 1. Al pregutar el saldo Z (e miles de euros) de su cueta de ahorro cojuta a u matrimoio madrileño

Más detalles

EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. 11-Septiembre-2014.

EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. 11-Septiembre-2014. EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. -Septiembre-04. APELLIDOS: DNI: NOMBRE:. Se quiere hacer u estudio sobre las persoas que usa iteret e ua regió dode el 40% de los habitates so mujeres.

Más detalles

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0

Una serie de potencias puede ser interpretada como una función de x. f(x) = n=0 Tema 4 Series de Potecias Ua expresió de la forma a 0 + a 1 (x c) + a 2 (x c) 2 +... + a (x c) +... = recibe el ombre de serie de potecias cetrada e c. a (x c) Ua serie de potecias puede ser iterpretada

Más detalles

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B

Métodos Estadísticos de la Ingeniería Tema 9: Inferencia Estadística, Estimación de Parámetros Grupo B Métodos Estadísticos de la Igeiería Tema 9: Iferecia Estadística, Estimació de Parámetros Grupo B Área de Estadística e Ivestigació Operativa Licesio J. Rodríguez-Aragó Abril 200 Coteidos...............................................................

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS 4º ESO º Trimestre Autor: Vicete Adsuara Ucedo INDICE Tema : Vectores e el Plao.. Ejercicios Tema 9 Tema : Depedecia Lieal...7 Ejercicios Tema. 0 Tema 3: El Plao Afí...... Ejercicios

Más detalles

Calculamos los vértices del recinto resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 006 (Modelo 1 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Ua impreta local edita periódicos y revistas. Para cada periódico ecesita u cartucho de

Más detalles

OPCIÓN A EJERCICIO 1 (A) -5 0

OPCIÓN A EJERCICIO 1 (A) -5 0 IES Fco Ayala de Graada Sobrates 014 (Modelo 1 ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 014 MODELO 1 OPCIÓN A EJERCICIO 1 (A) -5 0-1 -8-1 Sea las matrices B =

Más detalles

Programación Entera (PE)

Programación Entera (PE) Programació Etera (PE) E geeral, so problemas de programació lieal (PPL), e dode sus variables de decisió debe tomar valores eteros. Tipos de PE Cuado se requiere que todas las variables de decisió tome

Más detalles

IES Fco Ayala de Granada Septiembre de 2011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Septiembre de 011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD SEPTIEMBRE 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

8 Funciones, límites y continuidad

8 Funciones, límites y continuidad Solucioario 8 Fucioes, límites y cotiuidad ACTIVIDADES INICIALES 8.I. Copia y completa la siguiete tabla, epresado de varias formas los cojutos uméricos propuestos. Gráfica Itervalo Desigualdad Valor absoluto

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central EYP14 Estadística para Costrucció Civil 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los

Más detalles

TEMA 28: Estudio global de funciones. Aplicaciones a la representación gráfica de funciones.

TEMA 28: Estudio global de funciones. Aplicaciones a la representación gráfica de funciones. MATEMÁTICAS Represetació Gráica de Fucioes 1 TEMA 28: Estudio global de ucioes Aplicacioes a la represetació gráica de ucioes Esquema: Autor: Atoio Pizarro Sácez 1 Itroducció 2 Domiio de deiició y recorrido

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 005 (Modelo 1) Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A ( 5 putos) Resuelva el siguiete sistema y clasifíquelo atediedo al úmero de solucioes: x + y + z = 0 x +

Más detalles

(PROBABILIDAD) (tema 15 del libro)

(PROBABILIDAD) (tema 15 del libro) (PROBABILIDAD) (tema 15 del libro) 1. EXPERIMENTOS ALEATORIOS. ESPACIO MUESTRAL. SUCESOS Defiició: U feómeo o experiecia se dice aleatorio cuado al repetirlo e codicioes aálogas o se puede predecir el

Más detalles

Figura 1. Se dice que un subespacio vectorial F de E es A-invariante si los vectores u de F siguen estando en F al transformarse por A, esto es,

Figura 1. Se dice que un subespacio vectorial F de E es A-invariante si los vectores u de F siguen estando en F al transformarse por A, esto es, VALORES Y VECORES PROPIOS Y LA REDUCCION DE CÓNICAS A) EL PROBLEMA PROPIO oda matriz cuadrada A de orde co elemetos (reales o complejos) es u operador lieal que actúa sobre el espacio vectorial E, dimesioal,

Más detalles

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que

SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª. 1. Sean a, b y n enteros positivos tales que a b y ab 1 n. Prueba que SOLUCIONES DE LOS PROBLEMAS DE LA OME 49ª Sea a, b y eteros positivos tales que a b y ab Prueba que a b 4 Idica justificadamete cuádo se alcaa la igualdad Supogamos que el resultado a demostrar fuera falso

Más detalles

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 2015 MODELO 3 OPCIÓN A EJERCICIO 1 (A) 8-4 1 2 Sea las matrices A = -1 2, B = 1 2 2-1 -1 2, C = 12 8. -8 4 (0 5 putos) Calcule A 2. (1 7 putos) Resuelva

Más detalles

1.1. Campos Vectoriales.

1.1. Campos Vectoriales. 1.1. Campos Vectoriales. Las fucioes, ampliamete empleadas e la igeiería, para modelar matemáticamete y caracterizar magitudes físicas, y cuyo domiio podría ser multidimesioal, puede teer u rago uidimesioal

Más detalles

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con

OBJETIVOS. Objetivos Generales. Objetivos Específicos. Profesora: María Martel Escobar. Una función f es creciente (estrictamente) si x, y Dom(f), con Curso -3 OBJETIVOS Objetivos Geerales Itroducir el cálculo de fucioes de ua variable como fudameto del aálisis ecoómico margial y los problemas de optimizació. Matemáticas Empresariales Doble Grado e ADE

Más detalles

Estadística Descriptiva

Estadística Descriptiva Igacio Cascos Ferádez Dpto. Estadística e I.O. Uiversidad Pública de Navarra Estadística Descriptiva Estadística ITT Soido e Image curso 2004-2005 1. Defiicioes fudametales La Estadística Descriptiva se

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució L I T E R A T U R A Y M A T E M Á T I C A S El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía

Más detalles

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007)

IES Fco Ayala de Granada Soluciones Germán-Jesús Rubio Luna INTERVALOS DE CONFIANZA PARA PROPORCIONES (2007) IS Fco Ayala de Graada Solucioes Germá-Jesús Rubio Lua INTRVALOS D CONFIANZA PARA PROPORCIONS (007) jercicio 1- Tomada, al azar, ua muestra de 10 estudiates de ua Uiversidad, se ecotró que 54 de ellos

Más detalles

Límite de una función

Límite de una función Límite de ua fució SOLUCIONARIO Límite de ua fució LITERATURA Y MATEMÁTICAS El ocho Sharrif iba sacado los libros [de mi bolsa] y ordeádolos e ua pila sobre el escritorio mietras leía cuidadosamete los

Más detalles

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a)

Fórmula de Taylor. Si f es continua en [a,x] y derivable en (a,x), existe c (a,x) tal que f(x) f(a) f '(c) = f(x) = f(a) + f '(c)(x a) Aproimació de ua fució mediate u poliomio Cuado yf tiee ua epresió complicada y ecesitamos calcular los valores de ésta, se puede aproimar mediate fucioes secillas (poliómicas). El teorema del valor medio

Más detalles

Capítulo 2. Operadores

Capítulo 2. Operadores Capítulo 2 Operadores 21 Operadores lieales 22 Fucioes propias y valores propios 23 Operadores hermitiaos 231 Delta de Kroecker 24 Notació de Dirac 25 Operador Adjuto 2 Operadores E la mecáica cuática

Más detalles

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p.

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p. Divisibilidad Matemática discreta Dados dos úmeros aturales a y b, escribiremos a b y leeremos a divide a b si existe u c N tal que ac = b. E este caso, decimos que a es u divisor de b o que b es divisible

Más detalles

7.2. Métodos para encontrar estimadores

7.2. Métodos para encontrar estimadores Capítulo 7 Estimació putual 7.1. Itroducció Defiició 7.1.1 U estimador putual es cualquier fució W (X 1,, X ) de la muestra. Es decir, cualquier estadística es ua estimador putual. Se debe teer clara la

Más detalles

IES Fco Ayala de Granada Junio de 2016 (Modelo ) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2016 MODELO

IES Fco Ayala de Granada Junio de 2016 (Modelo ) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 2016 MODELO IES Fco Ayala de Graada Juio de 016 (Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 016 MODELO OPCIÓN A EJERCICIO 1 (A) Las filas de la matriz P idica los respectivos

Más detalles

IES Fco Ayala de Granada Modelo 6 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 6 DEL 2015 OPCIÓN A

IES Fco Ayala de Granada Modelo 6 del 2015 (Soluciones) Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 6 DEL 2015 OPCIÓN A SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS MODELO 6 DEL 015 OPCIÓN A EJERCICIO 1 (A) 1 (1 5 putos) Resuelva la ecuació matricial 1 X + 1-1 0 = I. 0 1 a b (1 puto) Dadas las matrices M = y A =, calcule los

Más detalles

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida.

UNIDAD 8 MODELO DE ASIGNACIÓN. características de asignación. método húngaro o de matriz reducida. UNIDAD 8 MODELO DE ASIGNACIÓN características de asigació. método húgaro o de matriz reducida. Ivestigació de operacioes Itroducció U caso particular del modelo de trasporte es el modelo de asigació,

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

Gradiente, divergencia y rotacional

Gradiente, divergencia y rotacional Lecció 2 Gradiete, divergecia y rotacioal 2.1. Gradiete de u campo escalar Campos escalares. U campo escalar e R es ua fució f : Ω R, dode Ω es u subcojuto de R. Usualmete Ω será u cojuto abierto. Para

Más detalles