Tema 3.-Fuerzas eléctricas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 3.-Fuerzas eléctricas"

Transcripción

1 Tema 3: Fuerzas eléctricas y campo eléctrico Fundamentos Físicos de la Ingeniería Ingeniería Industrial Primer curso Curso 009/010 Dpto. Física Aplicada III Universidad de Sevilla 1 Índice Introducción Carga eléctrica Ley de Coulomb Principio de superposición Campo eléctrico Campo de cargas puntuales Campo de distribuciones continuas de carga Líneas de campo eléctrico Movimiento de cargas en un campo eléctrico Ley de Gauss Curso 009/010 Dpto. Física Aplicada III /50

2 Introducción Elektron es un vocablo griego que significa ifi ámbar Al frotar el ámbar éste atrae pequeños objetos (pajitas, plumas, ) La electricidad es un fenómeno muy presente en la vida diaria: Fenómenos de electricidad estática Ingeniería: máquinas y motores eléctricos Curso 009/010 Dpto. Física Aplicada III 3/50 Carga eléctrica Evidencia eperimental: Dos barras de plástico frotadas con piel se repelen Dos barras de vidrio frotadas con seda se repelen La barra de vidrio y la de plástico se atraen Se dice que las barras están cargadas Hay dos tipos de carga: Carga positiva Carga negativa Curso 009/010 Dpto. Física Aplicada III 4/50

3 Propiedades de la carga Cuantización Q Ne La carga esta cuantizada: Donde e es la unidad d fundamental de carga, que coincide con el valor absoluto la carga del electrón Usualmente N es muy grande Conservación de la carga 19 Unidades: culombio (C) e C Ejemplo: la carga trasvasada al frotar dos objetos es del orden de 50 nc: 9 50nC 5010 C N e C Curso 009/010 Dpto. Física Aplicada III 5/50 11 Aislantes y conductores Clasificación de la materia atendiendo a sus propiedades de conducción eléctrica Conductores: la carga puede desplazarse por su interior con facilidad Ejemplo: metales Aislantes: La carga no puede moverse libremente Cuando se cargan por frotación la carga queda confinada en la región frotada. Ejemplos: vidrio, caucho, madera. Curso 009/010 Dpto. Física Aplicada III 6/50

4 Índice Introducción Carga eléctrica Ley de Coulomb Principio de superposición Campo eléctrico Campo de cargas puntuales Campo de distribuciones continuas de carga Líneas de campo eléctrico Movimiento de cargas en un campo eléctrico Ley de Gauss Curso 009/010 Dpto. Física Aplicada III 7/50 Balanza de torsión Ley de Coulomb Fuerza ejercida por una carga puntual sobre otra Está dirigida a lo largo de la línea que las une Disminuye con el cuadrado de la distancia que separa las cargas Es proporcional al producto de las cargas Es repulsiva para cargas del mismo signo y atractiva para cargas de signo contrario Curso 009/010 Dpto. Física Aplicada III 8/50

5 Ley de Coulomb Representación matemática: Nm C qq F k r 1 ˆ 1 1 r 1 F 1 r r1 r1 rˆ 1 r r r 1 1 k Constante de Coulomb Medida eperimentalmente Curso 009/010 Dpto. Física Aplicada III 9/50 Principio de superposición Cuando tenemos un sistema de cargas la fuerza sobre cada carga es la suma vectorial de las fuerzas individuales ejercidas por cada una de las demás cargas Principio eperimental Curso 009/010 Dpto. Física Aplicada III 10/50

6 Índice Introducción Carga eléctrica Ley de Coulomb Principio de superposición Campo eléctrico Campo de cargas puntuales Campo de distribuciones continuas de carga Líneas de campo eléctrico Movimiento de cargas en un campo eléctrico Ley de Gauss Curso 009/010 Dpto. Física Aplicada III 11/50 Campo eléctrico: introducción La fuerza entre cargas puede verse como una acción a distancia. Una visión alternativa es la del campo eléctrico: Una carga crea un campo eléctrico en todo el espacio: magnitud vectorial El campo eléctrico ejerce una fuerza sobre otras cargas Curso 009/010 Dpto. Física Aplicada III 1/50

7 Campo eléctrico: definición En un punto colocamos una carga de prueba: q 0 No perturba la distribución de cargas original (q 0 0) Campo eléctrico: cociente entre la fuerza eléctrica que actúa sobre la partícula y la carga de la partícula q q 1 F 10 q 0 F F E q 0 F 0 Magnitud vectorial Dirección de F Independiente de q 0 Unidades: N/C Curso 009/010 Dpto. Física Aplicada III 13/50 Campo de una carga puntual Tenemos una carga puntual q i Situamos una carga de prueba q 0 Ley de Coulomb: E i qq F k r i 0 ˆ i0 ip r ip Fi q 0 0 q Ei k r r i ˆ ip ip i p E i r p z O q 0 y r r ip r i qi Punto fuente Punto campo CAMPO ELÉCTRICO DE UNA CARGA PUNTUAL Curso 009/010 Dpto. Física Aplicada III 14/50

8 Campo eléctrico de una distribución de cargas puntuales z q 3 r 3 3 O y Principio de superposición para el campo eléctrico r p El campo eléctrico de la distribución r q r q1 1 Es una consecuencia del principio de superposición para la fuerza El campo eléctrico de la distribución de cargas es la suma vectorial de los campos de cada carga puntual q E E k r i ˆ p i ip i i rip Curso 009/010 Dpto. Física Aplicada III 15/50 Campo eléctrico de distribuciones continuas de carga Las distribuciones de carga son siempre discretas (cuantización de la carga) Cuando un punto de la distribución de cargas contiene un número muy alto de cargas discretas la distribución puede tratarse como una distribución continua de carga Ejemplo: sustancias líquidas y sólidas que se tratan como distribuciones continuas de masa z y V m dm m i i lim V 0 V dv dm dv m dv Curso 009/010 Dpto. Física Aplicada III 16/50 m V m

9 Distribución volumétrica de carga z V y dqq Campo debido a un dq: dv dq de k r ˆ r P r Distribución volumétrica de carga: Densidad de carga: dq dv Campo total debido a la distribución en V : dq E k r ˆ V r dv E k rˆ V r Curso 009/010 Dpto. Física Aplicada III 17/50 Distribuciones superficial y lineal de carga Distribución superficial de carga: z dq ds y r P ds E k rˆ S r Distribución lineal de carga: P r z dl dl E dq dl k rˆ L r y Curso 009/010 Dpto. Física Aplicada III 18/50 S

10 L Ejemplo: Campo sobre el eje de una carga lineal finita E E y d P L P de Distribución uniforme: de Q L kdq kd ( ) ( ) L u P d P kk k L ( ) du d P P 1 1 kl kq k P L P L P L P L P P L L du Curso 009/010 Dpto. Física Aplicada III 19/50 u P L Índice Introducción Carga eléctrica Ley de Coulomb Principio de superposición Campo eléctrico Campo de cargas puntuales Campo de distribuciones continuas de carga Líneas de campo eléctrico Movimiento de cargas en un campo eléctrico Ley de Gauss Curso 009/010 Dpto. Física Aplicada III 0/50

11 Líneas de campo eléctrico Representación gráfica para visualizar el campo eléctrico El campo eléctrico es tangente a la línea de campo El módulo del campo eléctrico es mayor cuanto más próimas están las líneas de campo Curso 009/010 Dpto. Física Aplicada III 1/50 Ejemplo: carga puntual Sólo dibujamos un número finito de líneas, pero eiste el campo en todo el espacio Representación bidimensional de un campo tridimensional Línea de campo no equivale a trayectoria de una carga en ese campo Curso 009/010 Dpto. Física Aplicada III /50

12 Ejemplo: carga puntual Sólo dibujamos un número finito de líneas, pero eiste el campo en todo el espacio Representación bidimensional de un campo tridimensional Línea de campo no equivale a trayectoria de una carga en ese campo Curso 009/010 Dpto. Física Aplicada III 3/50 Dos cargas positivas iguales Curso 009/010 Dpto. Física Aplicada III 4/50

13 Cargas iguales con distinto signo: dipolo eléctrico Curso 009/010 Dpto. Física Aplicada III 5/50 Reglas para representar líneas de campo Salen de las cargas positivas y terminan en las negativas Si hay eceso de carga positiva debe haber líneas que acaban en el infinito Si hay eceso de carga negativa debe haber líneas que salen del infinito Para cada carga puntual las líneas se dibujan entrando o saliendo de la carga y: Uniformemente espaciadas En número proporcional al valor de la carga Dos líneas de campo no pueden cruzarse Curso 009/010 Dpto. Física Aplicada III 6/50

14 Ejemplo: Eceso de carga positiva: líneas que terminan en el infinito Salen 16 líneas equiespaciadas i Entran 8 líneas equiespaciadas Líneas salen de la carga positiva y entran en la carga negativa Curso 009/010 Dpto. Física Aplicada III 7/50 Líneas a distancias grandes A distancias grandes comparadas con la mayor distancia entre cargas del sistema: Líneas igualmente espaciadas Líneas radiales Equivalen a las líneas de una sola carga puntual con carga igual a la carga neta del sistema Curso 009/010 Dpto. Física Aplicada III 8/50

15 Índice Introducción Carga eléctrica Ley de Coulomb Principio de superposición Campo eléctrico Campo de cargas puntuales Campo de distribuciones continuas de carga Líneas de campo eléctrico Movimiento de cargas en un campo eléctrico Ley de Gauss Curso 009/010 Dpto. Física Aplicada III 9/50 Movimiento de cargas en un campo eléctrico Sea una partícula de masa m y carga q en el seno de un campo eléctrico: q E F qe F ma qe q a E m Segunda Ley de Newton: q Si el campo es uniforme: movimiento uniformemente acelerado Curso 009/010 Dpto. Física Aplicada III 30/50

16 Ejemplo 1: electrón en campo uniforme E F eei ma y F ee q e ee d a m dt t 0 ee d v ( ) v(0) adt at v t 0 m dt t t ee 0 atdta 0 t m 0 Movimiento uniformemente acelerado Curso 009/010 Dpto. Física Aplicada III 31/50 Ejemplo : electrón con velocidad perpendicular al campo F ee v 0 E Eje y : movimiento rectilíneo uniforme y y v t 0 0 y qe Eje : movimiento rectilíneo uniformemente acelerado ee 0 t m La trayectoria del electrón es una parábola, análogamente a la trayectoria de una masa con cierta velocidad inicial en un campo gravitatorio (tiro parabólico) Curso 009/010 Dpto. Física Aplicada III 3/50

17 Índice Introducción Carga eléctrica Ley de Coulomb Principio de superposición Campo eléctrico Campo de cargas puntuales Campo de distribuciones continuas de carga Líneas de campo eléctrico Movimiento de cargas en un campo eléctrico Ley de Gauss Curso 009/010 Dpto. Física Aplicada III 33/50 Ley de Gauss Ley general del electromagnetismo Útil para calcular campos eléctricos Sólo puede aplicarse para tal fin en situaciones en que la distribución de cargas tenga una alta simetría Curso 009/010 Dpto. Física Aplicada III 34/50

18 Flujo eléctrico Magnitud proporcional al número de líneas de campo que atraviesan una superficie Supongamos E uniforme y superficie perpendicular A E EA ' ' E E ' ' A na n Definimos: Si Si FLUJO El flujo aumenta o disminuye proporcionalmente al número de líneas de campo que atraviesan la superficie Curso 009/010 Dpto. Física Aplicada III 35/50 Flujo eléctrico Supongamos una superficie no perpendicular: E ˆn A 1 es perpendicular a las líneas de campo A 1 A A 1 es atravesada por el mismo número de líneas de campo que A : EA EA cos 1 E A En general: EAEnA ˆ EAcos Curso 009/010 Dpto. Física Aplicada III 36/50

19 Flujo eléctrico Supongamos superficie arbitraria y campo no uniforme A i E nˆn i Superficie plana A i ˆ i Eini A i E n ˆ A i i i i A i 0 E nda ˆ E da Tomamos tan pequeña que pueda considerarse: Campo eléctrico uniforme Flujo total: ; en el límite : S S Curso 009/010 Dpto. Física Aplicada III 37/50 Flujo en una superficie cerrada Es aquella superficie que divide el espacio en dos regiones: interior y eterior A la hora de calcular el flujo en una superficie cerrada se toma por convenio el vector nˆn hacia fuera de la superficie: ˆn E nda ˆ S El flujo eléctrico a través de una superficie cerrada es proporcional al número neto de líneas que salen del volumen Curso 009/010 Dpto. Física Aplicada III 38/50

20 Ley de Gauss Suponemos una carga puntual en el centro de una esfera de radio R S R R Q Q E nˆ En k Radial R EdA E da E 4R El flujo es independiente di de R S R 4kQ El flujo es proporcional a la carga dentro de la esfera S R n n Curso 009/010 Dpto. Física Aplicada III 39/50 Ley de Gauss Supongamos otras superficies no necesariamente esféricas: S 1 S R S Q A todas las superficies las atraviesa el mismo número de líneas Mismo flujo neto para todas las superficies: 4kQ Curso 009/010 Dpto. Física Aplicada III 40/50

21 Ley de Gauss Supongamos un sistema de cargas: Pi Principio i i de superposición: iió ( E E 1 ) da 1 q S q 1 4 kq ( q) 1 Para la carga eterior: 3 E 3 da 0 Todaslaslíneasdecampo líneas de S q 3 que entran por un punto de la superficie salen por otro S Curso 009/010 Dpto. Física Aplicada III 41/50 Enunciado de la Ley de Gauss El flujo neto a través de cualquier superficie cerrada es 4 k veces la carga neta dentro de la superficie E da E da 4kQ S S n int A veces se escribe la constante de Coulomb en función de la permitividad del espacio libre: 1 1 C 4k con 0 8, Nm 0 Q int Curso 009/010 Dpto. Física Aplicada III 4/50

22 Aplicaciones de la Ley de Gauss Es una Ley válida para cualquier superficie y cualquier distribución de carga A veces es útil para determinar el campo eléctrico debido a una distribución de carga que tiene un alto grado de simetría La técnica consiste en emplear la ecuación de la Ley de Gauss buscando una superficie de integración (superficie gaussiana) tal que el campo eléctrico pueda salir fuera de la integral Porque E n sobre la superficie gaussiana sea constante ó nulo Curso 009/010 Dpto. Física Aplicada III 43/50 Simetría esférica Carga puntual Simetría: campo radial Superficie gaussiana: esfera de radio r E da E da E r kq S r 4 4 n n S n r r E E nˆ n E n q k r S r Curso 009/010 Dpto. Física Aplicada III 44/50

23 r Simetría esférica Esfera de radio R con carga Q uniformemente distribuida en su volumen Superficie gaussiana: esfera de radio r R r R E 4 4 n r kq EdA n 4 kq 3 S 3 r r q int 4r 3Q 3 E 4 n r R Q Q 3 E 4 R 3 n k r kq En r 3 R Curso 009/010 Dpto. Física Aplicada III 45/50 int Esfera con carga uniforme en volumen Curso 009/010 Dpto. Física Aplicada III 46/50

24 S1 Simetría cilíndrica Campo debido a una carga lineal uniforme e infinita ( ) r Simetría: campo radial que depende de la distancia a la línea Superficie gaussiana: cilindro longitud L y radio r coaial con la línea de carga E nda ˆ EndA ˆ EndA ˆ EndA ˆ S L S S1 S S L qint LL En rl 0 E n 1 r 0 0 Curso 009/010 Dpto. Física Aplicada III 47/50 Simetría plana Plano infinito uniformemente cargado Simetría: E ( z ) perpendicular p al plano e impar en z Superficie gaussiana: caja de pastillas ; S 1 =S =A E nda ˆ E ( z ) da E ( z ) da E ( z ) A S z n ˆn Ez ( ) y S 1 S L S S 1 ˆn n ˆn E ( z ) E( z) E( z) qint A EzA ( ) 0 0 E k 0 Curso 009/010 Dpto. Física Aplicada III 48/50

25 Simetría plana E z z Curso 009/010 Dpto. Física Aplicada III 49/50 Resumen La magnitud responsable de la interacción eléctrica de la materia es la carga eléctrica Es una magnitud dual (carga positiva y carga negativa). Está cuantizada. La carga se conserva. La fuerza de interacción entre cargas puntuales viene dada por la Ley de Coulomb. La Ley de Coulomb y el principio de superposición permiten calcular la fuerza que cualquier distribución de carga, sea discreta o continua, ejerce sobre una carga. Se define el campo eléctrico como la fuerza eléctrica ejercida por una distribución de cargas sobre la unidad de carga en cualquier punto del espacio. El campo eléctrico se calcula, en general, a partir de una epresión integral yserepresenta gráficamente mediante líneas de campo. La Ley de Gauss es una ley fundamental de la física que puede utilizarse para calcular de una forma sencilla (sin integrar) el campo eléctrico creado por distribuciones de carga que posean un alto grado de simetría. Curso 009/010 Dpto. Física Aplicada III 50/50

Fuerzas eléctricas y campo eléctrico

Fuerzas eléctricas y campo eléctrico Fuerzas eléctricas y campo eléctrico Física II Grado en Ingeniería de Organización Industrial Primer Curso Joaquín Bernal Méndez Curso 011-01 Departamento de Física Aplicada III Universidad de Sevilla

Más detalles

Tema 1.-Fuerzas eléctricas

Tema 1.-Fuerzas eléctricas Tema 1: Fuerzas eléctricas y campo eléctrico Física II Ingeniería de Tecnologías Industriales Primer curso Curso 01/013 Joaquín Bernal Méndez Dpto. Física Aplicada III - ETSI 1 Índice Introducción Carga

Más detalles

EL CAMPO ELÉCTRICO. Física de 2º de Bachillerato

EL CAMPO ELÉCTRICO. Física de 2º de Bachillerato EL CAMPO ELÉCTRICO Física de 2º de Bachillerato Los efectos eléctricos y magnéticos son producidos por la misma propiedad de la materia: la carga. Interacción electrostática: Ley de Coulomb Concepto de

Más detalles

1. INTRODUCCIÓN HISTÓRICA. Gilbert ( ) descubrió que la electrificación era un fenómeno de carácter general.

1. INTRODUCCIÓN HISTÓRICA. Gilbert ( ) descubrió que la electrificación era un fenómeno de carácter general. ELECTROSTÁTICA 1 Introducción. 2 Carga eléctrica. 3 Ley de Coulomb. 4 Campo eléctrico y principio de superposición. 5 Líneas de campo eléctrico. 6 Flujo eléctrico. 7 Teorema de Gauss. Aplicaciones.. 1.

Más detalles

Tema 1: ELECTROSTÁTICA EN EL VACÍO. 2.- Ley de Coulomb. Campo de una carga puntual.

Tema 1: ELECTROSTÁTICA EN EL VACÍO. 2.- Ley de Coulomb. Campo de una carga puntual. 1.- Carga eléctrica. Propiedades. 2.- Ley de Coulomb. Campo de una carga puntual. 3.- Principio de superposición. 4.- Distribuciones continuas de carga. 5.- Ley de Gauss. Aplicaciones. 6.- Potencial electrostático.

Más detalles

Temario 4.Campo Eléctrico

Temario 4.Campo Eléctrico Campo Eléctrico 1 1 Temario 4.Campo Eléctrico 4.1 Concepto y definición de campo eléctrico 4.2 Campo eléctrico producido por una y varias cargas puntuales. 4.3 Lineas de Campo 4.4 Un conductor eléctrico

Más detalles

INTERACCIÓN ELÉCTRICA

INTERACCIÓN ELÉCTRICA INTERACCIÓN ELÉCTRICA 1. La carga eléctrica. 2. La ley de Coulomb. 3. El campo eléctrico. 4. La energía potencial. 5. El potencial electroestático. 6. El campo eléctrico uniforme. 7. El flujo de campo

Más detalles

Ley de Coulomb. Introducción

Ley de Coulomb. Introducción Ley de Coulomb Introducción En este tema comenzaremos el estudio de la electricidad con una pequeña discusión sobre el concepto de carga eléctrica, seguida de una breve introducción al concepto de conductores

Más detalles

Módulo 1: Electrostática Fuerza eléctrica

Módulo 1: Electrostática Fuerza eléctrica Módulo 1: Electrostática Fuerza eléctrica 1 Cargas eléctricas y fuerzas Hay dos tipos de cargas cargas positivas y cargas negativas REPELEN REPELEN ATRAEN Fuerzas del mismo signo se repelen, mientras que

Más detalles

Figura 1.3.1. Sobre la definición de flujo ΔΦ.

Figura 1.3.1. Sobre la definición de flujo ΔΦ. 1.3. Teorema de Gauss Clases de Electromagnetismo. Ariel Becerra La ley de Coulomb y el principio de superposición permiten de una manera completa describir el campo electrostático de un sistema dado de

Más detalles

Módulo 1: Electrostática Campo eléctrico

Módulo 1: Electrostática Campo eléctrico Módulo 1: Electrostática Campo eléctrico 1 Campo eléctrico Cómo puede ejercerse una fuerza a distancia? Para explicarlo se introduce el concepto de campo eléctrico Una carga crea un campo eléctrico E en

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

Campo Eléctrico. Fig. 1. Problema número 1.

Campo Eléctrico. Fig. 1. Problema número 1. Campo Eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

Campo Eléctrico. La fuerza eléctrica ejercida por una carga sobre otra es un ejemplo de acción a distancia.

Campo Eléctrico. La fuerza eléctrica ejercida por una carga sobre otra es un ejemplo de acción a distancia. Campo Eléctrico Presentación basada en el material contenido en: R. Serway,; Physics for Scientists and Engineers, Saunders College Publishers, 3 rd edition. Campo Eléctrico La fuerza eléctrica ejercida

Más detalles

CAMPO ELÉCTRICO ÍNDICE

CAMPO ELÉCTRICO ÍNDICE CAMPO ELÉCTRICO ÍNDICE 1. Introducción 2. Ley de Coulomb 3. Campo eléctrico 4. Líneas de campo eléctrico 5. Distribuciones continuas de carga eléctrica 6. Flujo del campo eléctrico. Ley de Gauss 7. Potencial

Más detalles

Bárbara Cánovas Conesa

Bárbara Cánovas Conesa Bárbara Cánovas Conesa 637 70 3 Carga eléctrica www.clasesalacarta.com Campo léctrico La carga eléctrica es un exceso (carga -) o defecto (carga ) de electrones que posee un cuerpo respecto al estado neutro.

Más detalles

Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento.

Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento. ELECTROSTATICA Carga Eléctrica Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento. Aparecen fuerzas de atracción n o repulsión

Más detalles

Índice. Introducción Campo magnético Efectos del campo magnético sobre. Fuentes del campo magnético

Índice. Introducción Campo magnético Efectos del campo magnético sobre. Fuentes del campo magnético Campo magnético. Índice Introducción Campo magnético Efectos del campo magnético sobre Carga puntual móvil (Fuerza de Lorentz) Conductor rectilíneo Espira de corriente Fuentes del campo magnético Carga

Más detalles

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética.

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. 1 Carga eléctrica Campo léctrico xceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. Un culombio es la

Más detalles

Dinámica de la partícula: Leyes de Newton

Dinámica de la partícula: Leyes de Newton Dinámica de la partícula: Leyes de Newton Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2013/2014 Dpto.Física Aplicada III Universidad de Sevilla Índice

Más detalles

El campo eléctrico. es un campo de fuerzas

El campo eléctrico. es un campo de fuerzas El campo eléctrico es un campo de fuerzas Podemos detectar un campo eléctrico colocando un cuerpo cargado, en reposo. - El cuerpo cargado comenzará a moverse, acelerando en la dirección y sentido de la

Más detalles

FISICA 2º BACHILLERATO CAMPO ELECTRICO

FISICA 2º BACHILLERATO CAMPO ELECTRICO ) CMPO ELÉCTRICO Cuando en el espacio vacío se introduce una partícula cargada, ésta lo perturba, modifica, haciendo cambiar su geometría, de modo que otra partícula cargada que se sitúa en él, estará

Más detalles

II. ELECTROSTÁTICA. Carga eléctrica:

II. ELECTROSTÁTICA. Carga eléctrica: FÍSICA II TELECOM Profesor BRUNO MAGALHAES II. ELECTROSTÁTICA La electrostática es la rama de la física que estudia los efectos mutuos que se producen entre los cuerpos como consecuencia de su carga eléctrica.

Más detalles

BACHILLERATO FÍSICA 3. CAMPO ELÉCTRICO. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA 3. CAMPO ELÉCTRICO. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA 3. CAMPO ELÉCTRICO R. Artacho Dpto. de Física y Química Índice CONTENIDOS 1. Interacción electrostática 2. Campo eléctrico 3. Enfoque dinámico 4. Enfoque energético 5. Movimiento de

Más detalles

Campos Electromagnéticos Estáticos

Campos Electromagnéticos Estáticos Capítulo 3: Campos Electromagnéticos Estáticos Flujo de un campo vectorial Superficie cerrada Ley de Gauss Karl Friedrich Gauss (1777-1855) Flujo de E generado por una carga puntual Superficie arbitraria

Más detalles

FÍSICA. 3- Un electrón y un protón están separados 10 cm cuál es la magnitud y la dirección de la fuerza sobre el electrón?

FÍSICA. 3- Un electrón y un protón están separados 10 cm cuál es la magnitud y la dirección de la fuerza sobre el electrón? ANEXO 1. FÍSICA. 1- Compara la fuerza eléctrica y la fuerza gravitacional entre: a- Dos electrones. b- Un protón y un electrón. Carga del electrón: e = 1,6x10-19 C Masa del protón: 1,67x10-27 Kg Masa del

Más detalles

UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL FISICA III CIV 221 DOCENTE: ING. JOEL PACO S.

UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL FISICA III CIV 221 DOCENTE: ING. JOEL PACO S. UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL FISICA III CIV 221 DOCENTE: ING JOEL PACO S PONDERACION DE EVALUACION EXAMENES ( 60 % ) 1 era Evaluación

Más detalles

Unidad I: Electrostática.

Unidad I: Electrostática. Unidad I: Electrostática. I. Naturaleza eléctrica de la sustancia. En la electrostática se aborda el estudio de las propiedades estáticas de las cargas eléctricas. La palabra electricidad procede del griego

Más detalles

Bolilla 6. Electricidad

Bolilla 6. Electricidad Bolilla 6 Electricidad Fuerzas Fundamentales de la Naturaleza Fuerza gravitacional:todos los cuerpos son atraídos por una fuerza que es directamente proporcional a sus masas, e inversamente proporcional

Más detalles

I - ACCIÓN DEL CAMPO SOBRE CARGAS MÓVILES

I - ACCIÓN DEL CAMPO SOBRE CARGAS MÓVILES I - ACCIÓN DEL CAMPO SOBRE CARGAS MÓVILES 1.- Un conductor rectilíneo indefinido transporta una corriente de 10 A en el sentido positivo del eje Z. Un protón que se mueve a 2 105 m/s, se encuentra a 50

Más detalles

Módulo 6: Electricidad y Magnetismo. Electrostática

Módulo 6: Electricidad y Magnetismo. Electrostática Módulo 6: Electricidad y Magnetismo. Electrostática tica 1 Cargas eléctricas y fuerzas Hay dos tipos de cargas cargas positivas y cargas negativas REPELEN REPELEN ATRAEN Fuerzas del mismo signo se repelen,

Más detalles

Unidad I: Electrostática.

Unidad I: Electrostática. Unidad I: Electrostática. I. Naturaleza eléctrica de la sustancia. En la electrostática se aborda el estudio de las propiedades estáticas de las cargas eléctricas. La palabra electricidad procede del griego

Más detalles

Fundamentos Físicos de las Comunicaciones TEMA 6 ELECTROSTÁTICA. Francisco Fernández

Fundamentos Físicos de las Comunicaciones TEMA 6 ELECTROSTÁTICA. Francisco Fernández Fundamentos Físicos de las Comunicaciones TEMA 6 ELECTROSTÁTICA Francisco Fernández La duda es la escuela de la inteligencia. Curso 2012-2013 F. Bacon 1 Ley de Coulomb Ley de Coulomb: La magnitud de la

Más detalles

/Ejercicios de Campo Eléctrico

/Ejercicios de Campo Eléctrico /Ejercicios de Campo Eléctrico 1-Determine la fuerza total actuante sobre q2 en el sistema de la figura. q 1 = 12 µ C q 2 = 2.0 µ C q 3 = 12 µ C a= 8,0 cm b= 6,0 cm 2-Determine la fuerza total actuante

Más detalles

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 6 EL CAMPO ELECTROSTÁTICO

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 6 EL CAMPO ELECTROSTÁTICO CAMPO ELÉCTRICO REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 6 EL CAMPO ELECTROSTÁTICO El concepto físico de campo El concepto campo surge ante la

Más detalles

CAPÍTULO IV Dieléctricos

CAPÍTULO IV Dieléctricos Fundamento teórico CAPÍTULO IV Dieléctricos I.- l dipolo Ia.- Momento dipolar Un sistema formado por dos cargas iguales en módulo y de signo opuesto, +q y q, con vectores posición r + y r respectivamente,

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles

Última modificación: 1 de agosto de

Última modificación: 1 de agosto de Contenido CAMPO ELÉCTRICO EN CONDICIONES ESTÁTICAS 1.- Naturaleza del electromagnetismo. 2.- Ley de Coulomb. 3.- Campo eléctrico de carga puntual. 4.- Campo eléctrico de línea de carga. 5.- Potencial eléctrico

Más detalles

LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS

LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS 2.1. CAMPO ELECTRICO En lugar de manejar el campo de fuerzas, resulta más cómodo definir un campo vectorial denominado campo eléctrico, E.

Más detalles

Campo magnético creado por cargas puntuales móviles.

Campo magnético creado por cargas puntuales móviles. Introducción Volvamos ahora considerar los orígenes del campo magnético B. Las primeras fuentes conocidas del magnetismo fueron los imanes permanentes. Un mes después de que Oersted anunciarse su descubrimiento

Más detalles

A. No existe. B. Es una elipse. C. Es una circunferencia. D. Es una hipérbola equilátera.

A. No existe. B. Es una elipse. C. Es una circunferencia. D. Es una hipérbola equilátera. CUESTIONES SOBRE CAMPO ELECTROSTÁTICO 1.- En un campo electrostático, el corte de dos superficies equiescalares con forma de elipsoide, con sus centros separados y un mismo eje mayor: No existe. B. Es

Más detalles

Física II CF-342 Ingeniería Plan Común.

Física II CF-342 Ingeniería Plan Común. Física II CF-342 Ingeniería Plan Común. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Física

Más detalles

Capítulo 18. Biomagnetismo

Capítulo 18. Biomagnetismo Capítulo 18 Biomagnetismo 1 Fuerza magnética sobre una carga La fuerza que un campo magnético B ejerce sobre una partícula con velocidad v y carga Q es: F = Q v B El campo magnético se mide en teslas,

Más detalles

Cinemática de la partícula

Cinemática de la partícula Cinemática de la partícula Física I Grado en Ingeniería de Organización Industrial Primer Curso Ana Mª Marco Ramírez Curso 2013/2014 Dpto.Física Aplicada III Universidad de Sevilla Índice Introducción

Más detalles

Campo eléctrico 1: Distribuciones discretas de carga

Campo eléctrico 1: Distribuciones discretas de carga Campo eléctrico 1: Distribuciones discretas de carga Introducción Carga eléctrica Conductores y aislantes y carga por inducción Ley de Coulomb El campo eléctrico Líneas de campo eléctrico Movimiento de

Más detalles

1. Defina la ley de Coulom (escriba su ecuación, unidades y a cuanto equivale K y la )

1. Defina la ley de Coulom (escriba su ecuación, unidades y a cuanto equivale K y la ) 1. Defina la ley de Coulom (escriba su ecuación, unidades y a cuanto equivale K y la ) Ley de Coulomb La fuerza entre cargas eléctricas es directamente proporcional al producto de dichas cargas e inversamente

Más detalles

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en CAMPO ELÉCTRICO 1.- 2015-Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en el vacío colocadas en los puntos A (0,0), B(3,0) y C(0,4),

Más detalles

Seminario de Física. 2º bachillerato LOGSE. Unidad 3. Campo magnético e Inducción magnética

Seminario de Física. 2º bachillerato LOGSE. Unidad 3. Campo magnético e Inducción magnética A) Interacción Magnética sobre cargas puntuales. 1.- Determina la fuerza que actúa sobre un electrón situado en un campo de inducción magnética B = -2 10-2 k T cuando su velocidad v = 2 10 7 i m/s. Datos:

Más detalles

Electrostática. Introducción Cargas Eléctricas Conductores y Aislantes Ley de Coulomb Superposición de Fuerzas Eléctricas

Electrostática. Introducción Cargas Eléctricas Conductores y Aislantes Ley de Coulomb Superposición de Fuerzas Eléctricas Electrostática Introducción Cargas Eléctricas Conductores y Aislantes Ley de Coulomb Superposición de Fuerzas Eléctricas Introducción 600 a.c.- Griegos descubren que al frotar el ámbar rápidamente este

Más detalles

EJERCICIOS DEL CAPÍTULO 6 - ELECTROSTÁTICA

EJERCICIOS DEL CAPÍTULO 6 - ELECTROSTÁTICA EJERCICIOS DEL CAPÍTULO 6 - ELECTROSTÁTICA C6. 1 Calcular el campo eléctrico E en el centro del cuadrado, así como la diferencia de potencial entre los puntos A y B. Resp.: E = ; V A -V B = 0 C6. 2 En

Más detalles

Concepto de Campo. Homogéneo No homogéneo. 4Un campo de temperaturas (Escalar) 4Un campo de velocidades (Vectorial) 4Campo gravitacional (Vectorial)

Concepto de Campo. Homogéneo No homogéneo. 4Un campo de temperaturas (Escalar) 4Un campo de velocidades (Vectorial) 4Campo gravitacional (Vectorial) CAMPO ELECTRICO Concepto de Campo l El concepto de Campo es de una gran importancia en Ciencias y, particularmente en Física. l l La idea consiste en atribuirle propiedades al espacio en vez de considerar

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011 Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles

CAMPO ELÉCTRICO MODELO 2016

CAMPO ELÉCTRICO MODELO 2016 CAMPO ELÉCTRICO MODELO 2016 1- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente

Más detalles

Campo Eléctrico en el vacío

Campo Eléctrico en el vacío Campo Eléctrico en el vacío Electrostática: Interacción entre partículas cargadas q1 q2 Ley de Coulomb En el vacío: K = 8.99 109 N m2/c2 0 = 8.85 10 12 C2/N m2 Balanza de torsión Electrostática: Interacción

Más detalles

Podemos definir la materia como todo aquello que ocupa un lugar en el espacio.

Podemos definir la materia como todo aquello que ocupa un lugar en el espacio. Podemos definir la materia como todo aquello que ocupa un lugar en el espacio. MATERIA está formada por moléculas, las cuales son la parte más pequeña que poseen todas las propiedades físicas y químicas

Más detalles

Magnitud. E Intensidad de campo eléctrico N/C Q Carga que crea el campo eléctrico C

Magnitud. E Intensidad de campo eléctrico N/C Q Carga que crea el campo eléctrico C Fuerza entre dos Cargas (Ley de Coulomb) Fuerza total sobre una determinada carga Intensidad de campo eléctrico creado por una carga puntual en un punto F= K Q. q /r 2. Ko = 1/(4πε o )= = 9. 10 9 N. m

Más detalles

GUIA DE ESTUDIO TEMA: DINAMICA

GUIA DE ESTUDIO TEMA: DINAMICA GUIA DE ESTUDIO TEMA: DINAMICA A. PREGUNTAS DE TIPO FALSO O VERDADERO A continuación se presentan una serie de proposiciones que pueden ser verdaderas o falsas. En el paréntesis de la izquierda escriba

Más detalles

Capítulo 1: Interacción Eléctrica

Capítulo 1: Interacción Eléctrica Capítulo 1: Interacción Eléctrica Un poco de historia Tales de Mileto (624-543 A. C.) Observó que unas briznas de hierba seca eran atraídas por un trozo de ámbar que antes había frotado con su túnica.

Más detalles

Interacción Eléctrica

Interacción Eléctrica Capítulo 1: Interacción Eléctrica Tales de Mileto (624-543 A. C.) Observó que unas briznas de hierba seca eran atraídas por un trozo de ámbar que antes había frotado con su túnica. Electricidad por frotación

Más detalles

TEMA 3:ELECTROSTATICA

TEMA 3:ELECTROSTATICA TEMA 3:ELECTROSTATICA Escribir y aplicar la ley de Coulomb y aplicarla a problemas que involucran fuerzas eléctricas. Definir el electrón, el coulomb y el microcoulomb como unidades de carga eléctrica.

Más detalles

FUERZA Y CAMPO ELÉCTRICO

FUERZA Y CAMPO ELÉCTRICO FUERZA Y CAMPO ELÉCTRICO PREGUNTAS 1. Se tienen tres esferas conductoras A, B y C idénticas y aisladas. La esfera A se encuentra cargada con 60 µc y B y C totalmente descargadas. Si seguimos el siguiente

Más detalles

LOS CUESTIONARIOS TIENEN RELACIÓN CON LOS CAPITULOS XX Y XXI DEL TEXTO GUÍA (FÍSCA PRINCIPIOS CON APLICACIONES SEXTA EDICIÓN DOUGLAS C.

LOS CUESTIONARIOS TIENEN RELACIÓN CON LOS CAPITULOS XX Y XXI DEL TEXTO GUÍA (FÍSCA PRINCIPIOS CON APLICACIONES SEXTA EDICIÓN DOUGLAS C. LOS CUESTIONARIOS TIENEN RELACIÓN CON LOS CAPITULOS XX Y XXI DEL TEXTO GUÍA (FÍSCA PRINCIPIOS CON APLICACIONES SEXTA EDICIÓN DOUGLAS C. Giancoli AL DESARROLLAR LOS CUESTIONARIOS, TENER EN CUENTA LOS PROCESOS

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 22 enero 2016

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 22 enero 2016 2016-Modelo A. Pregunta 3.- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente en

Más detalles

CAMPO ELÉCTRICO CARGAS PUNTUALES

CAMPO ELÉCTRICO CARGAS PUNTUALES CARGAS PUNTUALES Ejercicio 1. Junio 2.007 Dos partículas con cargas de +1 μc y de -1 μc están situadas en los puntos del plano XY de coordenadas (- 1,0) y (1,0) respectivamente. Sabiendo que las coordenadas

Más detalles

v m 2 d 4 m d 4 FA FCP m k

v m 2 d 4 m d 4 FA FCP m k Concepto de campo: Se define un campo como una zona del espacio en la que se deja sentir una magnitud; a cada punto del espacio se le puede dar un valor de esa magnitud en un instante determinado. Los

Más detalles

ELECTROESTÁTICA. Física 1º bachillerato Electroestática 1

ELECTROESTÁTICA. Física 1º bachillerato Electroestática 1 ELECTROESTÁTICA 1. Naturaleza eléctrica. 2. Interacción electroestática. 3. Campo eléctrico. 4. Energía potencial eléctrica. 5. Potencial eléctrico. 6. Corriente eléctrica continua. 7. Ley de Ohm. 8. Asociación

Más detalles

2 o Bachillerato. Interacción Electromagnética I Campo Eléctrico. Prof. Jorge Rojo Carrascosa

2 o Bachillerato. Interacción Electromagnética I Campo Eléctrico. Prof. Jorge Rojo Carrascosa FÍSICA 2 o Bachillerato Interacción Electromagnética I Campo Eléctrico Prof. Jorge Rojo Carrascosa Índice general 1. INTERACCIÓN ELECTROMAGNÉTICA I. CAMPO ELÉCTRICO 2 1.1. LEY DE COULOMB...........................

Más detalles

Prueba 1: Cuestiones sobre campos gravitatorio, eléctrico y electromagnetismo

Prueba 1: Cuestiones sobre campos gravitatorio, eléctrico y electromagnetismo Prueba 1: Cuestiones sobre campos gravitatorio, eléctrico y electromagnetismo 1. El módulo de la intensidad del campo gravitatorio en la superficie de un planeta de masa M y de radio R es g. Cuál será

Más detalles

ALGUNOS PROBLEMAS RESUELTOS DE CAMPO MAGNÉTICO

ALGUNOS PROBLEMAS RESUELTOS DE CAMPO MAGNÉTICO http://www.juntadeandalucia.es/averroes/copernico/fisica.htm Ronda de las Huertas. Écija. e-mail: emc2@tiscali.es ALGUNOS PROBLEMAS RESUELTOS DE CAMPO MAGNÉTICO 1. Una carga eléctrica, q = 3,2.10-19 C,

Más detalles

CAMPO ELÉCTRICO. Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas.

CAMPO ELÉCTRICO. Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas. CAMPO LÉCTRICO 1. INTRODUCCIÓN Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas. Una carga de prueba es una carga considerada siempre positiva, ue

Más detalles

Fundamentos Físicos de la Informática. Capítulo 1 Campos electrostáticos. Margarita Bachiller Mayoral

Fundamentos Físicos de la Informática. Capítulo 1 Campos electrostáticos. Margarita Bachiller Mayoral Fundamentos Físicos de la Informática Capítulo 1 Campos electrostáticos Margarita Bachiller Mayoral Campos electrostáticos Tipos de carga Fuerza eléctrica Principio de superposición Margarita Bachiller

Más detalles

Aplicaciones de las integrales dobles

Aplicaciones de las integrales dobles Aplicaciones de las integrales dobles Las integrales dobles tienen multiples aplicaciones en física en geometría. A continuación damos una relación de alguna de ellas.. El área de una región plana R en

Más detalles

Electrostática II. QUÍMICA. Prof. Jorge Rojo Carrascosa

Electrostática II. QUÍMICA. Prof. Jorge Rojo Carrascosa FÍSICA Y QUÍMICA 1 o Bachillerato I. FÍSICA Electrostática II. QUÍMICA Prof. Jorge Rojo Carrascosa Índice general 1. ELECTROSTÁTICA 2 1.1. LEY DE COULOMB........................... 2 1.2. CAMPO ELÉCTRICO..........................

Más detalles

Interacciones Eléctricas La Ley de Coulomb

Interacciones Eléctricas La Ley de Coulomb Interacciones Eléctricas La Ley de Coulomb 1. Introducción La Electrostática se ocupa del estudio de las interacciones entre cargas eléctricas en reposo. Las primeras experiencias relativas a los fenómenos

Más detalles

Ley de Gauss. Ley de Gauss

Ley de Gauss. Ley de Gauss Objetivo: Ley de Gauss Hasta ahora, hemos considerado cargas puntuales Cómo podemos tratar distribuciones más complicadas, por ejemplo, el campo de un alambre cargado, una esfera cargada, o un anillo cargado?

Más detalles

Bolilla 10: Magnetismo

Bolilla 10: Magnetismo Bolilla 10: Magnetismo 1 Bolilla 10: Magnetismo La fuerza magnética es una de las fuerzas fundamentales de la naturaleza. Si bien algunos efectos magnéticos simples fueron observados y descriptos desde

Más detalles

DIFERENCIA ENTRE CAMPO ELÉCTRICO, ENERGÍA POTENCIAL ELÉCTRICA Y POTENCIAL ELÉCTRICO

DIFERENCIA ENTRE CAMPO ELÉCTRICO, ENERGÍA POTENCIAL ELÉCTRICA Y POTENCIAL ELÉCTRICO DIFERENCIA ENTRE CAMPO ELÉCTRICO, ENERGÍA POTENCIAL ELÉCTRICA Y POTENCIAL ELÉCTRICO CAMPO ELÉCTRICO El espacio que rodea a un objeto cargado se altera en presencia de la carga. Podemos postular la existencia

Más detalles

UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL FISICA III CIV 221 DOCENTE: ING. JOEL PACO S.

UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL FISICA III CIV 221 DOCENTE: ING. JOEL PACO S. UNIVERSIDAD AUTONOMA JUAN MISAEL SARACHO FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL FISICA III CIV 221 DOCENTE: ING JOEL PACO S Capitulo I CARGAS ELECTRICAS LEY DE COULOMB 1 CONTENIDO

Más detalles

Notas para la asignatura de Electricidad y Magnetismo Unidad 1: Electrostática

Notas para la asignatura de Electricidad y Magnetismo Unidad 1: Electrostática Notas para la asignatura de Electricidad y Magnetismo Unidad 1: Electrostática Presenta: M. I. Ruiz Gasca Marco Antonio Instituto Tecnológico de Tláhuac II Agosto, 2015 Marco Antonio (ITT II) México D.F.,

Más detalles

Guía de Ejercicios de Fuerza Eléctrica, Campo y Potencial Eléctrico

Guía de Ejercicios de Fuerza Eléctrica, Campo y Potencial Eléctrico INSTITITO NACIONAL Dpto. de Física Coordinación. 4 plan electivo Marcel López Urbina Guía de Ejercicios de Fuerza Eléctrica, Campo y Potencial Eléctrico Objetivo: - Reconocer la fuerza eléctrica, campo

Más detalles

Campo eléctrico. Electricidad elektron ámbar. posteriormente. La esfera se mueve hacia La varilla. La esfera se mueve hacia La varilla

Campo eléctrico. Electricidad elektron ámbar. posteriormente. La esfera se mueve hacia La varilla. La esfera se mueve hacia La varilla Campo eléctrico Electricidad elektron ámbar TELA Thales de Mileto posteriormente ámbar El poder del ámbar era algo natural El vidrio igual VIDRIO Frotamos una varilla de vidrio y la acercamos sin llegar

Más detalles

Principios de Termodinámica y Electromagnetismo

Principios de Termodinámica y Electromagnetismo Facultad de Ingeniería Principios de Termodinámica y Electromagnetismo Proyecto de Investigación Alumnos: CAMPO ELÉCTRICO. Arias Vázquez Margarita Isabel Arroyo Ramírez Rogelio Beltrán Gómez Selvin Eduardo

Más detalles

5. Campo gravitatorio

5. Campo gravitatorio 5. Campo gravitatorio Interacción a distancia: concepto de campo Campo gravitatorio Campo de fuerzas Líneas de campo Intensidad del campo gravitatorio Potencial del campo gravitatorio: flujo gravitatorio

Más detalles

El flujo de un campo vectorial

El flujo de un campo vectorial Ley de Gauss Ley de Gauss Hasta ahora todo lo que hemos hecho en electrostática se basa en la ley de Coulomb. A partir de esa ley hemos definido el campo eléctrico de una carga puntual. Al generalizar

Más detalles

Tema 3: Campos estáticos

Tema 3: Campos estáticos Tema 3: Campos estáticos 1 Índice Ecuaciones en el caso estacionario Electrostática Solución del problema electrostático Cálculo de campos mediante Ley de Gauss Energía electrostática Desarrollo multipolar

Más detalles

CAPÍTULO III Electrostática

CAPÍTULO III Electrostática CAPÍTULO III Electrostática Fundamento teórico I.- Ley de Coulomb Ia.- Ley de Coulomb La fuerza electrostática F que una carga puntual q con vector posición r ejerce sobre una carga puntual q con vector

Más detalles

TEMA 4. CAMPO ELÉCTRICO

TEMA 4. CAMPO ELÉCTRICO TEMA 4. CAMPO ELÉCTRICO ÍNDICE 1. Evolución histórica de la electricidad. 2. Fuerza eléctrica. Ley de Coulomb. 2.1. Fuerza eléctrica creada por varias cargas. 3. Campo eléctrico. 3.1. Campo eléctrico creado

Más detalles

Essential University Physics

Essential University Physics Essential University Physics Richard Wolfson 20 Carga Eléctrica, Fuerza, y Campo PowerPoint Lecture prepared by Richard Wolfson Slide 20-1 En esta exposición usted aprenderá Como la materia y muchas de

Más detalles

Principio de superposición F i F = F i F j, i F, 1 i 3, i j q F 2 qi 2, i q3 q1

Principio de superposición F i F = F i F j, i F, 1 i 3, i j q F 2 qi 2, i q3 q1 1. Carga y Campo léctrico Carga eléctrica. Conservación de la carga. Ley de Coulomb. Campo eléctrico. Potencial. Ley de Gauss. Conductor cargado en equilibrio electrostático. Carga eléctrica Dos tipos:

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 13 junio 2018

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 13 junio 2018 2018-Junio-coincidentes A. Pregunta 3.- Dos cargas Q 1= -4 nc y Q 2= 4 nc están situadas en los puntos P 1(3, 4) y P 2(-3, 4), respectivamente, del plano xy (coordenadas expresadas en metros). Determine:

Más detalles

Interacción electromagnética I. Campo eléctrico

Interacción electromagnética I. Campo eléctrico Interacción electromagnética I. Campo eléctrico Cuestiones y problemas 1. Si entre las dos placas de un condensador plano separadas 3 cm entre sí, existe un campo eléctrico uniforme de 7.10 4 N/C: a) Qué

Más detalles

29.1. El flujo de un campo vectorial. Capítulo 29

29.1. El flujo de un campo vectorial. Capítulo 29 29 La ley de Gauss La ley de Coulomb se puede usar para calcular E para cualquier distribución discreta o continua de cargas en reposo. Cuando se presenten casos con alta simetría será más conveneinte

Más detalles

23/05/2018. Unidad Nº 8

23/05/2018. Unidad Nº 8 Unidad Nº 8 Electrostática 8.1. Carga eléctrica. Conductores y aisladores. Ley de Coulomb. Campo eléctrico. Líneas de fuerza. Cálculo del campo eléctrico para cargas puntuales. Cálculo del campo eléctrico

Más detalles

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers.

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Recordamos que: La carga eléctrica siempre

Más detalles

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers.

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Campo eléctrico, definición Se dice que

Más detalles

FÍSICA. UNIDAD TEMÁTICA VII. Electrostática. 1.- NATURALEZA ELÉCTRICA DE LA MATERIA. CARGA 6.- MOVIMIENTO DE CARGAS EN UN CAMPO ELÉCTRICO.

FÍSICA. UNIDAD TEMÁTICA VII. Electrostática. 1.- NATURALEZA ELÉCTRICA DE LA MATERIA. CARGA 6.- MOVIMIENTO DE CARGAS EN UN CAMPO ELÉCTRICO. UNIDAD TEMÁTICA VII. Electrostática..- ÍNDICE..- NATURALEZA ELÉCTRICA DE LA MATERIA. CARGA ELÉCTRICA..- LEY DE COULOMB. 3.- CAMPO ELÉCTRICO. 4.- PRINCIPIO DE SUPERPOSICIÓN. 5.- LÍNEAS DE FUERZA. 6.- MOVIMIENTO

Más detalles

Tema 3 : Campo Eléctrico

Tema 3 : Campo Eléctrico Tema 3 : Campo Eléctrico Esquema de trabajo: 1.- Carga eléctrica 2.- Ley de Colulomb 3.- Campo eléctrico. Intensidad de campo eléctrico. 4.- Energía potencial eléctrica. 5.- Potencial eléctrico. Superficies

Más detalles